perf: Convert perf tracing data into a tracing_data event
[linux-2.6/libata-dev.git] / kernel / perf_event.c
blobfcf42dcd6089b119732601a037b786e909f2c866
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/sysfs.h>
20 #include <linux/dcache.h>
21 #include <linux/percpu.h>
22 #include <linux/ptrace.h>
23 #include <linux/vmstat.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hardirq.h>
26 #include <linux/rculist.h>
27 #include <linux/uaccess.h>
28 #include <linux/syscalls.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/perf_event.h>
32 #include <linux/ftrace_event.h>
33 #include <linux/hw_breakpoint.h>
35 #include <asm/irq_regs.h>
38 * Each CPU has a list of per CPU events:
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42 int perf_max_events __read_mostly = 1;
43 static int perf_reserved_percpu __read_mostly;
44 static int perf_overcommit __read_mostly = 1;
46 static atomic_t nr_events __read_mostly;
47 static atomic_t nr_mmap_events __read_mostly;
48 static atomic_t nr_comm_events __read_mostly;
49 static atomic_t nr_task_events __read_mostly;
52 * perf event paranoia level:
53 * -1 - not paranoid at all
54 * 0 - disallow raw tracepoint access for unpriv
55 * 1 - disallow cpu events for unpriv
56 * 2 - disallow kernel profiling for unpriv
58 int sysctl_perf_event_paranoid __read_mostly = 1;
60 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
63 * max perf event sample rate
65 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67 static atomic64_t perf_event_id;
70 * Lock for (sysadmin-configurable) event reservations:
72 static DEFINE_SPINLOCK(perf_resource_lock);
75 * Architecture provided APIs - weak aliases:
77 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 return NULL;
82 void __weak hw_perf_disable(void) { barrier(); }
83 void __weak hw_perf_enable(void) { barrier(); }
85 int __weak
86 hw_perf_group_sched_in(struct perf_event *group_leader,
87 struct perf_cpu_context *cpuctx,
88 struct perf_event_context *ctx)
90 return 0;
93 void __weak perf_event_print_debug(void) { }
95 static DEFINE_PER_CPU(int, perf_disable_count);
97 void perf_disable(void)
99 if (!__get_cpu_var(perf_disable_count)++)
100 hw_perf_disable();
103 void perf_enable(void)
105 if (!--__get_cpu_var(perf_disable_count))
106 hw_perf_enable();
109 static void get_ctx(struct perf_event_context *ctx)
111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
114 static void free_ctx(struct rcu_head *head)
116 struct perf_event_context *ctx;
118 ctx = container_of(head, struct perf_event_context, rcu_head);
119 kfree(ctx);
122 static void put_ctx(struct perf_event_context *ctx)
124 if (atomic_dec_and_test(&ctx->refcount)) {
125 if (ctx->parent_ctx)
126 put_ctx(ctx->parent_ctx);
127 if (ctx->task)
128 put_task_struct(ctx->task);
129 call_rcu(&ctx->rcu_head, free_ctx);
133 static void unclone_ctx(struct perf_event_context *ctx)
135 if (ctx->parent_ctx) {
136 put_ctx(ctx->parent_ctx);
137 ctx->parent_ctx = NULL;
142 * If we inherit events we want to return the parent event id
143 * to userspace.
145 static u64 primary_event_id(struct perf_event *event)
147 u64 id = event->id;
149 if (event->parent)
150 id = event->parent->id;
152 return id;
156 * Get the perf_event_context for a task and lock it.
157 * This has to cope with with the fact that until it is locked,
158 * the context could get moved to another task.
160 static struct perf_event_context *
161 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163 struct perf_event_context *ctx;
165 rcu_read_lock();
166 retry:
167 ctx = rcu_dereference(task->perf_event_ctxp);
168 if (ctx) {
170 * If this context is a clone of another, it might
171 * get swapped for another underneath us by
172 * perf_event_task_sched_out, though the
173 * rcu_read_lock() protects us from any context
174 * getting freed. Lock the context and check if it
175 * got swapped before we could get the lock, and retry
176 * if so. If we locked the right context, then it
177 * can't get swapped on us any more.
179 raw_spin_lock_irqsave(&ctx->lock, *flags);
180 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 goto retry;
185 if (!atomic_inc_not_zero(&ctx->refcount)) {
186 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
187 ctx = NULL;
190 rcu_read_unlock();
191 return ctx;
195 * Get the context for a task and increment its pin_count so it
196 * can't get swapped to another task. This also increments its
197 * reference count so that the context can't get freed.
199 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201 struct perf_event_context *ctx;
202 unsigned long flags;
204 ctx = perf_lock_task_context(task, &flags);
205 if (ctx) {
206 ++ctx->pin_count;
207 raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 return ctx;
212 static void perf_unpin_context(struct perf_event_context *ctx)
214 unsigned long flags;
216 raw_spin_lock_irqsave(&ctx->lock, flags);
217 --ctx->pin_count;
218 raw_spin_unlock_irqrestore(&ctx->lock, flags);
219 put_ctx(ctx);
222 static inline u64 perf_clock(void)
224 return cpu_clock(raw_smp_processor_id());
228 * Update the record of the current time in a context.
230 static void update_context_time(struct perf_event_context *ctx)
232 u64 now = perf_clock();
234 ctx->time += now - ctx->timestamp;
235 ctx->timestamp = now;
239 * Update the total_time_enabled and total_time_running fields for a event.
241 static void update_event_times(struct perf_event *event)
243 struct perf_event_context *ctx = event->ctx;
244 u64 run_end;
246 if (event->state < PERF_EVENT_STATE_INACTIVE ||
247 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248 return;
250 if (ctx->is_active)
251 run_end = ctx->time;
252 else
253 run_end = event->tstamp_stopped;
255 event->total_time_enabled = run_end - event->tstamp_enabled;
257 if (event->state == PERF_EVENT_STATE_INACTIVE)
258 run_end = event->tstamp_stopped;
259 else
260 run_end = ctx->time;
262 event->total_time_running = run_end - event->tstamp_running;
265 static struct list_head *
266 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
268 if (event->attr.pinned)
269 return &ctx->pinned_groups;
270 else
271 return &ctx->flexible_groups;
275 * Add a event from the lists for its context.
276 * Must be called with ctx->mutex and ctx->lock held.
278 static void
279 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281 struct perf_event *group_leader = event->group_leader;
284 * Depending on whether it is a standalone or sibling event,
285 * add it straight to the context's event list, or to the group
286 * leader's sibling list:
288 if (group_leader == event) {
289 struct list_head *list;
291 if (is_software_event(event))
292 event->group_flags |= PERF_GROUP_SOFTWARE;
294 list = ctx_group_list(event, ctx);
295 list_add_tail(&event->group_entry, list);
296 } else {
297 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
298 !is_software_event(event))
299 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
301 list_add_tail(&event->group_entry, &group_leader->sibling_list);
302 group_leader->nr_siblings++;
305 list_add_rcu(&event->event_entry, &ctx->event_list);
306 ctx->nr_events++;
307 if (event->attr.inherit_stat)
308 ctx->nr_stat++;
312 * Remove a event from the lists for its context.
313 * Must be called with ctx->mutex and ctx->lock held.
315 static void
316 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318 struct perf_event *sibling, *tmp;
320 if (list_empty(&event->group_entry))
321 return;
322 ctx->nr_events--;
323 if (event->attr.inherit_stat)
324 ctx->nr_stat--;
326 list_del_init(&event->group_entry);
327 list_del_rcu(&event->event_entry);
329 if (event->group_leader != event)
330 event->group_leader->nr_siblings--;
332 update_event_times(event);
335 * If event was in error state, then keep it
336 * that way, otherwise bogus counts will be
337 * returned on read(). The only way to get out
338 * of error state is by explicit re-enabling
339 * of the event
341 if (event->state > PERF_EVENT_STATE_OFF)
342 event->state = PERF_EVENT_STATE_OFF;
345 * If this was a group event with sibling events then
346 * upgrade the siblings to singleton events by adding them
347 * to the context list directly:
349 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
350 struct list_head *list;
352 list = ctx_group_list(event, ctx);
353 list_move_tail(&sibling->group_entry, list);
354 sibling->group_leader = sibling;
356 /* Inherit group flags from the previous leader */
357 sibling->group_flags = event->group_flags;
361 static void
362 event_sched_out(struct perf_event *event,
363 struct perf_cpu_context *cpuctx,
364 struct perf_event_context *ctx)
366 if (event->state != PERF_EVENT_STATE_ACTIVE)
367 return;
369 event->state = PERF_EVENT_STATE_INACTIVE;
370 if (event->pending_disable) {
371 event->pending_disable = 0;
372 event->state = PERF_EVENT_STATE_OFF;
374 event->tstamp_stopped = ctx->time;
375 event->pmu->disable(event);
376 event->oncpu = -1;
378 if (!is_software_event(event))
379 cpuctx->active_oncpu--;
380 ctx->nr_active--;
381 if (event->attr.exclusive || !cpuctx->active_oncpu)
382 cpuctx->exclusive = 0;
385 static void
386 group_sched_out(struct perf_event *group_event,
387 struct perf_cpu_context *cpuctx,
388 struct perf_event_context *ctx)
390 struct perf_event *event;
392 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
393 return;
395 event_sched_out(group_event, cpuctx, ctx);
398 * Schedule out siblings (if any):
400 list_for_each_entry(event, &group_event->sibling_list, group_entry)
401 event_sched_out(event, cpuctx, ctx);
403 if (group_event->attr.exclusive)
404 cpuctx->exclusive = 0;
408 * Cross CPU call to remove a performance event
410 * We disable the event on the hardware level first. After that we
411 * remove it from the context list.
413 static void __perf_event_remove_from_context(void *info)
415 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
416 struct perf_event *event = info;
417 struct perf_event_context *ctx = event->ctx;
420 * If this is a task context, we need to check whether it is
421 * the current task context of this cpu. If not it has been
422 * scheduled out before the smp call arrived.
424 if (ctx->task && cpuctx->task_ctx != ctx)
425 return;
427 raw_spin_lock(&ctx->lock);
429 * Protect the list operation against NMI by disabling the
430 * events on a global level.
432 perf_disable();
434 event_sched_out(event, cpuctx, ctx);
436 list_del_event(event, ctx);
438 if (!ctx->task) {
440 * Allow more per task events with respect to the
441 * reservation:
443 cpuctx->max_pertask =
444 min(perf_max_events - ctx->nr_events,
445 perf_max_events - perf_reserved_percpu);
448 perf_enable();
449 raw_spin_unlock(&ctx->lock);
454 * Remove the event from a task's (or a CPU's) list of events.
456 * Must be called with ctx->mutex held.
458 * CPU events are removed with a smp call. For task events we only
459 * call when the task is on a CPU.
461 * If event->ctx is a cloned context, callers must make sure that
462 * every task struct that event->ctx->task could possibly point to
463 * remains valid. This is OK when called from perf_release since
464 * that only calls us on the top-level context, which can't be a clone.
465 * When called from perf_event_exit_task, it's OK because the
466 * context has been detached from its task.
468 static void perf_event_remove_from_context(struct perf_event *event)
470 struct perf_event_context *ctx = event->ctx;
471 struct task_struct *task = ctx->task;
473 if (!task) {
475 * Per cpu events are removed via an smp call and
476 * the removal is always successful.
478 smp_call_function_single(event->cpu,
479 __perf_event_remove_from_context,
480 event, 1);
481 return;
484 retry:
485 task_oncpu_function_call(task, __perf_event_remove_from_context,
486 event);
488 raw_spin_lock_irq(&ctx->lock);
490 * If the context is active we need to retry the smp call.
492 if (ctx->nr_active && !list_empty(&event->group_entry)) {
493 raw_spin_unlock_irq(&ctx->lock);
494 goto retry;
498 * The lock prevents that this context is scheduled in so we
499 * can remove the event safely, if the call above did not
500 * succeed.
502 if (!list_empty(&event->group_entry))
503 list_del_event(event, ctx);
504 raw_spin_unlock_irq(&ctx->lock);
508 * Update total_time_enabled and total_time_running for all events in a group.
510 static void update_group_times(struct perf_event *leader)
512 struct perf_event *event;
514 update_event_times(leader);
515 list_for_each_entry(event, &leader->sibling_list, group_entry)
516 update_event_times(event);
520 * Cross CPU call to disable a performance event
522 static void __perf_event_disable(void *info)
524 struct perf_event *event = info;
525 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
526 struct perf_event_context *ctx = event->ctx;
529 * If this is a per-task event, need to check whether this
530 * event's task is the current task on this cpu.
532 if (ctx->task && cpuctx->task_ctx != ctx)
533 return;
535 raw_spin_lock(&ctx->lock);
538 * If the event is on, turn it off.
539 * If it is in error state, leave it in error state.
541 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
542 update_context_time(ctx);
543 update_group_times(event);
544 if (event == event->group_leader)
545 group_sched_out(event, cpuctx, ctx);
546 else
547 event_sched_out(event, cpuctx, ctx);
548 event->state = PERF_EVENT_STATE_OFF;
551 raw_spin_unlock(&ctx->lock);
555 * Disable a event.
557 * If event->ctx is a cloned context, callers must make sure that
558 * every task struct that event->ctx->task could possibly point to
559 * remains valid. This condition is satisifed when called through
560 * perf_event_for_each_child or perf_event_for_each because they
561 * hold the top-level event's child_mutex, so any descendant that
562 * goes to exit will block in sync_child_event.
563 * When called from perf_pending_event it's OK because event->ctx
564 * is the current context on this CPU and preemption is disabled,
565 * hence we can't get into perf_event_task_sched_out for this context.
567 void perf_event_disable(struct perf_event *event)
569 struct perf_event_context *ctx = event->ctx;
570 struct task_struct *task = ctx->task;
572 if (!task) {
574 * Disable the event on the cpu that it's on
576 smp_call_function_single(event->cpu, __perf_event_disable,
577 event, 1);
578 return;
581 retry:
582 task_oncpu_function_call(task, __perf_event_disable, event);
584 raw_spin_lock_irq(&ctx->lock);
586 * If the event is still active, we need to retry the cross-call.
588 if (event->state == PERF_EVENT_STATE_ACTIVE) {
589 raw_spin_unlock_irq(&ctx->lock);
590 goto retry;
594 * Since we have the lock this context can't be scheduled
595 * in, so we can change the state safely.
597 if (event->state == PERF_EVENT_STATE_INACTIVE) {
598 update_group_times(event);
599 event->state = PERF_EVENT_STATE_OFF;
602 raw_spin_unlock_irq(&ctx->lock);
605 static int
606 event_sched_in(struct perf_event *event,
607 struct perf_cpu_context *cpuctx,
608 struct perf_event_context *ctx)
610 if (event->state <= PERF_EVENT_STATE_OFF)
611 return 0;
613 event->state = PERF_EVENT_STATE_ACTIVE;
614 event->oncpu = smp_processor_id();
616 * The new state must be visible before we turn it on in the hardware:
618 smp_wmb();
620 if (event->pmu->enable(event)) {
621 event->state = PERF_EVENT_STATE_INACTIVE;
622 event->oncpu = -1;
623 return -EAGAIN;
626 event->tstamp_running += ctx->time - event->tstamp_stopped;
628 if (!is_software_event(event))
629 cpuctx->active_oncpu++;
630 ctx->nr_active++;
632 if (event->attr.exclusive)
633 cpuctx->exclusive = 1;
635 return 0;
638 static int
639 group_sched_in(struct perf_event *group_event,
640 struct perf_cpu_context *cpuctx,
641 struct perf_event_context *ctx)
643 struct perf_event *event, *partial_group;
644 int ret;
646 if (group_event->state == PERF_EVENT_STATE_OFF)
647 return 0;
649 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
650 if (ret)
651 return ret < 0 ? ret : 0;
653 if (event_sched_in(group_event, cpuctx, ctx))
654 return -EAGAIN;
657 * Schedule in siblings as one group (if any):
659 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
660 if (event_sched_in(event, cpuctx, ctx)) {
661 partial_group = event;
662 goto group_error;
666 return 0;
668 group_error:
670 * Groups can be scheduled in as one unit only, so undo any
671 * partial group before returning:
673 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
674 if (event == partial_group)
675 break;
676 event_sched_out(event, cpuctx, ctx);
678 event_sched_out(group_event, cpuctx, ctx);
680 return -EAGAIN;
684 * Work out whether we can put this event group on the CPU now.
686 static int group_can_go_on(struct perf_event *event,
687 struct perf_cpu_context *cpuctx,
688 int can_add_hw)
691 * Groups consisting entirely of software events can always go on.
693 if (event->group_flags & PERF_GROUP_SOFTWARE)
694 return 1;
696 * If an exclusive group is already on, no other hardware
697 * events can go on.
699 if (cpuctx->exclusive)
700 return 0;
702 * If this group is exclusive and there are already
703 * events on the CPU, it can't go on.
705 if (event->attr.exclusive && cpuctx->active_oncpu)
706 return 0;
708 * Otherwise, try to add it if all previous groups were able
709 * to go on.
711 return can_add_hw;
714 static void add_event_to_ctx(struct perf_event *event,
715 struct perf_event_context *ctx)
717 list_add_event(event, ctx);
718 event->tstamp_enabled = ctx->time;
719 event->tstamp_running = ctx->time;
720 event->tstamp_stopped = ctx->time;
724 * Cross CPU call to install and enable a performance event
726 * Must be called with ctx->mutex held
728 static void __perf_install_in_context(void *info)
730 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
731 struct perf_event *event = info;
732 struct perf_event_context *ctx = event->ctx;
733 struct perf_event *leader = event->group_leader;
734 int err;
737 * If this is a task context, we need to check whether it is
738 * the current task context of this cpu. If not it has been
739 * scheduled out before the smp call arrived.
