Merge branches 'x86-rwsem-for-linus' and 'x86-gcc46-for-linus' of git://git.kernel...
[linux-2.6/libata-dev.git] / kernel / hrtimer.c
blobe934339fbbef1cb6acdfb17899e50e539059d0b4
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
54 * The timer bases:
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
62 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
65 .clock_base =
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
70 .resolution = KTIME_LOW_RES,
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
86 ktime_t xtim, tomono;
87 struct timespec xts, tom;
88 unsigned long seq;
90 do {
91 seq = read_seqbegin(&xtime_lock);
92 xts = __current_kernel_time();
93 tom = wall_to_monotonic;
94 } while (read_seqretry(&xtime_lock, seq));
96 xtim = timespec_to_ktime(xts);
97 tomono = timespec_to_ktime(tom);
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
107 #ifdef CONFIG_SMP
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
121 static
122 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
125 struct hrtimer_clock_base *base;
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
130 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
134 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
136 cpu_relax();
142 * Get the preferred target CPU for NOHZ
144 static int hrtimer_get_target(int this_cpu, int pinned)
146 #ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148 return get_nohz_timer_target();
149 #endif
150 return this_cpu;
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
158 * Called with cpu_base->lock of target cpu held.
160 static int
161 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
163 #ifdef CONFIG_HIGH_RES_TIMERS
164 ktime_t expires;
166 if (!new_base->cpu_base->hres_active)
167 return 0;
169 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171 #else
172 return 0;
173 #endif
177 * Switch the timer base to the current CPU when possible.
179 static inline struct hrtimer_clock_base *
180 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181 int pinned)
183 struct hrtimer_clock_base *new_base;
184 struct hrtimer_cpu_base *new_cpu_base;
185 int this_cpu = smp_processor_id();
186 int cpu = hrtimer_get_target(this_cpu, pinned);
188 again:
189 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190 new_base = &new_cpu_base->clock_base[base->index];
192 if (base != new_base) {
194 * We are trying to move timer to new_base.
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
202 if (unlikely(hrtimer_callback_running(timer)))
203 return base;
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
207 raw_spin_unlock(&base->cpu_base->lock);
208 raw_spin_lock(&new_base->cpu_base->lock);
210 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211 cpu = this_cpu;
212 raw_spin_unlock(&new_base->cpu_base->lock);
213 raw_spin_lock(&base->cpu_base->lock);
214 timer->base = base;
215 goto again;
217 timer->base = new_base;
219 return new_base;
222 #else /* CONFIG_SMP */
224 static inline struct hrtimer_clock_base *
225 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
227 struct hrtimer_clock_base *base = timer->base;
229 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
231 return base;
234 # define switch_hrtimer_base(t, b, p) (b)
236 #endif /* !CONFIG_SMP */
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
242 #if BITS_PER_LONG < 64
243 # ifndef CONFIG_KTIME_SCALAR
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
246 * @kt: addend
247 * @nsec: the scalar nsec value to add
249 * Returns the sum of kt and nsec in ktime_t format
251 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
253 ktime_t tmp;
255 if (likely(nsec < NSEC_PER_SEC)) {
256 tmp.tv64 = nsec;
257 } else {
258 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
260 tmp = ktime_set((long)nsec, rem);
263 return ktime_add(kt, tmp);
266 EXPORT_SYMBOL_GPL(ktime_add_ns);
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt: minuend
271 * @nsec: the scalar nsec value to subtract
273 * Returns the subtraction of @nsec from @kt in ktime_t format
275 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
277 ktime_t tmp;
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
284 tmp = ktime_set((long)nsec, rem);
287 return ktime_sub(kt, tmp);
290 EXPORT_SYMBOL_GPL(ktime_sub_ns);
291 # endif /* !CONFIG_KTIME_SCALAR */
294 * Divide a ktime value by a nanosecond value
296 u64 ktime_divns(const ktime_t kt, s64 div)
298 u64 dclc;
299 int sft = 0;
301 dclc = ktime_to_ns(kt);
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
310 return dclc;
312 #endif /* BITS_PER_LONG >= 64 */
315 * Add two ktime values and do a safety check for overflow:
317 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
319 ktime_t res = ktime_add(lhs, rhs);
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
325 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326 res = ktime_set(KTIME_SEC_MAX, 0);
328 return res;
331 EXPORT_SYMBOL_GPL(ktime_add_safe);
333 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
335 static struct debug_obj_descr hrtimer_debug_descr;
338 * fixup_init is called when:
339 * - an active object is initialized
341 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 struct hrtimer *timer = addr;
345 switch (state) {
346 case ODEBUG_STATE_ACTIVE:
347 hrtimer_cancel(timer);
