4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
53 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
64 # define SET_FPEMU_CTL(a,b) (-EINVAL)
67 # define GET_FPEMU_CTL(a,b) (-EINVAL)
70 # define SET_FPEXC_CTL(a,b) (-EINVAL)
73 # define GET_FPEXC_CTL(a,b) (-EINVAL)
76 # define GET_ENDIAN(a,b) (-EINVAL)
79 # define SET_ENDIAN(a,b) (-EINVAL)
82 # define GET_TSC_CTL(a) (-EINVAL)
85 # define SET_TSC_CTL(a) (-EINVAL)
89 * this is where the system-wide overflow UID and GID are defined, for
90 * architectures that now have 32-bit UID/GID but didn't in the past
93 int overflowuid
= DEFAULT_OVERFLOWUID
;
94 int overflowgid
= DEFAULT_OVERFLOWGID
;
97 EXPORT_SYMBOL(overflowuid
);
98 EXPORT_SYMBOL(overflowgid
);
102 * the same as above, but for filesystems which can only store a 16-bit
103 * UID and GID. as such, this is needed on all architectures
106 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
107 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
109 EXPORT_SYMBOL(fs_overflowuid
);
110 EXPORT_SYMBOL(fs_overflowgid
);
113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
118 EXPORT_SYMBOL(cad_pid
);
121 * If set, this is used for preparing the system to power off.
124 void (*pm_power_off_prepare
)(void);
127 * Returns true if current's euid is same as p's uid or euid,
128 * or has CAP_SYS_NICE to p's user_ns.
130 * Called with rcu_read_lock, creds are safe
132 static bool set_one_prio_perm(struct task_struct
*p
)
134 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
136 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
137 (pcred
->uid
== cred
->euid
||
138 pcred
->euid
== cred
->euid
))
140 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
146 * set the priority of a task
147 * - the caller must hold the RCU read lock
149 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
153 if (!set_one_prio_perm(p
)) {
157 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
161 no_nice
= security_task_setnice(p
, niceval
);
168 set_user_nice(p
, niceval
);
173 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
175 struct task_struct
*g
, *p
;
176 struct user_struct
*user
;
177 const struct cred
*cred
= current_cred();
181 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
184 /* normalize: avoid signed division (rounding problems) */
192 read_lock(&tasklist_lock
);
196 p
= find_task_by_vpid(who
);
200 error
= set_one_prio(p
, niceval
, error
);
204 pgrp
= find_vpid(who
);
206 pgrp
= task_pgrp(current
);
207 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
208 error
= set_one_prio(p
, niceval
, error
);
209 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
212 user
= (struct user_struct
*) cred
->user
;
215 else if ((who
!= cred
->uid
) &&
216 !(user
= find_user(who
)))
217 goto out_unlock
; /* No processes for this user */
219 do_each_thread(g
, p
) {
220 if (__task_cred(p
)->uid
== who
)
221 error
= set_one_prio(p
, niceval
, error
);
222 } while_each_thread(g
, p
);
223 if (who
!= cred
->uid
)
224 free_uid(user
); /* For find_user() */
228 read_unlock(&tasklist_lock
);
235 * Ugh. To avoid negative return values, "getpriority()" will
236 * not return the normal nice-value, but a negated value that
237 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238 * to stay compatible.
240 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
242 struct task_struct
*g
, *p
;
243 struct user_struct
*user
;
244 const struct cred
*cred
= current_cred();
245 long niceval
, retval
= -ESRCH
;
248 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
252 read_lock(&tasklist_lock
);
256 p
= find_task_by_vpid(who
);
260 niceval
= 20 - task_nice(p
);
261 if (niceval
> retval
)
267 pgrp
= find_vpid(who
);
269 pgrp
= task_pgrp(current
);
270 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
271 niceval
= 20 - task_nice(p
);
272 if (niceval
> retval
)
274 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
277 user
= (struct user_struct
*) cred
->user
;
280 else if ((who
!= cred
->uid
) &&
281 !(user
= find_user(who
)))
282 goto out_unlock
; /* No processes for this user */
284 do_each_thread(g
, p
) {
285 if (__task_cred(p
)->uid
== who
) {
286 niceval
= 20 - task_nice(p
);
287 if (niceval
> retval
)
290 } while_each_thread(g
, p
);
291 if (who
!= cred
->uid
)
292 free_uid(user
); /* for find_user() */
296 read_unlock(&tasklist_lock
);
303 * emergency_restart - reboot the system
305 * Without shutting down any hardware or taking any locks
306 * reboot the system. This is called when we know we are in
307 * trouble so this is our best effort to reboot. This is
308 * safe to call in interrupt context.
310 void emergency_restart(void)
312 kmsg_dump(KMSG_DUMP_EMERG
);
313 machine_emergency_restart();
315 EXPORT_SYMBOL_GPL(emergency_restart
);
317 void kernel_restart_prepare(char *cmd
)
319 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
320 system_state
= SYSTEM_RESTART
;
321 usermodehelper_disable();
327 * register_reboot_notifier - Register function to be called at reboot time
328 * @nb: Info about notifier function to be called
330 * Registers a function with the list of functions
331 * to be called at reboot time.
