2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
42 DEFINE_IDA(blk_queue_ida
);
45 * For the allocated request tables
47 static struct kmem_cache
*request_cachep
;
50 * For queue allocation
52 struct kmem_cache
*blk_requestq_cachep
;
55 * Controlling structure to kblockd
57 static struct workqueue_struct
*kblockd_workqueue
;
59 static void drive_stat_acct(struct request
*rq
, int new_io
)
61 struct hd_struct
*part
;
62 int rw
= rq_data_dir(rq
);
65 if (!blk_do_io_stat(rq
))
68 cpu
= part_stat_lock();
72 part_stat_inc(cpu
, part
, merges
[rw
]);
74 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
75 if (!hd_struct_try_get(part
)) {
77 * The partition is already being removed,
78 * the request will be accounted on the disk only
80 * We take a reference on disk->part0 although that
81 * partition will never be deleted, so we can treat
82 * it as any other partition.
84 part
= &rq
->rq_disk
->part0
;
87 part_round_stats(cpu
, part
);
88 part_inc_in_flight(part
, rw
);
95 void blk_queue_congestion_threshold(struct request_queue
*q
)
99 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
100 if (nr
> q
->nr_requests
)
102 q
->nr_congestion_on
= nr
;
104 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
107 q
->nr_congestion_off
= nr
;
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * Locates the passed device's request queue and returns the address of its
117 * Will return NULL if the request queue cannot be located.
119 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
121 struct backing_dev_info
*ret
= NULL
;
122 struct request_queue
*q
= bdev_get_queue(bdev
);
125 ret
= &q
->backing_dev_info
;
128 EXPORT_SYMBOL(blk_get_backing_dev_info
);
130 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
132 memset(rq
, 0, sizeof(*rq
));
134 INIT_LIST_HEAD(&rq
->queuelist
);
135 INIT_LIST_HEAD(&rq
->timeout_list
);
138 rq
->__sector
= (sector_t
) -1;
139 INIT_HLIST_NODE(&rq
->hash
);
140 RB_CLEAR_NODE(&rq
->rb_node
);
142 rq
->cmd_len
= BLK_MAX_CDB
;
145 rq
->start_time
= jiffies
;
146 set_start_time_ns(rq
);
149 EXPORT_SYMBOL(blk_rq_init
);
151 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
152 unsigned int nbytes
, int error
)
155 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
156 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
159 if (unlikely(nbytes
> bio
->bi_size
)) {
160 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
161 __func__
, nbytes
, bio
->bi_size
);
162 nbytes
= bio
->bi_size
;
165 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
166 set_bit(BIO_QUIET
, &bio
->bi_flags
);
168 bio
->bi_size
-= nbytes
;
169 bio
->bi_sector
+= (nbytes
>> 9);
171 if (bio_integrity(bio
))
172 bio_integrity_advance(bio
, nbytes
);
174 /* don't actually finish bio if it's part of flush sequence */
175 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
176 bio_endio(bio
, error
);
179 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
183 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
184 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
187 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
188 (unsigned long long)blk_rq_pos(rq
),
189 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
190 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
191 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
193 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
194 printk(KERN_INFO
" cdb: ");
195 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
196 printk("%02x ", rq
->cmd
[bit
]);
200 EXPORT_SYMBOL(blk_dump_rq_flags
);
202 static void blk_delay_work(struct work_struct
*work
)
204 struct request_queue
*q
;
206 q
= container_of(work
, struct request_queue
, delay_work
.work
);
207 spin_lock_irq(q
->queue_lock
);
209 spin_unlock_irq(q
->queue_lock
);
213 * blk_delay_queue - restart queueing after defined interval
214 * @q: The &struct request_queue in question
215 * @msecs: Delay in msecs
218 * Sometimes queueing needs to be postponed for a little while, to allow
219 * resources to come back. This function will make sure that queueing is
220 * restarted around the specified time.
222 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
224 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
225 msecs_to_jiffies(msecs
));
227 EXPORT_SYMBOL(blk_delay_queue
);
230 * blk_start_queue - restart a previously stopped queue
231 * @q: The &struct request_queue in question
234 * blk_start_queue() will clear the stop flag on the queue, and call
235 * the request_fn for the queue if it was in a stopped state when
236 * entered. Also see blk_stop_queue(). Queue lock must be held.
238 void blk_start_queue(struct request_queue
*q
)
240 WARN_ON(!irqs_disabled());
242 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
245 EXPORT_SYMBOL(blk_start_queue
);
248 * blk_stop_queue - stop a queue
249 * @q: The &struct request_queue in question
252 * The Linux block layer assumes that a block driver will consume all
253 * entries on the request queue when the request_fn strategy is called.
254 * Often this will not happen, because of hardware limitations (queue
255 * depth settings). If a device driver gets a 'queue full' response,
256 * or if it simply chooses not to queue more I/O at one point, it can
257 * call this function to prevent the request_fn from being called until
258 * the driver has signalled it's ready to go again. This happens by calling
259 * blk_start_queue() to restart queue operations. Queue lock must be held.
261 void blk_stop_queue(struct request_queue
*q
)
263 __cancel_delayed_work(&q
->delay_work
);
264 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
266 EXPORT_SYMBOL(blk_stop_queue
);
269 * blk_sync_queue - cancel any pending callbacks on a queue
273 * The block layer may perform asynchronous callback activity
274 * on a queue, such as calling the unplug function after a timeout.
275 * A block device may call blk_sync_queue to ensure that any
276 * such activity is cancelled, thus allowing it to release resources
277 * that the callbacks might use. The caller must already have made sure
278 * that its ->make_request_fn will not re-add plugging prior to calling
281 * This function does not cancel any asynchronous activity arising
282 * out of elevator or throttling code. That would require elevaotor_exit()
283 * and blk_throtl_exit() to be called with queue lock initialized.
286 void blk_sync_queue(struct request_queue
*q
)
288 del_timer_sync(&q
->timeout
);
289 cancel_delayed_work_sync(&q
->delay_work
);
291 EXPORT_SYMBOL(blk_sync_queue
);
294 * __blk_run_queue - run a single device queue
295 * @q: The queue to run
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled.
301 void __blk_run_queue(struct request_queue
*q
)
303 if (unlikely(blk_queue_stopped(q
)))
308 EXPORT_SYMBOL(__blk_run_queue
);
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 void blk_run_queue_async(struct request_queue
*q
)
320 if (likely(!blk_queue_stopped(q
))) {
321 __cancel_delayed_work(&q
->delay_work
);
322 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
325 EXPORT_SYMBOL(blk_run_queue_async
);
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
332 * Invoke request handling on this queue, if it has pending work to do.
333 * May be used to restart queueing when a request has completed.
335 void blk_run_queue(struct request_queue
*q
)
339 spin_lock_irqsave(q
->queue_lock
, flags
);
341 spin_unlock_irqrestore(q
->queue_lock
, flags
);
343 EXPORT_SYMBOL(blk_run_queue
);
345 void blk_put_queue(struct request_queue
*q
)
347 kobject_put(&q
->kobj
);
349 EXPORT_SYMBOL(blk_put_queue
);
352 * blk_drain_queue - drain requests from request_queue
354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
360 void blk_drain_queue(struct request_queue
*q
, bool drain_all
)
366 spin_lock_irq(q
->queue_lock
);
368 elv_drain_elevator(q
);
373 * This function might be called on a queue which failed
374 * driver init after queue creation. Some drivers
375 * (e.g. fd) get unhappy in such cases. Kick queue iff
376 * dispatch queue has something on it.
378 if (!list_empty(&q
->queue_head
))
381 drain
|= q
->rq
.elvpriv
;
384 * Unfortunately, requests are queued at and tracked from
385 * multiple places and there's no single counter which can
386 * be drained. Check all the queues and counters.
389 drain
|= !list_empty(&q
->queue_head
);
390 for (i
= 0; i
< 2; i
++) {
391 drain
|= q
->rq
.count
[i
];
392 drain
|= q
->in_flight
[i
];
393 drain
|= !list_empty(&q
->flush_queue
[i
]);
397 spin_unlock_irq(q
->queue_lock
);
406 * blk_cleanup_queue - shutdown a request queue
407 * @q: request queue to shutdown
409 * Mark @q DEAD, drain all pending requests, destroy and put it. All
410 * future requests will be failed immediately with -ENODEV.