348 debug_object_init(timer, &hrtimer_debug_descr);
349 return 1;
350 default:
351 return 0;
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
360 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 switch (state) {
364 case ODEBUG_STATE_NOTAVAILABLE:
365 WARN_ON_ONCE(1);
366 return 0;
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
371 default:
372 return 0;
377 * fixup_free is called when:
378 * - an active object is freed
380 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
382 struct hrtimer *timer = addr;
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_free(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
394 static struct debug_obj_descr hrtimer_debug_descr = {
395 .name = "hrtimer",
396 .fixup_init = hrtimer_fixup_init,
397 .fixup_activate = hrtimer_fixup_activate,
398 .fixup_free = hrtimer_fixup_free,
401 static inline void debug_hrtimer_init(struct hrtimer *timer)
403 debug_object_init(timer, &hrtimer_debug_descr);
406 static inline void debug_hrtimer_activate(struct hrtimer *timer)
408 debug_object_activate(timer, &hrtimer_debug_descr);
411 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
413 debug_object_deactivate(timer, &hrtimer_debug_descr);
416 static inline void debug_hrtimer_free(struct hrtimer *timer)
418 debug_object_free(timer, &hrtimer_debug_descr);
421 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
424 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
430 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
432 void destroy_hrtimer_on_stack(struct hrtimer *timer)
434 debug_object_free(timer, &hrtimer_debug_descr);
437 #else
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441 #endif
443 static inline void
444 debug_init(struct hrtimer *timer, clockid_t clockid,
445 enum hrtimer_mode mode)
447 debug_hrtimer_init(timer);
448 trace_hrtimer_init(timer, clockid, mode);
451 static inline void debug_activate(struct hrtimer *timer)
453 debug_hrtimer_activate(timer);
454 trace_hrtimer_start(timer);
457 static inline void debug_deactivate(struct hrtimer *timer)
459 debug_hrtimer_deactivate(timer);
460 trace_hrtimer_cancel(timer);
463 /* High resolution timer related functions */
464 #ifdef CONFIG_HIGH_RES_TIMERS
467 * High resolution timer enabled ?
469 static int hrtimer_hres_enabled __read_mostly = 1;
472 * Enable / Disable high resolution mode
474 static int __init setup_hrtimer_hres(char *str)
476 if (!strcmp(str, "off"))
477 hrtimer_hres_enabled = 0;
478 else if (!strcmp(str, "on"))
479 hrtimer_hres_enabled = 1;
480 else
481 return 0;
482 return 1;
485 __setup("highres=", setup_hrtimer_hres);
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
490 static inline int hrtimer_is_hres_enabled(void)
492 return hrtimer_hres_enabled;
496 * Is the high resolution mode active ?
498 static inline int hrtimer_hres_active(void)
500 return __get_cpu_var(hrtimer_bases).hres_active;
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
508 static void
509 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
511 int i;
512 struct hrtimer_clock_base *base = cpu_base->clock_base;
513 ktime_t expires, expires_next;
515 expires_next.tv64 = KTIME_MAX;
517 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518 struct hrtimer *timer;
520 if (!base->first)
521 continue;
522 timer = rb_entry(base->first, struct hrtimer, node);
523 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 * clock_was_set() has changed base->offset so the
526 * result might be negative. Fix it up to prevent a
527 * false positive in clockevents_program_event()
529 if (expires.tv64 < 0)
530 expires.tv64 = 0;
531 if (expires.tv64 < expires_next.tv64)
532 expires_next = expires;
535 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
536 return;
538 cpu_base->expires_next.tv64 = expires_next.tv64;
540 if (cpu_base->expires_next.tv64 != KTIME_MAX)
541 tick_program_event(cpu_base->expires_next, 1);
545 * Shared reprogramming for clock_realtime and clock_monotonic
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
551 * Called with interrupts disabled and base->cpu_base.lock held
553 static int hrtimer_reprogram(struct hrtimer *timer,
554 struct hrtimer_clock_base *base)
556 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
557 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558 int res;
560 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
563 * When the callback is running, we do not reprogram the clock event
564 * device. The timer callback is either running on a different CPU or
565 * the callback is executed in the hrtimer_interrupt context. The
566 * reprogramming is handled either by the softirq, which called the
567 * callback or at the end of the hrtimer_interrupt.
569 if (hrtimer_callback_running(timer))
570 return 0;
573 * CLOCK_REALTIME timer might be requested with an absolute
574 * expiry time which is less than base->offset. Nothing wrong
575 * about that, just avoid to call into the tick code, which
576 * has now objections against negative expiry values.
578 if (expires.tv64 < 0)
579 return -ETIME;
581 if (expires.tv64 >= cpu_base->expires_next.tv64)
582 return 0;
585 * If a hang was detected in the last timer interrupt then we
586 * do not schedule a timer which is earlier than the expiry
587 * which we enforced in the hang detection. We want the system
588 * to make progress.