333 * Currently always returns zero, as blocking_notifier_chain_register()
334 * always returns zero.
336 int register_reboot_notifier(struct notifier_block
*nb
)
338 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
340 EXPORT_SYMBOL(register_reboot_notifier
);
343 * unregister_reboot_notifier - Unregister previously registered reboot notifier
344 * @nb: Hook to be unregistered
346 * Unregisters a previously registered reboot
349 * Returns zero on success, or %-ENOENT on failure.
351 int unregister_reboot_notifier(struct notifier_block
*nb
)
353 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
355 EXPORT_SYMBOL(unregister_reboot_notifier
);
358 * kernel_restart - reboot the system
359 * @cmd: pointer to buffer containing command to execute for restart
362 * Shutdown everything and perform a clean reboot.
363 * This is not safe to call in interrupt context.
365 void kernel_restart(char *cmd
)
367 kernel_restart_prepare(cmd
);
369 printk(KERN_EMERG
"Restarting system.\n");
371 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
372 kmsg_dump(KMSG_DUMP_RESTART
);
373 machine_restart(cmd
);
375 EXPORT_SYMBOL_GPL(kernel_restart
);
377 static void kernel_shutdown_prepare(enum system_states state
)
379 blocking_notifier_call_chain(&reboot_notifier_list
,
380 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
381 system_state
= state
;
382 usermodehelper_disable();
386 * kernel_halt - halt the system
388 * Shutdown everything and perform a clean system halt.
390 void kernel_halt(void)
392 kernel_shutdown_prepare(SYSTEM_HALT
);
394 printk(KERN_EMERG
"System halted.\n");
395 kmsg_dump(KMSG_DUMP_HALT
);
399 EXPORT_SYMBOL_GPL(kernel_halt
);
402 * kernel_power_off - power_off the system
404 * Shutdown everything and perform a clean system power_off.
406 void kernel_power_off(void)
408 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
409 if (pm_power_off_prepare
)
410 pm_power_off_prepare();
411 disable_nonboot_cpus();
413 printk(KERN_EMERG
"Power down.\n");
414 kmsg_dump(KMSG_DUMP_POWEROFF
);
417 EXPORT_SYMBOL_GPL(kernel_power_off
);
419 static DEFINE_MUTEX(reboot_mutex
);
422 * Reboot system call: for obvious reasons only root may call it,
423 * and even root needs to set up some magic numbers in the registers
424 * so that some mistake won't make this reboot the whole machine.
425 * You can also set the meaning of the ctrl-alt-del-key here.
427 * reboot doesn't sync: do that yourself before calling this.
429 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
435 /* We only trust the superuser with rebooting the system. */
436 if (!capable(CAP_SYS_BOOT
))
439 /* For safety, we require "magic" arguments. */
440 if (magic1
!= LINUX_REBOOT_MAGIC1
||
441 (magic2
!= LINUX_REBOOT_MAGIC2
&&
442 magic2
!= LINUX_REBOOT_MAGIC2A
&&
443 magic2
!= LINUX_REBOOT_MAGIC2B
&&
444 magic2
!= LINUX_REBOOT_MAGIC2C
))
448 * If pid namespaces are enabled and the current task is in a child
449 * pid_namespace, the command is handled by reboot_pid_ns() which will
452 ret
= reboot_pid_ns(task_active_pid_ns(current
), cmd
);
456 /* Instead of trying to make the power_off code look like
457 * halt when pm_power_off is not set do it the easy way.
459 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
460 cmd
= LINUX_REBOOT_CMD_HALT
;
462 mutex_lock(&reboot_mutex
);
464 case LINUX_REBOOT_CMD_RESTART
:
465 kernel_restart(NULL
);
468 case LINUX_REBOOT_CMD_CAD_ON
:
472 case LINUX_REBOOT_CMD_CAD_OFF
:
476 case LINUX_REBOOT_CMD_HALT
:
479 panic("cannot halt");
481 case LINUX_REBOOT_CMD_POWER_OFF
:
486 case LINUX_REBOOT_CMD_RESTART2
:
487 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
491 buffer
[sizeof(buffer
) - 1] = '\0';
493 kernel_restart(buffer
);
497 case LINUX_REBOOT_CMD_KEXEC
:
498 ret
= kernel_kexec();
502 #ifdef CONFIG_HIBERNATION
503 case LINUX_REBOOT_CMD_SW_SUSPEND
:
512 mutex_unlock(&reboot_mutex
);
516 static void deferred_cad(struct work_struct
*dummy
)
518 kernel_restart(NULL
);
522 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
523 * As it's called within an interrupt, it may NOT sync: the only choice
524 * is whether to reboot at once, or just ignore the ctrl-alt-del.
526 void ctrl_alt_del(void)
528 static DECLARE_WORK(cad_work
, deferred_cad
);
531 schedule_work(&cad_work
);
533 kill_cad_pid(SIGINT
, 1);
537 * Unprivileged users may change the real gid to the effective gid
538 * or vice versa. (BSD-style)
540 * If you set the real gid at all, or set the effective gid to a value not
541 * equal to the real gid, then the saved gid is set to the new effective gid.