412 void blk_cleanup_queue(struct request_queue
*q
)
414 spinlock_t
*lock
= q
->queue_lock
;
416 /* mark @q DEAD, no new request or merges will be allowed afterwards */
417 mutex_lock(&q
->sysfs_lock
);
418 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
421 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
422 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
423 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
425 if (q
->queue_lock
!= &q
->__queue_lock
)
426 q
->queue_lock
= &q
->__queue_lock
;
428 spin_unlock_irq(lock
);
429 mutex_unlock(&q
->sysfs_lock
);
432 * Drain all requests queued before DEAD marking. The caller might
433 * be trying to tear down @q before its elevator is initialized, in
434 * which case we don't want to call into draining.
437 blk_drain_queue(q
, true);
439 /* @q won't process any more request, flush async actions */
440 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
443 /* @q is and will stay empty, shutdown and put */
446 EXPORT_SYMBOL(blk_cleanup_queue
);
448 static int blk_init_free_list(struct request_queue
*q
)
450 struct request_list
*rl
= &q
->rq
;
452 if (unlikely(rl
->rq_pool
))
455 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
456 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
458 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
459 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
461 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
462 mempool_free_slab
, request_cachep
, q
->node
);
470 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
472 return blk_alloc_queue_node(gfp_mask
, -1);
474 EXPORT_SYMBOL(blk_alloc_queue
);
476 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
478 struct request_queue
*q
;
481 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
482 gfp_mask
| __GFP_ZERO
, node_id
);
486 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
490 q
->backing_dev_info
.ra_pages
=
491 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
492 q
->backing_dev_info
.state
= 0;
493 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
494 q
->backing_dev_info
.name
= "block";
497 err
= bdi_init(&q
->backing_dev_info
);
501 if (blk_throtl_init(q
))
504 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
505 laptop_mode_timer_fn
, (unsigned long) q
);
506 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
507 INIT_LIST_HEAD(&q
->timeout_list
);
508 INIT_LIST_HEAD(&q
->icq_list
);
509 INIT_LIST_HEAD(&q
->flush_queue
[0]);
510 INIT_LIST_HEAD(&q
->flush_queue
[1]);
511 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
512 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
514 kobject_init(&q
->kobj
, &blk_queue_ktype
);
516 mutex_init(&q
->sysfs_lock
);
517 spin_lock_init(&q
->__queue_lock
);
520 * By default initialize queue_lock to internal lock and driver can
521 * override it later if need be.
523 q
->queue_lock
= &q
->__queue_lock
;
528 ida_simple_remove(&blk_queue_ida
, q
->id
);
530 kmem_cache_free(blk_requestq_cachep
, q
);
533 EXPORT_SYMBOL(blk_alloc_queue_node
);
536 * blk_init_queue - prepare a request queue for use with a block device
537 * @rfn: The function to be called to process requests that have been
538 * placed on the queue.
539 * @lock: Request queue spin lock
542 * If a block device wishes to use the standard request handling procedures,
543 * which sorts requests and coalesces adjacent requests, then it must
544 * call blk_init_queue(). The function @rfn will be called when there
545 * are requests on the queue that need to be processed. If the device
546 * supports plugging, then @rfn may not be called immediately when requests
547 * are available on the queue, but may be called at some time later instead.
548 * Plugged queues are generally unplugged when a buffer belonging to one
549 * of the requests on the queue is needed, or due to memory pressure.
551 * @rfn is not required, or even expected, to remove all requests off the
552 * queue, but only as many as it can handle at a time. If it does leave
553 * requests on the queue, it is responsible for arranging that the requests
554 * get dealt with eventually.
556 * The queue spin lock must be held while manipulating the requests on the
557 * request queue; this lock will be taken also from interrupt context, so irq
558 * disabling is needed for it.
560 * Function returns a pointer to the initialized request queue, or %NULL if
564 * blk_init_queue() must be paired with a blk_cleanup_queue() call
565 * when the block device is deactivated (such as at module unload).
568 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
570 return blk_init_queue_node(rfn
, lock
, -1);
572 EXPORT_SYMBOL(blk_init_queue
);
574 struct request_queue
*
575 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
577 struct request_queue
*uninit_q
, *q
;
579 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
583 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
585 blk_cleanup_queue(uninit_q
);
589 EXPORT_SYMBOL(blk_init_queue_node
);
591 struct request_queue
*
592 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
598 if (blk_init_free_list(q
))
602 q
->prep_rq_fn
= NULL
;
603 q
->unprep_rq_fn
= NULL
;
604 q
->queue_flags
= QUEUE_FLAG_DEFAULT
;
606 /* Override internal queue lock with supplied lock pointer */
608 q
->queue_lock
= lock
;
611 * This also sets hw/phys segments, boundary and size
613 blk_queue_make_request(q
, blk_queue_bio
);
615 q
->sg_reserved_size
= INT_MAX
;
620 if (!elevator_init(q
, NULL
)) {
621 blk_queue_congestion_threshold(q
);
627 EXPORT_SYMBOL(blk_init_allocated_queue
);
629 bool blk_get_queue(struct request_queue
*q
)
631 if (likely(!blk_queue_dead(q
))) {
638 EXPORT_SYMBOL(blk_get_queue
);
640 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
642 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
643 elv_put_request(q
, rq
);
645 put_io_context(rq
->elv
.icq
->ioc
);
648 mempool_free(rq
, q
->rq
.rq_pool
);
651 static struct request
*
652 blk_alloc_request(struct request_queue
*q
, struct io_cq
*icq
,
653 unsigned int flags
, gfp_t gfp_mask
)
655 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
662 rq
->cmd_flags
= flags
| REQ_ALLOCED
;
664 if (flags
& REQ_ELVPRIV
) {
666 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
667 mempool_free(rq
, q
->rq
.rq_pool
);
670 /* @rq->elv.icq holds on to io_context until @rq is freed */
672 get_io_context(icq
->ioc
);
679 * ioc_batching returns true if the ioc is a valid batching request and
680 * should be given priority access to a request.
682 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
688 * Make sure the process is able to allocate at least 1 request
689 * even if the batch times out, otherwise we could theoretically
692 return ioc
->nr_batch_requests
== q
->nr_batching
||
693 (ioc
->nr_batch_requests
> 0
694 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
698 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
699 * will cause the process to be a "batcher" on all queues in the system. This
700 * is the behaviour we want though - once it gets a wakeup it should be given
703 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
705 if (!ioc
|| ioc_batching(q
, ioc
))
708 ioc
->nr_batch_requests
= q
->nr_batching
;
709 ioc
->last_waited
= jiffies
;
712 static void __freed_request(struct request_queue
*q
, int sync
)
714 struct request_list
*rl
= &q
->rq
;
716 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
717 blk_clear_queue_congested(q
, sync
);
719 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
720 if (waitqueue_active(&rl
->wait
[sync
]))
721 wake_up(&rl
->wait
[sync
]);
723 blk_clear_queue_full(q
, sync
);
728 * A request has just been released. Account for it, update the full and
729 * congestion status, wake up any waiters. Called under q->queue_lock.
731 static void freed_request(struct request_queue
*q
, unsigned int flags
)
733 struct request_list
*rl
= &q
->rq
;
734 int sync
= rw_is_sync(flags
);
737 if (flags
& REQ_ELVPRIV
)
740 __freed_request(q
, sync
);
742 if (unlikely(rl
->starved
[sync
^ 1]))
743 __freed_request(q
, sync
^ 1);
747 * Determine if elevator data should be initialized when allocating the
748 * request associated with @bio.
750 static bool blk_rq_should_init_elevator(struct bio
*bio
)
756 * Flush requests do not use the elevator so skip initialization.
757 * This allows a request to share the flush and elevator data.
759 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
766 * get_request - get a free request
767 * @q: request_queue to allocate request from
768 * @rw_flags: RW and SYNC flags
769 * @bio: bio to allocate request for (can be %NULL)
770 * @gfp_mask: allocation mask
772 * Get a free request from @q. This function may fail under memory
773 * pressure or if @q is dead.
775 * Must be callled with @q->queue_lock held and,
776 * Returns %NULL on failure, with @q->queue_lock held.
777 * Returns !%NULL on success, with @q->queue_lock *not held*.