590 if (cpu_base->hang_detected)
591 return 0;
594 * Clockevents returns -ETIME, when the event was in the past.
596 res = tick_program_event(expires, 0);
597 if (!IS_ERR_VALUE(res))
598 cpu_base->expires_next = expires;
599 return res;
604 * Retrigger next event is called after clock was set
606 * Called with interrupts disabled via on_each_cpu()
608 static void retrigger_next_event(void *arg)
610 struct hrtimer_cpu_base *base;
611 struct timespec realtime_offset;
612 unsigned long seq;
614 if (!hrtimer_hres_active())
615 return;
617 do {
618 seq = read_seqbegin(&xtime_lock);
619 set_normalized_timespec(&realtime_offset,
620 -wall_to_monotonic.tv_sec,
621 -wall_to_monotonic.tv_nsec);
622 } while (read_seqretry(&xtime_lock, seq));
624 base = &__get_cpu_var(hrtimer_bases);
626 /* Adjust CLOCK_REALTIME offset */
627 raw_spin_lock(&base->lock);
628 base->clock_base[CLOCK_REALTIME].offset =
629 timespec_to_ktime(realtime_offset);
631 hrtimer_force_reprogram(base, 0);
632 raw_spin_unlock(&base->lock);
636 * Clock realtime was set
638 * Change the offset of the realtime clock vs. the monotonic
639 * clock.
641 * We might have to reprogram the high resolution timer interrupt. On
642 * SMP we call the architecture specific code to retrigger _all_ high
643 * resolution timer interrupts. On UP we just disable interrupts and
644 * call the high resolution interrupt code.
646 void clock_was_set(void)
648 /* Retrigger the CPU local events everywhere */
649 on_each_cpu(retrigger_next_event, NULL, 1);
653 * During resume we might have to reprogram the high resolution timer
654 * interrupt (on the local CPU):
656 void hres_timers_resume(void)
658 WARN_ONCE(!irqs_disabled(),
659 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
661 retrigger_next_event(NULL);
665 * Initialize the high resolution related parts of cpu_base
667 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
669 base->expires_next.tv64 = KTIME_MAX;
670 base->hres_active = 0;
674 * Initialize the high resolution related parts of a hrtimer
676 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
682 * When High resolution timers are active, try to reprogram. Note, that in case
683 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
684 * check happens. The timer gets enqueued into the rbtree. The reprogramming
685 * and expiry check is done in the hrtimer_interrupt or in the softirq.
687 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
688 struct hrtimer_clock_base *base,
689 int wakeup)
691 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
692 if (wakeup) {
693 raw_spin_unlock(&base->cpu_base->lock);
694 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
695 raw_spin_lock(&base->cpu_base->lock);
696 } else
697 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
699 return 1;
702 return 0;
706 * Switch to high resolution mode
708 static int hrtimer_switch_to_hres(void)
710 int cpu = smp_processor_id();
711 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
712 unsigned long flags;
714 if (base->hres_active)
715 return 1;
717 local_irq_save(flags);
719 if (tick_init_highres()) {
720 local_irq_restore(flags);
721 printk(KERN_WARNING "Could not switch to high resolution "
722 "mode on CPU %d\n", cpu);
723 return 0;
725 base->hres_active = 1;
726 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
727 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
729 tick_setup_sched_timer();
731 /* "Retrigger" the interrupt to get things going */
732 retrigger_next_event(NULL);
733 local_irq_restore(flags);
734 return 1;
737 #else
739 static inline int hrtimer_hres_active(void) { return 0; }
740 static inline int hrtimer_is_hres_enabled(void) { return 0; }
741 static inline int hrtimer_switch_to_hres(void) { return 0; }
742 static inline void
743 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
744 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
745 struct hrtimer_clock_base *base,
746 int wakeup)
748 return 0;
750 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
751 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
753 #endif /* CONFIG_HIGH_RES_TIMERS */
755 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
757 #ifdef CONFIG_TIMER_STATS
758 if (timer->start_site)
759 return;
760 timer->start_site = __builtin_return_address(0);
761 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
762 timer->start_pid = current->pid;
763 #endif
766 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
768 #ifdef CONFIG_TIMER_STATS
769 timer->start_site = NULL;
770 #endif
773 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
775 #ifdef CONFIG_TIMER_STATS
776 if (likely(!timer_stats_active))
777 return;
778 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
779 timer->function, timer->start_comm, 0);
780 #endif
784 * Counterpart to lock_hrtimer_base above:
786 static inline
787 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
789 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
793 * hrtimer_forward - forward the timer expiry
794 * @timer: hrtimer to forward
795 * @now: forward past this time
796 * @interval: the interval to forward
798 * Forward the timer expiry so it will expire in the future.
799 * Returns the number of overruns.