543 * This makes it possible for a setgid program to completely drop its
544 * privileges, which is often a useful assertion to make when you are doing
545 * a security audit over a program.
547 * The general idea is that a program which uses just setregid() will be
548 * 100% compatible with BSD. A program which uses just setgid() will be
549 * 100% compatible with POSIX with saved IDs.
551 * SMP: There are not races, the GIDs are checked only by filesystem
552 * operations (as far as semantic preservation is concerned).
554 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
556 const struct cred
*old
;
560 new = prepare_creds();
563 old
= current_cred();
566 if (rgid
!= (gid_t
) -1) {
567 if (old
->gid
== rgid
||
569 nsown_capable(CAP_SETGID
))
574 if (egid
!= (gid_t
) -1) {
575 if (old
->gid
== egid
||
578 nsown_capable(CAP_SETGID
))
584 if (rgid
!= (gid_t
) -1 ||
585 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
586 new->sgid
= new->egid
;
587 new->fsgid
= new->egid
;
589 return commit_creds(new);
597 * setgid() is implemented like SysV w/ SAVED_IDS
599 * SMP: Same implicit races as above.
601 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
603 const struct cred
*old
;
607 new = prepare_creds();
610 old
= current_cred();
613 if (nsown_capable(CAP_SETGID
))
614 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
615 else if (gid
== old
->gid
|| gid
== old
->sgid
)
616 new->egid
= new->fsgid
= gid
;
620 return commit_creds(new);
628 * change the user struct in a credentials set to match the new UID
630 static int set_user(struct cred
*new)
632 struct user_struct
*new_user
;
634 new_user
= alloc_uid(current_user_ns(), new->uid
);
639 * We don't fail in case of NPROC limit excess here because too many
640 * poorly written programs don't check set*uid() return code, assuming
641 * it never fails if called by root. We may still enforce NPROC limit
642 * for programs doing set*uid()+execve() by harmlessly deferring the
643 * failure to the execve() stage.
645 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
646 new_user
!= INIT_USER
)
647 current
->flags
|= PF_NPROC_EXCEEDED
;
649 current
->flags
&= ~PF_NPROC_EXCEEDED
;
652 new->user
= new_user
;
657 * Unprivileged users may change the real uid to the effective uid
658 * or vice versa. (BSD-style)
660 * If you set the real uid at all, or set the effective uid to a value not
661 * equal to the real uid, then the saved uid is set to the new effective uid.
663 * This makes it possible for a setuid program to completely drop its
664 * privileges, which is often a useful assertion to make when you are doing
665 * a security audit over a program.
667 * The general idea is that a program which uses just setreuid() will be
668 * 100% compatible with BSD. A program which uses just setuid() will be
669 * 100% compatible with POSIX with saved IDs.
671 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
673 const struct cred
*old
;
677 new = prepare_creds();
680 old
= current_cred();
683 if (ruid
!= (uid_t
) -1) {
685 if (old
->uid
!= ruid
&&
687 !nsown_capable(CAP_SETUID
))
691 if (euid
!= (uid_t
) -1) {
693 if (old
->uid
!= euid
&&
696 !nsown_capable(CAP_SETUID
))
700 if (new->uid
!= old
->uid
) {
701 retval
= set_user(new);
705 if (ruid
!= (uid_t
) -1 ||
706 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
707 new->suid
= new->euid
;
708 new->fsuid
= new->euid
;
710 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
714 return commit_creds(new);
722 * setuid() is implemented like SysV with SAVED_IDS
724 * Note that SAVED_ID's is deficient in that a setuid root program
725 * like sendmail, for example, cannot set its uid to be a normal
726 * user and then switch back, because if you're root, setuid() sets
727 * the saved uid too. If you don't like this, blame the bright people
728 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
729 * will allow a root program to temporarily drop privileges and be able to
730 * regain them by swapping the real and effective uid.
732 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
734 const struct cred
*old
;
738 new = prepare_creds();
741 old
= current_cred();
744 if (nsown_capable(CAP_SETUID
)) {
745 new->suid
= new->uid
= uid
;
746 if (uid
!= old
->uid
) {
747 retval
= set_user(new);
751 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
755 new->fsuid
= new->euid
= uid
;
757 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
761 return commit_creds(new);
770 * This function implements a generic ability to update ruid, euid,
771 * and suid. This allows you to implement the 4.4 compatible seteuid().
773 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
775 const struct cred
*old
;
779 new = prepare_creds();
783 old
= current_cred();
786 if (!nsown_capable(CAP_SETUID
)) {
787 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
788 ruid
!= old
->euid
&& ruid
!= old
->suid
)
790 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
791 euid
!= old
->euid
&& euid
!= old
->suid
)
793 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
794 suid
!= old
->euid
&& suid
!= old
->suid
)
798 if (ruid
!= (uid_t
) -1) {
800 if (ruid
!= old
->uid
) {
801 retval
= set_user(new);
806 if (euid
!= (uid_t
) -1)
808 if (suid
!= (uid_t
) -1)
810 new->fsuid
= new->euid
;
812 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
816 return commit_creds(new);
823 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
825 const struct cred
*cred
= current_cred();
828 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
829 !(retval
= put_user(cred
->euid
, euid
)))
830 retval
= put_user(cred
->suid
, suid
);
836 * Same as above, but for rgid, egid, sgid.