740 * Or possibly this is the right context but it isn't
741 * on this cpu because it had no events.
743 if (ctx->task && cpuctx->task_ctx != ctx) {
744 if (cpuctx->task_ctx || ctx->task != current)
745 return;
746 cpuctx->task_ctx = ctx;
749 raw_spin_lock(&ctx->lock);
750 ctx->is_active = 1;
751 update_context_time(ctx);
754 * Protect the list operation against NMI by disabling the
755 * events on a global level. NOP for non NMI based events.
757 perf_disable();
759 add_event_to_ctx(event, ctx);
761 if (event->cpu != -1 && event->cpu != smp_processor_id())
762 goto unlock;
765 * Don't put the event on if it is disabled or if
766 * it is in a group and the group isn't on.
768 if (event->state != PERF_EVENT_STATE_INACTIVE ||
769 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
770 goto unlock;
773 * An exclusive event can't go on if there are already active
774 * hardware events, and no hardware event can go on if there
775 * is already an exclusive event on.
777 if (!group_can_go_on(event, cpuctx, 1))
778 err = -EEXIST;
779 else
780 err = event_sched_in(event, cpuctx, ctx);
782 if (err) {
784 * This event couldn't go on. If it is in a group
785 * then we have to pull the whole group off.
786 * If the event group is pinned then put it in error state.
788 if (leader != event)
789 group_sched_out(leader, cpuctx, ctx);
790 if (leader->attr.pinned) {
791 update_group_times(leader);
792 leader->state = PERF_EVENT_STATE_ERROR;
796 if (!err && !ctx->task && cpuctx->max_pertask)
797 cpuctx->max_pertask--;
799 unlock:
800 perf_enable();
802 raw_spin_unlock(&ctx->lock);
806 * Attach a performance event to a context
808 * First we add the event to the list with the hardware enable bit
809 * in event->hw_config cleared.
811 * If the event is attached to a task which is on a CPU we use a smp
812 * call to enable it in the task context. The task might have been
813 * scheduled away, but we check this in the smp call again.
815 * Must be called with ctx->mutex held.
817 static void
818 perf_install_in_context(struct perf_event_context *ctx,
819 struct perf_event *event,
820 int cpu)
822 struct task_struct *task = ctx->task;
824 if (!task) {
826 * Per cpu events are installed via an smp call and
827 * the install is always successful.
829 smp_call_function_single(cpu, __perf_install_in_context,
830 event, 1);
831 return;
834 retry:
835 task_oncpu_function_call(task, __perf_install_in_context,
836 event);
838 raw_spin_lock_irq(&ctx->lock);
840 * we need to retry the smp call.
842 if (ctx->is_active && list_empty(&event->group_entry)) {
843 raw_spin_unlock_irq(&ctx->lock);
844 goto retry;
848 * The lock prevents that this context is scheduled in so we
849 * can add the event safely, if it the call above did not
850 * succeed.
852 if (list_empty(&event->group_entry))
853 add_event_to_ctx(event, ctx);
854 raw_spin_unlock_irq(&ctx->lock);
858 * Put a event into inactive state and update time fields.
859 * Enabling the leader of a group effectively enables all
860 * the group members that aren't explicitly disabled, so we
861 * have to update their ->tstamp_enabled also.
862 * Note: this works for group members as well as group leaders
863 * since the non-leader members' sibling_lists will be empty.
865 static void __perf_event_mark_enabled(struct perf_event *event,
866 struct perf_event_context *ctx)
868 struct perf_event *sub;
870 event->state = PERF_EVENT_STATE_INACTIVE;
871 event->tstamp_enabled = ctx->time - event->total_time_enabled;
872 list_for_each_entry(sub, &event->sibling_list, group_entry)
873 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
874 sub->tstamp_enabled =
875 ctx->time - sub->total_time_enabled;
879 * Cross CPU call to enable a performance event
881 static void __perf_event_enable(void *info)
883 struct perf_event *event = info;
884 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
885 struct perf_event_context *ctx = event->ctx;
886 struct perf_event *leader = event->group_leader;
887 int err;
890 * If this is a per-task event, need to check whether this
891 * event's task is the current task on this cpu.
893 if (ctx->task && cpuctx->task_ctx != ctx) {
894 if (cpuctx->task_ctx || ctx->task != current)
895 return;
896 cpuctx->task_ctx = ctx;
899 raw_spin_lock(&ctx->lock);
900 ctx->is_active = 1;
901 update_context_time(ctx);
903 if (event->state >= PERF_EVENT_STATE_INACTIVE)
904 goto unlock;
905 __perf_event_mark_enabled(event, ctx);
907 if (event->cpu != -1 && event->cpu != smp_processor_id())
908 goto unlock;
911 * If the event is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
914 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915 goto unlock;
917 if (!group_can_go_on(event, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (event == leader)
922 err = group_sched_in(event, cpuctx, ctx);
923 else
924 err = event_sched_in(event, cpuctx, ctx);
925 perf_enable();
928 if (err) {
930 * If this event can't go on and it's part of a
931 * group, then the whole group has to come off.
933 if (leader != event)
934 group_sched_out(leader, cpuctx, ctx);
935 if (leader->attr.pinned) {
936 update_group_times(leader);
937 leader->state = PERF_EVENT_STATE_ERROR;
941 unlock:
942 raw_spin_unlock(&ctx->lock);
946 * Enable a event.
948 * If event->ctx is a cloned context, callers must make sure that
949 * every task struct that event->ctx->task could possibly point to
950 * remains valid. This condition is satisfied when called through
951 * perf_event_for_each_child or perf_event_for_each as described
952 * for perf_event_disable.
954 void perf_event_enable(struct perf_event *event)
956 struct perf_event_context *ctx = event->ctx;
957 struct task_struct *task = ctx->task;
959 if (!task) {
961 * Enable the event on the cpu that it's on
963 smp_call_function_single(event->cpu, __perf_event_enable,
964 event, 1);
965 return;
968 raw_spin_lock_irq(&ctx->lock);
969 if (event->state >= PERF_EVENT_STATE_INACTIVE)
970 goto out;
973 * If the event is in error state, clear that first.
974 * That way, if we see the event in error state below, we
975 * know that it has gone back into error state, as distinct
976 * from the task having been scheduled away before the
977 * cross-call arrived.
979 if (event->state == PERF_EVENT_STATE_ERROR)
980 event->state = PERF_EVENT_STATE_OFF;
982 retry:
983 raw_spin_unlock_irq(&ctx->lock);
984 task_oncpu_function_call(task, __perf_event_enable, event);
986 raw_spin_lock_irq(&ctx->lock);
989 * If the context is active and the event is still off,
990 * we need to retry the cross-call.
992 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
993 goto retry;
996 * Since we have the lock this context can't be scheduled
997 * in, so we can change the state safely.
999 if (event->state == PERF_EVENT_STATE_OFF)
1000 __perf_event_mark_enabled(event, ctx);
1002 out:
1003 raw_spin_unlock_irq(&ctx->lock);
1006 static int perf_event_refresh(struct perf_event *event, int refresh)
1009 * not supported on inherited events
1011 if (event->attr.inherit)
1012 return -EINVAL;
1014 atomic_add(refresh, &event->event_limit);
1015 perf_event_enable(event);
1017 return 0;
1020 enum event_type_t {
1021 EVENT_FLEXIBLE = 0x1,
1022 EVENT_PINNED = 0x2,
1023 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1026 static void ctx_sched_out(struct perf_event_context *ctx,
1027 struct perf_cpu_context *cpuctx,
1028 enum event_type_t event_type)
1030 struct perf_event *event;
1032 raw_spin_lock(&ctx->lock);
1033 ctx->is_active = 0;
1034 if (likely(!ctx->nr_events))
1035 goto out;
1036 update_context_time(ctx);
1038 perf_disable();
1039 if (!ctx->nr_active)
1040 goto out_enable;
1042 if (event_type & EVENT_PINNED)
1043 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1044 group_sched_out(event, cpuctx, ctx);
1046 if (event_type & EVENT_FLEXIBLE)
1047 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1048 group_sched_out(event, cpuctx, ctx);
1050 out_enable:
1051 perf_enable();
1052 out:
1053 raw_spin_unlock(&ctx->lock);
1057 * Test whether two contexts are equivalent, i.e. whether they
1058 * have both been cloned from the same version of the same context
1059 * and they both have the same number of enabled events.
1060 * If the number of enabled events is the same, then the set
1061 * of enabled events should be the same, because these are both
1062 * inherited contexts, therefore we can't access individual events
1063 * in them directly with an fd; we can only enable/disable all
1064 * events via prctl, or enable/disable all events in a family
1065 * via ioctl, which will have the same effect on both contexts.
1067 static int context_equiv(struct perf_event_context *ctx1,
1068 struct perf_event_context *ctx2)
1070 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1071 && ctx1->parent_gen == ctx2->parent_gen
1072 && !ctx1->pin_count && !ctx2->pin_count;
1075 static void __perf_event_sync_stat(struct perf_event *event,
1076 struct perf_event *next_event)
1078 u64 value;
1080 if (!event->attr.inherit_stat)
1081 return;
1084 * Update the event value, we cannot use perf_event_read()
1085 * because we're in the middle of a context switch and have IRQs
1086 * disabled, which upsets smp_call_function_single(), however
1087 * we know the event must be on the current CPU, therefore we
1088 * don't need to use it.
1090 switch (event->state) {
1091 case PERF_EVENT_STATE_ACTIVE:
1092 event->pmu->read(event);
1093 /* fall-through */
1095 case PERF_EVENT_STATE_INACTIVE:
1096 update_event_times(event);
1097 break;
1099 default:
1100 break;
1104 * In order to keep per-task stats reliable we need to flip the event
1105 * values when we flip the contexts.
1107 value = atomic64_read(&next_event->count);
1108 value = atomic64_xchg(&event->count, value);
1109 atomic64_set(&next_event->count, value);
1111 swap(event->total_time_enabled, next_event->total_time_enabled);
1112 swap(event->total_time_running, next_event->total_time_running);
1115 * Since we swizzled the values, update the user visible data too.
1117 perf_event_update_userpage(event);
1118 perf_event_update_userpage(next_event);
1121 #define list_next_entry(pos, member) \
1122 list_entry(pos->member.next, typeof(*pos), member)
1124 static void perf_event_sync_stat(struct perf_event_context *ctx,
1125 struct perf_event_context *next_ctx)
1127 struct perf_event *event, *next_event;
1129 if (!ctx->nr_stat)
1130 return;
1132 update_context_time(ctx);
1134 event = list_first_entry(&ctx->event_list,
1135 struct perf_event, event_entry);
1137 next_event = list_first_entry(&next_ctx->event_list,
1138 struct perf_event, event_entry);
1140 while (&event->event_entry != &ctx->event_list &&
1141 &next_event->event_entry != &next_ctx->event_list) {
1143 __perf_event_sync_stat(event, next_event);
1145 event = list_next_entry(event, event_entry);
1146 next_event = list_next_entry(next_event, event_entry);
1151 * Called from scheduler to remove the events of the current task,
1152 * with interrupts disabled.
1154 * We stop each event and update the event value in event->count.
1156 * This does not protect us against NMI, but disable()
1157 * sets the disabled bit in the control field of event _before_
1158 * accessing the event control register. If a NMI hits, then it will
1159 * not restart the event.
1161 void perf_event_task_sched_out(struct task_struct *task,
1162 struct task_struct *next)
1164 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1165 struct perf_event_context *ctx = task->perf_event_ctxp;
1166 struct perf_event_context *next_ctx;
1167 struct perf_event_context *parent;
1168 int do_switch = 1;
1170 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1172 if (likely(!ctx || !cpuctx->task_ctx))
1173 return;
1175 rcu_read_lock();
1176 parent = rcu_dereference(ctx->parent_ctx);
1177 next_ctx = next->perf_event_ctxp;
1178 if (parent && next_ctx &&
1179 rcu_dereference(next_ctx->parent_ctx) == parent) {
1181 * Looks like the two contexts are clones, so we might be
1182 * able to optimize the context switch. We lock both
1183 * contexts and check that they are clones under the
1184 * lock (including re-checking that neither has been
1185 * uncloned in the meantime). It doesn't matter which
1186 * order we take the locks because no other cpu could
1187 * be trying to lock both of these tasks.
1189 raw_spin_lock(&ctx->lock);
1190 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1191 if (context_equiv(ctx, next_ctx)) {
1193 * XXX do we need a memory barrier of sorts
1194 * wrt to rcu_dereference() of perf_event_ctxp
1196 task->perf_event_ctxp = next_ctx;
1197 next->perf_event_ctxp = ctx;
1198 ctx->task = next;
1199 next_ctx->task = task;
1200 do_switch = 0;
1202 perf_event_sync_stat(ctx, next_ctx);
1204 raw_spin_unlock(&next_ctx->lock);
1205 raw_spin_unlock(&ctx->lock);
1207 rcu_read_unlock();
1209 if (do_switch) {
1210 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1211 cpuctx->task_ctx = NULL;
1215 static void task_ctx_sched_out(struct perf_event_context *ctx,
1216 enum event_type_t event_type)
1218 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1220 if (!cpuctx->task_ctx)
1221 return;
1223 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1224 return;
1226 ctx_sched_out(ctx, cpuctx, event_type);
1227 cpuctx->task_ctx = NULL;
1231 * Called with IRQs disabled
1233 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1235 task_ctx_sched_out(ctx, EVENT_ALL);
1239 * Called with IRQs disabled
1241 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1242 enum event_type_t event_type)
1244 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1247 static void
1248 ctx_pinned_sched_in(struct perf_event_context *ctx,
1249 struct perf_cpu_context *cpuctx)
1251 struct perf_event *event;
1253 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1254 if (event->state <= PERF_EVENT_STATE_OFF)
1255 continue;
1256 if (event->cpu != -1 && event->cpu != smp_processor_id())
1257 continue;
1259 if (group_can_go_on(event, cpuctx, 1))
1260 group_sched_in(event, cpuctx, ctx);
1263 * If this pinned group hasn't been scheduled,
1264 * put it in error state.
1266 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1267 update_group_times(event);
1268 event->state = PERF_EVENT_STATE_ERROR;
1273 static void
1274 ctx_flexible_sched_in(struct perf_event_context *ctx,
1275 struct perf_cpu_context *cpuctx)
1277 struct perf_event *event;
1278 int can_add_hw = 1;
1280 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1281 /* Ignore events in OFF or ERROR state */
1282 if (event->state <= PERF_EVENT_STATE_OFF)
1283 continue;
1285 * Listen to the 'cpu' scheduling filter constraint
1286 * of events:
1288 if (event->cpu != -1 && event->cpu != smp_processor_id())
1289 continue;
1291 if (group_can_go_on(event, cpuctx, can_add_hw))
1292 if (group_sched_in(event, cpuctx, ctx))
1293 can_add_hw = 0;
1297 static void
1298 ctx_sched_in(struct perf_event_context *ctx,
1299 struct perf_cpu_context *cpuctx,
1300 enum event_type_t event_type)
1302 raw_spin_lock(&ctx->lock);
1303 ctx->is_active = 1;
1304 if (likely(!ctx->nr_events))
1305 goto out;
1307 ctx->timestamp = perf_clock();
1309 perf_disable();
1312 * First go through the list and put on any pinned groups
1313 * in order to give them the best chance of going on.
1315 if (event_type & EVENT_PINNED)
1316 ctx_pinned_sched_in(ctx, cpuctx);
1318 /* Then walk through the lower prio flexible groups */
1319 if (event_type & EVENT_FLEXIBLE)
1320 ctx_flexible_sched_in(ctx, cpuctx);
1322 perf_enable();
1323 out:
1324 raw_spin_unlock(&ctx->lock);
1327 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1328 enum event_type_t event_type)
1330 struct perf_event_context *ctx = &cpuctx->ctx;
1332 ctx_sched_in(ctx, cpuctx, event_type);
1335 static void task_ctx_sched_in(struct task_struct *task,
1336 enum event_type_t event_type)
1338 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1339 struct perf_event_context *ctx = task->perf_event_ctxp;
1341 if (likely(!ctx))
1342 return;
1343 if (cpuctx->task_ctx == ctx)
1344 return;
1345 ctx_sched_in(ctx, cpuctx, event_type);
1346 cpuctx->task_ctx = ctx;
1349 * Called from scheduler to add the events of the current task
1350 * with interrupts disabled.
1352 * We restore the event value and then enable it.
1354 * This does not protect us against NMI, but enable()
1355 * sets the enabled bit in the control field of event _before_
1356 * accessing the event control register. If a NMI hits, then it will
1357 * keep the event running.
1359 void perf_event_task_sched_in(struct task_struct *task)
1361 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1362 struct perf_event_context *ctx = task->perf_event_ctxp;
1364 if (likely(!ctx))
1365 return;
1367 if (cpuctx->task_ctx == ctx)
1368 return;
1370 perf_disable();
1373 * We want to keep the following priority order:
1374 * cpu pinned (that don't need to move), task pinned,
1375 * cpu flexible, task flexible.