801 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
803 u64 orun = 1;
804 ktime_t delta;
806 delta = ktime_sub(now, hrtimer_get_expires(timer));
808 if (delta.tv64 < 0)
809 return 0;
811 if (interval.tv64 < timer->base->resolution.tv64)
812 interval.tv64 = timer->base->resolution.tv64;
814 if (unlikely(delta.tv64 >= interval.tv64)) {
815 s64 incr = ktime_to_ns(interval);
817 orun = ktime_divns(delta, incr);
818 hrtimer_add_expires_ns(timer, incr * orun);
819 if (hrtimer_get_expires_tv64(timer) > now.tv64)
820 return orun;
822 * This (and the ktime_add() below) is the
823 * correction for exact:
825 orun++;
827 hrtimer_add_expires(timer, interval);
829 return orun;
831 EXPORT_SYMBOL_GPL(hrtimer_forward);
834 * enqueue_hrtimer - internal function to (re)start a timer
836 * The timer is inserted in expiry order. Insertion into the
837 * red black tree is O(log(n)). Must hold the base lock.
839 * Returns 1 when the new timer is the leftmost timer in the tree.
841 static int enqueue_hrtimer(struct hrtimer *timer,
842 struct hrtimer_clock_base *base)
844 struct rb_node **link = &base->active.rb_node;
845 struct rb_node *parent = NULL;
846 struct hrtimer *entry;
847 int leftmost = 1;
849 debug_activate(timer);
852 * Find the right place in the rbtree:
854 while (*link) {
855 parent = *link;
856 entry = rb_entry(parent, struct hrtimer, node);
858 * We dont care about collisions. Nodes with
859 * the same expiry time stay together.
861 if (hrtimer_get_expires_tv64(timer) <
862 hrtimer_get_expires_tv64(entry)) {
863 link = &(*link)->rb_left;
864 } else {
865 link = &(*link)->rb_right;
866 leftmost = 0;
871 * Insert the timer to the rbtree and check whether it
872 * replaces the first pending timer
874 if (leftmost)
875 base->first = &timer->node;
877 rb_link_node(&timer->node, parent, link);
878 rb_insert_color(&timer->node, &base->active);
880 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
881 * state of a possibly running callback.
883 timer->state |= HRTIMER_STATE_ENQUEUED;
885 return leftmost;
889 * __remove_hrtimer - internal function to remove a timer
891 * Caller must hold the base lock.
893 * High resolution timer mode reprograms the clock event device when the
894 * timer is the one which expires next. The caller can disable this by setting
895 * reprogram to zero. This is useful, when the context does a reprogramming
896 * anyway (e.g. timer interrupt)
898 static void __remove_hrtimer(struct hrtimer *timer,
899 struct hrtimer_clock_base *base,
900 unsigned long newstate, int reprogram)
902 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
903 goto out;
906 * Remove the timer from the rbtree and replace the first
907 * entry pointer if necessary.
909 if (base->first == &timer->node) {
910 base->first = rb_next(&timer->node);
911 #ifdef CONFIG_HIGH_RES_TIMERS
912 /* Reprogram the clock event device. if enabled */
913 if (reprogram && hrtimer_hres_active()) {
914 ktime_t expires;
916 expires = ktime_sub(hrtimer_get_expires(timer),
917 base->offset);
918 if (base->cpu_base->expires_next.tv64 == expires.tv64)
919 hrtimer_force_reprogram(base->cpu_base, 1);
921 #endif
923 rb_erase(&timer->node, &base->active);
924 out:
925 timer->state = newstate;
929 * remove hrtimer, called with base lock held
931 static inline int
932 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
934 if (hrtimer_is_queued(timer)) {
935 int reprogram;
938 * Remove the timer and force reprogramming when high
939 * resolution mode is active and the timer is on the current
940 * CPU. If we remove a timer on another CPU, reprogramming is
941 * skipped. The interrupt event on this CPU is fired and
942 * reprogramming happens in the interrupt handler. This is a
943 * rare case and less expensive than a smp call.
945 debug_deactivate(timer);
946 timer_stats_hrtimer_clear_start_info(timer);
947 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
948 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
949 reprogram);
950 return 1;
952 return 0;
955 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
956 unsigned long delta_ns, const enum hrtimer_mode mode,
957 int wakeup)
959 struct hrtimer_clock_base *base, *new_base;
960 unsigned long flags;
961 int ret, leftmost;
963 base = lock_hrtimer_base(timer, &flags);
965 /* Remove an active timer from the queue: */
966 ret = remove_hrtimer(timer, base);
968 /* Switch the timer base, if necessary: */
969 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
971 if (mode & HRTIMER_MODE_REL) {
972 tim = ktime_add_safe(tim, new_base->get_time());
974 * CONFIG_TIME_LOW_RES is a temporary way for architectures
975 * to signal that they simply return xtime in
976 * do_gettimeoffset(). In this case we want to round up by
977 * resolution when starting a relative timer, to avoid short
978 * timeouts. This will go away with the GTOD framework.
