2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
62 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
68 .index
= CLOCK_REALTIME
,
69 .get_time
= &ktime_get_real
,
70 .resolution
= KTIME_LOW_RES
,
73 .index
= CLOCK_MONOTONIC
,
74 .get_time
= &ktime_get
,
75 .resolution
= KTIME_LOW_RES
,
81 * Get the coarse grained time at the softirq based on xtime and
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
87 struct timespec xts
, tom
;
91 seq
= read_seqbegin(&xtime_lock
);
92 xts
= __current_kernel_time();
93 tom
= wall_to_monotonic
;
94 } while (read_seqretry(&xtime_lock
, seq
));
96 xtim
= timespec_to_ktime(xts
);
97 tomono
= timespec_to_ktime(tom
);
98 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
99 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
100 ktime_add(xtim
, tomono
);
104 * Functions and macros which are different for UP/SMP systems are kept in a
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
122 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
123 unsigned long *flags
)
125 struct hrtimer_clock_base
*base
;
129 if (likely(base
!= NULL
)) {
130 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
131 if (likely(base
== timer
->base
))
133 /* The timer has migrated to another CPU: */
134 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
142 * Get the preferred target CPU for NOHZ
144 static int hrtimer_get_target(int this_cpu
, int pinned
)
147 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
148 return get_nohz_timer_target();
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
158 * Called with cpu_base->lock of target cpu held.
161 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
163 #ifdef CONFIG_HIGH_RES_TIMERS
166 if (!new_base
->cpu_base
->hres_active
)
169 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
170 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
177 * Switch the timer base to the current CPU when possible.
179 static inline struct hrtimer_clock_base
*
180 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
183 struct hrtimer_clock_base
*new_base
;
184 struct hrtimer_cpu_base
*new_cpu_base
;
185 int this_cpu
= smp_processor_id();
186 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
189 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
190 new_base
= &new_cpu_base
->clock_base
[base
->index
];
192 if (base
!= new_base
) {
194 * We are trying to move timer to new_base.
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
202 if (unlikely(hrtimer_callback_running(timer
)))
205 /* See the comment in lock_timer_base() */
207 raw_spin_unlock(&base
->cpu_base
->lock
);
208 raw_spin_lock(&new_base
->cpu_base
->lock
);
210 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
212 raw_spin_unlock(&new_base
->cpu_base
->lock
);
213 raw_spin_lock(&base
->cpu_base
->lock
);
217 timer
->base
= new_base
;
222 #else /* CONFIG_SMP */
224 static inline struct hrtimer_clock_base
*
225 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
227 struct hrtimer_clock_base
*base
= timer
->base
;
229 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
234 # define switch_hrtimer_base(t, b, p) (b)
236 #endif /* !CONFIG_SMP */
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
242 #if BITS_PER_LONG < 64
243 # ifndef CONFIG_KTIME_SCALAR
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
247 * @nsec: the scalar nsec value to add
249 * Returns the sum of kt and nsec in ktime_t format
251 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
255 if (likely(nsec
< NSEC_PER_SEC
)) {
258 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
260 tmp
= ktime_set((long)nsec
, rem
);
263 return ktime_add(kt
, tmp
);
266 EXPORT_SYMBOL_GPL(ktime_add_ns
);
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
271 * @nsec: the scalar nsec value to subtract
273 * Returns the subtraction of @nsec from @kt in ktime_t format
275 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
279 if (likely(nsec
< NSEC_PER_SEC
)) {
282 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
284 tmp
= ktime_set((long)nsec
, rem
);
287 return ktime_sub(kt
, tmp
);
290 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
291 # endif /* !CONFIG_KTIME_SCALAR */
294 * Divide a ktime value by a nanosecond value
296 u64
ktime_divns(const ktime_t kt
, s64 div
)
301 dclc
= ktime_to_ns(kt
);
302 /* Make sure the divisor is less than 2^32: */
308 do_div(dclc
, (unsigned long) div
);
312 #endif /* BITS_PER_LONG >= 64 */
315 * Add two ktime values and do a safety check for overflow:
317 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
319 ktime_t res
= ktime_add(lhs
, rhs
);
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
325 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
326 res
= ktime_set(KTIME_SEC_MAX
, 0);
331 EXPORT_SYMBOL_GPL(ktime_add_safe
);
333 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
335 static struct debug_obj_descr hrtimer_debug_descr
;
338 * fixup_init is called when:
339 * - an active object is initialized
341 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
343 struct hrtimer
*timer
= addr
;
346 case ODEBUG_STATE_ACTIVE
:
347 hrtimer_cancel(timer
);
348 debug_object_init(timer
, &hrtimer_debug_descr
);
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