838 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
840 const struct cred
*old
;
844 new = prepare_creds();
847 old
= current_cred();
850 if (!nsown_capable(CAP_SETGID
)) {
851 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
852 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
854 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
855 egid
!= old
->egid
&& egid
!= old
->sgid
)
857 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
858 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
862 if (rgid
!= (gid_t
) -1)
864 if (egid
!= (gid_t
) -1)
866 if (sgid
!= (gid_t
) -1)
868 new->fsgid
= new->egid
;
870 return commit_creds(new);
877 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
879 const struct cred
*cred
= current_cred();
882 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
883 !(retval
= put_user(cred
->egid
, egid
)))
884 retval
= put_user(cred
->sgid
, sgid
);
891 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
892 * is used for "access()" and for the NFS daemon (letting nfsd stay at
893 * whatever uid it wants to). It normally shadows "euid", except when
894 * explicitly set by setfsuid() or for access..
896 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
898 const struct cred
*old
;
902 new = prepare_creds();
904 return current_fsuid();
905 old
= current_cred();
906 old_fsuid
= old
->fsuid
;
908 if (uid
== old
->uid
|| uid
== old
->euid
||
909 uid
== old
->suid
|| uid
== old
->fsuid
||
910 nsown_capable(CAP_SETUID
)) {
911 if (uid
!= old_fsuid
) {
913 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
927 * Samma på svenska..
929 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
931 const struct cred
*old
;
935 new = prepare_creds();
937 return current_fsgid();
938 old
= current_cred();
939 old_fsgid
= old
->fsgid
;
941 if (gid
== old
->gid
|| gid
== old
->egid
||
942 gid
== old
->sgid
|| gid
== old
->fsgid
||
943 nsown_capable(CAP_SETGID
)) {
944 if (gid
!= old_fsgid
) {
958 void do_sys_times(struct tms
*tms
)
960 cputime_t tgutime
, tgstime
, cutime
, cstime
;
962 spin_lock_irq(¤t
->sighand
->siglock
);
963 thread_group_times(current
, &tgutime
, &tgstime
);
964 cutime
= current
->signal
->cutime
;
965 cstime
= current
->signal
->cstime
;
966 spin_unlock_irq(¤t
->sighand
->siglock
);
967 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
968 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
969 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
970 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
973 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
979 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
982 force_successful_syscall_return();
983 return (long) jiffies_64_to_clock_t(get_jiffies_64());
987 * This needs some heavy checking ...
988 * I just haven't the stomach for it. I also don't fully
989 * understand sessions/pgrp etc. Let somebody who does explain it.
991 * OK, I think I have the protection semantics right.... this is really
992 * only important on a multi-user system anyway, to make sure one user
993 * can't send a signal to a process owned by another. -TYT, 12/12/91
995 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
998 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1000 struct task_struct
*p
;
1001 struct task_struct
*group_leader
= current
->group_leader
;
1006 pid
= task_pid_vnr(group_leader
);
1013 /* From this point forward we keep holding onto the tasklist lock
1014 * so that our parent does not change from under us. -DaveM
1016 write_lock_irq(&tasklist_lock
);
1019 p
= find_task_by_vpid(pid
);
1024 if (!thread_group_leader(p
))
1027 if (same_thread_group(p
->real_parent
, group_leader
)) {
1029 if (task_session(p
) != task_session(group_leader
))
1036 if (p
!= group_leader
)
1041 if (p
->signal
->leader
)
1046 struct task_struct
*g
;
1048 pgrp
= find_vpid(pgid
);
1049 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1050 if (!g
|| task_session(g
) != task_session(group_leader
))
1054 err
= security_task_setpgid(p
, pgid
);
1058 if (task_pgrp(p
) != pgrp
)
1059 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1063 /* All paths lead to here, thus we are safe. -DaveM */
1064 write_unlock_irq(&tasklist_lock
);
1069 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1071 struct task_struct
*p
;
1077 grp
= task_pgrp(current
);
1080 p
= find_task_by_vpid(pid
);
1087 retval
= security_task_getpgid(p
);
1091 retval
= pid_vnr(grp
);
1097 #ifdef __ARCH_WANT_SYS_GETPGRP
1099 SYSCALL_DEFINE0(getpgrp
)
1101 return sys_getpgid(0);
1106 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1108 struct task_struct
*p
;
1114 sid
= task_session(current
);
1117 p
= find_task_by_vpid(pid
);
1120 sid
= task_session(p
);
1124 retval
= security_task_getsid(p
);
1128 retval
= pid_vnr(sid
);
1134 SYSCALL_DEFINE0(setsid
)
1136 struct task_struct
*group_leader
= current
->group_leader
;
1137 struct pid
*sid
= task_pid(group_leader
);
1138 pid_t session
= pid_vnr(sid
);
1141 write_lock_irq(&tasklist_lock
);
1142 /* Fail if I am already a session leader */
1143 if (group_leader
->signal
->leader
)
1146 /* Fail if a process group id already exists that equals the
1147 * proposed session id.