980 #ifdef CONFIG_TIME_LOW_RES
981 tim = ktime_add_safe(tim, base->resolution);
982 #endif
985 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
987 timer_stats_hrtimer_set_start_info(timer);
989 leftmost = enqueue_hrtimer(timer, new_base);
992 * Only allow reprogramming if the new base is on this CPU.
993 * (it might still be on another CPU if the timer was pending)
995 * XXX send_remote_softirq() ?
997 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
998 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1000 unlock_hrtimer_base(timer, &flags);
1002 return ret;
1006 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1007 * @timer: the timer to be added
1008 * @tim: expiry time
1009 * @delta_ns: "slack" range for the timer
1010 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1012 * Returns:
1013 * 0 on success
1014 * 1 when the timer was active
1016 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1017 unsigned long delta_ns, const enum hrtimer_mode mode)
1019 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1021 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1024 * hrtimer_start - (re)start an hrtimer on the current CPU
1025 * @timer: the timer to be added
1026 * @tim: expiry time
1027 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1029 * Returns:
1030 * 0 on success
1031 * 1 when the timer was active
1034 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1036 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1038 EXPORT_SYMBOL_GPL(hrtimer_start);
1042 * hrtimer_try_to_cancel - try to deactivate a timer
1043 * @timer: hrtimer to stop
1045 * Returns:
1046 * 0 when the timer was not active
1047 * 1 when the timer was active
1048 * -1 when the timer is currently excuting the callback function and
1049 * cannot be stopped
1051 int hrtimer_try_to_cancel(struct hrtimer *timer)
1053 struct hrtimer_clock_base *base;
1054 unsigned long flags;
1055 int ret = -1;
1057 base = lock_hrtimer_base(timer, &flags);
1059 if (!hrtimer_callback_running(timer))
1060 ret = remove_hrtimer(timer, base);
1062 unlock_hrtimer_base(timer, &flags);
1064 return ret;
1067 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1070 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1071 * @timer: the timer to be cancelled
1073 * Returns:
1074 * 0 when the timer was not active
1075 * 1 when the timer was active
1077 int hrtimer_cancel(struct hrtimer *timer)
1079 for (;;) {
1080 int ret = hrtimer_try_to_cancel(timer);
1082 if (ret >= 0)
1083 return ret;
1084 cpu_relax();
1087 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1090 * hrtimer_get_remaining - get remaining time for the timer
1091 * @timer: the timer to read
1093 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1095 struct hrtimer_clock_base *base;
1096 unsigned long flags;
1097 ktime_t rem;
1099 base = lock_hrtimer_base(timer, &flags);
1100 rem = hrtimer_expires_remaining(timer);
1101 unlock_hrtimer_base(timer, &flags);
1103 return rem;
1105 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1107 #ifdef CONFIG_NO_HZ
1109 * hrtimer_get_next_event - get the time until next expiry event
1111 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1112 * is pending.
1114 ktime_t hrtimer_get_next_event(void)
1116 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1117 struct hrtimer_clock_base *base = cpu_base->clock_base;
1118 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1119 unsigned long flags;
1120 int i;
1122 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1124 if (!hrtimer_hres_active()) {
1125 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1126 struct hrtimer *timer;
1128 if (!base->first)
1129 continue;
1131 timer = rb_entry(base->first, struct hrtimer, node);
1132 delta.tv64 = hrtimer_get_expires_tv64(timer);
1133 delta = ktime_sub(delta, base->get_time());
1134 if (delta.tv64 < mindelta.tv64)
1135 mindelta.tv64 = delta.tv64;
1139 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1141 if (mindelta.tv64 < 0)
1142 mindelta.tv64 = 0;
1143 return mindelta;
1145 #endif
1147 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1148 enum hrtimer_mode mode)
1150 struct hrtimer_cpu_base *cpu_base;
1152 memset(timer, 0, sizeof(struct hrtimer));
1154 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1156 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1157 clock_id = CLOCK_MONOTONIC;
1159 timer->base = &cpu_base->clock_base[clock_id];
1160 hrtimer_init_timer_hres(timer);
1162 #ifdef CONFIG_TIMER_STATS
1163 timer->start_site = NULL;
1164 timer->start_pid = -1;
1165 memset(timer->start_comm, 0, TASK_COMM_LEN);
1166 #endif
1170 * hrtimer_init - initialize a timer to the given clock
1171 * @timer: the timer to be initialized
1172 * @clock_id: the clock to be used
1173 * @mode: timer mode abs/rel
1175 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1176 enum hrtimer_mode mode)
1178 debug_init(timer, clock_id, mode);
1179 __hrtimer_init(timer, clock_id, mode);
1181 EXPORT_SYMBOL_GPL(hrtimer_init);
1184 * hrtimer_get_res - get the timer resolution for a clock
1185 * @which_clock: which clock to query
1186 * @tp: pointer to timespec variable to store the resolution
1188 * Store the resolution of the clock selected by @which_clock in the
1189 * variable pointed to by @tp.