360 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
364 case ODEBUG_STATE_NOTAVAILABLE
:
368 case ODEBUG_STATE_ACTIVE
:
377 * fixup_free is called when:
378 * - an active object is freed
380 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
382 struct hrtimer
*timer
= addr
;
385 case ODEBUG_STATE_ACTIVE
:
386 hrtimer_cancel(timer
);
387 debug_object_free(timer
, &hrtimer_debug_descr
);
394 static struct debug_obj_descr hrtimer_debug_descr
= {
396 .fixup_init
= hrtimer_fixup_init
,
397 .fixup_activate
= hrtimer_fixup_activate
,
398 .fixup_free
= hrtimer_fixup_free
,
401 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
403 debug_object_init(timer
, &hrtimer_debug_descr
);
406 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
408 debug_object_activate(timer
, &hrtimer_debug_descr
);
411 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
413 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
416 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
418 debug_object_free(timer
, &hrtimer_debug_descr
);
421 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
422 enum hrtimer_mode mode
);
424 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
425 enum hrtimer_mode mode
)
427 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
428 __hrtimer_init(timer
, clock_id
, mode
);
430 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
432 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
434 debug_object_free(timer
, &hrtimer_debug_descr
);
438 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
439 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
440 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
444 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
445 enum hrtimer_mode mode
)
447 debug_hrtimer_init(timer
);
448 trace_hrtimer_init(timer
, clockid
, mode
);
451 static inline void debug_activate(struct hrtimer
*timer
)
453 debug_hrtimer_activate(timer
);
454 trace_hrtimer_start(timer
);
457 static inline void debug_deactivate(struct hrtimer
*timer
)
459 debug_hrtimer_deactivate(timer
);
460 trace_hrtimer_cancel(timer
);
463 /* High resolution timer related functions */
464 #ifdef CONFIG_HIGH_RES_TIMERS
467 * High resolution timer enabled ?
469 static int hrtimer_hres_enabled __read_mostly
= 1;
472 * Enable / Disable high resolution mode
474 static int __init
setup_hrtimer_hres(char *str
)
476 if (!strcmp(str
, "off"))
477 hrtimer_hres_enabled
= 0;
478 else if (!strcmp(str
, "on"))
479 hrtimer_hres_enabled
= 1;
485 __setup("highres=", setup_hrtimer_hres
);
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
490 static inline int hrtimer_is_hres_enabled(void)
492 return hrtimer_hres_enabled
;
496 * Is the high resolution mode active ?
498 static inline int hrtimer_hres_active(void)
500 return __get_cpu_var(hrtimer_bases
).hres_active
;
504 * Reprogram the event source with checking both queues for the
506 * Called with interrupts disabled and base->lock held
509 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
512 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
513 ktime_t expires
, expires_next
;
515 expires_next
.tv64
= KTIME_MAX
;
517 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
518 struct hrtimer
*timer
;
522 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
523 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
525 * clock_was_set() has changed base->offset so the
526 * result might be negative. Fix it up to prevent a
527 * false positive in clockevents_program_event()
529 if (expires
.tv64
< 0)
531 if (expires
.tv64
< expires_next
.tv64
)
532 expires_next
= expires
;
535 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
538 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
540 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
541 tick_program_event(cpu_base
->expires_next
, 1);
545 * Shared reprogramming for clock_realtime and clock_monotonic
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
551 * Called with interrupts disabled and base->cpu_base.lock held
553 static int hrtimer_reprogram(struct hrtimer
*timer
,
554 struct hrtimer_clock_base
*base
)
556 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
557 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
560 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
563 * When the callback is running, we do not reprogram the clock event
564 * device. The timer callback is either running on a different CPU or
565 * the callback is executed in the hrtimer_interrupt context. The
566 * reprogramming is handled either by the softirq, which called the
567 * callback or at the end of the hrtimer_interrupt.
569 if (hrtimer_callback_running(timer
))
573 * CLOCK_REALTIME timer might be requested with an absolute
574 * expiry time which is less than base->offset. Nothing wrong
575 * about that, just avoid to call into the tick code, which
576 * has now objections against negative expiry values.
578 if (expires
.tv64
< 0)
581 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
585 * If a hang was detected in the last timer interrupt then we
586 * do not schedule a timer which is earlier than the expiry
587 * which we enforced in the hang detection. We want the system
590 if (cpu_base
->hang_detected
)
594 * Clockevents returns -ETIME, when the event was in the past.