1149 if (pid_task(sid
, PIDTYPE_PGID
))
1152 group_leader
->signal
->leader
= 1;
1153 __set_special_pids(sid
);
1155 proc_clear_tty(group_leader
);
1159 write_unlock_irq(&tasklist_lock
);
1161 proc_sid_connector(group_leader
);
1162 sched_autogroup_create_attach(group_leader
);
1167 DECLARE_RWSEM(uts_sem
);
1169 #ifdef COMPAT_UTS_MACHINE
1170 #define override_architecture(name) \
1171 (personality(current->personality) == PER_LINUX32 && \
1172 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1173 sizeof(COMPAT_UTS_MACHINE)))
1175 #define override_architecture(name) 0
1179 * Work around broken programs that cannot handle "Linux 3.0".
1180 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1182 static int override_release(char __user
*release
, int len
)
1187 if (current
->personality
& UNAME26
) {
1188 char *rest
= UTS_RELEASE
;
1193 if (*rest
== '.' && ++ndots
>= 3)
1195 if (!isdigit(*rest
) && *rest
!= '.')
1199 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1200 snprintf(buf
, len
, "2.6.%u%s", v
, rest
);
1201 ret
= copy_to_user(release
, buf
, len
);
1206 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1210 down_read(&uts_sem
);
1211 if (copy_to_user(name
, utsname(), sizeof *name
))
1215 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1217 if (!errno
&& override_architecture(name
))
1222 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1226 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1233 down_read(&uts_sem
);
1234 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1238 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1240 if (!error
&& override_architecture(name
))
1245 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1251 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1254 down_read(&uts_sem
);
1255 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1257 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1258 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1260 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1261 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1263 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1264 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1266 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1267 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1269 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1272 if (!error
&& override_architecture(name
))
1274 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1276 return error
? -EFAULT
: 0;
1280 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1283 char tmp
[__NEW_UTS_LEN
];
1285 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1288 if (len
< 0 || len
> __NEW_UTS_LEN
)
1290 down_write(&uts_sem
);
1292 if (!copy_from_user(tmp
, name
, len
)) {
1293 struct new_utsname
*u
= utsname();
1295 memcpy(u
->nodename
, tmp
, len
);
1296 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1299 uts_proc_notify(UTS_PROC_HOSTNAME
);
1304 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1306 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1309 struct new_utsname
*u
;
1313 down_read(&uts_sem
);
1315 i
= 1 + strlen(u
->nodename
);
1319 if (copy_to_user(name
, u
->nodename
, i
))
1328 * Only setdomainname; getdomainname can be implemented by calling
1331 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1334 char tmp
[__NEW_UTS_LEN
];
1336 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1338 if (len
< 0 || len
> __NEW_UTS_LEN
)
1341 down_write(&uts_sem
);
1343 if (!copy_from_user(tmp
, name
, len
)) {
1344 struct new_utsname
*u
= utsname();
1346 memcpy(u
->domainname
, tmp
, len
);
1347 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1350 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1355 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1357 struct rlimit value
;
1360 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1362 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1367 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1370 * Back compatibility for getrlimit. Needed for some apps.
1373 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1374 struct rlimit __user
*, rlim
)
1377 if (resource
>= RLIM_NLIMITS
)
1380 task_lock(current
->group_leader
);
1381 x
= current
->signal
->rlim
[resource
];
1382 task_unlock(current
->group_leader
);
1383 if (x
.rlim_cur
> 0x7FFFFFFF)
1384 x
.rlim_cur
= 0x7FFFFFFF;
1385 if (x
.rlim_max
> 0x7FFFFFFF)
1386 x
.rlim_max
= 0x7FFFFFFF;
1387 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1392 static inline bool rlim64_is_infinity(__u64 rlim64
)
1394 #if BITS_PER_LONG < 64
1395 return rlim64
>= ULONG_MAX
;
1397 return rlim64
== RLIM64_INFINITY
;
1401 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1403 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1404 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1406 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1407 if (rlim
->rlim_max
== RLIM_INFINITY
)
1408 rlim64
->rlim_max
= RLIM64_INFINITY
;
1410 rlim64
->rlim_max
= rlim
->rlim_max
;
1413 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1415 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1416 rlim