779 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
780 struct bio
*bio
, gfp_t gfp_mask
)
782 struct request
*rq
= NULL
;
783 struct request_list
*rl
= &q
->rq
;
784 struct elevator_type
*et
;
785 struct io_context
*ioc
;
786 struct io_cq
*icq
= NULL
;
787 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
788 bool retried
= false;
791 et
= q
->elevator
->type
;
792 ioc
= current
->io_context
;
794 if (unlikely(blk_queue_dead(q
)))
797 may_queue
= elv_may_queue(q
, rw_flags
);
798 if (may_queue
== ELV_MQUEUE_NO
)
801 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
802 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
804 * We want ioc to record batching state. If it's
805 * not already there, creating a new one requires
806 * dropping queue_lock, which in turn requires
807 * retesting conditions to avoid queue hang.
809 if (!ioc
&& !retried
) {
810 spin_unlock_irq(q
->queue_lock
);
811 create_io_context(current
, gfp_mask
, q
->node
);
812 spin_lock_irq(q
->queue_lock
);
818 * The queue will fill after this allocation, so set
819 * it as full, and mark this process as "batching".
820 * This process will be allowed to complete a batch of
821 * requests, others will be blocked.
823 if (!blk_queue_full(q
, is_sync
)) {
824 ioc_set_batching(q
, ioc
);
825 blk_set_queue_full(q
, is_sync
);
827 if (may_queue
!= ELV_MQUEUE_MUST
828 && !ioc_batching(q
, ioc
)) {
830 * The queue is full and the allocating
831 * process is not a "batcher", and not
832 * exempted by the IO scheduler
838 blk_set_queue_congested(q
, is_sync
);
842 * Only allow batching queuers to allocate up to 50% over the defined
843 * limit of requests, otherwise we could have thousands of requests
844 * allocated with any setting of ->nr_requests
846 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
849 rl
->count
[is_sync
]++;
850 rl
->starved
[is_sync
] = 0;
853 * Decide whether the new request will be managed by elevator. If
854 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
855 * prevent the current elevator from being destroyed until the new
856 * request is freed. This guarantees icq's won't be destroyed and
857 * makes creating new ones safe.
859 * Also, lookup icq while holding queue_lock. If it doesn't exist,
860 * it will be created after releasing queue_lock.
862 if (blk_rq_should_init_elevator(bio
) &&
863 !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
)) {
864 rw_flags
|= REQ_ELVPRIV
;
866 if (et
->icq_cache
&& ioc
)
867 icq
= ioc_lookup_icq(ioc
, q
);
870 if (blk_queue_io_stat(q
))
871 rw_flags
|= REQ_IO_STAT
;
872 spin_unlock_irq(q
->queue_lock
);
874 /* create icq if missing */
875 if ((rw_flags
& REQ_ELVPRIV
) && unlikely(et
->icq_cache
&& !icq
)) {
876 icq
= ioc_create_icq(q
, gfp_mask
);
881 rq
= blk_alloc_request(q
, icq
, rw_flags
, gfp_mask
);
886 * Allocation failed presumably due to memory. Undo anything
887 * we might have messed up.
889 * Allocating task should really be put onto the front of the
890 * wait queue, but this is pretty rare.
892 spin_lock_irq(q
->queue_lock
);
893 freed_request(q
, rw_flags
);
896 * in the very unlikely event that allocation failed and no
897 * requests for this direction was pending, mark us starved
898 * so that freeing of a request in the other direction will
899 * notice us. another possible fix would be to split the
900 * rq mempool into READ and WRITE
903 if (unlikely(rl
->count
[is_sync
] == 0))
904 rl
->starved
[is_sync
] = 1;
910 * ioc may be NULL here, and ioc_batching will be false. That's
911 * OK, if the queue is under the request limit then requests need
912 * not count toward the nr_batch_requests limit. There will always
913 * be some limit enforced by BLK_BATCH_TIME.
915 if (ioc_batching(q
, ioc
))
916 ioc
->nr_batch_requests
--;
918 trace_block_getrq(q
, bio
, rw_flags
& 1);
924 * get_request_wait - get a free request with retry
925 * @q: request_queue to allocate request from
926 * @rw_flags: RW and SYNC flags
927 * @bio: bio to allocate request for (can be %NULL)
929 * Get a free request from @q. This function keeps retrying under memory
930 * pressure and fails iff @q is dead.
932 * Must be callled with @q->queue_lock held and,
933 * Returns %NULL on failure, with @q->queue_lock held.
934 * Returns !%NULL on success, with @q->queue_lock *not held*.
936 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
939 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
942 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
945 struct request_list
*rl
= &q
->rq
;
947 if (unlikely(blk_queue_dead(q
)))
950 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
951 TASK_UNINTERRUPTIBLE
);
953 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
955 spin_unlock_irq(q
->queue_lock
);
959 * After sleeping, we become a "batching" process and
960 * will be able to allocate at least one request, and
961 * up to a big batch of them for a small period time.
962 * See ioc_batching, ioc_set_batching
964 create_io_context(current
, GFP_NOIO
, q
->node
);
965 ioc_set_batching(q
, current
->io_context
);
967 spin_lock_irq(q
->queue_lock
);
968 finish_wait(&rl
->wait
[is_sync
], &wait
);
970 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
976 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
980 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
982 spin_lock_irq(q
->queue_lock
);
983 if (gfp_mask
& __GFP_WAIT
)
984 rq
= get_request_wait(q
, rw
, NULL
);
986 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
988 spin_unlock_irq(q
->queue_lock
);
989 /* q->queue_lock is unlocked at this point */
993 EXPORT_SYMBOL(blk_get_request
);
996 * blk_make_request - given a bio, allocate a corresponding struct request.
997 * @q: target request queue
998 * @bio: The bio describing the memory mappings that will be submitted for IO.
999 * It may be a chained-bio properly constructed by block/bio layer.
1000 * @gfp_mask: gfp flags to be used for memory allocation
1002 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1003 * type commands. Where the struct request needs to be farther initialized by
1004 * the caller. It is passed a &struct bio, which describes the memory info of
1007 * The caller of blk_make_request must make sure that bi_io_vec
1008 * are set to describe the memory buffers. That bio_data_dir() will return
1009 * the needed direction of the request. (And all bio's in the passed bio-chain
1010 * are properly set accordingly)
1012 * If called under none-sleepable conditions, mapped bio buffers must not
1013 * need bouncing, by calling the appropriate masked or flagged allocator,
1014 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1017 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1018 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1019 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1020 * completion of a bio that hasn't been submitted yet, thus resulting in a
1021 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1022 * of bio_alloc(), as that avoids the mempool deadlock.
1023 * If possible a big IO should be split into smaller parts when allocation
1024 * fails. Partial allocation should not be an error, or you risk a live-lock.
1026 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1029 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1032 return ERR_PTR(-ENOMEM
);
1035 struct bio
*bounce_bio
= bio
;
1038 blk_queue_bounce(q
, &bounce_bio
);
1039 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1040 if (unlikely(ret
)) {
1041 blk_put_request(rq
);
1042 return ERR_PTR(ret
);
1048 EXPORT_SYMBOL(blk_make_request
);
1051 * blk_requeue_request - put a request back on queue
1052 * @q: request queue where request should be inserted
1053 * @rq: request to be inserted
1056 * Drivers often keep queueing requests until the hardware cannot accept
1057 * more, when that condition happens we need to put the request back
1058 * on the queue. Must be called with queue lock held.
1060 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1062 blk_delete_timer(rq
);
1063 blk_clear_rq_complete(rq
);
1064 trace_block_rq_requeue(q
, rq
);
1066 if (blk_rq_tagged(rq
))
1067 blk_queue_end_tag(q
, rq
);
1069 BUG_ON(blk_queued_rq(rq
));
1071 elv_requeue_request(q
, rq
);
1073 EXPORT_SYMBOL(blk_requeue_request
);
1075 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1078 drive_stat_acct(rq
, 1);
1079 __elv_add_request(q
, rq
, where
);
1082 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1085 if (now
== part
->stamp
)
1088 if (part_in_flight(part
)) {
1089 __part_stat_add(cpu
, part
, time_in_queue
,
1090 part_in_flight(part
) * (now
- part
->stamp
));
1091 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1097 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1098 * @cpu: cpu number for stats access
1099 * @part: target partition
1101 * The average IO queue length and utilisation statistics are maintained
1102 * by observing the current state of the queue length and the amount of
1103 * time it has been in this state for.