596 res
= tick_program_event(expires
, 0);
597 if (!IS_ERR_VALUE(res
))
598 cpu_base
->expires_next
= expires
;
604 * Retrigger next event is called after clock was set
606 * Called with interrupts disabled via on_each_cpu()
608 static void retrigger_next_event(void *arg
)
610 struct hrtimer_cpu_base
*base
;
611 struct timespec realtime_offset
;
614 if (!hrtimer_hres_active())
618 seq
= read_seqbegin(&xtime_lock
);
619 set_normalized_timespec(&realtime_offset
,
620 -wall_to_monotonic
.tv_sec
,
621 -wall_to_monotonic
.tv_nsec
);
622 } while (read_seqretry(&xtime_lock
, seq
));
624 base
= &__get_cpu_var(hrtimer_bases
);
626 /* Adjust CLOCK_REALTIME offset */
627 raw_spin_lock(&base
->lock
);
628 base
->clock_base
[CLOCK_REALTIME
].offset
=
629 timespec_to_ktime(realtime_offset
);
631 hrtimer_force_reprogram(base
, 0);
632 raw_spin_unlock(&base
->lock
);
636 * Clock realtime was set
638 * Change the offset of the realtime clock vs. the monotonic
641 * We might have to reprogram the high resolution timer interrupt. On
642 * SMP we call the architecture specific code to retrigger _all_ high
643 * resolution timer interrupts. On UP we just disable interrupts and
644 * call the high resolution interrupt code.
646 void clock_was_set(void)
648 /* Retrigger the CPU local events everywhere */
649 on_each_cpu(retrigger_next_event
, NULL
, 1);
653 * During resume we might have to reprogram the high resolution timer
654 * interrupt (on the local CPU):
656 void hres_timers_resume(void)
658 WARN_ONCE(!irqs_disabled(),
659 KERN_INFO
"hres_timers_resume() called with IRQs enabled!");
661 retrigger_next_event(NULL
);
665 * Initialize the high resolution related parts of cpu_base
667 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
669 base
->expires_next
.tv64
= KTIME_MAX
;
670 base
->hres_active
= 0;
674 * Initialize the high resolution related parts of a hrtimer
676 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
682 * When High resolution timers are active, try to reprogram. Note, that in case
683 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
684 * check happens. The timer gets enqueued into the rbtree. The reprogramming
685 * and expiry check is done in the hrtimer_interrupt or in the softirq.
687 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
688 struct hrtimer_clock_base
*base
,
691 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
693 raw_spin_unlock(&base
->cpu_base
->lock
);
694 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
695 raw_spin_lock(&base
->cpu_base
->lock
);
697 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
706 * Switch to high resolution mode
708 static int hrtimer_switch_to_hres(void)
710 int cpu
= smp_processor_id();
711 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
714 if (base
->hres_active
)
717 local_irq_save(flags
);
719 if (tick_init_highres()) {
720 local_irq_restore(flags
);
721 printk(KERN_WARNING
"Could not switch to high resolution "
722 "mode on CPU %d\n", cpu
);
725 base
->hres_active
= 1;
726 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
727 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
729 tick_setup_sched_timer();
731 /* "Retrigger" the interrupt to get things going */
732 retrigger_next_event(NULL
);
733 local_irq_restore(flags
);
739 static inline int hrtimer_hres_active(void) { return 0; }
740 static inline int hrtimer_is_hres_enabled(void) { return 0; }
741 static inline int hrtimer_switch_to_hres(void) { return 0; }
743 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
744 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
745 struct hrtimer_clock_base
*base
,
750 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
751 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
753 #endif /* CONFIG_HIGH_RES_TIMERS */
755 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
757 #ifdef CONFIG_TIMER_STATS
758 if (timer
->start_site
)
760 timer
->start_site
= __builtin_return_address(0);
761 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
762 timer
->start_pid
= current
->pid
;
766 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
768 #ifdef CONFIG_TIMER_STATS
769 timer
->start_site
= NULL
;
773 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
775 #ifdef CONFIG_TIMER_STATS
776 if (likely(!timer_stats_active
))
778 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
779 timer
->function
, timer
->start_comm
, 0);
784 * Counterpart to lock_hrtimer_base above:
787 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
789 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
793 * hrtimer_forward - forward the timer expiry
794 * @timer: hrtimer to forward
795 * @now: forward past this time
796 * @interval: the interval to forward
798 * Forward the timer expiry so it will expire in the future.
799 * Returns the number of overruns.
801 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
806 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
811 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
812 interval
.tv64
= timer
->base
->resolution
.tv64
;
814 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
815 s64 incr
= ktime_to_ns(interval
);
817 orun
= ktime_divns(delta
, incr
);
818 hrtimer_add_expires_ns(timer
, incr
* orun
);
819 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
822 * This (and the ktime_add() below) is the
823 * correction for exact:
827 hrtimer_add_expires(timer
, interval
);
831 EXPORT_SYMBOL_GPL(hrtimer_forward
);
834 * enqueue_hrtimer - internal function to (re)start a timer
836 * The timer is inserted in expiry order. Insertion into the
837 * red black tree is O(log(n)). Must hold the base lock.