->rlim_cur
= RLIM_INFINITY
;
1418 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1419 if (rlim64_is_infinity(rlim64
->rlim_max
))
1420 rlim
->rlim_max
= RLIM_INFINITY
;
1422 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1425 /* make sure you are allowed to change @tsk limits before calling this */
1426 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1427 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1429 struct rlimit
*rlim
;
1432 if (resource
>= RLIM_NLIMITS
)
1435 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1437 if (resource
== RLIMIT_NOFILE
&&
1438 new_rlim
->rlim_max
> sysctl_nr_open
)
1442 /* protect tsk->signal and tsk->sighand from disappearing */
1443 read_lock(&tasklist_lock
);
1444 if (!tsk
->sighand
) {
1449 rlim
= tsk
->signal
->rlim
+ resource
;
1450 task_lock(tsk
->group_leader
);
1452 /* Keep the capable check against init_user_ns until
1453 cgroups can contain all limits */
1454 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1455 !capable(CAP_SYS_RESOURCE
))
1458 retval
= security_task_setrlimit(tsk
->group_leader
,
1459 resource
, new_rlim
);
1460 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1462 * The caller is asking for an immediate RLIMIT_CPU
1463 * expiry. But we use the zero value to mean "it was
1464 * never set". So let's cheat and make it one second
1467 new_rlim
->rlim_cur
= 1;
1476 task_unlock(tsk
->group_leader
);
1479 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1480 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1481 * very long-standing error, and fixing it now risks breakage of
1482 * applications, so we live with it
1484 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1485 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1486 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1488 read_unlock(&tasklist_lock
);
1492 /* rcu lock must be held */
1493 static int check_prlimit_permission(struct task_struct
*task
)
1495 const struct cred
*cred
= current_cred(), *tcred
;
1497 if (current
== task
)
1500 tcred
= __task_cred(task
);
1501 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1502 (cred
->uid
== tcred
->euid
&&
1503 cred
->uid
== tcred
->suid
&&
1504 cred
->uid
== tcred
->uid
&&
1505 cred
->gid
== tcred
->egid
&&
1506 cred
->gid
== tcred
->sgid
&&
1507 cred
->gid
== tcred
->gid
))
1509 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1515 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1516 const struct rlimit64 __user
*, new_rlim
,
1517 struct rlimit64 __user
*, old_rlim
)
1519 struct rlimit64 old64
, new64
;
1520 struct rlimit old
, new;
1521 struct task_struct
*tsk
;
1525 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1527 rlim64_to_rlim(&new64
, &new);
1531 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1536 ret
= check_prlimit_permission(tsk
);
1541 get_task_struct(tsk
);
1544 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1545 old_rlim
? &old
: NULL
);
1547 if (!ret
&& old_rlim
) {
1548 rlim_to_rlim64(&old
, &old64
);
1549 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1553 put_task_struct(tsk
);
1557 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1559 struct rlimit new_rlim
;
1561 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1563 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1567 * It would make sense to put struct rusage in the task_struct,
1568 * except that would make the task_struct be *really big*. After
1569 * task_struct gets moved into malloc'ed memory, it would
1570 * make sense to do this. It will make moving the rest of the information
1571 * a lot simpler! (Which we're not doing right now because we're not
1572 * measuring them yet).
1574 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1575 * races with threads incrementing their own counters. But since word
1576 * reads are atomic, we either get new values or old values and we don't
1577 * care which for the sums. We always take the siglock to protect reading
1578 * the c* fields from p->signal from races with exit.c updating those
1579 * fields when reaping, so a sample either gets all the additions of a
1580 * given child after it's reaped, or none so this sample is before reaping.
1583 * We need to take the siglock for CHILDEREN, SELF and BOTH
1584 * for the cases current multithreaded, non-current single threaded
1585 * non-current multithreaded. Thread traversal is now safe with
1587 * Strictly speaking, we donot need to take the siglock if we are current and
1588 * single threaded, as no one else can take our signal_struct away, no one
1589 * else can reap the children to update signal->c* counters, and no one else
1590 * can race with the signal-> fields. If we do not take any lock, the
1591 * signal-> fields could be read out of order while another thread was just
1592 * exiting. So we should place a read memory barrier when we avoid the lock.
1593 * On the writer side, write memory barrier is implied in __exit_signal
1594 * as __exit_signal releases the siglock spinlock after updating the signal->
1595 * fields. But we don't do this yet to keep things simple.