1105 * Normally, that accounting is done on IO completion, but that can result
1106 * in more than a second's worth of IO being accounted for within any one
1107 * second, leading to >100% utilisation. To deal with that, we call this
1108 * function to do a round-off before returning the results when reading
1109 * /proc/diskstats. This accounts immediately for all queue usage up to
1110 * the current jiffies and restarts the counters again.
1112 void part_round_stats(int cpu
, struct hd_struct
*part
)
1114 unsigned long now
= jiffies
;
1117 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1118 part_round_stats_single(cpu
, part
, now
);
1120 EXPORT_SYMBOL_GPL(part_round_stats
);
1123 * queue lock must be held
1125 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1129 if (unlikely(--req
->ref_count
))
1132 elv_completed_request(q
, req
);
1134 /* this is a bio leak */
1135 WARN_ON(req
->bio
!= NULL
);
1138 * Request may not have originated from ll_rw_blk. if not,
1139 * it didn't come out of our reserved rq pools
1141 if (req
->cmd_flags
& REQ_ALLOCED
) {
1142 unsigned int flags
= req
->cmd_flags
;
1144 BUG_ON(!list_empty(&req
->queuelist
));
1145 BUG_ON(!hlist_unhashed(&req
->hash
));
1147 blk_free_request(q
, req
);
1148 freed_request(q
, flags
);
1151 EXPORT_SYMBOL_GPL(__blk_put_request
);
1153 void blk_put_request(struct request
*req
)
1155 unsigned long flags
;
1156 struct request_queue
*q
= req
->q
;
1158 spin_lock_irqsave(q
->queue_lock
, flags
);
1159 __blk_put_request(q
, req
);
1160 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1162 EXPORT_SYMBOL(blk_put_request
);
1165 * blk_add_request_payload - add a payload to a request
1166 * @rq: request to update
1167 * @page: page backing the payload
1168 * @len: length of the payload.
1170 * This allows to later add a payload to an already submitted request by
1171 * a block driver. The driver needs to take care of freeing the payload
1174 * Note that this is a quite horrible hack and nothing but handling of
1175 * discard requests should ever use it.
1177 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1180 struct bio
*bio
= rq
->bio
;
1182 bio
->bi_io_vec
->bv_page
= page
;
1183 bio
->bi_io_vec
->bv_offset
= 0;
1184 bio
->bi_io_vec
->bv_len
= len
;
1188 bio
->bi_phys_segments
= 1;
1190 rq
->__data_len
= rq
->resid_len
= len
;
1191 rq
->nr_phys_segments
= 1;
1192 rq
->buffer
= bio_data(bio
);
1194 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1196 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1199 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1201 if (!ll_back_merge_fn(q
, req
, bio
))
1204 trace_block_bio_backmerge(q
, bio
);
1206 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1207 blk_rq_set_mixed_merge(req
);
1209 req
->biotail
->bi_next
= bio
;
1211 req
->__data_len
+= bio
->bi_size
;
1212 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1214 drive_stat_acct(req
, 0);
1218 static bool bio_attempt_front_merge(struct request_queue
*q
,
1219 struct request
*req
, struct bio
*bio
)
1221 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1223 if (!ll_front_merge_fn(q
, req
, bio
))
1226 trace_block_bio_frontmerge(q
, bio
);
1228 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1229 blk_rq_set_mixed_merge(req
);
1231 bio
->bi_next
= req
->bio
;
1235 * may not be valid. if the low level driver said
1236 * it didn't need a bounce buffer then it better
1237 * not touch req->buffer either...
1239 req
->buffer
= bio_data(bio
);
1240 req
->__sector
= bio
->bi_sector
;
1241 req
->__data_len
+= bio
->bi_size
;
1242 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1244 drive_stat_acct(req
, 0);
1249 * attempt_plug_merge - try to merge with %current's plugged list
1250 * @q: request_queue new bio is being queued at
1251 * @bio: new bio being queued
1252 * @request_count: out parameter for number of traversed plugged requests
1254 * Determine whether @bio being queued on @q can be merged with a request
1255 * on %current's plugged list. Returns %true if merge was successful,
1258 * Plugging coalesces IOs from the same issuer for the same purpose without
1259 * going through @q->queue_lock. As such it's more of an issuing mechanism
1260 * than scheduling, and the request, while may have elvpriv data, is not
1261 * added on the elevator at this point. In addition, we don't have
1262 * reliable access to the elevator outside queue lock. Only check basic
1263 * merging parameters without querying the elevator.
1265 static bool attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1266 unsigned int *request_count
)
1268 struct blk_plug
*plug
;
1272 plug
= current
->plug
;
1277 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1283 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1286 el_ret
= blk_try_merge(rq
, bio
);
1287 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1288 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1291 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1292 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1301 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1303 req
->cmd_type
= REQ_TYPE_FS
;
1305 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1306 if (bio
->bi_rw
& REQ_RAHEAD
)
1307 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1310 req
->__sector
= bio
->bi_sector
;
1311 req
->ioprio
= bio_prio(bio
);
1312 blk_rq_bio_prep(req
->q
, req
, bio
);
1315 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1317 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1318 struct blk_plug
*plug
;
1319 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1320 struct request
*req
;
1321 unsigned int request_count
= 0;
1324 * low level driver can indicate that it wants pages above a
1325 * certain limit bounced to low memory (ie for highmem, or even
1326 * ISA dma in theory)
1328 blk_queue_bounce(q
, &bio
);
1330 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1331 spin_lock_irq(q
->queue_lock
);
1332 where
= ELEVATOR_INSERT_FLUSH
;
1337 * Check if we can merge with the plugged list before grabbing
1340 if (attempt_plug_merge(q
, bio
, &request_count
))
1343 spin_lock_irq(q
->queue_lock
);
1345 el_ret
= elv_merge(q
, &req
, bio
);
1346 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1347 if (bio_attempt_back_merge(q
, req
, bio
)) {
1348 elv_bio_merged(q
, req
, bio
);
1349 if (!attempt_back_merge(q
, req
))
1350 elv_merged_request(q
, req
, el_ret
);
1353 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1354 if (bio_attempt_front_merge(q
, req
, bio
)) {
1355 elv_bio_merged(q
, req
, bio
);
1356 if (!attempt_front_merge(q
, req
))
1357 elv_merged_request(q
, req
, el_ret
);
1364 * This sync check and mask will be re-done in init_request_from_bio(),
1365 * but we need to set it earlier to expose the sync flag to the
1366 * rq allocator and io schedulers.
1368 rw_flags
= bio_data_dir(bio
);
1370 rw_flags
|= REQ_SYNC
;
1373 * Grab a free request. This is might sleep but can not fail.
1374 * Returns with the queue unlocked.
1376 req
= get_request_wait(q
, rw_flags
, bio
);
1377 if (unlikely(!req
)) {
1378 bio_endio(bio
, -ENODEV
); /* @q is dead */
1383 * After dropping the lock and possibly sleeping here, our request
1384 * may now be mergeable after it had proven unmergeable (above).
1385 * We don't worry about that case for efficiency. It won't happen
1386 * often, and the elevators are able to handle it.
1388 init_request_from_bio(req
, bio
);
1390 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1391 req
->cpu
= raw_smp_processor_id();
1393 plug
= current
->plug
;
1396 * If this is the first request added after a plug, fire
1397 * of a plug trace. If others have been added before, check
1398 * if we have multiple devices in this plug. If so, make a
1399 * note to sort the list before dispatch.