839 * Returns 1 when the new timer is the leftmost timer in the tree.
841 static int enqueue_hrtimer(struct hrtimer
*timer
,
842 struct hrtimer_clock_base
*base
)
844 struct rb_node
**link
= &base
->active
.rb_node
;
845 struct rb_node
*parent
= NULL
;
846 struct hrtimer
*entry
;
849 debug_activate(timer
);
852 * Find the right place in the rbtree:
856 entry
= rb_entry(parent
, struct hrtimer
, node
);
858 * We dont care about collisions. Nodes with
859 * the same expiry time stay together.
861 if (hrtimer_get_expires_tv64(timer
) <
862 hrtimer_get_expires_tv64(entry
)) {
863 link
= &(*link
)->rb_left
;
865 link
= &(*link
)->rb_right
;
871 * Insert the timer to the rbtree and check whether it
872 * replaces the first pending timer
875 base
->first
= &timer
->node
;
877 rb_link_node(&timer
->node
, parent
, link
);
878 rb_insert_color(&timer
->node
, &base
->active
);
880 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
881 * state of a possibly running callback.
883 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
889 * __remove_hrtimer - internal function to remove a timer
891 * Caller must hold the base lock.
893 * High resolution timer mode reprograms the clock event device when the
894 * timer is the one which expires next. The caller can disable this by setting
895 * reprogram to zero. This is useful, when the context does a reprogramming
896 * anyway (e.g. timer interrupt)
898 static void __remove_hrtimer(struct hrtimer
*timer
,
899 struct hrtimer_clock_base
*base
,
900 unsigned long newstate
, int reprogram
)
902 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
906 * Remove the timer from the rbtree and replace the first
907 * entry pointer if necessary.
909 if (base
->first
== &timer
->node
) {
910 base
->first
= rb_next(&timer
->node
);
911 #ifdef CONFIG_HIGH_RES_TIMERS
912 /* Reprogram the clock event device. if enabled */
913 if (reprogram
&& hrtimer_hres_active()) {
916 expires
= ktime_sub(hrtimer_get_expires(timer
),
918 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
919 hrtimer_force_reprogram(base
->cpu_base
, 1);
923 rb_erase(&timer
->node
, &base
->active
);
925 timer
->state
= newstate
;
929 * remove hrtimer, called with base lock held
932 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
934 if (hrtimer_is_queued(timer
)) {
938 * Remove the timer and force reprogramming when high
939 * resolution mode is active and the timer is on the current
940 * CPU. If we remove a timer on another CPU, reprogramming is
941 * skipped. The interrupt event on this CPU is fired and
942 * reprogramming happens in the interrupt handler. This is a
943 * rare case and less expensive than a smp call.
945 debug_deactivate(timer
);
946 timer_stats_hrtimer_clear_start_info(timer
);
947 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
948 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
955 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
956 unsigned long delta_ns
, const enum hrtimer_mode mode
,
959 struct hrtimer_clock_base
*base
, *new_base
;
963 base
= lock_hrtimer_base(timer
, &flags
);
965 /* Remove an active timer from the queue: */
966 ret
= remove_hrtimer(timer
, base
);
968 /* Switch the timer base, if necessary: */
969 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
971 if (mode
& HRTIMER_MODE_REL
) {
972 tim
= ktime_add_safe(tim
, new_base
->get_time());
974 * CONFIG_TIME_LOW_RES is a temporary way for architectures
975 * to signal that they simply return xtime in
976 * do_gettimeoffset(). In this case we want to round up by
977 * resolution when starting a relative timer, to avoid short
978 * timeouts. This will go away with the GTOD framework.
980 #ifdef CONFIG_TIME_LOW_RES
981 tim
= ktime_add_safe(tim
, base
->resolution
);
985 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
987 timer_stats_hrtimer_set_start_info(timer
);
989 leftmost
= enqueue_hrtimer(timer
, new_base
);
992 * Only allow reprogramming if the new base is on this CPU.
993 * (it might still be on another CPU if the timer was pending)
995 * XXX send_remote_softirq() ?