1599 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1601 r
->ru_nvcsw
+= t
->nvcsw
;
1602 r
->ru_nivcsw
+= t
->nivcsw
;
1603 r
->ru_minflt
+= t
->min_flt
;
1604 r
->ru_majflt
+= t
->maj_flt
;
1605 r
->ru_inblock
+= task_io_get_inblock(t
);
1606 r
->ru_oublock
+= task_io_get_oublock(t
);
1609 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1611 struct task_struct
*t
;
1612 unsigned long flags
;
1613 cputime_t tgutime
, tgstime
, utime
, stime
;
1614 unsigned long maxrss
= 0;
1616 memset((char *) r
, 0, sizeof *r
);
1619 if (who
== RUSAGE_THREAD
) {
1620 task_times(current
, &utime
, &stime
);
1621 accumulate_thread_rusage(p
, r
);
1622 maxrss
= p
->signal
->maxrss
;
1626 if (!lock_task_sighand(p
, &flags
))
1631 case RUSAGE_CHILDREN
:
1632 utime
= p
->signal
->cutime
;
1633 stime
= p
->signal
->cstime
;
1634 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1635 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1636 r
->ru_minflt
= p
->signal
->cmin_flt
;
1637 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1638 r
->ru_inblock
= p
->signal
->cinblock
;
1639 r
->ru_oublock
= p
->signal
->coublock
;
1640 maxrss
= p
->signal
->cmaxrss
;
1642 if (who
== RUSAGE_CHILDREN
)
1646 thread_group_times(p
, &tgutime
, &tgstime
);
1649 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1650 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1651 r
->ru_minflt
+= p
->signal
->min_flt
;
1652 r
->ru_majflt
+= p
->signal
->maj_flt
;
1653 r
->ru_inblock
+= p
->signal
->inblock
;
1654 r
->ru_oublock
+= p
->signal
->oublock
;
1655 if (maxrss
< p
->signal
->maxrss
)
1656 maxrss
= p
->signal
->maxrss
;
1659 accumulate_thread_rusage(t
, r
);
1667 unlock_task_sighand(p
, &flags
);
1670 cputime_to_timeval(utime
, &r
->ru_utime
);
1671 cputime_to_timeval(stime
, &r
->ru_stime
);
1673 if (who
!= RUSAGE_CHILDREN
) {
1674 struct mm_struct
*mm
= get_task_mm(p
);
1676 setmax_mm_hiwater_rss(&maxrss
, mm
);
1680 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1683 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1686 k_getrusage(p
, who
, &r
);
1687 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1690 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1692 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1693 who
!= RUSAGE_THREAD
)
1695 return getrusage(current
, who
, ru
);
1698 SYSCALL_DEFINE1(umask
, int, mask
)
1700 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1704 #ifdef CONFIG_CHECKPOINT_RESTORE
1705 static int prctl_set_mm(int opt
, unsigned long addr
,
1706 unsigned long arg4
, unsigned long arg5
)
1708 unsigned long rlim
= rlimit(RLIMIT_DATA
);
1709 unsigned long vm_req_flags
;
1710 unsigned long vm_bad_flags
;
1711 struct vm_area_struct
*vma
;
1713 struct mm_struct
*mm
= current
->mm
;
1718 if (!capable(CAP_SYS_RESOURCE
))
1721 if (addr
>= TASK_SIZE
)
1724 down_read(&mm
->mmap_sem
);
1725 vma
= find_vma(mm
, addr
);
1727 if (opt
!= PR_SET_MM_START_BRK
&& opt
!= PR_SET_MM_BRK
) {
1728 /* It must be existing VMA */
1729 if (!vma
|| vma
->vm_start
> addr
)
1735 case PR_SET_MM_START_CODE
:
1736 case PR_SET_MM_END_CODE
:
1737 vm_req_flags
= VM_READ
| VM_EXEC
;
1738 vm_bad_flags
= VM_WRITE
| VM_MAYSHARE
;
1740 if ((vma
->vm_flags
& vm_req_flags
) != vm_req_flags
||
1741 (vma
->vm_flags
& vm_bad_flags
))
1744 if (opt
== PR_SET_MM_START_CODE
)
1745 mm
->start_code
= addr
;
1747 mm
->end_code
= addr
;
1750 case PR_SET_MM_START_DATA
:
1751 case PR_SET_MM_END_DATA
:
1752 vm_req_flags
= VM_READ
| VM_WRITE
;
1753 vm_bad_flags
= VM_EXEC
| VM_MAYSHARE
;
1755 if ((vma
->vm_flags
& vm_req_flags
) != vm_req_flags
||
1756 (vma
->vm_flags
& vm_bad_flags
))
1759 if (opt
== PR_SET_MM_START_DATA
)
1760 mm
->start_data
= addr
;
1762 mm
->end_data
= addr
;
1765 case PR_SET_MM_START_STACK
:
1767 #ifdef CONFIG_STACK_GROWSUP
1768 vm_req_flags
= VM_READ
| VM_WRITE
| VM_GROWSUP
;
1770 vm_req_flags
= VM_READ
| VM_WRITE
| VM_GROWSDOWN
;
1772 if ((vma
->vm_flags
& vm_req_flags
) != vm_req_flags
)
1775 mm
->start_stack
= addr
;
1778 case PR_SET_MM_START_BRK
:
1779 if (addr
<= mm
->end_data
)
1782 if (rlim
< RLIM_INFINITY
&&
1784 (mm
->end_data
- mm
->start_data
) > rlim
)
1787 mm
->start_brk
= addr
;
1791 if (addr
<= mm
->end_data
)
1794 if (rlim
< RLIM_INFINITY
&&
1795 (addr
- mm
->start_brk
) +
1796 (mm
->end_data
- mm
->start_data
) > rlim
)
1810 up_read(&mm
->mmap_sem
);
1814 #else /* CONFIG_CHECKPOINT_RESTORE */