1377 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1379 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1380 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1381 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1383 cpuctx->task_ctx = ctx;
1385 perf_enable();
1388 #define MAX_INTERRUPTS (~0ULL)
1390 static void perf_log_throttle(struct perf_event *event, int enable);
1392 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1394 u64 frequency = event->attr.sample_freq;
1395 u64 sec = NSEC_PER_SEC;
1396 u64 divisor, dividend;
1398 int count_fls, nsec_fls, frequency_fls, sec_fls;
1400 count_fls = fls64(count);
1401 nsec_fls = fls64(nsec);
1402 frequency_fls = fls64(frequency);
1403 sec_fls = 30;
1406 * We got @count in @nsec, with a target of sample_freq HZ
1407 * the target period becomes:
1409 * @count * 10^9
1410 * period = -------------------
1411 * @nsec * sample_freq
1416 * Reduce accuracy by one bit such that @a and @b converge
1417 * to a similar magnitude.
1419 #define REDUCE_FLS(a, b) \
1420 do { \
1421 if (a##_fls > b##_fls) { \
1422 a >>= 1; \
1423 a##_fls--; \
1424 } else { \
1425 b >>= 1; \
1426 b##_fls--; \
1428 } while (0)
1431 * Reduce accuracy until either term fits in a u64, then proceed with
1432 * the other, so that finally we can do a u64/u64 division.
1434 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1435 REDUCE_FLS(nsec, frequency);
1436 REDUCE_FLS(sec, count);
1439 if (count_fls + sec_fls > 64) {
1440 divisor = nsec * frequency;
1442 while (count_fls + sec_fls > 64) {
1443 REDUCE_FLS(count, sec);
1444 divisor >>= 1;
1447 dividend = count * sec;
1448 } else {
1449 dividend = count * sec;
1451 while (nsec_fls + frequency_fls > 64) {
1452 REDUCE_FLS(nsec, frequency);
1453 dividend >>= 1;
1456 divisor = nsec * frequency;
1459 return div64_u64(dividend, divisor);
1462 static void perf_event_stop(struct perf_event *event)
1464 if (!event->pmu->stop)
1465 return event->pmu->disable(event);
1467 return event->pmu->stop(event);
1470 static int perf_event_start(struct perf_event *event)
1472 if (!event->pmu->start)
1473 return event->pmu->enable(event);
1475 return event->pmu->start(event);
1478 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1480 struct hw_perf_event *hwc = &event->hw;
1481 u64 period, sample_period;
1482 s64 delta;
1484 period = perf_calculate_period(event, nsec, count);
1486 delta = (s64)(period - hwc->sample_period);
1487 delta = (delta + 7) / 8; /* low pass filter */
1489 sample_period = hwc->sample_period + delta;
1491 if (!sample_period)
1492 sample_period = 1;
1494 hwc->sample_period = sample_period;
1496 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1497 perf_disable();
1498 perf_event_stop(event);
1499 atomic64_set(&hwc->period_left, 0);
1500 perf_event_start(event);
1501 perf_enable();
1505 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1507 struct perf_event *event;
1508 struct hw_perf_event *hwc;
1509 u64 interrupts, now;
1510 s64 delta;
1512 raw_spin_lock(&ctx->lock);
1513 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1514 if (event->state != PERF_EVENT_STATE_ACTIVE)
1515 continue;
1517 if (event->cpu != -1 && event->cpu != smp_processor_id())
1518 continue;
1520 hwc = &event->hw;
1522 interrupts = hwc->interrupts;
1523 hwc->interrupts = 0;
1526 * unthrottle events on the tick
1528 if (interrupts == MAX_INTERRUPTS) {
1529 perf_log_throttle(event, 1);
1530 perf_disable();
1531 event->pmu->unthrottle(event);
1532 perf_enable();
1535 if (!event->attr.freq || !event->attr.sample_freq)
1536 continue;
1538 perf_disable();
1539 event->pmu->read(event);
1540 now = atomic64_read(&event->count);
1541 delta = now - hwc->freq_count_stamp;
1542 hwc->freq_count_stamp = now;
1544 if (delta > 0)
1545 perf_adjust_period(event, TICK_NSEC, delta);
1546 perf_enable();
1548 raw_spin_unlock(&ctx->lock);
1552 * Round-robin a context's events:
1554 static void rotate_ctx(struct perf_event_context *ctx)
1556 raw_spin_lock(&ctx->lock);
1558 /* Rotate the first entry last of non-pinned groups */
1559 list_rotate_left(&ctx->flexible_groups);
1561 raw_spin_unlock(&ctx->lock);
1564 void perf_event_task_tick(struct task_struct *curr)
1566 struct perf_cpu_context *cpuctx;
1567 struct perf_event_context *ctx;
1568 int rotate = 0;
1570 if (!atomic_read(&nr_events))
1571 return;
1573 cpuctx = &__get_cpu_var(perf_cpu_context);
1574 if (cpuctx->ctx.nr_events &&
1575 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1576 rotate = 1;
1578 ctx = curr->perf_event_ctxp;
1579 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1580 rotate = 1;
1582 perf_ctx_adjust_freq(&cpuctx->ctx);
1583 if (ctx)
1584 perf_ctx_adjust_freq(ctx);
1586 if (!rotate)
1587 return;
1589 perf_disable();
1590 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1591 if (ctx)
1592 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1594 rotate_ctx(&cpuctx->ctx);
1595 if (ctx)
1596 rotate_ctx(ctx);
1598 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1599 if (ctx)
1600 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1601 perf_enable();
1604 static int event_enable_on_exec(struct perf_event *event,
1605 struct perf_event_context *ctx)
1607 if (!event->attr.enable_on_exec)
1608 return 0;
1610 event->attr.enable_on_exec = 0;
1611 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1612 return 0;
1614 __perf_event_mark_enabled(event, ctx);
1616 return 1;
1620 * Enable all of a task's events that have been marked enable-on-exec.
1621 * This expects task == current.
1623 static void perf_event_enable_on_exec(struct task_struct *task)
1625 struct perf_event_context *ctx;
1626 struct perf_event *event;
1627 unsigned long flags;
1628 int enabled = 0;
1629 int ret;
1631 local_irq_save(flags);
1632 ctx = task->perf_event_ctxp;
1633 if (!ctx || !ctx->nr_events)
1634 goto out;
1636 __perf_event_task_sched_out(ctx);
1638 raw_spin_lock(&ctx->lock);
1640 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1641 ret = event_enable_on_exec(event, ctx);
1642 if (ret)
1643 enabled = 1;
1646 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1647 ret = event_enable_on_exec(event, ctx);
1648 if (ret)
1649 enabled = 1;
1653 * Unclone this context if we enabled any event.
1655 if (enabled)
1656 unclone_ctx(ctx);
1658 raw_spin_unlock(&ctx->lock);
1660 perf_event_task_sched_in(task);
1661 out:
1662 local_irq_restore(flags);
1666 * Cross CPU call to read the hardware event
1668 static void __perf_event_read(void *info)
1670 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1671 struct perf_event *event = info;
1672 struct perf_event_context *ctx = event->ctx;
1675 * If this is a task context, we need to check whether it is
1676 * the current task context of this cpu. If not it has been
1677 * scheduled out before the smp call arrived. In that case
1678 * event->count would have been updated to a recent sample
1679 * when the event was scheduled out.
1681 if (ctx->task && cpuctx->task_ctx != ctx)
1682 return;
1684 raw_spin_lock(&ctx->lock);
1685 update_context_time(ctx);
1686 update_event_times(event);
1687 raw_spin_unlock(&ctx->lock);
1689 event->pmu->read(event);
1692 static u64 perf_event_read(struct perf_event *event)
1695 * If event is enabled and currently active on a CPU, update the
1696 * value in the event structure:
1698 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1699 smp_call_function_single(event->oncpu,
1700 __perf_event_read, event, 1);
1701 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1702 struct perf_event_context *ctx = event->ctx;
1703 unsigned long flags;
1705 raw_spin_lock_irqsave(&ctx->lock, flags);
1706 update_context_time(ctx);
1707 update_event_times(event);
1708 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1711 return atomic64_read(&event->count);
1715 * Initialize the perf_event context in a task_struct:
1717 static void
1718 __perf_event_init_context(struct perf_event_context *ctx,
1719 struct task_struct *task)
1721 raw_spin_lock_init(&ctx->lock);
1722 mutex_init(&ctx->mutex);
1723 INIT_LIST_HEAD(&ctx->pinned_groups);
1724 INIT_LIST_HEAD(&ctx->flexible_groups);
1725 INIT_LIST_HEAD(&ctx->event_list);
1726 atomic_set(&ctx->refcount, 1);
1727 ctx->task = task;
1730 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1732 struct perf_event_context *ctx;
1733 struct perf_cpu_context *cpuctx;
1734 struct task_struct *task;
1735 unsigned long flags;
1736 int err;
1738 if (pid == -1 && cpu != -1) {
1739 /* Must be root to operate on a CPU event: */
1740 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1741 return ERR_PTR(-EACCES);
1743 if (cpu < 0 || cpu >= nr_cpumask_bits)
1744 return ERR_PTR(-EINVAL);
1747 * We could be clever and allow to attach a event to an
1748 * offline CPU and activate it when the CPU comes up, but
1749 * that's for later.
1751 if (!cpu_online(cpu))
1752 return ERR_PTR(-ENODEV);
1754 cpuctx = &per_cpu(perf_cpu_context, cpu);
1755 ctx = &cpuctx->ctx;
1756 get_ctx(ctx);
1758 return ctx;
1761 rcu_read_lock();
1762 if (!pid)
1763 task = current;
1764 else
1765 task = find_task_by_vpid(pid);
1766 if (task)
1767 get_task_struct(task);
1768 rcu_read_unlock();
1770 if (!task)
1771 return ERR_PTR(-ESRCH);
1774 * Can't attach events to a dying task.
1776 err = -ESRCH;
1777 if (task->flags & PF_EXITING)
1778 goto errout;
1780 /* Reuse ptrace permission checks for now. */
1781 err = -EACCES;
1782 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1783 goto errout;
1785 retry:
1786 ctx = perf_lock_task_context(task, &flags);
1787 if (ctx) {
1788 unclone_ctx(ctx);
1789 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1792 if (!ctx) {
1793 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1794 err = -ENOMEM;
1795 if (!ctx)
1796 goto errout;
1797 __perf_event_init_context(ctx, task);
1798 get_ctx(ctx);
1799 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1801 * We raced with some other task; use
1802 * the context they set.
1804 kfree(ctx);
1805 goto retry;
1807 get_task_struct(task);
1810 put_task_struct(task);
1811 return ctx;
1813 errout:
1814 put_task_struct(task);
1815 return ERR_PTR(err);
1818 static void perf_event_free_filter(struct perf_event *event);
1820 static void free_event_rcu(struct rcu_head *head)
1822 struct perf_event *event;
1824 event = container_of(head, struct perf_event, rcu_head);
1825 if (event->ns)
1826 put_pid_ns(event->ns);
1827 perf_event_free_filter(event);
1828 kfree(event);
1831 static void perf_pending_sync(struct perf_event *event);
1833 static void free_event(struct perf_event *event)
1835 perf_pending_sync(event);
1837 if (!event->parent) {
1838 atomic_dec(&nr_events);
1839 if (event->attr.mmap)
1840 atomic_dec(&nr_mmap_events);
1841 if (event->attr.comm)
1842 atomic_dec(&nr_comm_events);
1843 if (event->attr.task)
1844 atomic_dec(&nr_task_events);
1847 if (event->output) {
1848 fput(event->output->filp);
1849 event->output = NULL;
1852 if (event->destroy)
1853 event->destroy(event);
1855 put_ctx(event->ctx);
1856 call_rcu(&event->rcu_head, free_event_rcu);
1859 int perf_event_release_kernel(struct perf_event *event)
1861 struct perf_event_context *ctx = event->ctx;
1863 WARN_ON_ONCE(ctx->parent_ctx);
1864 mutex_lock(&ctx->mutex);
1865 perf_event_remove_from_context(event);
1866 mutex_unlock(&ctx->mutex);
1868 mutex_lock(&event->owner->perf_event_mutex);
1869 list_del_init(&event->owner_entry);
1870 mutex_unlock(&event->owner->perf_event_mutex);
1871 put_task_struct(event->owner);
1873 free_event(event);
1875 return 0;
1877 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1880 * Called when the last reference to the file is gone.
1882 static int perf_release(struct inode *inode, struct file *file)
1884 struct perf_event *event = file->private_data;
1886 file->private_data = NULL;
1888 return perf_event_release_kernel(event);
1891 static int perf_event_read_size(struct perf_event *event)
1893 int entry = sizeof(u64); /* value */
1894 int size = 0;
1895 int nr = 1;
1897 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1898 size += sizeof(u64);
1900 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1901 size += sizeof(u64);
1903 if (event->attr.read_format & PERF_FORMAT_ID)
1904 entry += sizeof(u64);
1906 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1907 nr += event->group_leader->nr_siblings;
1908 size += sizeof(u64);
1911 size += entry * nr;
1913 return size;
1916 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1918 struct perf_event *child;
1919 u64 total = 0;
1921 *enabled = 0;
1922 *running = 0;
1924 mutex_lock(&event->child_mutex);
1925 total += perf_event_read(event);
1926 *enabled += event->total_time_enabled +
1927 atomic64_read(&event->child_total_time_enabled);
1928 *running += event->total_time_running +
1929 atomic64_read(&event->child_total_time_running);
1931 list_for_each_entry(child, &event->child_list, child_list) {
1932 total += perf_event_read(child);
1933 *enabled += child->total_time_enabled;
1934 *running += child->total_time_running;
1936 mutex_unlock(&event->child_mutex);
1938 return total;
1940 EXPORT_SYMBOL_GPL(perf_event_read_value);
1942 static int perf_event_read_group(struct perf_event *event,
1943 u64 read_format, char __user *buf)
1945 struct perf_event *leader = event->group_leader, *sub;
1946 int n = 0, size = 0, ret = -EFAULT;
1947 struct perf_event_context *ctx = leader->ctx;
1948 u64 values[5];
1949 u64 count, enabled, running;
1951 mutex_lock(&ctx->mutex);
1952 count = perf_event_read_value(leader, &enabled, &running);
1954 values[n++] = 1 + leader->nr_siblings;
1955 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1956 values[n++] = enabled;
1957 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1958 values[n++] = running;
1959 values[n++] = count;
1960 if (read_format & PERF_FORMAT_ID)
1961 values[n++] = primary_event_id(leader);
1963 size = n * sizeof(u64);
1965 if (copy_to_user(buf, values, size))
1966 goto unlock;
1968 ret = size;
1970 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1971 n = 0;
1973 values[n++] = perf_event_read_value(sub, &enabled, &running);
1974 if (read_format & PERF_FORMAT_ID)
1975 values[n++] = primary_event_id(sub);
1977 size = n * sizeof(u64);
1979 if (copy_to_user(buf + ret, values, size)) {
1980 ret = -EFAULT;
1981 goto unlock;
1984 ret += size;
1986 unlock:
1987 mutex_unlock(&ctx->mutex);
1989 return ret;
1992 static int perf_event_read_one(struct perf_event *event,
1993 u64 read_format, char __user *buf)
1995 u64 enabled, running;
1996 u64 values[4];
1997 int n = 0;
1999 values[n++] = perf_event_read_value(event, &enabled, &running);
2000 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2001 values[n++] = enabled;
2002 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2003 values[n++] = running;
2004 if (read_format & PERF_FORMAT_ID)
2005 values[n++] = primary_event_id(event);
2007 if (copy_to_user(buf, values, n * sizeof(u64)))
2008 return -EFAULT;
2010 return n * sizeof(u64);
2014 * Read the performance event - simple non blocking version for now
2016 static ssize_t
2017 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2019 u64 read_format = event->attr.read_format;
2020 int ret;
2023 * Return end-of-file for a read on a event that is in
2024 * error state (i.e. because it was pinned but it couldn't be
2025 * scheduled on to the CPU at some point).
2027 if (event->state == PERF_EVENT_STATE_ERROR)
2028 return 0;
2030 if (count < perf_event_read_size(event))
2031 return -ENOSPC;
2033 WARN_ON_ONCE(event->ctx->parent_ctx);
2034 if (read_format & PERF_FORMAT_GROUP)
2035 ret = perf_event_read_group(event, read_format, buf);
2036 else
2037 ret = perf_event_read_one(event, read_format, buf);
2039 return ret;
2042 static ssize_t
2043 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2045 struct perf_event *event = file->private_data;
2047 return perf_read_hw(event, buf, count);
2050 static unsigned int perf_poll(struct file *file, poll_table *wait)
2052 struct perf_event *event = file->private_data;
2053 struct perf_mmap_data *data;
2054 unsigned int events = POLL_HUP;
2056 rcu_read_lock();
2057 data = rcu_dereference(event->data);
2058 if (data)
2059 events = atomic_xchg(&data->poll, 0);
2060 rcu_read_unlock();
2062 poll_wait(file, &event->waitq, wait);
2064 return events;
2067 static void perf_event_reset(struct perf_event *event)
2069 (void)perf_event_read(event);
2070 atomic64_set(&event->count, 0);
2071 perf_event_update_userpage(event);
2075 * Holding the top-level event's child_mutex means that any
2076 * descendant process that has inherited this event will block
2077 * in sync_child_event if it goes to exit, thus satisfying the
2078 * task existence requirements of perf_event_enable/disable.