997 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
))
998 hrtimer_enqueue_reprogram(timer
, new_base
, wakeup
);
1000 unlock_hrtimer_base(timer
, &flags
);
1006 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1007 * @timer: the timer to be added
1009 * @delta_ns: "slack" range for the timer
1010 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1014 * 1 when the timer was active
1016 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1017 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1019 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1021 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1024 * hrtimer_start - (re)start an hrtimer on the current CPU
1025 * @timer: the timer to be added
1027 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1031 * 1 when the timer was active
1034 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1036 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1038 EXPORT_SYMBOL_GPL(hrtimer_start
);
1042 * hrtimer_try_to_cancel - try to deactivate a timer
1043 * @timer: hrtimer to stop
1046 * 0 when the timer was not active
1047 * 1 when the timer was active
1048 * -1 when the timer is currently excuting the callback function and
1051 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1053 struct hrtimer_clock_base
*base
;
1054 unsigned long flags
;
1057 base
= lock_hrtimer_base(timer
, &flags
);
1059 if (!hrtimer_callback_running(timer
))
1060 ret
= remove_hrtimer(timer
, base
);
1062 unlock_hrtimer_base(timer
, &flags
);
1067 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1070 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1071 * @timer: the timer to be cancelled
1074 * 0 when the timer was not active
1075 * 1 when the timer was active
1077 int hrtimer_cancel(struct hrtimer
*timer
)
1080 int ret
= hrtimer_try_to_cancel(timer
);
1087 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1090 * hrtimer_get_remaining - get remaining time for the timer
1091 * @timer: the timer to read
1093 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1095 struct hrtimer_clock_base
*base
;
1096 unsigned long flags
;
1099 base
= lock_hrtimer_base(timer
, &flags
);
1100 rem
= hrtimer_expires_remaining(timer
);
1101 unlock_hrtimer_base(timer
, &flags
);
1105 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1109 * hrtimer_get_next_event - get the time until next expiry event
1111 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1114 ktime_t
hrtimer_get_next_event(void)
1116 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1117 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1118 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1119 unsigned long flags
;
1122 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1124 if (!hrtimer_hres_active()) {
1125 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1126 struct hrtimer
*timer
;
1131 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1132 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1133 delta
= ktime_sub(delta
, base
->get_time());
1134 if (delta
.tv64
< mindelta
.tv64
)
1135 mindelta
.tv64
= delta
.tv64
;
1139 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1141 if (mindelta
.tv64
< 0)
1147 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1148 enum hrtimer_mode mode
)
1150 struct hrtimer_cpu_base
*cpu_base
;
1152 memset(timer
, 0, sizeof(struct hrtimer
));
1154 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1156 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1157 clock_id
= CLOCK_MONOTONIC
;
1159 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1160 hrtimer_init_timer_hres(timer
);
1162 #ifdef CONFIG_TIMER_STATS
1163 timer
->start_site
= NULL
;
1164 timer
->start_pid
= -1;
1165 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1170 * hrtimer_init - initialize a timer to the given clock
1171 * @timer: the timer to be initialized
1172 * @clock_id: the clock to be used
1173 * @mode: timer mode abs/rel
1175 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1176 enum hrtimer_mode mode
)
1178 debug_init(timer
, clock_id
, mode
);
1179 __hrtimer_init(timer
, clock_id
, mode
);
1181 EXPORT_SYMBOL_GPL(hrtimer_init
);
1184 * hrtimer_get_res - get the timer resolution for a clock
1185 * @which_clock: which clock to query
1186 * @tp: pointer to timespec variable to store the resolution
1188 * Store the resolution of the clock selected by @which_clock in the
1189 * variable pointed to by @tp.
1191 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1193 struct hrtimer_cpu_base
*cpu_base
;
1195 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1196 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1200 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1202 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1204 struct hrtimer_clock_base
*base
= timer
->base
;
1205 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1206 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1209 WARN_ON(!irqs_disabled());
1211 debug_deactivate(timer
);
1212 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1213 timer_stats_account_hrtimer(timer
);
1214 fn
= timer
->function
;
1217 * Because we run timers from hardirq context, there is no chance
1218 * they get migrated to another cpu, therefore its safe to unlock
1221 raw_spin_unlock(&cpu_base
->lock
);
1222 trace_hrtimer_expire_entry(timer
, now
);
1223 restart
= fn(timer
);
1224 trace_hrtimer_expire_exit(timer
);
1225 raw_spin_lock(&cpu_base
->lock
);
1228 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1229 * we do not reprogramm the event hardware. Happens either in
1230 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1232 if (restart
!= HRTIMER_NORESTART
) {
1233 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1234 enqueue_hrtimer(timer
, base
);
1236 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1239 #ifdef CONFIG_HIGH_RES_TIMERS
1242 * High resolution timer interrupt
1243 * Called with interrupts disabled
1245 void hrtimer_interrupt(struct clock_event_device
*dev
)
1247 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1248 struct hrtimer_clock_base
*base
;
1249 ktime_t expires_next
, now
, entry_time
, delta
;
1252 BUG_ON(!cpu_base
->hres_active
);
1253 cpu_base
->nr_events
++;
1254 dev
->next_event
.tv64
= KTIME_MAX
;
1256 entry_time
= now
= ktime_get();
1258 expires_next
.tv64
= KTIME_MAX
;
1260 raw_spin_lock(&cpu_base
->lock
);
1262 * We set expires_next to KTIME_MAX here with cpu_base->lock
1263 * held to prevent that a timer is enqueued in our queue via
1264 * the migration code. This does not affect enqueueing of
1265 * timers which run their callback and need to be requeued on
1268 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1270 base
= cpu_base
->clock_base
;
1272 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1274 struct rb_node
*node
;
1276 basenow
= ktime_add(now
, base
->offset
);
1278 while ((node
= base
->first
)) {
1279 struct hrtimer
*timer
;
1281 timer
= rb_entry(node
, struct hrtimer
, node
);
1284 * The immediate goal for using the softexpires is
1285 * minimizing wakeups, not running timers at the
1286 * earliest interrupt after their soft expiration.