1191 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1193 struct hrtimer_cpu_base *cpu_base;
1195 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1196 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1198 return 0;
1200 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1202 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1204 struct hrtimer_clock_base *base = timer->base;
1205 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1206 enum hrtimer_restart (*fn)(struct hrtimer *);
1207 int restart;
1209 WARN_ON(!irqs_disabled());
1211 debug_deactivate(timer);
1212 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1213 timer_stats_account_hrtimer(timer);
1214 fn = timer->function;
1217 * Because we run timers from hardirq context, there is no chance
1218 * they get migrated to another cpu, therefore its safe to unlock
1219 * the timer base.
1221 raw_spin_unlock(&cpu_base->lock);
1222 trace_hrtimer_expire_entry(timer, now);
1223 restart = fn(timer);
1224 trace_hrtimer_expire_exit(timer);
1225 raw_spin_lock(&cpu_base->lock);
1228 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1229 * we do not reprogramm the event hardware. Happens either in
1230 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1232 if (restart != HRTIMER_NORESTART) {
1233 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1234 enqueue_hrtimer(timer, base);
1236 timer->state &= ~HRTIMER_STATE_CALLBACK;
1239 #ifdef CONFIG_HIGH_RES_TIMERS
1242 * High resolution timer interrupt
1243 * Called with interrupts disabled
1245 void hrtimer_interrupt(struct clock_event_device *dev)
1247 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1248 struct hrtimer_clock_base *base;
1249 ktime_t expires_next, now, entry_time, delta;
1250 int i, retries = 0;
1252 BUG_ON(!cpu_base->hres_active);
1253 cpu_base->nr_events++;
1254 dev->next_event.tv64 = KTIME_MAX;
1256 entry_time = now = ktime_get();
1257 retry:
1258 expires_next.tv64 = KTIME_MAX;
1260 raw_spin_lock(&cpu_base->lock);
1262 * We set expires_next to KTIME_MAX here with cpu_base->lock
1263 * held to prevent that a timer is enqueued in our queue via
1264 * the migration code. This does not affect enqueueing of
1265 * timers which run their callback and need to be requeued on
1266 * this CPU.
1268 cpu_base->expires_next.tv64 = KTIME_MAX;
1270 base = cpu_base->clock_base;
1272 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1273 ktime_t basenow;
1274 struct rb_node *node;
1276 basenow = ktime_add(now, base->offset);
1278 while ((node = base->first)) {
1279 struct hrtimer *timer;
1281 timer = rb_entry(node, struct hrtimer, node);
1284 * The immediate goal for using the softexpires is
1285 * minimizing wakeups, not running timers at the
1286 * earliest interrupt after their soft expiration.
1287 * This allows us to avoid using a Priority Search
1288 * Tree, which can answer a stabbing querry for
1289 * overlapping intervals and instead use the simple
1290 * BST we already have.
1291 * We don't add extra wakeups by delaying timers that
1292 * are right-of a not yet expired timer, because that
1293 * timer will have to trigger a wakeup anyway.
1296 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1297 ktime_t expires;
1299 expires = ktime_sub(hrtimer_get_expires(timer),
1300 base->offset);
1301 if (expires.tv64 < expires_next.tv64)
1302 expires_next = expires;
1303 break;
1306 __run_hrtimer(timer, &basenow);
1308 base++;
1312 * Store the new expiry value so the migration code can verify
1313 * against it.
1315 cpu_base->expires_next = expires_next;
1316 raw_spin_unlock(&cpu_base->lock);
1318 /* Reprogramming necessary ? */
1319 if (expires_next.tv64 == KTIME_MAX ||
1320 !tick_program_event(expires_next, 0)) {
1321 cpu_base->hang_detected = 0;
1322 return;
1326 * The next timer was already expired due to:
1327 * - tracing
1328 * - long lasting callbacks
1329 * - being scheduled away when running in a VM
1331 * We need to prevent that we loop forever in the hrtimer
1332 * interrupt routine. We give it 3 attempts to avoid
1333 * overreacting on some spurious event.
1335 now = ktime_get();
1336 cpu_base->nr_retries++;
1337 if (++retries < 3)
1338 goto retry;
1340 * Give the system a chance to do something else than looping
1341 * here. We stored the entry time, so we know exactly how long
1342 * we spent here. We schedule the next event this amount of
1343 * time away.