2080 static void perf_event_for_each_child(struct perf_event *event,
2081 void (*func)(struct perf_event *))
2083 struct perf_event *child;
2085 WARN_ON_ONCE(event->ctx->parent_ctx);
2086 mutex_lock(&event->child_mutex);
2087 func(event);
2088 list_for_each_entry(child, &event->child_list, child_list)
2089 func(child);
2090 mutex_unlock(&event->child_mutex);
2093 static void perf_event_for_each(struct perf_event *event,
2094 void (*func)(struct perf_event *))
2096 struct perf_event_context *ctx = event->ctx;
2097 struct perf_event *sibling;
2099 WARN_ON_ONCE(ctx->parent_ctx);
2100 mutex_lock(&ctx->mutex);
2101 event = event->group_leader;
2103 perf_event_for_each_child(event, func);
2104 func(event);
2105 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2106 perf_event_for_each_child(event, func);
2107 mutex_unlock(&ctx->mutex);
2110 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2112 struct perf_event_context *ctx = event->ctx;
2113 unsigned long size;
2114 int ret = 0;
2115 u64 value;
2117 if (!event->attr.sample_period)
2118 return -EINVAL;
2120 size = copy_from_user(&value, arg, sizeof(value));
2121 if (size != sizeof(value))
2122 return -EFAULT;
2124 if (!value)
2125 return -EINVAL;
2127 raw_spin_lock_irq(&ctx->lock);
2128 if (event->attr.freq) {
2129 if (value > sysctl_perf_event_sample_rate) {
2130 ret = -EINVAL;
2131 goto unlock;
2134 event->attr.sample_freq = value;
2135 } else {
2136 event->attr.sample_period = value;
2137 event->hw.sample_period = value;
2139 unlock:
2140 raw_spin_unlock_irq(&ctx->lock);
2142 return ret;
2145 static int perf_event_set_output(struct perf_event *event, int output_fd);
2146 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2148 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2150 struct perf_event *event = file->private_data;
2151 void (*func)(struct perf_event *);
2152 u32 flags = arg;
2154 switch (cmd) {
2155 case PERF_EVENT_IOC_ENABLE:
2156 func = perf_event_enable;
2157 break;
2158 case PERF_EVENT_IOC_DISABLE:
2159 func = perf_event_disable;
2160 break;
2161 case PERF_EVENT_IOC_RESET:
2162 func = perf_event_reset;
2163 break;
2165 case PERF_EVENT_IOC_REFRESH:
2166 return perf_event_refresh(event, arg);
2168 case PERF_EVENT_IOC_PERIOD:
2169 return perf_event_period(event, (u64 __user *)arg);
2171 case PERF_EVENT_IOC_SET_OUTPUT:
2172 return perf_event_set_output(event, arg);
2174 case PERF_EVENT_IOC_SET_FILTER:
2175 return perf_event_set_filter(event, (void __user *)arg);
2177 default:
2178 return -ENOTTY;
2181 if (flags & PERF_IOC_FLAG_GROUP)
2182 perf_event_for_each(event, func);
2183 else
2184 perf_event_for_each_child(event, func);
2186 return 0;
2189 int perf_event_task_enable(void)
2191 struct perf_event *event;
2193 mutex_lock(&current->perf_event_mutex);
2194 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2195 perf_event_for_each_child(event, perf_event_enable);
2196 mutex_unlock(&current->perf_event_mutex);
2198 return 0;
2201 int perf_event_task_disable(void)
2203 struct perf_event *event;
2205 mutex_lock(&current->perf_event_mutex);
2206 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2207 perf_event_for_each_child(event, perf_event_disable);
2208 mutex_unlock(&current->perf_event_mutex);
2210 return 0;
2213 #ifndef PERF_EVENT_INDEX_OFFSET
2214 # define PERF_EVENT_INDEX_OFFSET 0
2215 #endif
2217 static int perf_event_index(struct perf_event *event)
2219 if (event->state != PERF_EVENT_STATE_ACTIVE)
2220 return 0;
2222 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2226 * Callers need to ensure there can be no nesting of this function, otherwise
2227 * the seqlock logic goes bad. We can not serialize this because the arch
2228 * code calls this from NMI context.
2230 void perf_event_update_userpage(struct perf_event *event)
2232 struct perf_event_mmap_page *userpg;
2233 struct perf_mmap_data *data;
2235 rcu_read_lock();
2236 data = rcu_dereference(event->data);
2237 if (!data)
2238 goto unlock;
2240 userpg = data->user_page;
2243 * Disable preemption so as to not let the corresponding user-space
2244 * spin too long if we get preempted.
2246 preempt_disable();
2247 ++userpg->lock;
2248 barrier();
2249 userpg->index = perf_event_index(event);
2250 userpg->offset = atomic64_read(&event->count);
2251 if (event->state == PERF_EVENT_STATE_ACTIVE)
2252 userpg->offset -= atomic64_read(&event->hw.prev_count);
2254 userpg->time_enabled = event->total_time_enabled +
2255 atomic64_read(&event->child_total_time_enabled);
2257 userpg->time_running = event->total_time_running +
2258 atomic64_read(&event->child_total_time_running);
2260 barrier();
2261 ++userpg->lock;
2262 preempt_enable();
2263 unlock:
2264 rcu_read_unlock();
2267 static unsigned long perf_data_size(struct perf_mmap_data *data)
2269 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2272 #ifndef CONFIG_PERF_USE_VMALLOC
2275 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2278 static struct page *
2279 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2281 if (pgoff > data->nr_pages)
2282 return NULL;
2284 if (pgoff == 0)
2285 return virt_to_page(data->user_page);
2287 return virt_to_page(data->data_pages[pgoff - 1]);
2290 static struct perf_mmap_data *
2291 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2293 struct perf_mmap_data *data;
2294 unsigned long size;
2295 int i;
2297 WARN_ON(atomic_read(&event->mmap_count));
2299 size = sizeof(struct perf_mmap_data);
2300 size += nr_pages * sizeof(void *);
2302 data = kzalloc(size, GFP_KERNEL);
2303 if (!data)
2304 goto fail;
2306 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2307 if (!data->user_page)
2308 goto fail_user_page;
2310 for (i = 0; i < nr_pages; i++) {
2311 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2312 if (!data->data_pages[i])
2313 goto fail_data_pages;
2316 data->data_order = 0;
2317 data->nr_pages = nr_pages;
2319 return data;
2321 fail_data_pages:
2322 for (i--; i >= 0; i--)
2323 free_page((unsigned long)data->data_pages[i]);
2325 free_page((unsigned long)data->user_page);
2327 fail_user_page:
2328 kfree(data);
2330 fail:
2331 return NULL;
2334 static void perf_mmap_free_page(unsigned long addr)
2336 struct page *page = virt_to_page((void *)addr);
2338 page->mapping = NULL;
2339 __free_page(page);
2342 static void perf_mmap_data_free(struct perf_mmap_data *data)
2344 int i;
2346 perf_mmap_free_page((unsigned long)data->user_page);
2347 for (i = 0; i < data->nr_pages; i++)
2348 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2349 kfree(data);
2352 #else
2355 * Back perf_mmap() with vmalloc memory.
2357 * Required for architectures that have d-cache aliasing issues.
2360 static struct page *
2361 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2363 if (pgoff > (1UL << data->data_order))
2364 return NULL;
2366 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2369 static void perf_mmap_unmark_page(void *addr)
2371 struct page *page = vmalloc_to_page(addr);
2373 page->mapping = NULL;
2376 static void perf_mmap_data_free_work(struct work_struct *work)
2378 struct perf_mmap_data *data;
2379 void *base;
2380 int i, nr;
2382 data = container_of(work, struct perf_mmap_data, work);
2383 nr = 1 << data->data_order;
2385 base = data->user_page;
2386 for (i = 0; i < nr + 1; i++)
2387 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2389 vfree(base);
2390 kfree(data);
2393 static void perf_mmap_data_free(struct perf_mmap_data *data)
2395 schedule_work(&data->work);
2398 static struct perf_mmap_data *
2399 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2401 struct perf_mmap_data *data;
2402 unsigned long size;
2403 void *all_buf;
2405 WARN_ON(atomic_read(&event->mmap_count));
2407 size = sizeof(struct perf_mmap_data);
2408 size += sizeof(void *);
2410 data = kzalloc(size, GFP_KERNEL);
2411 if (!data)
2412 goto fail;
2414 INIT_WORK(&data->work, perf_mmap_data_free_work);
2416 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2417 if (!all_buf)
2418 goto fail_all_buf;
2420 data->user_page = all_buf;
2421 data->data_pages[0] = all_buf + PAGE_SIZE;
2422 data->data_order = ilog2(nr_pages);
2423 data->nr_pages = 1;
2425 return data;
2427 fail_all_buf:
2428 kfree(data);
2430 fail:
2431 return NULL;
2434 #endif
2436 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2438 struct perf_event *event = vma->vm_file->private_data;
2439 struct perf_mmap_data *data;
2440 int ret = VM_FAULT_SIGBUS;
2442 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2443 if (vmf->pgoff == 0)
2444 ret = 0;
2445 return ret;
2448 rcu_read_lock();
2449 data = rcu_dereference(event->data);
2450 if (!data)
2451 goto unlock;
2453 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2454 goto unlock;
2456 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2457 if (!vmf->page)
2458 goto unlock;
2460 get_page(vmf->page);
2461 vmf->page->mapping = vma->vm_file->f_mapping;
2462 vmf->page->index = vmf->pgoff;
2464 ret = 0;
2465 unlock:
2466 rcu_read_unlock();
2468 return ret;
2471 static void
2472 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2474 long max_size = perf_data_size(data);
2476 atomic_set(&data->lock, -1);
2478 if (event->attr.watermark) {
2479 data->watermark = min_t(long, max_size,
2480 event->attr.wakeup_watermark);
2483 if (!data->watermark)
2484 data->watermark = max_size / 2;
2487 rcu_assign_pointer(event->data, data);
2490 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2492 struct perf_mmap_data *data;
2494 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2495 perf_mmap_data_free(data);
2498 static void perf_mmap_data_release(struct perf_event *event)
2500 struct perf_mmap_data *data = event->data;
2502 WARN_ON(atomic_read(&event->mmap_count));
2504 rcu_assign_pointer(event->data, NULL);
2505 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2508 static void perf_mmap_open(struct vm_area_struct *vma)
2510 struct perf_event *event = vma->vm_file->private_data;
2512 atomic_inc(&event->mmap_count);
2515 static void perf_mmap_close(struct vm_area_struct *vma)
2517 struct perf_event *event = vma->vm_file->private_data;
2519 WARN_ON_ONCE(event->ctx->parent_ctx);
2520 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2521 unsigned long size = perf_data_size(event->data);
2522 struct user_struct *user = current_user();
2524 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2525 vma->vm_mm->locked_vm -= event->data->nr_locked;
2526 perf_mmap_data_release(event);
2527 mutex_unlock(&event->mmap_mutex);
2531 static const struct vm_operations_struct perf_mmap_vmops = {
2532 .open = perf_mmap_open,
2533 .close = perf_mmap_close,
2534 .fault = perf_mmap_fault,
2535 .page_mkwrite = perf_mmap_fault,
2538 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2540 struct perf_event *event = file->private_data;
2541 unsigned long user_locked, user_lock_limit;
2542 struct user_struct *user = current_user();
2543 unsigned long locked, lock_limit;
2544 struct perf_mmap_data *data;
2545 unsigned long vma_size;
2546 unsigned long nr_pages;
2547 long user_extra, extra;
2548 int ret = 0;
2550 if (!(vma->vm_flags & VM_SHARED))
2551 return -EINVAL;
2553 vma_size = vma->vm_end - vma->vm_start;
2554 nr_pages = (vma_size / PAGE_SIZE) - 1;
2557 * If we have data pages ensure they're a power-of-two number, so we
2558 * can do bitmasks instead of modulo.
2560 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2561 return -EINVAL;
2563 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2564 return -EINVAL;
2566 if (vma->vm_pgoff != 0)
2567 return -EINVAL;
2569 WARN_ON_ONCE(event->ctx->parent_ctx);
2570 mutex_lock(&event->mmap_mutex);
2571 if (event->output) {
2572 ret = -EINVAL;
2573 goto unlock;
2576 if (atomic_inc_not_zero(&event->mmap_count)) {
2577 if (nr_pages != event->data->nr_pages)
2578 ret = -EINVAL;
2579 goto unlock;
2582 user_extra = nr_pages + 1;
2583 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2586 * Increase the limit linearly with more CPUs:
2588 user_lock_limit *= num_online_cpus();
2590 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2592 extra = 0;
2593 if (user_locked > user_lock_limit)
2594 extra = user_locked - user_lock_limit;
2596 lock_limit = rlimit(RLIMIT_MEMLOCK);
2597 lock_limit >>= PAGE_SHIFT;
2598 locked = vma->vm_mm->locked_vm + extra;
2600 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2601 !capable(CAP_IPC_LOCK)) {
2602 ret = -EPERM;
2603 goto unlock;
2606 WARN_ON(event->data);
2608 data = perf_mmap_data_alloc(event, nr_pages);
2609 ret = -ENOMEM;
2610 if (!data)
2611 goto unlock;
2613 ret = 0;
2614 perf_mmap_data_init(event, data);
2616 atomic_set(&event->mmap_count, 1);
2617 atomic_long_add(user_extra, &user->locked_vm);
2618 vma->vm_mm->locked_vm += extra;
2619 event->data->nr_locked = extra;
2620 if (vma->vm_flags & VM_WRITE)
2621 event->data->writable = 1;
2623 unlock:
2624 mutex_unlock(&event->mmap_mutex);
2626 vma->vm_flags |= VM_RESERVED;
2627 vma->vm_ops = &perf_mmap_vmops;
2629 return ret;
2632 static int perf_fasync(int fd, struct file *filp, int on)
2634 struct inode *inode = filp->f_path.dentry->d_inode;
2635 struct perf_event *event = filp->private_data;
2636 int retval;
2638 mutex_lock(&inode->i_mutex);
2639 retval = fasync_helper(fd, filp, on, &event->fasync);
2640 mutex_unlock(&inode->i_mutex);
2642 if (retval < 0)
2643 return retval;
2645 return 0;
2648 static const struct file_operations perf_fops = {
2649 .llseek = no_llseek,
2650 .release = perf_release,
2651 .read = perf_read,
2652 .poll = perf_poll,
2653 .unlocked_ioctl = perf_ioctl,
2654 .compat_ioctl = perf_ioctl,
2655 .mmap = perf_mmap,
2656 .fasync = perf_fasync,
2660 * Perf event wakeup
2662 * If there's data, ensure we set the poll() state and publish everything
2663 * to user-space before waking everybody up.
2666 void perf_event_wakeup(struct perf_event *event)
2668 wake_up_all(&event->waitq);
2670 if (event->pending_kill) {
2671 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2672 event->pending_kill = 0;
2677 * Pending wakeups
2679 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2681 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2682 * single linked list and use cmpxchg() to add entries lockless.
2685 static void perf_pending_event(struct perf_pending_entry *entry)
2687 struct perf_event *event = container_of(entry,
2688 struct perf_event, pending);
2690 if (event->pending_disable) {
2691 event->pending_disable = 0;
2692 __perf_event_disable(event);
2695 if (event->pending_wakeup) {
2696 event->pending_wakeup = 0;
2697 perf_event_wakeup(event);
2701 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2703 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2704 PENDING_TAIL,
2707 static void perf_pending_queue(struct perf_pending_entry *entry,
2708 void (*func)(struct perf_pending_entry *))
2710 struct perf_pending_entry **head;
2712 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2713 return;
2715 entry->func = func;
2717 head = &get_cpu_var(perf_pending_head);
2719 do {
2720 entry->next = *head;
2721 } while (cmpxchg(head, entry->next, entry) != entry->next);
2723 set_perf_event_pending();
2725 put_cpu_var(perf_pending_head);
2728 static int __perf_pending_run(void)
2730 struct perf_pending_entry *list;
2731 int nr = 0;
2733 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2734 while (list != PENDING_TAIL) {
2735 void (*func)(struct perf_pending_entry *);
2736 struct perf_pending_entry *entry = list;
2738 list = list->next;
2740 func = entry->func;
2741 entry->next = NULL;
2743 * Ensure we observe the unqueue before we issue the wakeup,
2744 * so that we won't be waiting forever.
2745 * -- see perf_not_pending().
2747 smp_wmb();
2749 func(entry);
2750 nr++;
2753 return nr;
2756 static inline int perf_not_pending(struct perf_event *event)
2759 * If we flush on whatever cpu we run, there is a chance we don't
2760 * need to wait.
2762 get_cpu();
2763 __perf_pending_run();
2764 put_cpu();
2767 * Ensure we see the proper queue state before going to sleep
2768 * so that we do not miss the wakeup. -- see perf_pending_handle()
2770 smp_rmb();
2771 return event->pending.next == NULL;
2774 static void perf_pending_sync(struct perf_event *event)
2776 wait_event(event->waitq, perf_not_pending(event));
2779 void perf_event_do_pending(void)
2781 __perf_pending_run();
2785 * Callchain support -- arch specific
2788 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2790 return NULL;
2793 __weak
2794 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2800 * Output
2802 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2803 unsigned long offset, unsigned long head)
2805 unsigned long mask;
2807 if (!data->writable)
2808 return true;
2810 mask = perf_data_size(data) - 1;
2812 offset = (offset - tail) & mask;
2813 head = (head - tail) & mask;
2815 if ((int)(head - offset) < 0)
2816 return false;
2818 return true;
2821 static void perf_output_wakeup(struct perf_output_handle *handle)
2823 atomic_set(&handle->data->poll, POLL_IN);
2825 if (handle->nmi) {
2826 handle->event->pending_wakeup = 1;
2827 perf_pending_queue(&handle->event->pending,
2828 perf_pending_event);
2829 } else
2830 perf_event_wakeup(handle->event);
2834 * Curious locking construct.