1287 * This allows us to avoid using a Priority Search
1288 * Tree, which can answer a stabbing querry for
1289 * overlapping intervals and instead use the simple
1290 * BST we already have.
1291 * We don't add extra wakeups by delaying timers that
1292 * are right-of a not yet expired timer, because that
1293 * timer will have to trigger a wakeup anyway.
1296 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1299 expires
= ktime_sub(hrtimer_get_expires(timer
),
1301 if (expires
.tv64
< expires_next
.tv64
)
1302 expires_next
= expires
;
1306 __run_hrtimer(timer
, &basenow
);
1312 * Store the new expiry value so the migration code can verify
1315 cpu_base
->expires_next
= expires_next
;
1316 raw_spin_unlock(&cpu_base
->lock
);
1318 /* Reprogramming necessary ? */
1319 if (expires_next
.tv64
== KTIME_MAX
||
1320 !tick_program_event(expires_next
, 0)) {
1321 cpu_base
->hang_detected
= 0;
1326 * The next timer was already expired due to:
1328 * - long lasting callbacks
1329 * - being scheduled away when running in a VM
1331 * We need to prevent that we loop forever in the hrtimer
1332 * interrupt routine. We give it 3 attempts to avoid
1333 * overreacting on some spurious event.
1336 cpu_base
->nr_retries
++;
1340 * Give the system a chance to do something else than looping
1341 * here. We stored the entry time, so we know exactly how long
1342 * we spent here. We schedule the next event this amount of
1345 cpu_base
->nr_hangs
++;
1346 cpu_base
->hang_detected
= 1;
1347 delta
= ktime_sub(now
, entry_time
);
1348 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1349 cpu_base
->max_hang_time
= delta
;
1351 * Limit it to a sensible value as we enforce a longer
1352 * delay. Give the CPU at least 100ms to catch up.
1354 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1355 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1357 expires_next
= ktime_add(now
, delta
);
1358 tick_program_event(expires_next
, 1);
1359 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1360 ktime_to_ns(delta
));
1364 * local version of hrtimer_peek_ahead_timers() called with interrupts
1367 static void __hrtimer_peek_ahead_timers(void)
1369 struct tick_device
*td
;
1371 if (!hrtimer_hres_active())
1374 td
= &__get_cpu_var(tick_cpu_device
);
1375 if (td
&& td
->evtdev
)
1376 hrtimer_interrupt(td
->evtdev
);
1380 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1382 * hrtimer_peek_ahead_timers will peek at the timer queue of
1383 * the current cpu and check if there are any timers for which
1384 * the soft expires time has passed. If any such timers exist,
1385 * they are run immediately and then removed from the timer queue.
1388 void hrtimer_peek_ahead_timers(void)
1390 unsigned long flags
;
1392 local_irq_save(flags
);
1393 __hrtimer_peek_ahead_timers();
1394 local_irq_restore(flags
);
1397 static void run_hrtimer_softirq(struct softirq_action
*h
)
1399 hrtimer_peek_ahead_timers();
1402 #else /* CONFIG_HIGH_RES_TIMERS */
1404 static inline void __hrtimer_peek_ahead_timers(void) { }
1406 #endif /* !CONFIG_HIGH_RES_TIMERS */
1409 * Called from timer softirq every jiffy, expire hrtimers:
1411 * For HRT its the fall back code to run the softirq in the timer
1412 * softirq context in case the hrtimer initialization failed or has
1413 * not been done yet.
1415 void hrtimer_run_pending(void)
1417 if (hrtimer_hres_active())
1421 * This _is_ ugly: We have to check in the softirq context,
1422 * whether we can switch to highres and / or nohz mode. The
1423 * clocksource switch happens in the timer interrupt with
1424 * xtime_lock held. Notification from there only sets the
1425 * check bit in the tick_oneshot code, otherwise we might
1426 * deadlock vs. xtime_lock.