1345 cpu_base->nr_hangs++;
1346 cpu_base->hang_detected = 1;
1347 delta = ktime_sub(now, entry_time);
1348 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1349 cpu_base->max_hang_time = delta;
1351 * Limit it to a sensible value as we enforce a longer
1352 * delay. Give the CPU at least 100ms to catch up.
1354 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1355 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1356 else
1357 expires_next = ktime_add(now, delta);
1358 tick_program_event(expires_next, 1);
1359 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1360 ktime_to_ns(delta));
1364 * local version of hrtimer_peek_ahead_timers() called with interrupts
1365 * disabled.
1367 static void __hrtimer_peek_ahead_timers(void)
1369 struct tick_device *td;
1371 if (!hrtimer_hres_active())
1372 return;
1374 td = &__get_cpu_var(tick_cpu_device);
1375 if (td && td->evtdev)
1376 hrtimer_interrupt(td->evtdev);
1380 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1382 * hrtimer_peek_ahead_timers will peek at the timer queue of
1383 * the current cpu and check if there are any timers for which
1384 * the soft expires time has passed. If any such timers exist,
1385 * they are run immediately and then removed from the timer queue.
1388 void hrtimer_peek_ahead_timers(void)
1390 unsigned long flags;
1392 local_irq_save(flags);
1393 __hrtimer_peek_ahead_timers();
1394 local_irq_restore(flags);
1397 static void run_hrtimer_softirq(struct softirq_action *h)
1399 hrtimer_peek_ahead_timers();
1402 #else /* CONFIG_HIGH_RES_TIMERS */
1404 static inline void __hrtimer_peek_ahead_timers(void) { }
1406 #endif /* !CONFIG_HIGH_RES_TIMERS */
1409 * Called from timer softirq every jiffy, expire hrtimers:
1411 * For HRT its the fall back code to run the softirq in the timer
1412 * softirq context in case the hrtimer initialization failed or has
1413 * not been done yet.
1415 void hrtimer_run_pending(void)
1417 if (hrtimer_hres_active())
1418 return;
1421 * This _is_ ugly: We have to check in the softirq context,
1422 * whether we can switch to highres and / or nohz mode. The
1423 * clocksource switch happens in the timer interrupt with
1424 * xtime_lock held. Notification from there only sets the
1425 * check bit in the tick_oneshot code, otherwise we might
1426 * deadlock vs. xtime_lock.
1428 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1429 hrtimer_switch_to_hres();
1433 * Called from hardirq context every jiffy
1435 void hrtimer_run_queues(void)
1437 struct rb_node *node;
1438 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1439 struct hrtimer_clock_base *base;
1440 int index, gettime = 1;
1442 if (hrtimer_hres_active())
1443 return;
1445 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1446 base = &cpu_base->clock_base[index];
1448 if (!base->first)
1449 continue;
1451 if (gettime) {
1452 hrtimer_get_softirq_time(cpu_base);
1453 gettime = 0;
1456 raw_spin_lock(&cpu_base->lock);
1458 while ((node = base->first)) {
1459 struct hrtimer *timer;
1461 timer = rb_entry(node, struct hrtimer, node);
1462 if (base->softirq_time.tv64 <=
1463 hrtimer_get_expires_tv64(timer))
1464 break;
1466 __run_hrtimer(timer, &base->softirq_time);
1468 raw_spin_unlock(&cpu_base->lock);
1473 * Sleep related functions:
1475 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1477 struct hrtimer_sleeper *t =
1478 container_of(timer, struct hrtimer_sleeper, timer);
1479 struct task_struct *task = t->task;
1481 t->task = NULL;
1482 if (task)
1483 wake_up_process(task);
1485 return HRTIMER_NORESTART;
1488 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1490 sl->timer.function = hrtimer_wakeup;
1491 sl->task = task;
1493 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1495 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1497 hrtimer_init_sleeper(t, current);
1499 do {
1500 set_current_state(TASK_INTERRUPTIBLE);
1501 hrtimer_start_expires(&t->timer, mode);
1502 if (!hrtimer_active(&t->timer))
1503 t->task = NULL;
1505 if (likely(t->task))
1506 schedule();
1508 hrtimer_cancel(&t->timer);
1509 mode = HRTIMER_MODE_ABS;
1511 } while (t->task && !signal_pending(current));
1513 __set_current_state(TASK_RUNNING);
1515 return t->task == NULL;
1518 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1520 struct timespec rmt;
1521 ktime_t rem;
1523 rem = hrtimer_expires_remaining(timer);
1524 if (rem.tv64 <= 0)
1525 return 0;
1526 rmt = ktime_to_timespec(rem);
1528 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1529 return -EFAULT;
1531 return 1;