2836 * We need to ensure a later event_id doesn't publish a head when a former
2837 * event_id isn't done writing. However since we need to deal with NMIs we
2838 * cannot fully serialize things.
2840 * What we do is serialize between CPUs so we only have to deal with NMI
2841 * nesting on a single CPU.
2843 * We only publish the head (and generate a wakeup) when the outer-most
2844 * event_id completes.
2846 static void perf_output_lock(struct perf_output_handle *handle)
2848 struct perf_mmap_data *data = handle->data;
2849 int cur, cpu = get_cpu();
2851 handle->locked = 0;
2853 for (;;) {
2854 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2855 if (cur == -1) {
2856 handle->locked = 1;
2857 break;
2859 if (cur == cpu)
2860 break;
2862 cpu_relax();
2866 static void perf_output_unlock(struct perf_output_handle *handle)
2868 struct perf_mmap_data *data = handle->data;
2869 unsigned long head;
2870 int cpu;
2872 data->done_head = data->head;
2874 if (!handle->locked)
2875 goto out;
2877 again:
2879 * The xchg implies a full barrier that ensures all writes are done
2880 * before we publish the new head, matched by a rmb() in userspace when
2881 * reading this position.
2883 while ((head = atomic_long_xchg(&data->done_head, 0)))
2884 data->user_page->data_head = head;
2887 * NMI can happen here, which means we can miss a done_head update.
2890 cpu = atomic_xchg(&data->lock, -1);
2891 WARN_ON_ONCE(cpu != smp_processor_id());
2894 * Therefore we have to validate we did not indeed do so.
2896 if (unlikely(atomic_long_read(&data->done_head))) {
2898 * Since we had it locked, we can lock it again.
2900 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2901 cpu_relax();
2903 goto again;
2906 if (atomic_xchg(&data->wakeup, 0))
2907 perf_output_wakeup(handle);
2908 out:
2909 put_cpu();
2912 void perf_output_copy(struct perf_output_handle *handle,
2913 const void *buf, unsigned int len)
2915 unsigned int pages_mask;
2916 unsigned long offset;
2917 unsigned int size;
2918 void **pages;
2920 offset = handle->offset;
2921 pages_mask = handle->data->nr_pages - 1;
2922 pages = handle->data->data_pages;
2924 do {
2925 unsigned long page_offset;
2926 unsigned long page_size;
2927 int nr;
2929 nr = (offset >> PAGE_SHIFT) & pages_mask;
2930 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2931 page_offset = offset & (page_size - 1);
2932 size = min_t(unsigned int, page_size - page_offset, len);
2934 memcpy(pages[nr] + page_offset, buf, size);
2936 len -= size;
2937 buf += size;
2938 offset += size;
2939 } while (len);
2941 handle->offset = offset;
2944 * Check we didn't copy past our reservation window, taking the
2945 * possible unsigned int wrap into account.
2947 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2950 int perf_output_begin(struct perf_output_handle *handle,
2951 struct perf_event *event, unsigned int size,
2952 int nmi, int sample)
2954 struct perf_event *output_event;
2955 struct perf_mmap_data *data;
2956 unsigned long tail, offset, head;
2957 int have_lost;
2958 struct {
2959 struct perf_event_header header;
2960 u64 id;
2961 u64 lost;
2962 } lost_event;
2964 rcu_read_lock();
2966 * For inherited events we send all the output towards the parent.
2968 if (event->parent)
2969 event = event->parent;
2971 output_event = rcu_dereference(event->output);
2972 if (output_event)
2973 event = output_event;
2975 data = rcu_dereference(event->data);
2976 if (!data)
2977 goto out;
2979 handle->data = data;
2980 handle->event = event;
2981 handle->nmi = nmi;
2982 handle->sample = sample;
2984 if (!data->nr_pages)
2985 goto fail;
2987 have_lost = atomic_read(&data->lost);
2988 if (have_lost)
2989 size += sizeof(lost_event);
2991 perf_output_lock(handle);
2993 do {
2995 * Userspace could choose to issue a mb() before updating the
2996 * tail pointer. So that all reads will be completed before the
2997 * write is issued.
2999 tail = ACCESS_ONCE(data->user_page->data_tail);
3000 smp_rmb();
3001 offset = head = atomic_long_read(&data->head);
3002 head += size;
3003 if (unlikely(!perf_output_space(data, tail, offset, head)))
3004 goto fail;
3005 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3007 handle->offset = offset;
3008 handle->head = head;
3010 if (head - tail > data->watermark)
3011 atomic_set(&data->wakeup, 1);
3013 if (have_lost) {
3014 lost_event.header.type = PERF_RECORD_LOST;
3015 lost_event.header.misc = 0;
3016 lost_event.header.size = sizeof(lost_event);
3017 lost_event.id = event->id;
3018 lost_event.lost = atomic_xchg(&data->lost, 0);
3020 perf_output_put(handle, lost_event);
3023 return 0;
3025 fail:
3026 atomic_inc(&data->lost);
3027 perf_output_unlock(handle);
3028 out:
3029 rcu_read_unlock();
3031 return -ENOSPC;
3034 void perf_output_end(struct perf_output_handle *handle)
3036 struct perf_event *event = handle->event;
3037 struct perf_mmap_data *data = handle->data;
3039 int wakeup_events = event->attr.wakeup_events;
3041 if (handle->sample && wakeup_events) {
3042 int events = atomic_inc_return(&data->events);
3043 if (events >= wakeup_events) {
3044 atomic_sub(wakeup_events, &data->events);
3045 atomic_set(&data->wakeup, 1);
3049 perf_output_unlock(handle);
3050 rcu_read_unlock();
3053 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3056 * only top level events have the pid namespace they were created in
3058 if (event->parent)
3059 event = event->parent;
3061 return task_tgid_nr_ns(p, event->ns);
3064 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3067 * only top level events have the pid namespace they were created in
3069 if (event->parent)
3070 event = event->parent;
3072 return task_pid_nr_ns(p, event->ns);
3075 static void perf_output_read_one(struct perf_output_handle *handle,
3076 struct perf_event *event)
3078 u64 read_format = event->attr.read_format;
3079 u64 values[4];
3080 int n = 0;
3082 values[n++] = atomic64_read(&event->count);
3083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3084 values[n++] = event->total_time_enabled +
3085 atomic64_read(&event->child_total_time_enabled);
3087 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3088 values[n++] = event->total_time_running +
3089 atomic64_read(&event->child_total_time_running);
3091 if (read_format & PERF_FORMAT_ID)
3092 values[n++] = primary_event_id(event);
3094 perf_output_copy(handle, values, n * sizeof(u64));
3098 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3100 static void perf_output_read_group(struct perf_output_handle *handle,
3101 struct perf_event *event)
3103 struct perf_event *leader = event->group_leader, *sub;
3104 u64 read_format = event->attr.read_format;
3105 u64 values[5];
3106 int n = 0;
3108 values[n++] = 1 + leader->nr_siblings;
3110 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3111 values[n++] = leader->total_time_enabled;
3113 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3114 values[n++] = leader->total_time_running;
3116 if (leader != event)
3117 leader->pmu->read(leader);
3119 values[n++] = atomic64_read(&leader->count);
3120 if (read_format & PERF_FORMAT_ID)
3121 values[n++] = primary_event_id(leader);
3123 perf_output_copy(handle, values, n * sizeof(u64));
3125 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3126 n = 0;
3128 if (sub != event)
3129 sub->pmu->read(sub);
3131 values[n++] = atomic64_read(&sub->count);
3132 if (read_format & PERF_FORMAT_ID)
3133 values[n++] = primary_event_id(sub);
3135 perf_output_copy(handle, values, n * sizeof(u64));
3139 static void perf_output_read(struct perf_output_handle *handle,
3140 struct perf_event *event)
3142 if (event->attr.read_format & PERF_FORMAT_GROUP)
3143 perf_output_read_group(handle, event);
3144 else
3145 perf_output_read_one(handle, event);
3148 void perf_output_sample(struct perf_output_handle *handle,
3149 struct perf_event_header *header,
3150 struct perf_sample_data *data,
3151 struct perf_event *event)
3153 u64 sample_type = data->type;
3155 perf_output_put(handle, *header);
3157 if (sample_type & PERF_SAMPLE_IP)
3158 perf_output_put(handle, data->ip);
3160 if (sample_type & PERF_SAMPLE_TID)
3161 perf_output_put(handle, data->tid_entry);
3163 if (sample_type & PERF_SAMPLE_TIME)
3164 perf_output_put(handle, data->time);
3166 if (sample_type & PERF_SAMPLE_ADDR)
3167 perf_output_put(handle, data->addr);
3169 if (sample_type & PERF_SAMPLE_ID)
3170 perf_output_put(handle, data->id);
3172 if (sample_type & PERF_SAMPLE_STREAM_ID)
3173 perf_output_put(handle, data->stream_id);
3175 if (sample_type & PERF_SAMPLE_CPU)
3176 perf_output_put(handle, data->cpu_entry);
3178 if (sample_type & PERF_SAMPLE_PERIOD)
3179 perf_output_put(handle, data->period);
3181 if (sample_type & PERF_SAMPLE_READ)
3182 perf_output_read(handle, event);
3184 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3185 if (data->callchain) {
3186 int size = 1;
3188 if (data->callchain)
3189 size += data->callchain->nr;
3191 size *= sizeof(u64);
3193 perf_output_copy(handle, data->callchain, size);
3194 } else {
3195 u64 nr = 0;
3196 perf_output_put(handle, nr);
3200 if (sample_type & PERF_SAMPLE_RAW) {
3201 if (data->raw) {
3202 perf_output_put(handle, data->raw->size);
3203 perf_output_copy(handle, data->raw->data,
3204 data->raw->size);
3205 } else {
3206 struct {
3207 u32 size;
3208 u32 data;
3209 } raw = {
3210 .size = sizeof(u32),
3211 .data = 0,
3213 perf_output_put(handle, raw);
3218 void perf_prepare_sample(struct perf_event_header *header,
3219 struct perf_sample_data *data,
3220 struct perf_event *event,
3221 struct pt_regs *regs)
3223 u64 sample_type = event->attr.sample_type;
3225 data->type = sample_type;
3227 header->type = PERF_RECORD_SAMPLE;
3228 header->size = sizeof(*header);
3230 header->misc = 0;
3231 header->misc |= perf_misc_flags(regs);
3233 if (sample_type & PERF_SAMPLE_IP) {
3234 data->ip = perf_instruction_pointer(regs);
3236 header->size += sizeof(data->ip);
3239 if (sample_type & PERF_SAMPLE_TID) {
3240 /* namespace issues */
3241 data->tid_entry.pid = perf_event_pid(event, current);
3242 data->tid_entry.tid = perf_event_tid(event, current);
3244 header->size += sizeof(data->tid_entry);
3247 if (sample_type & PERF_SAMPLE_TIME) {
3248 data->time = perf_clock();
3250 header->size += sizeof(data->time);
3253 if (sample_type & PERF_SAMPLE_ADDR)
3254 header->size += sizeof(data->addr);
3256 if (sample_type & PERF_SAMPLE_ID) {
3257 data->id = primary_event_id(event);
3259 header->size += sizeof(data->id);
3262 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3263 data->stream_id = event->id;
3265 header->size += sizeof(data->stream_id);
3268 if (sample_type & PERF_SAMPLE_CPU) {
3269 data->cpu_entry.cpu = raw_smp_processor_id();
3270 data->cpu_entry.reserved = 0;
3272 header->size += sizeof(data->cpu_entry);
3275 if (sample_type & PERF_SAMPLE_PERIOD)
3276 header->size += sizeof(data->period);
3278 if (sample_type & PERF_SAMPLE_READ)
3279 header->size += perf_event_read_size(event);
3281 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3282 int size = 1;
3284 data->callchain = perf_callchain(regs);
3286 if (data->callchain)
3287 size += data->callchain->nr;
3289 header->size += size * sizeof(u64);
3292 if (sample_type & PERF_SAMPLE_RAW) {
3293 int size = sizeof(u32);
3295 if (data->raw)
3296 size += data->raw->size;
3297 else
3298 size += sizeof(u32);
3300 WARN_ON_ONCE(size & (sizeof(u64)-1));
3301 header->size += size;
3305 static void perf_event_output(struct perf_event *event, int nmi,
3306 struct perf_sample_data *data,
3307 struct pt_regs *regs)
3309 struct perf_output_handle handle;
3310 struct perf_event_header header;
3312 perf_prepare_sample(&header, data, event, regs);
3314 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3315 return;
3317 perf_output_sample(&handle, &header, data, event);
3319 perf_output_end(&handle);
3323 * read event_id
3326 struct perf_read_event {
3327 struct perf_event_header header;
3329 u32 pid;
3330 u32 tid;
3333 static void
3334 perf_event_read_event(struct perf_event *event,
3335 struct task_struct *task)
3337 struct perf_output_handle handle;
3338 struct perf_read_event read_event = {
3339 .header = {
3340 .type = PERF_RECORD_READ,
3341 .misc = 0,
3342 .size = sizeof(read_event) + perf_event_read_size(event),
3344 .pid = perf_event_pid(event, task),
3345 .tid = perf_event_tid(event, task),
3347 int ret;
3349 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3350 if (ret)
3351 return;
3353 perf_output_put(&handle, read_event);
3354 perf_output_read(&handle, event);
3356 perf_output_end(&handle);
3360 * task tracking -- fork/exit
3362 * enabled by: attr.comm | attr.mmap | attr.task
3365 struct perf_task_event {
3366 struct task_struct *task;
3367 struct perf_event_context *task_ctx;
3369 struct {
3370 struct perf_event_header header;
3372 u32 pid;
3373 u32 ppid;
3374 u32 tid;
3375 u32 ptid;
3376 u64 time;
3377 } event_id;
3380 static void perf_event_task_output(struct perf_event *event,
3381 struct perf_task_event *task_event)
3383 struct perf_output_handle handle;
3384 struct task_struct *task = task_event->task;
3385 unsigned long flags;
3386 int size, ret;
3389 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3390 * in perf_output_lock() from interrupt context, it's game over.