1428 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1429 hrtimer_switch_to_hres();
1433 * Called from hardirq context every jiffy
1435 void hrtimer_run_queues(void)
1437 struct rb_node
*node
;
1438 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1439 struct hrtimer_clock_base
*base
;
1440 int index
, gettime
= 1;
1442 if (hrtimer_hres_active())
1445 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1446 base
= &cpu_base
->clock_base
[index
];
1452 hrtimer_get_softirq_time(cpu_base
);
1456 raw_spin_lock(&cpu_base
->lock
);
1458 while ((node
= base
->first
)) {
1459 struct hrtimer
*timer
;
1461 timer
= rb_entry(node
, struct hrtimer
, node
);
1462 if (base
->softirq_time
.tv64
<=
1463 hrtimer_get_expires_tv64(timer
))
1466 __run_hrtimer(timer
, &base
->softirq_time
);
1468 raw_spin_unlock(&cpu_base
->lock
);
1473 * Sleep related functions:
1475 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1477 struct hrtimer_sleeper
*t
=
1478 container_of(timer
, struct hrtimer_sleeper
, timer
);
1479 struct task_struct
*task
= t
->task
;
1483 wake_up_process(task
);
1485 return HRTIMER_NORESTART
;
1488 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1490 sl
->timer
.function
= hrtimer_wakeup
;
1493 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1495 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1497 hrtimer_init_sleeper(t
, current
);
1500 set_current_state(TASK_INTERRUPTIBLE
);
1501 hrtimer_start_expires(&t
->timer
, mode
);
1502 if (!hrtimer_active(&t
->timer
))
1505 if (likely(t
->task
))
1508 hrtimer_cancel(&t
->timer
);
1509 mode
= HRTIMER_MODE_ABS
;
1511 } while (t
->task
&& !signal_pending(current
));
1513 __set_current_state(TASK_RUNNING
);
1515 return t
->task
== NULL
;
1518 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1520 struct timespec rmt
;
1523 rem
= hrtimer_expires_remaining(timer
);
1526 rmt
= ktime_to_timespec(rem
);
1528 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1534 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1536 struct hrtimer_sleeper t
;
1537 struct timespec __user
*rmtp
;
1540 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1542 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1544 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1547 rmtp
= restart
->nanosleep
.rmtp
;
1549 ret
= update_rmtp(&t
.timer
, rmtp
);
1554 /* The other values in restart are already filled in */
1555 ret
= -ERESTART_RESTARTBLOCK
;
1557 destroy_hrtimer_on_stack(&t
.timer
);
1561 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1562 const enum hrtimer_mode mode
, const clockid_t clockid
)
1564 struct restart_block
*restart
;
1565 struct hrtimer_sleeper t
;
1567 unsigned long slack
;
1569 slack
= current
->timer_slack_ns
;
1570 if (rt_task(current
))
1573 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1574 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1575 if (do_nanosleep(&t
, mode
))
1578 /* Absolute timers do not update the rmtp value and restart: */
1579 if (mode
== HRTIMER_MODE_ABS
) {
1580 ret
= -ERESTARTNOHAND
;
1585 ret
= update_rmtp(&t
.timer
, rmtp
);
1590 restart
= ¤t_thread_info()->restart_block
;
1591 restart
->fn
= hrtimer_nanosleep_restart
;
1592 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1593 restart
->nanosleep
.rmtp
= rmtp
;
1594 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1596 ret
= -ERESTART_RESTARTBLOCK
;
1598 destroy_hrtimer_on_stack(&t
.timer
);
1602 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1603 struct timespec __user
*, rmtp
)
1607 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1610 if (!timespec_valid(&tu
))
1613 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1617 * Functions related to boot-time initialization:
1619 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1621 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1624 raw_spin_lock_init(&cpu_base
->lock
);
1626 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1627 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1629 hrtimer_init_hres(cpu_base
);
1632 #ifdef CONFIG_HOTPLUG_CPU
1634 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1635 struct hrtimer_clock_base
*new_base
)
1637 struct hrtimer
*timer
;
1638 struct rb_node
*node
;
1640 while ((node
= rb_first(&old_base
->active
))) {
1641 timer
= rb_entry(node
, struct hrtimer
, node
);
1642 BUG_ON(hrtimer_callback_running(timer
));
1643 debug_deactivate(timer
);
1646 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1647 * timer could be seen as !active and just vanish away
1648 * under us on another CPU
1650 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1651 timer
->base
= new_base
;
1653 * Enqueue the timers on the new cpu. This does not
1654 * reprogram the event device in case the timer
1655 * expires before the earliest on this CPU, but we run
1656 * hrtimer_interrupt after we migrated everything to
1657 * sort out already expired timers and reprogram the
1660 enqueue_hrtimer(timer
, new_base
);
1662 /* Clear the migration state bit */
1663 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1667 static void migrate_hrtimers(int scpu
)
1669 struct hrtimer_cpu_base
*old_base
, *new_base
;
1672 BUG_ON(cpu_online(scpu
));
1673 tick_cancel_sched_timer(scpu
);
1675 local_irq_disable();
1676 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1677 new_base
= &__get_cpu_var(hrtimer_bases
);
1679 * The caller is globally serialized and nobody else
1680 * takes two locks at once, deadlock is not possible.