1401 if (list_empty(&plug
->list
))
1402 trace_block_plug(q
);
1404 if (!plug
->should_sort
) {
1405 struct request
*__rq
;
1407 __rq
= list_entry_rq(plug
->list
.prev
);
1409 plug
->should_sort
= 1;
1411 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1412 blk_flush_plug_list(plug
, false);
1413 trace_block_plug(q
);
1416 list_add_tail(&req
->queuelist
, &plug
->list
);
1417 drive_stat_acct(req
, 1);
1419 spin_lock_irq(q
->queue_lock
);
1420 add_acct_request(q
, req
, where
);
1423 spin_unlock_irq(q
->queue_lock
);
1426 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1429 * If bio->bi_dev is a partition, remap the location
1431 static inline void blk_partition_remap(struct bio
*bio
)
1433 struct block_device
*bdev
= bio
->bi_bdev
;
1435 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1436 struct hd_struct
*p
= bdev
->bd_part
;
1438 bio
->bi_sector
+= p
->start_sect
;
1439 bio
->bi_bdev
= bdev
->bd_contains
;
1441 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1443 bio
->bi_sector
- p
->start_sect
);
1447 static void handle_bad_sector(struct bio
*bio
)
1449 char b
[BDEVNAME_SIZE
];
1451 printk(KERN_INFO
"attempt to access beyond end of device\n");
1452 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1453 bdevname(bio
->bi_bdev
, b
),
1455 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1456 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1458 set_bit(BIO_EOF
, &bio
->bi_flags
);
1461 #ifdef CONFIG_FAIL_MAKE_REQUEST
1463 static DECLARE_FAULT_ATTR(fail_make_request
);
1465 static int __init
setup_fail_make_request(char *str
)
1467 return setup_fault_attr(&fail_make_request
, str
);
1469 __setup("fail_make_request=", setup_fail_make_request
);
1471 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1473 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1476 static int __init
fail_make_request_debugfs(void)
1478 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1479 NULL
, &fail_make_request
);
1481 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1484 late_initcall(fail_make_request_debugfs
);
1486 #else /* CONFIG_FAIL_MAKE_REQUEST */
1488 static inline bool should_fail_request(struct hd_struct
*part
,
1494 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1497 * Check whether this bio extends beyond the end of the device.
1499 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1506 /* Test device or partition size, when known. */
1507 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1509 sector_t sector
= bio
->bi_sector
;
1511 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1513 * This may well happen - the kernel calls bread()
1514 * without checking the size of the device, e.g., when
1515 * mounting a device.
1517 handle_bad_sector(bio
);
1525 static noinline_for_stack
bool
1526 generic_make_request_checks(struct bio
*bio
)
1528 struct request_queue
*q
;
1529 int nr_sectors
= bio_sectors(bio
);
1531 char b
[BDEVNAME_SIZE
];
1532 struct hd_struct
*part
;
1536 if (bio_check_eod(bio
, nr_sectors
))
1539 q
= bdev_get_queue(bio
->bi_bdev
);
1542 "generic_make_request: Trying to access "
1543 "nonexistent block-device %s (%Lu)\n",
1544 bdevname(bio
->bi_bdev
, b
),
1545 (long long) bio
->bi_sector
);
1549 if (unlikely(!(bio
->bi_rw
& REQ_DISCARD
) &&
1550 nr_sectors
> queue_max_hw_sectors(q
))) {
1551 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1552 bdevname(bio
->bi_bdev
, b
),
1554 queue_max_hw_sectors(q
));
1558 part
= bio
->bi_bdev
->bd_part
;
1559 if (should_fail_request(part
, bio
->bi_size
) ||
1560 should_fail_request(&part_to_disk(part
)->part0
,
1565 * If this device has partitions, remap block n
1566 * of partition p to block n+start(p) of the disk.
1568 blk_partition_remap(bio
);
1570 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1573 if (bio_check_eod(bio
, nr_sectors
))
1577 * Filter flush bio's early so that make_request based
1578 * drivers without flush support don't have to worry
1581 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1582 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1589 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1590 (!blk_queue_discard(q
) ||
1591 ((bio
->bi_rw
& REQ_SECURE
) &&
1592 !blk_queue_secdiscard(q
)))) {
1597 if (blk_throtl_bio(q
, bio
))
1598 return false; /* throttled, will be resubmitted later */
1600 trace_block_bio_queue(q
, bio
);
1604 bio_endio(bio
, err
);
1609 * generic_make_request - hand a buffer to its device driver for I/O
1610 * @bio: The bio describing the location in memory and on the device.
1612 * generic_make_request() is used to make I/O requests of block
1613 * devices. It is passed a &struct bio, which describes the I/O that needs
1616 * generic_make_request() does not return any status. The
1617 * success/failure status of the request, along with notification of
1618 * completion, is delivered asynchronously through the bio->bi_end_io
1619 * function described (one day) else where.
1621 * The caller of generic_make_request must make sure that bi_io_vec
1622 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1623 * set to describe the device address, and the
1624 * bi_end_io and optionally bi_private are set to describe how
1625 * completion notification should be signaled.
1627 * generic_make_request and the drivers it calls may use bi_next if this
1628 * bio happens to be merged with someone else, and may resubmit the bio to
1629 * a lower device by calling into generic_make_request recursively, which
1630 * means the bio should NOT be touched after the call to ->make_request_fn.
1632 void generic_make_request(struct bio
*bio
)
1634 struct bio_list bio_list_on_stack
;
1636 if (!generic_make_request_checks(bio
))
1640 * We only want one ->make_request_fn to be active at a time, else
1641 * stack usage with stacked devices could be a problem. So use
1642 * current->bio_list to keep a list of requests submited by a
1643 * make_request_fn function. current->bio_list is also used as a
1644 * flag to say if generic_make_request is currently active in this
1645 * task or not. If it is NULL, then no make_request is active. If
1646 * it is non-NULL, then a make_request is active, and new requests
1647 * should be added at the tail
1649 if (current
->bio_list
) {
1650 bio_list_add(current
->bio_list
, bio
);
1654 /* following loop may be a bit non-obvious, and so deserves some
1656 * Before entering the loop, bio->bi_next is NULL (as all callers
1657 * ensure that) so we have a list with a single bio.
1658 * We pretend that we have just taken it off a longer list, so
1659 * we assign bio_list to a pointer to the bio_list_on_stack,
1660 * thus initialising the bio_list of new bios to be
1661 * added. ->make_request() may indeed add some more bios
1662 * through a recursive call to generic_make_request. If it
1663 * did, we find a non-NULL value in bio_list and re-enter the loop
1664 * from the top. In this case we really did just take the bio
1665 * of the top of the list (no pretending) and so remove it from
1666 * bio_list, and call into ->make_request() again.
1668 BUG_ON(bio
->bi_next
);
1669 bio_list_init(&bio_list_on_stack
);
1670 current
->bio_list
= &bio_list_on_stack
;
1672 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1674 q
->make_request_fn(q
, bio
);
1676 bio
= bio_list_pop(current
->bio_list
);
1678 current
->bio_list
= NULL
; /* deactivate */
1680 EXPORT_SYMBOL(generic_make_request
);
1683 * submit_bio - submit a bio to the block device layer for I/O
1684 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1685 * @bio: The &struct bio which describes the I/O
1687 * submit_bio() is very similar in purpose to generic_make_request(), and
1688 * uses that function to do most of the work. Both are fairly rough
1689 * interfaces; @bio must be presetup and ready for I/O.
1692 void submit_bio(int rw
, struct bio
*bio
)
1694 int count
= bio_sectors(bio
);
1699 * If it's a regular read/write or a barrier with data attached,
1700 * go through the normal accounting stuff before submission.
1702 if (bio_has_data(bio
) && !(rw
& REQ_DISCARD
)) {
1704 count_vm_events(PGPGOUT
, count
);
1706 task_io_account_read(bio
->bi_size
);
1707 count_vm_events(PGPGIN
, count
);
1710 if (unlikely(block_dump
)) {
1711 char b
[BDEVNAME_SIZE
];
1712 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1713 current
->comm
, task_pid_nr(current
),
1714 (rw
& WRITE
) ? "WRITE" : "READ",
1715 (unsigned long long)bio
->bi_sector
,
1716 bdevname(bio
->bi_bdev
, b
),
1721 generic_make_request(bio
);
1723 EXPORT_SYMBOL(submit_bio
);
1726 * blk_rq_check_limits - Helper function to check a request for the queue limit
1728 * @rq: the request being checked
1731 * @rq may have been made based on weaker limitations of upper-level queues
1732 * in request stacking drivers, and it may violate the limitation of @q.
1733 * Since the block layer and the underlying device driver trust @rq
1734 * after it is inserted to @q, it should be checked against @q before
1735 * the insertion using this generic function.
1737 * This function should also be useful for request stacking drivers
1738 * in some cases below, so export this function.
1739 * Request stacking drivers like request-based dm may change the queue
1740 * limits while requests are in the queue (e.g. dm's table swapping).
1741 * Such request stacking drivers should check those requests agaist
1742 * the new queue limits again when they dispatch those requests,
1743 * although such checkings are also done against the old queue limits
1744 * when submitting requests.
1746 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1748 if (rq
->cmd_flags
& REQ_DISCARD
)
1751 if (blk_rq_sectors(rq
) > queue_max_sectors(q
) ||
1752 blk_rq_bytes(rq
) > queue_max_hw_sectors(q
) << 9) {
1753 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1758 * queue's settings related to segment counting like q->bounce_pfn
1759 * may differ from that of other stacking queues.