3392 local_irq_save(flags);
3394 size = task_event->event_id.header.size;
3395 ret = perf_output_begin(&handle, event, size, 0, 0);
3397 if (ret) {
3398 local_irq_restore(flags);
3399 return;
3402 task_event->event_id.pid = perf_event_pid(event, task);
3403 task_event->event_id.ppid = perf_event_pid(event, current);
3405 task_event->event_id.tid = perf_event_tid(event, task);
3406 task_event->event_id.ptid = perf_event_tid(event, current);
3408 perf_output_put(&handle, task_event->event_id);
3410 perf_output_end(&handle);
3411 local_irq_restore(flags);
3414 static int perf_event_task_match(struct perf_event *event)
3416 if (event->state < PERF_EVENT_STATE_INACTIVE)
3417 return 0;
3419 if (event->cpu != -1 && event->cpu != smp_processor_id())
3420 return 0;
3422 if (event->attr.comm || event->attr.mmap || event->attr.task)
3423 return 1;
3425 return 0;
3428 static void perf_event_task_ctx(struct perf_event_context *ctx,
3429 struct perf_task_event *task_event)
3431 struct perf_event *event;
3433 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3434 if (perf_event_task_match(event))
3435 perf_event_task_output(event, task_event);
3439 static void perf_event_task_event(struct perf_task_event *task_event)
3441 struct perf_cpu_context *cpuctx;
3442 struct perf_event_context *ctx = task_event->task_ctx;
3444 rcu_read_lock();
3445 cpuctx = &get_cpu_var(perf_cpu_context);
3446 perf_event_task_ctx(&cpuctx->ctx, task_event);
3447 if (!ctx)
3448 ctx = rcu_dereference(current->perf_event_ctxp);
3449 if (ctx)
3450 perf_event_task_ctx(ctx, task_event);
3451 put_cpu_var(perf_cpu_context);
3452 rcu_read_unlock();
3455 static void perf_event_task(struct task_struct *task,
3456 struct perf_event_context *task_ctx,
3457 int new)
3459 struct perf_task_event task_event;
3461 if (!atomic_read(&nr_comm_events) &&
3462 !atomic_read(&nr_mmap_events) &&
3463 !atomic_read(&nr_task_events))
3464 return;
3466 task_event = (struct perf_task_event){
3467 .task = task,
3468 .task_ctx = task_ctx,
3469 .event_id = {
3470 .header = {
3471 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3472 .misc = 0,
3473 .size = sizeof(task_event.event_id),
3475 /* .pid */
3476 /* .ppid */
3477 /* .tid */
3478 /* .ptid */
3479 .time = perf_clock(),
3483 perf_event_task_event(&task_event);
3486 void perf_event_fork(struct task_struct *task)
3488 perf_event_task(task, NULL, 1);
3492 * comm tracking
3495 struct perf_comm_event {
3496 struct task_struct *task;
3497 char *comm;
3498 int comm_size;
3500 struct {
3501 struct perf_event_header header;
3503 u32 pid;
3504 u32 tid;
3505 } event_id;
3508 static void perf_event_comm_output(struct perf_event *event,
3509 struct perf_comm_event *comm_event)
3511 struct perf_output_handle handle;
3512 int size = comm_event->event_id.header.size;
3513 int ret = perf_output_begin(&handle, event, size, 0, 0);
3515 if (ret)
3516 return;
3518 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3519 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3521 perf_output_put(&handle, comm_event->event_id);
3522 perf_output_copy(&handle, comm_event->comm,
3523 comm_event->comm_size);
3524 perf_output_end(&handle);
3527 static int perf_event_comm_match(struct perf_event *event)
3529 if (event->state < PERF_EVENT_STATE_INACTIVE)
3530 return 0;
3532 if (event->cpu != -1 && event->cpu != smp_processor_id())
3533 return 0;
3535 if (event->attr.comm)
3536 return 1;
3538 return 0;
3541 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3542 struct perf_comm_event *comm_event)
3544 struct perf_event *event;
3546 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3547 if (perf_event_comm_match(event))
3548 perf_event_comm_output(event, comm_event);
3552 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3554 struct perf_cpu_context *cpuctx;
3555 struct perf_event_context *ctx;
3556 unsigned int size;
3557 char comm[TASK_COMM_LEN];
3559 memset(comm, 0, sizeof(comm));
3560 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3561 size = ALIGN(strlen(comm)+1, sizeof(u64));
3563 comm_event->comm = comm;
3564 comm_event->comm_size = size;
3566 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3568 rcu_read_lock();
3569 cpuctx = &get_cpu_var(perf_cpu_context);
3570 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3571 ctx = rcu_dereference(current->perf_event_ctxp);
3572 if (ctx)
3573 perf_event_comm_ctx(ctx, comm_event);
3574 put_cpu_var(perf_cpu_context);
3575 rcu_read_unlock();
3578 void perf_event_comm(struct task_struct *task)
3580 struct perf_comm_event comm_event;
3582 if (task->perf_event_ctxp)
3583 perf_event_enable_on_exec(task);
3585 if (!atomic_read(&nr_comm_events))
3586 return;
3588 comm_event = (struct perf_comm_event){
3589 .task = task,
3590 /* .comm */
3591 /* .comm_size */
3592 .event_id = {
3593 .header = {
3594 .type = PERF_RECORD_COMM,
3595 .misc = 0,
3596 /* .size */
3598 /* .pid */
3599 /* .tid */
3603 perf_event_comm_event(&comm_event);
3607 * mmap tracking
3610 struct perf_mmap_event {
3611 struct vm_area_struct *vma;
3613 const char *file_name;
3614 int file_size;
3616 struct {
3617 struct perf_event_header header;
3619 u32 pid;
3620 u32 tid;
3621 u64 start;
3622 u64 len;
3623 u64 pgoff;
3624 } event_id;
3627 static void perf_event_mmap_output(struct perf_event *event,
3628 struct perf_mmap_event *mmap_event)
3630 struct perf_output_handle handle;
3631 int size = mmap_event->event_id.header.size;
3632 int ret = perf_output_begin(&handle, event, size, 0, 0);
3634 if (ret)
3635 return;
3637 mmap_event->event_id.pid = perf_event_pid(event, current);
3638 mmap_event->event_id.tid = perf_event_tid(event, current);
3640 perf_output_put(&handle, mmap_event->event_id);
3641 perf_output_copy(&handle, mmap_event->file_name,
3642 mmap_event->file_size);
3643 perf_output_end(&handle);
3646 static int perf_event_mmap_match(struct perf_event *event,
3647 struct perf_mmap_event *mmap_event)
3649 if (event->state < PERF_EVENT_STATE_INACTIVE)
3650 return 0;
3652 if (event->cpu != -1 && event->cpu != smp_processor_id())
3653 return 0;
3655 if (event->attr.mmap)
3656 return 1;
3658 return 0;
3661 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3662 struct perf_mmap_event *mmap_event)
3664 struct perf_event *event;
3666 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3667 if (perf_event_mmap_match(event, mmap_event))
3668 perf_event_mmap_output(event, mmap_event);
3672 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3674 struct perf_cpu_context *cpuctx;
3675 struct perf_event_context *ctx;
3676 struct vm_area_struct *vma = mmap_event->vma;
3677 struct file *file = vma->vm_file;
3678 unsigned int size;
3679 char tmp[16];
3680 char *buf = NULL;
3681 const char *name;
3683 memset(tmp, 0, sizeof(tmp));
3685 if (file) {
3687 * d_path works from the end of the buffer backwards, so we
3688 * need to add enough zero bytes after the string to handle
3689 * the 64bit alignment we do later.
3691 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3692 if (!buf) {
3693 name = strncpy(tmp, "//enomem", sizeof(tmp));
3694 goto got_name;
3696 name = d_path(&file->f_path, buf, PATH_MAX);
3697 if (IS_ERR(name)) {
3698 name = strncpy(tmp, "//toolong", sizeof(tmp));
3699 goto got_name;
3701 } else {
3702 if (arch_vma_name(mmap_event->vma)) {
3703 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3704 sizeof(tmp));
3705 goto got_name;
3708 if (!vma->vm_mm) {
3709 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3710 goto got_name;
3713 name = strncpy(tmp, "//anon", sizeof(tmp));
3714 goto got_name;
3717 got_name:
3718 size = ALIGN(strlen(name)+1, sizeof(u64));
3720 mmap_event->file_name = name;
3721 mmap_event->file_size = size;
3723 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3725 rcu_read_lock();
3726 cpuctx = &get_cpu_var(perf_cpu_context);
3727 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3728 ctx = rcu_dereference(current->perf_event_ctxp);
3729 if (ctx)
3730 perf_event_mmap_ctx(ctx, mmap_event);
3731 put_cpu_var(perf_cpu_context);
3732 rcu_read_unlock();
3734 kfree(buf);
3737 void __perf_event_mmap(struct vm_area_struct *vma)
3739 struct perf_mmap_event mmap_event;
3741 if (!atomic_read(&nr_mmap_events))
3742 return;
3744 mmap_event = (struct perf_mmap_event){
3745 .vma = vma,
3746 /* .file_name */
3747 /* .file_size */
3748 .event_id = {
3749 .header = {
3750 .type = PERF_RECORD_MMAP,
3751 .misc = 0,
3752 /* .size */
3754 /* .pid */
3755 /* .tid */
3756 .start = vma->vm_start,
3757 .len = vma->vm_end - vma->vm_start,
3758 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3762 perf_event_mmap_event(&mmap_event);
3766 * IRQ throttle logging
3769 static void perf_log_throttle(struct perf_event *event, int enable)
3771 struct perf_output_handle handle;
3772 int ret;
3774 struct {
3775 struct perf_event_header header;
3776 u64 time;
3777 u64 id;
3778 u64 stream_id;
3779 } throttle_event = {
3780 .header = {
3781 .type = PERF_RECORD_THROTTLE,
3782 .misc = 0,
3783 .size = sizeof(throttle_event),
3785 .time = perf_clock(),
3786 .id = primary_event_id(event),
3787 .stream_id = event->id,
3790 if (enable)
3791 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3793 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3794 if (ret)
3795 return;
3797 perf_output_put(&handle, throttle_event);
3798 perf_output_end(&handle);
3802 * Generic event overflow handling, sampling.
3805 static int __perf_event_overflow(struct perf_event *event, int nmi,
3806 int throttle, struct perf_sample_data *data,
3807 struct pt_regs *regs)
3809 int events = atomic_read(&event->event_limit);
3810 struct hw_perf_event *hwc = &event->hw;
3811 int ret = 0;
3813 throttle = (throttle && event->pmu->unthrottle != NULL);
3815 if (!throttle) {
3816 hwc->interrupts++;
3817 } else {
3818 if (hwc->interrupts != MAX_INTERRUPTS) {
3819 hwc->interrupts++;
3820 if (HZ * hwc->interrupts >
3821 (u64)sysctl_perf_event_sample_rate) {
3822 hwc->interrupts = MAX_INTERRUPTS;
3823 perf_log_throttle(event, 0);
3824 ret = 1;
3826 } else {
3828 * Keep re-disabling events even though on the previous
3829 * pass we disabled it - just in case we raced with a
3830 * sched-in and the event got enabled again:
3832 ret = 1;
3836 if (event->attr.freq) {
3837 u64 now = perf_clock();
3838 s64 delta = now - hwc->freq_time_stamp;
3840 hwc->freq_time_stamp = now;
3842 if (delta > 0 && delta < 2*TICK_NSEC)
3843 perf_adjust_period(event, delta, hwc->last_period);
3847 * XXX event_limit might not quite work as expected on inherited
3848 * events
3851 event->pending_kill = POLL_IN;
3852 if (events && atomic_dec_and_test(&event->event_limit)) {
3853 ret = 1;
3854 event->pending_kill = POLL_HUP;
3855 if (nmi) {
3856 event->pending_disable = 1;
3857 perf_pending_queue(&event->pending,
3858 perf_pending_event);
3859 } else
3860 perf_event_disable(event);
3863 if (event->overflow_handler)
3864 event->overflow_handler(event, nmi, data, regs);
3865 else
3866 perf_event_output(event, nmi, data, regs);
3868 return ret;
3871 int perf_event_overflow(struct perf_event *event, int nmi,
3872 struct perf_sample_data *data,
3873 struct pt_regs *regs)
3875 return __perf_event_overflow(event, nmi, 1, data, regs);
3879 * Generic software event infrastructure
3883 * We directly increment event->count and keep a second value in
3884 * event->hw.period_left to count intervals. This period event
3885 * is kept in the range [-sample_period, 0] so that we can use the
3886 * sign as trigger.
3889 static u64 perf_swevent_set_period(struct perf_event *event)
3891 struct hw_perf_event *hwc = &event->hw;
3892 u64 period = hwc->last_period;
3893 u64 nr, offset;
3894 s64 old, val;
3896 hwc->last_period = hwc->sample_period;
3898 again:
3899 old = val = atomic64_read(&hwc->period_left);
3900 if (val < 0)
3901 return 0;
3903 nr = div64_u64(period + val, period);
3904 offset = nr * period;
3905 val -= offset;
3906 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3907 goto again;
3909 return nr;
3912 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3913 int nmi, struct perf_sample_data *data,
3914 struct pt_regs *regs)
3916 struct hw_perf_event *hwc = &event->hw;
3917 int throttle = 0;
3919 data->period = event->hw.last_period;
3920 if (!overflow)
3921 overflow = perf_swevent_set_period(event);
3923 if (hwc->interrupts == MAX_INTERRUPTS)
3924 return;
3926 for (; overflow; overflow--) {
3927 if (__perf_event_overflow(event, nmi, throttle,
3928 data, regs)) {
3930 * We inhibit the overflow from happening when
3931 * hwc->interrupts == MAX_INTERRUPTS.
3933 break;
3935 throttle = 1;
3939 static void perf_swevent_unthrottle(struct perf_event *event)
3942 * Nothing to do, we already reset hwc->interrupts.
3946 static void perf_swevent_add(struct perf_event *event, u64 nr,
3947 int nmi, struct perf_sample_data *data,
3948 struct pt_regs *regs)
3950 struct hw_perf_event *hwc = &event->hw;
3952 atomic64_add(nr, &event->count);
3954 if (!regs)
3955 return;
3957 if (!hwc->sample_period)
3958 return;
3960 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3961 return perf_swevent_overflow(event, 1, nmi, data, regs);
3963 if (atomic64_add_negative(nr, &hwc->period_left))
3964 return;
3966 perf_swevent_overflow(event, 0, nmi, data, regs);
3969 static int perf_swevent_is_counting(struct perf_event *event)
3972 * The event is active, we're good!
3974 if (event->state == PERF_EVENT_STATE_ACTIVE)
3975 return 1;
3978 * The event is off/error, not counting.
3980 if (event->state != PERF_EVENT_STATE_INACTIVE)
3981 return 0;
3984 * The event is inactive, if the context is active
3985 * we're part of a group that didn't make it on the 'pmu',
3986 * not counting.
3988 if (event->ctx->is_active)
3989 return 0;
3992 * We're inactive and the context is too, this means the
3993 * task is scheduled out, we're counting events that happen
3994 * to us, like migration events.
3996 return 1;
3999 static int perf_tp_event_match(struct perf_event *event,
4000 struct perf_sample_data *data);
4002 static int perf_exclude_event(struct perf_event *event,
4003 struct pt_regs *regs)
4005 if (regs) {
4006 if (event->attr.exclude_user && user_mode(regs))
4007 return 1;
4009 if (event->attr.exclude_kernel && !user_mode(regs))
4010 return 1;
4013 return 0;
4016 static int perf_swevent_match(struct perf_event *event,
4017 enum perf_type_id type,
4018 u32 event_id,
4019 struct perf_sample_data *data,
4020 struct pt_regs *regs)
4022 if (event->cpu != -1 && event->cpu != smp_processor_id())
4023 return 0;
4025 if (!perf_swevent_is_counting(event))
4026 return 0;
4028 if (event->attr.type != type)
4029 return 0;
4031 if (event->attr.config != event_id)
4032 return 0;
4034 if (perf_exclude_event(event, regs))
4035 return 0;
4037 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4038 !perf_tp_event_match(event, data))
4039 return 0;
4041 return 1;
4044 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4045 enum perf_type_id type,
4046 u32 event_id, u64 nr, int nmi,
4047 struct perf_sample_data *data,
4048 struct pt_regs *regs)
4050 struct perf_event *event;
4052 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4053 if (perf_swevent_match(event, type, event_id, data, regs))
4054 perf_swevent_add(event, nr, nmi, data, regs);
4058 int perf_swevent_get_recursion_context(void)
4060 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4061 int rctx;
4063 if (in_nmi())
4064 rctx = 3;
4065 else if (in_irq())
4066 rctx = 2;
4067 else if (in_softirq())
4068 rctx = 1;
4069 else
4070 rctx = 0;
4072 if (cpuctx->recursion[rctx]) {
4073 put_cpu_var(perf_cpu_context);
4074 return -1;
4077 cpuctx->recursion[rctx]++;
4078 barrier();
4080 return rctx;
4082 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4084 void perf_swevent_put_recursion_context(int rctx)
4086 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4087 barrier();
4088 cpuctx->recursion[rctx]--;
4089 put_cpu_var(perf_cpu_context);
4091 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4093 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4094 u64 nr, int nmi,
4095 struct perf_sample_data *data,
4096 struct pt_regs *regs)
4098 struct perf_cpu_context *cpuctx;
4099 struct perf_event_context *ctx;
4101 cpuctx = &__get_cpu_var(perf_cpu_context);
4102 rcu_read_lock();
4103 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4104 nr, nmi, data, regs);
4106 * doesn't really matter which of the child contexts the
4107 * events ends up in.
4109 ctx = rcu_dereference(current->perf_event_ctxp);
4110 if (ctx)
4111 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4112 rcu_read_unlock();
4115 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4116 struct pt_regs *regs, u64 addr)
4118 struct perf_sample_data data;
4119 int rctx;
4121 rctx = perf_swevent_get_recursion_context();
4122 if (rctx < 0)
4123 return;
4125 perf_sample_data_init(&data, addr);
4127 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4129 perf_swevent_put_recursion_context(rctx);
4132 static void perf_swevent_read(struct perf_event *event)
4136 static int perf_swevent_enable(struct perf_event *event)
4138 struct hw_perf_event *hwc = &event->hw;
4140 if (hwc->sample_period) {
4141 hwc->last_period = hwc->sample_period;
4142 perf_swevent_set_period(event);
4144 return 0;
4147 static void perf_swevent_disable(struct perf_event *event)
4151 static const struct pmu perf_ops_generic = {
4152 .enable = perf_swevent_enable,
4153 .disable = perf_swevent_disable,
4154 .read = perf_swevent_read,
4155 .unthrottle = perf_swevent_unthrottle,
4159 * hrtimer based swevent callback
4162 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4164 enum hrtimer_restart ret = HRTIMER_RESTART;
4165 struct perf_sample_data data;
4166 struct pt_regs *regs;
4167 struct perf_event *event;
4168 u64 period;
4170 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4171 event->pmu->read(event);
4173 perf_sample_data_init(&data, 0);
4174 data.period = event->hw.last_period;
4175 regs = get_irq_regs();
4177 * In case we exclude kernel IPs or are somehow not in interrupt
4178 * context, provide the next best thing, the user IP.