1815 static int prctl_set_mm(int opt
, unsigned long addr
,
1816 unsigned long arg4
, unsigned long arg5
)
1822 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1823 unsigned long, arg4
, unsigned long, arg5
)
1825 struct task_struct
*me
= current
;
1826 unsigned char comm
[sizeof(me
->comm
)];
1829 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1830 if (error
!= -ENOSYS
)
1835 case PR_SET_PDEATHSIG
:
1836 if (!valid_signal(arg2
)) {
1840 me
->pdeath_signal
= arg2
;
1843 case PR_GET_PDEATHSIG
:
1844 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1846 case PR_GET_DUMPABLE
:
1847 error
= get_dumpable(me
->mm
);
1849 case PR_SET_DUMPABLE
:
1850 if (arg2
< 0 || arg2
> 1) {
1854 set_dumpable(me
->mm
, arg2
);
1858 case PR_SET_UNALIGN
:
1859 error
= SET_UNALIGN_CTL(me
, arg2
);
1861 case PR_GET_UNALIGN
:
1862 error
= GET_UNALIGN_CTL(me
, arg2
);
1865 error
= SET_FPEMU_CTL(me
, arg2
);
1868 error
= GET_FPEMU_CTL(me
, arg2
);
1871 error
= SET_FPEXC_CTL(me
, arg2
);
1874 error
= GET_FPEXC_CTL(me
, arg2
);
1877 error
= PR_TIMING_STATISTICAL
;
1880 if (arg2
!= PR_TIMING_STATISTICAL
)
1887 comm
[sizeof(me
->comm
)-1] = 0;
1888 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1889 sizeof(me
->comm
) - 1) < 0)
1891 set_task_comm(me
, comm
);
1892 proc_comm_connector(me
);
1895 get_task_comm(comm
, me
);
1896 if (copy_to_user((char __user
*)arg2
, comm
,
1901 error
= GET_ENDIAN(me
, arg2
);
1904 error
= SET_ENDIAN(me
, arg2
);
1907 case PR_GET_SECCOMP
:
1908 error
= prctl_get_seccomp();
1910 case PR_SET_SECCOMP
:
1911 error
= prctl_set_seccomp(arg2
);
1914 error
= GET_TSC_CTL(arg2
);
1917 error
= SET_TSC_CTL(arg2
);
1919 case PR_TASK_PERF_EVENTS_DISABLE
:
1920 error
= perf_event_task_disable();
1922 case PR_TASK_PERF_EVENTS_ENABLE
:
1923 error
= perf_event_task_enable();
1925 case PR_GET_TIMERSLACK
:
1926 error
= current
->timer_slack_ns
;
1928 case PR_SET_TIMERSLACK
:
1930 current
->timer_slack_ns
=
1931 current
->default_timer_slack_ns
;
1933 current
->timer_slack_ns
= arg2
;
1940 case PR_MCE_KILL_CLEAR
:
1943 current
->flags
&= ~PF_MCE_PROCESS
;
1945 case PR_MCE_KILL_SET
:
1946 current
->flags
|= PF_MCE_PROCESS
;
1947 if (arg3
== PR_MCE_KILL_EARLY
)
1948 current
->flags
|= PF_MCE_EARLY
;
1949 else if (arg3
== PR_MCE_KILL_LATE
)
1950 current
->flags
&= ~PF_MCE_EARLY
;
1951 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1953 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1962 case PR_MCE_KILL_GET
:
1963 if (arg2
| arg3
| arg4
| arg5
)
1965 if (current
->flags
& PF_MCE_PROCESS
)
1966 error
= (current
->flags
& PF_MCE_EARLY
) ?
1967 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1969 error
= PR_MCE_KILL_DEFAULT
;
1972 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
1974 case PR_SET_CHILD_SUBREAPER
:
1975 me
->signal
->is_child_subreaper
= !!arg2
;
1978 case PR_GET_CHILD_SUBREAPER
:
1979 error
= put_user(me
->signal
->is_child_subreaper
,
1980 (int __user
*) arg2
);
1989 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1990 struct getcpu_cache __user
*, unused
)
1993 int cpu
= raw_smp_processor_id();
1995 err
|= put_user(cpu
, cpup
);
1997 err
|= put_user(cpu_to_node(cpu
), nodep
);
1998 return err
? -EFAULT
: 0;
2001 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
2003 static void argv_cleanup(struct subprocess_info
*info
)
2005 argv_free(info
->argv
);
2009 * orderly_poweroff - Trigger an orderly system poweroff
2010 * @force: force poweroff if command execution fails
2012 * This may be called from any context to trigger a system shutdown.
2013 * If the orderly shutdown fails, it will force an immediate shutdown.
2015 int orderly_poweroff(bool force
)
2018 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
2019 static char *envp
[] = {
2021 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2025 struct subprocess_info
*info
;
2028 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
2029 __func__
, poweroff_cmd
);
2033 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
2039 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
2041 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
2045 printk(KERN_WARNING
"Failed to start orderly shutdown: "
2046 "forcing the issue\n");
2048 /* I guess this should try to kick off some daemon to
2049 sync and poweroff asap. Or not even bother syncing
2050 if we're doing an emergency shutdown? */
2057 EXPORT_SYMBOL_GPL(orderly_poweroff
);