1760 * Recalculate it to check the request correctly on this queue's
1763 blk_recalc_rq_segments(rq
);
1764 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1765 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1771 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1774 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1775 * @q: the queue to submit the request
1776 * @rq: the request being queued
1778 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1780 unsigned long flags
;
1781 int where
= ELEVATOR_INSERT_BACK
;
1783 if (blk_rq_check_limits(q
, rq
))
1787 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1790 spin_lock_irqsave(q
->queue_lock
, flags
);
1791 if (unlikely(blk_queue_dead(q
))) {
1792 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1797 * Submitting request must be dequeued before calling this function
1798 * because it will be linked to another request_queue
1800 BUG_ON(blk_queued_rq(rq
));
1802 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1803 where
= ELEVATOR_INSERT_FLUSH
;
1805 add_acct_request(q
, rq
, where
);
1806 if (where
== ELEVATOR_INSERT_FLUSH
)
1808 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1812 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1815 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1816 * @rq: request to examine
1819 * A request could be merge of IOs which require different failure
1820 * handling. This function determines the number of bytes which
1821 * can be failed from the beginning of the request without
1822 * crossing into area which need to be retried further.
1825 * The number of bytes to fail.
1828 * queue_lock must be held.
1830 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1832 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1833 unsigned int bytes
= 0;
1836 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1837 return blk_rq_bytes(rq
);
1840 * Currently the only 'mixing' which can happen is between
1841 * different fastfail types. We can safely fail portions
1842 * which have all the failfast bits that the first one has -
1843 * the ones which are at least as eager to fail as the first
1846 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1847 if ((bio
->bi_rw
& ff
) != ff
)
1849 bytes
+= bio
->bi_size
;
1852 /* this could lead to infinite loop */
1853 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1856 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1858 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1860 if (blk_do_io_stat(req
)) {
1861 const int rw
= rq_data_dir(req
);
1862 struct hd_struct
*part
;
1865 cpu
= part_stat_lock();
1867 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1872 static void blk_account_io_done(struct request
*req
)
1875 * Account IO completion. flush_rq isn't accounted as a
1876 * normal IO on queueing nor completion. Accounting the
1877 * containing request is enough.
1879 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
1880 unsigned long duration
= jiffies
- req
->start_time
;
1881 const int rw
= rq_data_dir(req
);
1882 struct hd_struct
*part
;
1885 cpu
= part_stat_lock();
1888 part_stat_inc(cpu
, part
, ios
[rw
]);
1889 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1890 part_round_stats(cpu
, part
);
1891 part_dec_in_flight(part
, rw
);
1893 hd_struct_put(part
);
1899 * blk_peek_request - peek at the top of a request queue
1900 * @q: request queue to peek at
1903 * Return the request at the top of @q. The returned request
1904 * should be started using blk_start_request() before LLD starts
1908 * Pointer to the request at the top of @q if available. Null
1912 * queue_lock must be held.
1914 struct request
*blk_peek_request(struct request_queue
*q
)
1919 while ((rq
= __elv_next_request(q
)) != NULL
) {
1920 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
1922 * This is the first time the device driver
1923 * sees this request (possibly after
1924 * requeueing). Notify IO scheduler.
1926 if (rq
->cmd_flags
& REQ_SORTED
)
1927 elv_activate_rq(q
, rq
);
1930 * just mark as started even if we don't start
1931 * it, a request that has been delayed should
1932 * not be passed by new incoming requests
1934 rq
->cmd_flags
|= REQ_STARTED
;
1935 trace_block_rq_issue(q
, rq
);
1938 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
1939 q
->end_sector
= rq_end_sector(rq
);
1940 q
->boundary_rq
= NULL
;
1943 if (rq
->cmd_flags
& REQ_DONTPREP
)
1946 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
1948 * make sure space for the drain appears we
1949 * know we can do this because max_hw_segments
1950 * has been adjusted to be one fewer than the
1953 rq
->nr_phys_segments
++;
1959 ret
= q
->prep_rq_fn(q
, rq
);
1960 if (ret
== BLKPREP_OK
) {
1962 } else if (ret
== BLKPREP_DEFER
) {
1964 * the request may have been (partially) prepped.
1965 * we need to keep this request in the front to
1966 * avoid resource deadlock. REQ_STARTED will
1967 * prevent other fs requests from passing this one.
1969 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
1970 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
1972 * remove the space for the drain we added
1973 * so that we don't add it again
1975 --rq
->nr_phys_segments
;
1980 } else if (ret
== BLKPREP_KILL
) {
1981 rq
->cmd_flags
|= REQ_QUIET
;
1983 * Mark this request as started so we don't trigger
1984 * any debug logic in the end I/O path.
1986 blk_start_request(rq
);
1987 __blk_end_request_all(rq
, -EIO
);
1989 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
1996 EXPORT_SYMBOL(blk_peek_request
);
1998 void blk_dequeue_request(struct request
*rq
)
2000 struct request_queue
*q
= rq
->q
;
2002 BUG_ON(list_empty(&rq
->queuelist
));
2003 BUG_ON(ELV_ON_HASH(rq
));
2005 list_del_init(&rq
->queuelist
);
2008 * the time frame between a request being removed from the lists
2009 * and to it is freed is accounted as io that is in progress at
2012 if (blk_account_rq(rq
)) {
2013 q
->in_flight
[rq_is_sync(rq
)]++;
2014 set_io_start_time_ns(rq
);
2019 * blk_start_request - start request processing on the driver
2020 * @req: request to dequeue
2023 * Dequeue @req and start timeout timer on it. This hands off the
2024 * request to the driver.
2026 * Block internal functions which don't want to start timer should
2027 * call blk_dequeue_request().
2030 * queue_lock must be held.
2032 void blk_start_request(struct request
*req
)
2034 blk_dequeue_request(req
);
2037 * We are now handing the request to the hardware, initialize
2038 * resid_len to full count and add the timeout handler.
2040 req
->resid_len
= blk_rq_bytes(req
);
2041 if (unlikely(blk_bidi_rq(req
)))
2042 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2046 EXPORT_SYMBOL(blk_start_request
);
2049 * blk_fetch_request - fetch a request from a request queue
2050 * @q: request queue to fetch a request from
2053 * Return the request at the top of @q. The request is started on
2054 * return and LLD can start processing it immediately.
2057 * Pointer to the request at the top of @q if available. Null
2061 * queue_lock must be held.
2063 struct request
*blk_fetch_request(struct request_queue
*q
)
2067 rq
= blk_peek_request(q
);
2069 blk_start_request(rq
);
2072 EXPORT_SYMBOL(blk_fetch_request
);
2075 * blk_update_request - Special helper function for request stacking drivers
2076 * @req: the request being processed
2077 * @error: %0 for success, < %0 for error
2078 * @nr_bytes: number of bytes to complete @req
2081 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2082 * the request structure even if @req doesn't have leftover.
2083 * If @req has leftover, sets it up for the next range of segments.
2085 * This special helper function is only for request stacking drivers
2086 * (e.g. request-based dm) so that they can handle partial completion.
2087 * Actual device drivers should use blk_end_request instead.
2089 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2090 * %false return from this function.
2093 * %false - this request doesn't have any more data
2094 * %true - this request has more data
2096 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2098 int total_bytes
, bio_nbytes
, next_idx
= 0;
2104 trace_block_rq_complete(req
->q
, req
);
2107 * For fs requests, rq is just carrier of independent bio's
2108 * and each partial completion should be handled separately.
2109 * Reset per-request error on each partial completion.
2111 * TODO: tj: This is too subtle. It would be better to let
2112 * low level drivers do what they see fit.