4180 if ((event->attr.exclude_kernel || !regs) &&
4181 !event->attr.exclude_user)
4182 regs = task_pt_regs(current);
4184 if (regs) {
4185 if (!(event->attr.exclude_idle && current->pid == 0))
4186 if (perf_event_overflow(event, 0, &data, regs))
4187 ret = HRTIMER_NORESTART;
4190 period = max_t(u64, 10000, event->hw.sample_period);
4191 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4193 return ret;
4196 static void perf_swevent_start_hrtimer(struct perf_event *event)
4198 struct hw_perf_event *hwc = &event->hw;
4200 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4201 hwc->hrtimer.function = perf_swevent_hrtimer;
4202 if (hwc->sample_period) {
4203 u64 period;
4205 if (hwc->remaining) {
4206 if (hwc->remaining < 0)
4207 period = 10000;
4208 else
4209 period = hwc->remaining;
4210 hwc->remaining = 0;
4211 } else {
4212 period = max_t(u64, 10000, hwc->sample_period);
4214 __hrtimer_start_range_ns(&hwc->hrtimer,
4215 ns_to_ktime(period), 0,
4216 HRTIMER_MODE_REL, 0);
4220 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4222 struct hw_perf_event *hwc = &event->hw;
4224 if (hwc->sample_period) {
4225 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4226 hwc->remaining = ktime_to_ns(remaining);
4228 hrtimer_cancel(&hwc->hrtimer);
4233 * Software event: cpu wall time clock
4236 static void cpu_clock_perf_event_update(struct perf_event *event)
4238 int cpu = raw_smp_processor_id();
4239 s64 prev;
4240 u64 now;
4242 now = cpu_clock(cpu);
4243 prev = atomic64_xchg(&event->hw.prev_count, now);
4244 atomic64_add(now - prev, &event->count);
4247 static int cpu_clock_perf_event_enable(struct perf_event *event)
4249 struct hw_perf_event *hwc = &event->hw;
4250 int cpu = raw_smp_processor_id();
4252 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4253 perf_swevent_start_hrtimer(event);
4255 return 0;
4258 static void cpu_clock_perf_event_disable(struct perf_event *event)
4260 perf_swevent_cancel_hrtimer(event);
4261 cpu_clock_perf_event_update(event);
4264 static void cpu_clock_perf_event_read(struct perf_event *event)
4266 cpu_clock_perf_event_update(event);
4269 static const struct pmu perf_ops_cpu_clock = {
4270 .enable = cpu_clock_perf_event_enable,
4271 .disable = cpu_clock_perf_event_disable,
4272 .read = cpu_clock_perf_event_read,
4276 * Software event: task time clock
4279 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4281 u64 prev;
4282 s64 delta;
4284 prev = atomic64_xchg(&event->hw.prev_count, now);
4285 delta = now - prev;
4286 atomic64_add(delta, &event->count);
4289 static int task_clock_perf_event_enable(struct perf_event *event)
4291 struct hw_perf_event *hwc = &event->hw;
4292 u64 now;
4294 now = event->ctx->time;
4296 atomic64_set(&hwc->prev_count, now);
4298 perf_swevent_start_hrtimer(event);
4300 return 0;
4303 static void task_clock_perf_event_disable(struct perf_event *event)
4305 perf_swevent_cancel_hrtimer(event);
4306 task_clock_perf_event_update(event, event->ctx->time);
4310 static void task_clock_perf_event_read(struct perf_event *event)
4312 u64 time;
4314 if (!in_nmi()) {
4315 update_context_time(event->ctx);
4316 time = event->ctx->time;
4317 } else {
4318 u64 now = perf_clock();
4319 u64 delta = now - event->ctx->timestamp;
4320 time = event->ctx->time + delta;
4323 task_clock_perf_event_update(event, time);
4326 static const struct pmu perf_ops_task_clock = {
4327 .enable = task_clock_perf_event_enable,
4328 .disable = task_clock_perf_event_disable,
4329 .read = task_clock_perf_event_read,
4332 #ifdef CONFIG_EVENT_TRACING
4334 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4335 int entry_size, struct pt_regs *regs)
4337 struct perf_sample_data data;
4338 struct perf_raw_record raw = {
4339 .size = entry_size,
4340 .data = record,
4343 perf_sample_data_init(&data, addr);
4344 data.raw = &raw;
4346 /* Trace events already protected against recursion */
4347 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4348 &data, regs);
4350 EXPORT_SYMBOL_GPL(perf_tp_event);
4352 static int perf_tp_event_match(struct perf_event *event,
4353 struct perf_sample_data *data)
4355 void *record = data->raw->data;
4357 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4358 return 1;
4359 return 0;
4362 static void tp_perf_event_destroy(struct perf_event *event)
4364 perf_trace_disable(event->attr.config);
4367 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4370 * Raw tracepoint data is a severe data leak, only allow root to
4371 * have these.
4373 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4374 perf_paranoid_tracepoint_raw() &&
4375 !capable(CAP_SYS_ADMIN))
4376 return ERR_PTR(-EPERM);
4378 if (perf_trace_enable(event->attr.config))
4379 return NULL;
4381 event->destroy = tp_perf_event_destroy;
4383 return &perf_ops_generic;
4386 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4388 char *filter_str;
4389 int ret;
4391 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4392 return -EINVAL;
4394 filter_str = strndup_user(arg, PAGE_SIZE);
4395 if (IS_ERR(filter_str))
4396 return PTR_ERR(filter_str);
4398 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4400 kfree(filter_str);
4401 return ret;
4404 static void perf_event_free_filter(struct perf_event *event)
4406 ftrace_profile_free_filter(event);
4409 #else
4411 static int perf_tp_event_match(struct perf_event *event,
4412 struct perf_sample_data *data)
4414 return 1;
4417 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4419 return NULL;
4422 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4424 return -ENOENT;
4427 static void perf_event_free_filter(struct perf_event *event)
4431 #endif /* CONFIG_EVENT_TRACING */
4433 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4434 static void bp_perf_event_destroy(struct perf_event *event)
4436 release_bp_slot(event);
4439 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4441 int err;
4443 err = register_perf_hw_breakpoint(bp);
4444 if (err)
4445 return ERR_PTR(err);
4447 bp->destroy = bp_perf_event_destroy;
4449 return &perf_ops_bp;
4452 void perf_bp_event(struct perf_event *bp, void *data)
4454 struct perf_sample_data sample;
4455 struct pt_regs *regs = data;
4457 perf_sample_data_init(&sample, bp->attr.bp_addr);
4459 if (!perf_exclude_event(bp, regs))
4460 perf_swevent_add(bp, 1, 1, &sample, regs);
4462 #else
4463 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4465 return NULL;
4468 void perf_bp_event(struct perf_event *bp, void *regs)
4471 #endif
4473 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4475 static void sw_perf_event_destroy(struct perf_event *event)
4477 u64 event_id = event->attr.config;
4479 WARN_ON(event->parent);
4481 atomic_dec(&perf_swevent_enabled[event_id]);
4484 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4486 const struct pmu *pmu = NULL;
4487 u64 event_id = event->attr.config;
4490 * Software events (currently) can't in general distinguish
4491 * between user, kernel and hypervisor events.
4492 * However, context switches and cpu migrations are considered
4493 * to be kernel events, and page faults are never hypervisor
4494 * events.
4496 switch (event_id) {
4497 case PERF_COUNT_SW_CPU_CLOCK:
4498 pmu = &perf_ops_cpu_clock;
4500 break;
4501 case PERF_COUNT_SW_TASK_CLOCK:
4503 * If the user instantiates this as a per-cpu event,
4504 * use the cpu_clock event instead.
4506 if (event->ctx->task)
4507 pmu = &perf_ops_task_clock;
4508 else
4509 pmu = &perf_ops_cpu_clock;
4511 break;
4512 case PERF_COUNT_SW_PAGE_FAULTS:
4513 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4514 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4515 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4516 case PERF_COUNT_SW_CPU_MIGRATIONS:
4517 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4518 case PERF_COUNT_SW_EMULATION_FAULTS:
4519 if (!event->parent) {
4520 atomic_inc(&perf_swevent_enabled[event_id]);
4521 event->destroy = sw_perf_event_destroy;
4523 pmu = &perf_ops_generic;
4524 break;
4527 return pmu;
4531 * Allocate and initialize a event structure
4533 static struct perf_event *
4534 perf_event_alloc(struct perf_event_attr *attr,
4535 int cpu,
4536 struct perf_event_context *ctx,
4537 struct perf_event *group_leader,
4538 struct perf_event *parent_event,
4539 perf_overflow_handler_t overflow_handler,
4540 gfp_t gfpflags)
4542 const struct pmu *pmu;
4543 struct perf_event *event;
4544 struct hw_perf_event *hwc;
4545 long err;
4547 event = kzalloc(sizeof(*event), gfpflags);
4548 if (!event)
4549 return ERR_PTR(-ENOMEM);
4552 * Single events are their own group leaders, with an
4553 * empty sibling list:
4555 if (!group_leader)
4556 group_leader = event;
4558 mutex_init(&event->child_mutex);
4559 INIT_LIST_HEAD(&event->child_list);
4561 INIT_LIST_HEAD(&event->group_entry);
4562 INIT_LIST_HEAD(&event->event_entry);
4563 INIT_LIST_HEAD(&event->sibling_list);
4564 init_waitqueue_head(&event->waitq);
4566 mutex_init(&event->mmap_mutex);
4568 event->cpu = cpu;
4569 event->attr = *attr;
4570 event->group_leader = group_leader;
4571 event->pmu = NULL;
4572 event->ctx = ctx;
4573 event->oncpu = -1;
4575 event->parent = parent_event;
4577 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4578 event->id = atomic64_inc_return(&perf_event_id);
4580 event->state = PERF_EVENT_STATE_INACTIVE;
4582 if (!overflow_handler && parent_event)
4583 overflow_handler = parent_event->overflow_handler;
4585 event->overflow_handler = overflow_handler;
4587 if (attr->disabled)
4588 event->state = PERF_EVENT_STATE_OFF;
4590 pmu = NULL;
4592 hwc = &event->hw;
4593 hwc->sample_period = attr->sample_period;
4594 if (attr->freq && attr->sample_freq)
4595 hwc->sample_period = 1;
4596 hwc->last_period = hwc->sample_period;
4598 atomic64_set(&hwc->period_left, hwc->sample_period);
4601 * we currently do not support PERF_FORMAT_GROUP on inherited events
4603 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4604 goto done;
4606 switch (attr->type) {
4607 case PERF_TYPE_RAW:
4608 case PERF_TYPE_HARDWARE:
4609 case PERF_TYPE_HW_CACHE:
4610 pmu = hw_perf_event_init(event);
4611 break;
4613 case PERF_TYPE_SOFTWARE:
4614 pmu = sw_perf_event_init(event);
4615 break;
4617 case PERF_TYPE_TRACEPOINT:
4618 pmu = tp_perf_event_init(event);
4619 break;
4621 case PERF_TYPE_BREAKPOINT:
4622 pmu = bp_perf_event_init(event);
4623 break;
4626 default:
4627 break;
4629 done:
4630 err = 0;
4631 if (!pmu)
4632 err = -EINVAL;
4633 else if (IS_ERR(pmu))
4634 err = PTR_ERR(pmu);
4636 if (err) {
4637 if (event->ns)
4638 put_pid_ns(event->ns);
4639 kfree(event);
4640 return ERR_PTR(err);
4643 event->pmu = pmu;
4645 if (!event->parent) {
4646 atomic_inc(&nr_events);
4647 if (event->attr.mmap)
4648 atomic_inc(&nr_mmap_events);
4649 if (event->attr.comm)
4650 atomic_inc(&nr_comm_events);
4651 if (event->attr.task)
4652 atomic_inc(&nr_task_events);
4655 return event;
4658 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4659 struct perf_event_attr *attr)
4661 u32 size;
4662 int ret;
4664 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4665 return -EFAULT;
4668 * zero the full structure, so that a short copy will be nice.
4670 memset(attr, 0, sizeof(*attr));
4672 ret = get_user(size, &uattr->size);
4673 if (ret)
4674 return ret;
4676 if (size > PAGE_SIZE) /* silly large */
4677 goto err_size;
4679 if (!size) /* abi compat */
4680 size = PERF_ATTR_SIZE_VER0;
4682 if (size < PERF_ATTR_SIZE_VER0)
4683 goto err_size;
4686 * If we're handed a bigger struct than we know of,
4687 * ensure all the unknown bits are 0 - i.e. new
4688 * user-space does not rely on any kernel feature
4689 * extensions we dont know about yet.
4691 if (size > sizeof(*attr)) {
4692 unsigned char __user *addr;
4693 unsigned char __user *end;
4694 unsigned char val;
4696 addr = (void __user *)uattr + sizeof(*attr);
4697 end = (void __user *)uattr + size;
4699 for (; addr < end; addr++) {
4700 ret = get_user(val, addr);
4701 if (ret)
4702 return ret;
4703 if (val)
4704 goto err_size;
4706 size = sizeof(*attr);
4709 ret = copy_from_user(attr, uattr, size);
4710 if (ret)
4711 return -EFAULT;
4714 * If the type exists, the corresponding creation will verify
4715 * the attr->config.
4717 if (attr->type >= PERF_TYPE_MAX)
4718 return -EINVAL;
4720 if (attr->__reserved_1)
4721 return -EINVAL;
4723 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4724 return -EINVAL;
4726 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4727 return -EINVAL;
4729 out:
4730 return ret;
4732 err_size:
4733 put_user(sizeof(*attr), &uattr->size);
4734 ret = -E2BIG;
4735 goto out;
4738 static int perf_event_set_output(struct perf_event *event, int output_fd)
4740 struct perf_event *output_event = NULL;
4741 struct file *output_file = NULL;
4742 struct perf_event *old_output;
4743 int fput_needed = 0;
4744 int ret = -EINVAL;
4746 if (!output_fd)
4747 goto set;
4749 output_file = fget_light(output_fd, &fput_needed);
4750 if (!output_file)
4751 return -EBADF;
4753 if (output_file->f_op != &perf_fops)
4754 goto out;
4756 output_event = output_file->private_data;
4758 /* Don't chain output fds */
4759 if (output_event->output)
4760 goto out;
4762 /* Don't set an output fd when we already have an output channel */
4763 if (event->data)
4764 goto out;
4766 atomic_long_inc(&output_file->f_count);
4768 set:
4769 mutex_lock(&event->mmap_mutex);
4770 old_output = event->output;
4771 rcu_assign_pointer(event->output, output_event);
4772 mutex_unlock(&event->mmap_mutex);
4774 if (old_output) {
4776 * we need to make sure no existing perf_output_*()
4777 * is still referencing this event.
4779 synchronize_rcu();
4780 fput(old_output->filp);
4783 ret = 0;
4784 out:
4785 fput_light(output_file, fput_needed);
4786 return ret;
4790 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4792 * @attr_uptr: event_id type attributes for monitoring/sampling
4793 * @pid: target pid
4794 * @cpu: target cpu
4795 * @group_fd: group leader event fd
4797 SYSCALL_DEFINE5(perf_event_open,
4798 struct perf_event_attr __user *, attr_uptr,
4799 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4801 struct perf_event *event, *group_leader;
4802 struct perf_event_attr attr;
4803 struct perf_event_context *ctx;
4804 struct file *event_file = NULL;
4805 struct file *group_file = NULL;
4806 int fput_needed = 0;
4807 int fput_needed2 = 0;
4808 int err;
4810 /* for future expandability... */
4811 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4812 return -EINVAL;
4814 err = perf_copy_attr(attr_uptr, &attr);
4815 if (err)
4816 return err;
4818 if (!attr.exclude_kernel) {
4819 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4820 return -EACCES;
4823 if (attr.freq) {
4824 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4825 return -EINVAL;
4829 * Get the target context (task or percpu):
4831 ctx = find_get_context(pid, cpu);
4832 if (IS_ERR(ctx))
4833 return PTR_ERR(ctx);
4836 * Look up the group leader (we will attach this event to it):
4838 group_leader = NULL;
4839 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4840 err = -EINVAL;
4841 group_file = fget_light(group_fd, &fput_needed);
4842 if (!group_file)
4843 goto err_put_context;
4844 if (group_file->f_op != &perf_fops)
4845 goto err_put_context;
4847 group_leader = group_file->private_data;
4849 * Do not allow a recursive hierarchy (this new sibling
4850 * becoming part of another group-sibling):
4852 if (group_leader->group_leader != group_leader)
4853 goto err_put_context;
4855 * Do not allow to attach to a group in a different
4856 * task or CPU context:
4858 if (group_leader->ctx != ctx)
4859 goto err_put_context;
4861 * Only a group leader can be exclusive or pinned
4863 if (attr.exclusive || attr.pinned)
4864 goto err_put_context;
4867 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4868 NULL, NULL, GFP_KERNEL);
4869 err = PTR_ERR(event);
4870 if (IS_ERR(event))
4871 goto err_put_context;
4873 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4874 if (err < 0)
4875 goto err_free_put_context;
4877 event_file = fget_light(err, &fput_needed2);
4878 if (!event_file)
4879 goto err_free_put_context;
4881 if (flags & PERF_FLAG_FD_OUTPUT) {
4882 err = perf_event_set_output(event, group_fd);
4883 if (err)
4884 goto err_fput_free_put_context;
4887 event->filp = event_file;
4888 WARN_ON_ONCE(ctx->parent_ctx);
4889 mutex_lock(&ctx->mutex);
4890 perf_install_in_context(ctx, event, cpu);
4891 ++ctx->generation;
4892 mutex_unlock(&ctx->mutex);
4894 event->owner = current;
4895 get_task_struct(current);
4896 mutex_lock(&current->perf_event_mutex);
4897 list_add_tail(&event->owner_entry, &current->perf_event_list);
4898 mutex_unlock(&current->perf_event_mutex);
4900 err_fput_free_put_context:
4901 fput_light(event_file, fput_needed2);
4903 err_free_put_context:
4904 if (err < 0)
4905 kfree(event);
4907 err_put_context:
4908 if (err < 0)
4909 put_ctx(ctx);
4911 fput_light(group_file, fput_needed);
4913 return err;
4917 * perf_event_create_kernel_counter
4919 * @attr: attributes of the counter to create
4920 * @cpu: cpu in which the counter is bound
4921 * @pid: task to profile
4923 struct perf_event *
4924 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4925 pid_t pid,
4926 perf_overflow_handler_t overflow_handler)
4928 struct perf_event *event;
4929 struct perf_event_context *ctx;
4930 int err;
4933 * Get the target context (task or percpu):
4936 ctx = find_get_context(pid, cpu);
4937 if (IS_ERR(ctx)) {
4938 err = PTR_ERR(ctx);
4939 goto err_exit;
4942 event = perf_event_alloc(attr, cpu, ctx, NULL,
4943 NULL, overflow_handler, GFP_KERNEL);
4944 if (IS_ERR(event)) {
4945 err = PTR_ERR(event);
4946 goto err_put_context;
4949 event->filp = NULL;
4950 WARN_ON_ONCE(ctx->parent_ctx);
4951 mutex_lock(&ctx->mutex);
4952 perf_install_in_context(ctx, event, cpu);
4953 ++ctx->generation;
4954 mutex_unlock(&ctx->mutex);
4956 event->owner = current;
4957 get_task_struct(current);
4958 mutex_lock(&current->perf_event_mutex);
4959 list_add_tail(&event->owner_entry, &current->perf_event_list);
4960 mutex_unlock(&current->perf_event_mutex);
4962 return event;
4964 err_put_context:
4965 put_ctx(ctx);
4966 err_exit:
4967 return ERR_PTR(err);
4969 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4972 * inherit a event from parent task to child task:
4974 static struct perf_event *
4975 inherit_event(struct perf_event *parent_event,
4976 struct task_struct *parent,
4977 struct perf_event_context *parent_ctx,
4978 struct task_struct *child,
4979 struct perf_event *group_leader,
4980 struct perf_event_context *child_ctx)
4982 struct perf_event *child_event;
4985 * Instead of creating recursive hierarchies of events,
4986 * we link inherited events back to the original parent,
4987 * which has a filp for sure, which we use as the reference
4988 * count:
4990 if (parent_event->parent)
4991 parent_event = parent_event->parent;
4993 child_event = perf_event_alloc(&parent_event->attr,
4994 parent_event->cpu, child_ctx,
4995 group_leader, parent_event,
4996 NULL, GFP_KERNEL);
4997 if (IS_ERR(child_event))
4998 return child_event;
4999 get_ctx(child_ctx);
5002 * Make the child state follow the state of the parent event,
5003 * not its attr.disabled bit. We hold the parent's mutex,
5004 * so we won't race with perf_event_{en, dis}able_family.