1682 raw_spin_lock(&new_base
->lock
);
1683 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1685 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1686 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1687 &new_base
->clock_base
[i
]);
1690 raw_spin_unlock(&old_base
->lock
);
1691 raw_spin_unlock(&new_base
->lock
);
1693 /* Check, if we got expired work to do */
1694 __hrtimer_peek_ahead_timers();
1698 #endif /* CONFIG_HOTPLUG_CPU */
1700 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1701 unsigned long action
, void *hcpu
)
1703 int scpu
= (long)hcpu
;
1707 case CPU_UP_PREPARE
:
1708 case CPU_UP_PREPARE_FROZEN
:
1709 init_hrtimers_cpu(scpu
);
1712 #ifdef CONFIG_HOTPLUG_CPU
1714 case CPU_DYING_FROZEN
:
1715 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1718 case CPU_DEAD_FROZEN
:
1720 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1721 migrate_hrtimers(scpu
);
1733 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1734 .notifier_call
= hrtimer_cpu_notify
,
1737 void __init
hrtimers_init(void)
1739 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1740 (void *)(long)smp_processor_id());
1741 register_cpu_notifier(&hrtimers_nb
);
1742 #ifdef CONFIG_HIGH_RES_TIMERS
1743 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1748 * schedule_hrtimeout_range_clock - sleep until timeout
1749 * @expires: timeout value (ktime_t)
1750 * @delta: slack in expires timeout (ktime_t)
1751 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1752 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1755 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1756 const enum hrtimer_mode mode
, int clock
)
1758 struct hrtimer_sleeper t
;
1761 * Optimize when a zero timeout value is given. It does not
1762 * matter whether this is an absolute or a relative time.
1764 if (expires
&& !expires
->tv64
) {
1765 __set_current_state(TASK_RUNNING
);
1770 * A NULL parameter means "inifinte"
1774 __set_current_state(TASK_RUNNING
);
1778 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1779 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1781 hrtimer_init_sleeper(&t
, current
);
1783 hrtimer_start_expires(&t
.timer
, mode
);
1784 if (!hrtimer_active(&t
.timer
))
1790 hrtimer_cancel(&t
.timer
);
1791 destroy_hrtimer_on_stack(&t
.timer
);
1793 __set_current_state(TASK_RUNNING
);
1795 return !t
.task
? 0 : -EINTR
;
1799 * schedule_hrtimeout_range - sleep until timeout
1800 * @expires: timeout value (ktime_t)
1801 * @delta: slack in expires timeout (ktime_t)
1802 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1804 * Make the current task sleep until the given expiry time has
1805 * elapsed. The routine will return immediately unless
1806 * the current task state has been set (see set_current_state()).
1808 * The @delta argument gives the kernel the freedom to schedule the
1809 * actual wakeup to a time that is both power and performance friendly.
1810 * The kernel give the normal best effort behavior for "@expires+@delta",
1811 * but may decide to fire the timer earlier, but no earlier than @expires.
1813 * You can set the task state as follows -
1815 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1816 * pass before the routine returns.
1818 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1819 * delivered to the current task.
1821 * The current task state is guaranteed to be TASK_RUNNING when this
1824 * Returns 0 when the timer has expired otherwise -EINTR
1826 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1827 const enum hrtimer_mode mode
)
1829 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1832 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1835 * schedule_hrtimeout - sleep until timeout
1836 * @expires: timeout value (ktime_t)
1837 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1839 * Make the current task sleep until the given expiry time has
1840 * elapsed. The routine will return immediately unless
1841 * the current task state has been set (see set_current_state()).
1843 * You can set the task state as follows -
1845 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1846 * pass before the routine returns.
1848 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1849 * delivered to the current task.
1851 * The current task state is guaranteed to be TASK_RUNNING when this
1854 * Returns 0 when the timer has expired otherwise -EINTR
1856 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1857 const enum hrtimer_mode mode
)
1859 return schedule_hrtimeout_range(expires
, 0, mode
);
1861 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);