2114 if (req
->cmd_type
== REQ_TYPE_FS
)
2117 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2118 !(req
->cmd_flags
& REQ_QUIET
)) {
2123 error_type
= "recoverable transport";
2126 error_type
= "critical target";
2129 error_type
= "critical nexus";
2136 printk(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2137 error_type
, req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
2138 (unsigned long long)blk_rq_pos(req
));
2141 blk_account_io_completion(req
, nr_bytes
);
2143 total_bytes
= bio_nbytes
= 0;
2144 while ((bio
= req
->bio
) != NULL
) {
2147 if (nr_bytes
>= bio
->bi_size
) {
2148 req
->bio
= bio
->bi_next
;
2149 nbytes
= bio
->bi_size
;
2150 req_bio_endio(req
, bio
, nbytes
, error
);
2154 int idx
= bio
->bi_idx
+ next_idx
;
2156 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2157 blk_dump_rq_flags(req
, "__end_that");
2158 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2159 __func__
, idx
, bio
->bi_vcnt
);
2163 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2164 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2167 * not a complete bvec done
2169 if (unlikely(nbytes
> nr_bytes
)) {
2170 bio_nbytes
+= nr_bytes
;
2171 total_bytes
+= nr_bytes
;
2176 * advance to the next vector
2179 bio_nbytes
+= nbytes
;
2182 total_bytes
+= nbytes
;
2188 * end more in this run, or just return 'not-done'
2190 if (unlikely(nr_bytes
<= 0))
2200 * Reset counters so that the request stacking driver
2201 * can find how many bytes remain in the request
2204 req
->__data_len
= 0;
2209 * if the request wasn't completed, update state
2212 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2213 bio
->bi_idx
+= next_idx
;
2214 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2215 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2218 req
->__data_len
-= total_bytes
;
2219 req
->buffer
= bio_data(req
->bio
);
2221 /* update sector only for requests with clear definition of sector */
2222 if (req
->cmd_type
== REQ_TYPE_FS
|| (req
->cmd_flags
& REQ_DISCARD
))
2223 req
->__sector
+= total_bytes
>> 9;
2225 /* mixed attributes always follow the first bio */
2226 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2227 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2228 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2232 * If total number of sectors is less than the first segment
2233 * size, something has gone terribly wrong.
2235 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2236 blk_dump_rq_flags(req
, "request botched");
2237 req
->__data_len
= blk_rq_cur_bytes(req
);
2240 /* recalculate the number of segments */
2241 blk_recalc_rq_segments(req
);
2245 EXPORT_SYMBOL_GPL(blk_update_request
);
2247 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2248 unsigned int nr_bytes
,
2249 unsigned int bidi_bytes
)
2251 if (blk_update_request(rq
, error
, nr_bytes
))
2254 /* Bidi request must be completed as a whole */
2255 if (unlikely(blk_bidi_rq(rq
)) &&
2256 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2259 if (blk_queue_add_random(rq
->q
))
2260 add_disk_randomness(rq
->rq_disk
);
2266 * blk_unprep_request - unprepare a request
2269 * This function makes a request ready for complete resubmission (or
2270 * completion). It happens only after all error handling is complete,
2271 * so represents the appropriate moment to deallocate any resources
2272 * that were allocated to the request in the prep_rq_fn. The queue
2273 * lock is held when calling this.
2275 void blk_unprep_request(struct request
*req
)
2277 struct request_queue
*q
= req
->q
;
2279 req
->cmd_flags
&= ~REQ_DONTPREP
;
2280 if (q
->unprep_rq_fn
)
2281 q
->unprep_rq_fn(q
, req
);
2283 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2286 * queue lock must be held
2288 static void blk_finish_request(struct request
*req
, int error
)
2290 if (blk_rq_tagged(req
))
2291 blk_queue_end_tag(req
->q
, req
);
2293 BUG_ON(blk_queued_rq(req
));
2295 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2296 laptop_io_completion(&req
->q
->backing_dev_info
);
2298 blk_delete_timer(req
);
2300 if (req
->cmd_flags
& REQ_DONTPREP
)
2301 blk_unprep_request(req
);
2304 blk_account_io_done(req
);
2307 req
->end_io(req
, error
);
2309 if (blk_bidi_rq(req
))
2310 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2312 __blk_put_request(req
->q
, req
);
2317 * blk_end_bidi_request - Complete a bidi request
2318 * @rq: the request to complete
2319 * @error: %0 for success, < %0 for error
2320 * @nr_bytes: number of bytes to complete @rq
2321 * @bidi_bytes: number of bytes to complete @rq->next_rq
2324 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2325 * Drivers that supports bidi can safely call this member for any
2326 * type of request, bidi or uni. In the later case @bidi_bytes is
2330 * %false - we are done with this request
2331 * %true - still buffers pending for this request
2333 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2334 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2336 struct request_queue
*q
= rq
->q
;
2337 unsigned long flags
;
2339 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2342 spin_lock_irqsave(q
->queue_lock
, flags
);
2343 blk_finish_request(rq
, error
);
2344 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2350 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2351 * @rq: the request to complete
2352 * @error: %0 for success, < %0 for error
2353 * @nr_bytes: number of bytes to complete @rq
2354 * @bidi_bytes: number of bytes to complete @rq->next_rq
2357 * Identical to blk_end_bidi_request() except that queue lock is
2358 * assumed to be locked on entry and remains so on return.
2361 * %false - we are done with this request
2362 * %true - still buffers pending for this request
2364 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2365 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2367 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2370 blk_finish_request(rq
, error
);
2376 * blk_end_request - Helper function for drivers to complete the request.
2377 * @rq: the request being processed
2378 * @error: %0 for success, < %0 for error
2379 * @nr_bytes: number of bytes to complete
2382 * Ends I/O on a number of bytes attached to @rq.
2383 * If @rq has leftover, sets it up for the next range of segments.
2386 * %false - we are done with this request
2387 * %true - still buffers pending for this request
2389 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2391 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2393 EXPORT_SYMBOL(blk_end_request
);
2396 * blk_end_request_all - Helper function for drives to finish the request.
2397 * @rq: the request to finish
2398 * @error: %0 for success, < %0 for error
2401 * Completely finish @rq.
2403 void blk_end_request_all(struct request
*rq
, int error
)
2406 unsigned int bidi_bytes
= 0;
2408 if (unlikely(blk_bidi_rq(rq
)))
2409 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2411 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2414 EXPORT_SYMBOL(blk_end_request_all
);
2417 * blk_end_request_cur - Helper function to finish the current request chunk.
2418 * @rq: the request to finish the current chunk for
2419 * @error: %0 for success, < %0 for error
2422 * Complete the current consecutively mapped chunk from @rq.
2425 * %false - we are done with this request
2426 * %true - still buffers pending for this request
2428 bool blk_end_request_cur(struct request
*rq
, int error
)
2430 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2432 EXPORT_SYMBOL(blk_end_request_cur
);
2435 * blk_end_request_err - Finish a request till the next failure boundary.
2436 * @rq: the request to finish till the next failure boundary for
2437 * @error: must be negative errno
2440 * Complete @rq till the next failure boundary.
2443 * %false - we are done with this request
2444 * %true - still buffers pending for this request
2446 bool blk_end_request_err(struct request
*rq
, int error
)
2448 WARN_ON(error
>= 0);
2449 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2451 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2454 * __blk_end_request - Helper function for drivers to complete the request.
2455 * @rq: the request being processed
2456 * @error: %0 for success, < %0 for error
2457 * @nr_bytes: number of bytes to complete
2460 * Must be called with queue lock held unlike blk_end_request().
2463 * %false - we are done with this request
2464 * %true - still buffers pending for this request
2466 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2468 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2470 EXPORT_SYMBOL(__blk_end_request
);
2473 * __blk_end_request_all - Helper function for drives to finish the request.
2474 * @rq: the request to finish
2475 * @error: %0 for success, < %0 for error
2478 * Completely finish @rq. Must be called with queue lock held.
2480 void __blk_end_request_all(struct request
*rq
, int error
)
2483 unsigned int bidi_bytes
= 0;
2485 if (unlikely(blk_bidi_rq(rq
)))
2486 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2488 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2491 EXPORT_SYMBOL(__blk_end_request_all
);
2494 * __blk_end_request_cur - Helper function to finish the current request chunk.
2495 * @rq: the request to finish the current chunk for
2496 * @error: %0 for success, < %0 for error
2499 * Complete the current consecutively mapped chunk from @rq. Must
2500 * be called with queue lock held.
2503 * %false - we are done with this request
2504 * %true - still buffers pending for this request
2506 bool __blk_end_request_cur(struct request
*rq
, int error
)
2508 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2510 EXPORT_SYMBOL(__blk_end_request_cur
);
2513 * __blk_end_request_err - Finish a request till the next failure boundary.
2514 * @rq: the request to finish till the next failure boundary for
2515 * @error: must be negative errno
2518 * Complete @rq till the next failure boundary. Must be called
2519 * with queue lock held.