5006 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5007 child_event->state = PERF_EVENT_STATE_INACTIVE;
5008 else
5009 child_event->state = PERF_EVENT_STATE_OFF;
5011 if (parent_event->attr.freq) {
5012 u64 sample_period = parent_event->hw.sample_period;
5013 struct hw_perf_event *hwc = &child_event->hw;
5015 hwc->sample_period = sample_period;
5016 hwc->last_period = sample_period;
5018 atomic64_set(&hwc->period_left, sample_period);
5021 child_event->overflow_handler = parent_event->overflow_handler;
5024 * Link it up in the child's context:
5026 add_event_to_ctx(child_event, child_ctx);
5029 * Get a reference to the parent filp - we will fput it
5030 * when the child event exits. This is safe to do because
5031 * we are in the parent and we know that the filp still
5032 * exists and has a nonzero count:
5034 atomic_long_inc(&parent_event->filp->f_count);
5037 * Link this into the parent event's child list
5039 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5040 mutex_lock(&parent_event->child_mutex);
5041 list_add_tail(&child_event->child_list, &parent_event->child_list);
5042 mutex_unlock(&parent_event->child_mutex);
5044 return child_event;
5047 static int inherit_group(struct perf_event *parent_event,
5048 struct task_struct *parent,
5049 struct perf_event_context *parent_ctx,
5050 struct task_struct *child,
5051 struct perf_event_context *child_ctx)
5053 struct perf_event *leader;
5054 struct perf_event *sub;
5055 struct perf_event *child_ctr;
5057 leader = inherit_event(parent_event, parent, parent_ctx,
5058 child, NULL, child_ctx);
5059 if (IS_ERR(leader))
5060 return PTR_ERR(leader);
5061 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5062 child_ctr = inherit_event(sub, parent, parent_ctx,
5063 child, leader, child_ctx);
5064 if (IS_ERR(child_ctr))
5065 return PTR_ERR(child_ctr);
5067 return 0;
5070 static void sync_child_event(struct perf_event *child_event,
5071 struct task_struct *child)
5073 struct perf_event *parent_event = child_event->parent;
5074 u64 child_val;
5076 if (child_event->attr.inherit_stat)
5077 perf_event_read_event(child_event, child);
5079 child_val = atomic64_read(&child_event->count);
5082 * Add back the child's count to the parent's count:
5084 atomic64_add(child_val, &parent_event->count);
5085 atomic64_add(child_event->total_time_enabled,
5086 &parent_event->child_total_time_enabled);
5087 atomic64_add(child_event->total_time_running,
5088 &parent_event->child_total_time_running);
5091 * Remove this event from the parent's list
5093 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5094 mutex_lock(&parent_event->child_mutex);
5095 list_del_init(&child_event->child_list);
5096 mutex_unlock(&parent_event->child_mutex);
5099 * Release the parent event, if this was the last
5100 * reference to it.
5102 fput(parent_event->filp);
5105 static void
5106 __perf_event_exit_task(struct perf_event *child_event,
5107 struct perf_event_context *child_ctx,
5108 struct task_struct *child)
5110 struct perf_event *parent_event;
5112 perf_event_remove_from_context(child_event);
5114 parent_event = child_event->parent;
5116 * It can happen that parent exits first, and has events
5117 * that are still around due to the child reference. These
5118 * events need to be zapped - but otherwise linger.
5120 if (parent_event) {
5121 sync_child_event(child_event, child);
5122 free_event(child_event);
5127 * When a child task exits, feed back event values to parent events.
5129 void perf_event_exit_task(struct task_struct *child)
5131 struct perf_event *child_event, *tmp;
5132 struct perf_event_context *child_ctx;
5133 unsigned long flags;
5135 if (likely(!child->perf_event_ctxp)) {
5136 perf_event_task(child, NULL, 0);
5137 return;
5140 local_irq_save(flags);
5142 * We can't reschedule here because interrupts are disabled,
5143 * and either child is current or it is a task that can't be
5144 * scheduled, so we are now safe from rescheduling changing
5145 * our context.
5147 child_ctx = child->perf_event_ctxp;
5148 __perf_event_task_sched_out(child_ctx);
5151 * Take the context lock here so that if find_get_context is
5152 * reading child->perf_event_ctxp, we wait until it has
5153 * incremented the context's refcount before we do put_ctx below.
5155 raw_spin_lock(&child_ctx->lock);
5156 child->perf_event_ctxp = NULL;
5158 * If this context is a clone; unclone it so it can't get
5159 * swapped to another process while we're removing all
5160 * the events from it.
5162 unclone_ctx(child_ctx);
5163 update_context_time(child_ctx);
5164 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5167 * Report the task dead after unscheduling the events so that we
5168 * won't get any samples after PERF_RECORD_EXIT. We can however still
5169 * get a few PERF_RECORD_READ events.
5171 perf_event_task(child, child_ctx, 0);
5174 * We can recurse on the same lock type through:
5176 * __perf_event_exit_task()
5177 * sync_child_event()
5178 * fput(parent_event->filp)
5179 * perf_release()
5180 * mutex_lock(&ctx->mutex)
5182 * But since its the parent context it won't be the same instance.
5184 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5186 again:
5187 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5188 group_entry)
5189 __perf_event_exit_task(child_event, child_ctx, child);
5191 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5192 group_entry)
5193 __perf_event_exit_task(child_event, child_ctx, child);
5196 * If the last event was a group event, it will have appended all
5197 * its siblings to the list, but we obtained 'tmp' before that which
5198 * will still point to the list head terminating the iteration.
5200 if (!list_empty(&child_ctx->pinned_groups) ||
5201 !list_empty(&child_ctx->flexible_groups))
5202 goto again;
5204 mutex_unlock(&child_ctx->mutex);
5206 put_ctx(child_ctx);
5209 static void perf_free_event(struct perf_event *event,
5210 struct perf_event_context *ctx)
5212 struct perf_event *parent = event->parent;
5214 if (WARN_ON_ONCE(!parent))
5215 return;
5217 mutex_lock(&parent->child_mutex);
5218 list_del_init(&event->child_list);
5219 mutex_unlock(&parent->child_mutex);
5221 fput(parent->filp);
5223 list_del_event(event, ctx);
5224 free_event(event);
5228 * free an unexposed, unused context as created by inheritance by
5229 * init_task below, used by fork() in case of fail.
5231 void perf_event_free_task(struct task_struct *task)
5233 struct perf_event_context *ctx = task->perf_event_ctxp;
5234 struct perf_event *event, *tmp;
5236 if (!ctx)
5237 return;
5239 mutex_lock(&ctx->mutex);
5240 again:
5241 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5242 perf_free_event(event, ctx);
5244 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5245 group_entry)
5246 perf_free_event(event, ctx);
5248 if (!list_empty(&ctx->pinned_groups) ||
5249 !list_empty(&ctx->flexible_groups))
5250 goto again;
5252 mutex_unlock(&ctx->mutex);
5254 put_ctx(ctx);
5257 static int
5258 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5259 struct perf_event_context *parent_ctx,
5260 struct task_struct *child,
5261 int *inherited_all)
5263 int ret;
5264 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5266 if (!event->attr.inherit) {
5267 *inherited_all = 0;
5268 return 0;
5271 if (!child_ctx) {
5273 * This is executed from the parent task context, so
5274 * inherit events that have been marked for cloning.
5275 * First allocate and initialize a context for the
5276 * child.
5279 child_ctx = kzalloc(sizeof(struct perf_event_context),
5280 GFP_KERNEL);
5281 if (!child_ctx)
5282 return -ENOMEM;
5284 __perf_event_init_context(child_ctx, child);
5285 child->perf_event_ctxp = child_ctx;
5286 get_task_struct(child);
5289 ret = inherit_group(event, parent, parent_ctx,
5290 child, child_ctx);
5292 if (ret)
5293 *inherited_all = 0;
5295 return ret;
5300 * Initialize the perf_event context in task_struct
5302 int perf_event_init_task(struct task_struct *child)
5304 struct perf_event_context *child_ctx, *parent_ctx;
5305 struct perf_event_context *cloned_ctx;
5306 struct perf_event *event;
5307 struct task_struct *parent = current;
5308 int inherited_all = 1;
5309 int ret = 0;
5311 child->perf_event_ctxp = NULL;
5313 mutex_init(&child->perf_event_mutex);
5314 INIT_LIST_HEAD(&child->perf_event_list);
5316 if (likely(!parent->perf_event_ctxp))
5317 return 0;
5320 * If the parent's context is a clone, pin it so it won't get
5321 * swapped under us.
5323 parent_ctx = perf_pin_task_context(parent);
5326 * No need to check if parent_ctx != NULL here; since we saw
5327 * it non-NULL earlier, the only reason for it to become NULL
5328 * is if we exit, and since we're currently in the middle of
5329 * a fork we can't be exiting at the same time.
5333 * Lock the parent list. No need to lock the child - not PID
5334 * hashed yet and not running, so nobody can access it.
5336 mutex_lock(&parent_ctx->mutex);
5339 * We dont have to disable NMIs - we are only looking at
5340 * the list, not manipulating it:
5342 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5343 ret = inherit_task_group(event, parent, parent_ctx, child,
5344 &inherited_all);
5345 if (ret)
5346 break;
5349 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5350 ret = inherit_task_group(event, parent, parent_ctx, child,
5351 &inherited_all);
5352 if (ret)
5353 break;
5356 child_ctx = child->perf_event_ctxp;
5358 if (child_ctx && inherited_all) {
5360 * Mark the child context as a clone of the parent
5361 * context, or of whatever the parent is a clone of.
5362 * Note that if the parent is a clone, it could get
5363 * uncloned at any point, but that doesn't matter
5364 * because the list of events and the generation
5365 * count can't have changed since we took the mutex.
5367 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5368 if (cloned_ctx) {
5369 child_ctx->parent_ctx = cloned_ctx;
5370 child_ctx->parent_gen = parent_ctx->parent_gen;
5371 } else {
5372 child_ctx->parent_ctx = parent_ctx;
5373 child_ctx->parent_gen = parent_ctx->generation;
5375 get_ctx(child_ctx->parent_ctx);
5378 mutex_unlock(&parent_ctx->mutex);
5380 perf_unpin_context(parent_ctx);
5382 return ret;
5385 static void __init perf_event_init_all_cpus(void)
5387 int cpu;
5388 struct perf_cpu_context *cpuctx;
5390 for_each_possible_cpu(cpu) {
5391 cpuctx = &per_cpu(perf_cpu_context, cpu);
5392 __perf_event_init_context(&cpuctx->ctx, NULL);
5396 static void __cpuinit perf_event_init_cpu(int cpu)
5398 struct perf_cpu_context *cpuctx;
5400 cpuctx = &per_cpu(perf_cpu_context, cpu);
5402 spin_lock(&perf_resource_lock);
5403 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5404 spin_unlock(&perf_resource_lock);
5407 #ifdef CONFIG_HOTPLUG_CPU
5408 static void __perf_event_exit_cpu(void *info)
5410 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5411 struct perf_event_context *ctx = &cpuctx->ctx;
5412 struct perf_event *event, *tmp;
5414 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5415 __perf_event_remove_from_context(event);
5416 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5417 __perf_event_remove_from_context(event);
5419 static void perf_event_exit_cpu(int cpu)
5421 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5422 struct perf_event_context *ctx = &cpuctx->ctx;
5424 mutex_lock(&ctx->mutex);
5425 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5426 mutex_unlock(&ctx->mutex);
5428 #else
5429 static inline void perf_event_exit_cpu(int cpu) { }
5430 #endif
5432 static int __cpuinit
5433 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5435 unsigned int cpu = (long)hcpu;
5437 switch (action) {
5439 case CPU_UP_PREPARE:
5440 case CPU_UP_PREPARE_FROZEN:
5441 perf_event_init_cpu(cpu);
5442 break;
5444 case CPU_DOWN_PREPARE:
5445 case CPU_DOWN_PREPARE_FROZEN:
5446 perf_event_exit_cpu(cpu);
5447 break;
5449 default:
5450 break;
5453 return NOTIFY_OK;
5457 * This has to have a higher priority than migration_notifier in sched.c.
5459 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5460 .notifier_call = perf_cpu_notify,
5461 .priority = 20,
5464 void __init perf_event_init(void)
5466 perf_event_init_all_cpus();
5467 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5468 (void *)(long)smp_processor_id());
5469 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5470 (void *)(long)smp_processor_id());
5471 register_cpu_notifier(&perf_cpu_nb);
5474 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5475 struct sysdev_class_attribute *attr,
5476 char *buf)
5478 return sprintf(buf, "%d\n", perf_reserved_percpu);
5481 static ssize_t
5482 perf_set_reserve_percpu(struct sysdev_class *class,
5483 struct sysdev_class_attribute *attr,
5484 const char *buf,
5485 size_t count)
5487 struct perf_cpu_context *cpuctx;
5488 unsigned long val;
5489 int err, cpu, mpt;
5491 err = strict_strtoul(buf, 10, &val);
5492 if (err)
5493 return err;
5494 if (val > perf_max_events)
5495 return -EINVAL;
5497 spin_lock(&perf_resource_lock);
5498 perf_reserved_percpu = val;
5499 for_each_online_cpu(cpu) {
5500 cpuctx = &per_cpu(perf_cpu_context, cpu);
5501 raw_spin_lock_irq(&cpuctx->ctx.lock);
5502 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5503 perf_max_events - perf_reserved_percpu);
5504 cpuctx->max_pertask = mpt;
5505 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5507 spin_unlock(&perf_resource_lock);
5509 return count;
5512 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5513 struct sysdev_class_attribute *attr,
5514 char *buf)
5516 return sprintf(buf, "%d\n", perf_overcommit);
5519 static ssize_t
5520 perf_set_overcommit(struct sysdev_class *class,
5521 struct sysdev_class_attribute *attr,
5522 const char *buf, size_t count)
5524 unsigned long val;
5525 int err;
5527 err = strict_strtoul(buf, 10, &val);
5528 if (err)
5529 return err;
5530 if (val > 1)
5531 return -EINVAL;
5533 spin_lock(&perf_resource_lock);
5534 perf_overcommit = val;
5535 spin_unlock(&perf_resource_lock);
5537 return count;
5540 static SYSDEV_CLASS_ATTR(
5541 reserve_percpu,
5542 0644,
5543 perf_show_reserve_percpu,
5544 perf_set_reserve_percpu
5547 static SYSDEV_CLASS_ATTR(
5548 overcommit,
5549 0644,
5550 perf_show_overcommit,
5551 perf_set_overcommit
5554 static struct attribute *perfclass_attrs[] = {
5555 &attr_reserve_percpu.attr,
5556 &attr_overcommit.attr,
5557 NULL
5560 static struct attribute_group perfclass_attr_group = {
5561 .attrs = perfclass_attrs,
5562 .name = "perf_events",
5565 static int __init perf_event_sysfs_init(void)
5567 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5568 &perfclass_attr_group);
5570 device_initcall(perf_event_sysfs_init);