2522 * %false - we are done with this request
2523 * %true - still buffers pending for this request
2525 bool __blk_end_request_err(struct request
*rq
, int error
)
2527 WARN_ON(error
>= 0);
2528 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2530 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2532 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2535 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2536 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2538 if (bio_has_data(bio
)) {
2539 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2540 rq
->buffer
= bio_data(bio
);
2542 rq
->__data_len
= bio
->bi_size
;
2543 rq
->bio
= rq
->biotail
= bio
;
2546 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2549 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2551 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2552 * @rq: the request to be flushed
2555 * Flush all pages in @rq.
2557 void rq_flush_dcache_pages(struct request
*rq
)
2559 struct req_iterator iter
;
2560 struct bio_vec
*bvec
;
2562 rq_for_each_segment(bvec
, rq
, iter
)
2563 flush_dcache_page(bvec
->bv_page
);
2565 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2569 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2570 * @q : the queue of the device being checked
2573 * Check if underlying low-level drivers of a device are busy.
2574 * If the drivers want to export their busy state, they must set own
2575 * exporting function using blk_queue_lld_busy() first.
2577 * Basically, this function is used only by request stacking drivers
2578 * to stop dispatching requests to underlying devices when underlying
2579 * devices are busy. This behavior helps more I/O merging on the queue
2580 * of the request stacking driver and prevents I/O throughput regression
2581 * on burst I/O load.
2584 * 0 - Not busy (The request stacking driver should dispatch request)
2585 * 1 - Busy (The request stacking driver should stop dispatching request)
2587 int blk_lld_busy(struct request_queue
*q
)
2590 return q
->lld_busy_fn(q
);
2594 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2597 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2598 * @rq: the clone request to be cleaned up
2601 * Free all bios in @rq for a cloned request.
2603 void blk_rq_unprep_clone(struct request
*rq
)
2607 while ((bio
= rq
->bio
) != NULL
) {
2608 rq
->bio
= bio
->bi_next
;
2613 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2616 * Copy attributes of the original request to the clone request.
2617 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2619 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2621 dst
->cpu
= src
->cpu
;
2622 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2623 dst
->cmd_type
= src
->cmd_type
;
2624 dst
->__sector
= blk_rq_pos(src
);
2625 dst
->__data_len
= blk_rq_bytes(src
);
2626 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2627 dst
->ioprio
= src
->ioprio
;
2628 dst
->extra_len
= src
->extra_len
;
2632 * blk_rq_prep_clone - Helper function to setup clone request
2633 * @rq: the request to be setup
2634 * @rq_src: original request to be cloned
2635 * @bs: bio_set that bios for clone are allocated from
2636 * @gfp_mask: memory allocation mask for bio
2637 * @bio_ctr: setup function to be called for each clone bio.
2638 * Returns %0 for success, non %0 for failure.
2639 * @data: private data to be passed to @bio_ctr
2642 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2643 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2644 * are not copied, and copying such parts is the caller's responsibility.
2645 * Also, pages which the original bios are pointing to are not copied
2646 * and the cloned bios just point same pages.
2647 * So cloned bios must be completed before original bios, which means
2648 * the caller must complete @rq before @rq_src.
2650 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2651 struct bio_set
*bs
, gfp_t gfp_mask
,
2652 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2655 struct bio
*bio
, *bio_src
;
2660 blk_rq_init(NULL
, rq
);
2662 __rq_for_each_bio(bio_src
, rq_src
) {
2663 bio
= bio_alloc_bioset(gfp_mask
, bio_src
->bi_max_vecs
, bs
);
2667 __bio_clone(bio
, bio_src
);
2669 if (bio_integrity(bio_src
) &&
2670 bio_integrity_clone(bio
, bio_src
, gfp_mask
, bs
))
2673 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2677 rq
->biotail
->bi_next
= bio
;
2680 rq
->bio
= rq
->biotail
= bio
;
2683 __blk_rq_prep_clone(rq
, rq_src
);
2690 blk_rq_unprep_clone(rq
);
2694 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2696 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2698 return queue_work(kblockd_workqueue
, work
);
2700 EXPORT_SYMBOL(kblockd_schedule_work
);
2702 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2703 struct delayed_work
*dwork
, unsigned long delay
)
2705 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2707 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2709 #define PLUG_MAGIC 0x91827364
2712 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2713 * @plug: The &struct blk_plug that needs to be initialized
2716 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2717 * pending I/O should the task end up blocking between blk_start_plug() and
2718 * blk_finish_plug(). This is important from a performance perspective, but
2719 * also ensures that we don't deadlock. For instance, if the task is blocking
2720 * for a memory allocation, memory reclaim could end up wanting to free a
2721 * page belonging to that request that is currently residing in our private
2722 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2723 * this kind of deadlock.
2725 void blk_start_plug(struct blk_plug
*plug
)
2727 struct task_struct
*tsk
= current
;
2729 plug
->magic
= PLUG_MAGIC
;
2730 INIT_LIST_HEAD(&plug
->list
);
2731 INIT_LIST_HEAD(&plug
->cb_list
);
2732 plug
->should_sort
= 0;
2735 * If this is a nested plug, don't actually assign it. It will be
2736 * flushed on its own.
2740 * Store ordering should not be needed here, since a potential
2741 * preempt will imply a full memory barrier
2746 EXPORT_SYMBOL(blk_start_plug
);
2748 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2750 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2751 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2753 return !(rqa
->q
<= rqb
->q
);
2757 * If 'from_schedule' is true, then postpone the dispatch of requests
2758 * until a safe kblockd context. We due this to avoid accidental big
2759 * additional stack usage in driver dispatch, in places where the originally
2760 * plugger did not intend it.
2762 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2764 __releases(q
->queue_lock
)
2766 trace_block_unplug(q
, depth
, !from_schedule
);
2769 * Don't mess with dead queue.
2771 if (unlikely(blk_queue_dead(q
))) {
2772 spin_unlock(q
->queue_lock
);
2777 * If we are punting this to kblockd, then we can safely drop
2778 * the queue_lock before waking kblockd (which needs to take
2781 if (from_schedule
) {
2782 spin_unlock(q
->queue_lock
);
2783 blk_run_queue_async(q
);
2786 spin_unlock(q
->queue_lock
);
2791 static void flush_plug_callbacks(struct blk_plug
*plug
)
2793 LIST_HEAD(callbacks
);
2795 if (list_empty(&plug
->cb_list
))
2798 list_splice_init(&plug
->cb_list
, &callbacks
);
2800 while (!list_empty(&callbacks
)) {
2801 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2804 list_del(&cb
->list
);
2809 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2811 struct request_queue
*q
;
2812 unsigned long flags
;
2817 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2819 flush_plug_callbacks(plug
);
2820 if (list_empty(&plug
->list
))
2823 list_splice_init(&plug
->list
, &list
);
2825 if (plug
->should_sort
) {
2826 list_sort(NULL
, &list
, plug_rq_cmp
);
2827 plug
->should_sort
= 0;
2834 * Save and disable interrupts here, to avoid doing it for every
2835 * queue lock we have to take.
2837 local_irq_save(flags
);
2838 while (!list_empty(&list
)) {
2839 rq
= list_entry_rq(list
.next
);
2840 list_del_init(&rq
->queuelist
);
2844 * This drops the queue lock
2847 queue_unplugged(q
, depth
, from_schedule
);
2850 spin_lock(q
->queue_lock
);
2854 * Short-circuit if @q is dead
2856 if (unlikely(blk_queue_dead(q
))) {
2857 __blk_end_request_all(rq
, -ENODEV
);
2862 * rq is already accounted, so use raw insert
2864 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
2865 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
2867 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
2873 * This drops the queue lock
2876 queue_unplugged(q
, depth
, from_schedule
);
2878 local_irq_restore(flags
);
2881 void blk_finish_plug(struct blk_plug
*plug
)
2883 blk_flush_plug_list(plug
, false);
2885 if (plug
== current
->plug
)
2886 current
->plug
= NULL
;
2888 EXPORT_SYMBOL(blk_finish_plug
);
2890 int __init
blk_dev_init(void)
2892 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
2893 sizeof(((struct request
*)0)->cmd_flags
));
2895 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2896 kblockd_workqueue
= alloc_workqueue("kblockd",
2897 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
2898 if (!kblockd_workqueue
)
2899 panic("Failed to create kblockd\n");
2901 request_cachep
= kmem_cache_create("blkdev_requests",
2902 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2904 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2905 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);