1534 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1536 struct hrtimer_sleeper t;
1537 struct timespec __user *rmtp;
1538 int ret = 0;
1540 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1541 HRTIMER_MODE_ABS);
1542 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1544 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1545 goto out;
1547 rmtp = restart->nanosleep.rmtp;
1548 if (rmtp) {
1549 ret = update_rmtp(&t.timer, rmtp);
1550 if (ret <= 0)
1551 goto out;
1554 /* The other values in restart are already filled in */
1555 ret = -ERESTART_RESTARTBLOCK;
1556 out:
1557 destroy_hrtimer_on_stack(&t.timer);
1558 return ret;
1561 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1562 const enum hrtimer_mode mode, const clockid_t clockid)
1564 struct restart_block *restart;
1565 struct hrtimer_sleeper t;
1566 int ret = 0;
1567 unsigned long slack;
1569 slack = current->timer_slack_ns;
1570 if (rt_task(current))
1571 slack = 0;
1573 hrtimer_init_on_stack(&t.timer, clockid, mode);
1574 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1575 if (do_nanosleep(&t, mode))
1576 goto out;
1578 /* Absolute timers do not update the rmtp value and restart: */
1579 if (mode == HRTIMER_MODE_ABS) {
1580 ret = -ERESTARTNOHAND;
1581 goto out;
1584 if (rmtp) {
1585 ret = update_rmtp(&t.timer, rmtp);
1586 if (ret <= 0)
1587 goto out;
1590 restart = &current_thread_info()->restart_block;
1591 restart->fn = hrtimer_nanosleep_restart;
1592 restart->nanosleep.index = t.timer.base->index;
1593 restart->nanosleep.rmtp = rmtp;
1594 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1596 ret = -ERESTART_RESTARTBLOCK;
1597 out:
1598 destroy_hrtimer_on_stack(&t.timer);
1599 return ret;
1602 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1603 struct timespec __user *, rmtp)
1605 struct timespec tu;
1607 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1608 return -EFAULT;
1610 if (!timespec_valid(&tu))
1611 return -EINVAL;
1613 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1617 * Functions related to boot-time initialization:
1619 static void __cpuinit init_hrtimers_cpu(int cpu)
1621 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1622 int i;
1624 raw_spin_lock_init(&cpu_base->lock);
1626 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1627 cpu_base->clock_base[i].cpu_base = cpu_base;
1629 hrtimer_init_hres(cpu_base);
1632 #ifdef CONFIG_HOTPLUG_CPU
1634 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1635 struct hrtimer_clock_base *new_base)
1637 struct hrtimer *timer;
1638 struct rb_node *node;
1640 while ((node = rb_first(&old_base->active))) {
1641 timer = rb_entry(node, struct hrtimer, node);
1642 BUG_ON(hrtimer_callback_running(timer));
1643 debug_deactivate(timer);
1646 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1647 * timer could be seen as !active and just vanish away
1648 * under us on another CPU
1650 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1651 timer->base = new_base;
1653 * Enqueue the timers on the new cpu. This does not
1654 * reprogram the event device in case the timer
1655 * expires before the earliest on this CPU, but we run
1656 * hrtimer_interrupt after we migrated everything to
1657 * sort out already expired timers and reprogram the
1658 * event device.
1660 enqueue_hrtimer(timer, new_base);
1662 /* Clear the migration state bit */
1663 timer->state &= ~HRTIMER_STATE_MIGRATE;
1667 static void migrate_hrtimers(int scpu)
1669 struct hrtimer_cpu_base *old_base, *new_base;
1670 int i;
1672 BUG_ON(cpu_online(scpu));
1673 tick_cancel_sched_timer(scpu);
1675 local_irq_disable();
1676 old_base = &per_cpu(hrtimer_bases, scpu);
1677 new_base = &__get_cpu_var(hrtimer_bases);
1679 * The caller is globally serialized and nobody else
1680 * takes two locks at once, deadlock is not possible.
1682 raw_spin_lock(&new_base->lock);
1683 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1685 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1686 migrate_hrtimer_list(&old_base->clock_base[i],
1687 &new_base->clock_base[i]);
1690 raw_spin_unlock(&old_base->lock);
1691 raw_spin_unlock(&new_base->lock);
1693 /* Check, if we got expired work to do */
1694 __hrtimer_peek_ahead_timers();
1695 local_irq_enable();
1698 #endif /* CONFIG_HOTPLUG_CPU */
1700 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1701 unsigned long action, void *hcpu)
1703 int scpu = (long)hcpu;
1705 switch (action) {
1707 case CPU_UP_PREPARE:
1708 case CPU_UP_PREPARE_FROZEN:
1709 init_hrtimers_cpu(scpu);
1710 break;
1712 #ifdef CONFIG_HOTPLUG_CPU
1713 case CPU_DYING:
1714 case CPU_DYING_FROZEN:
1715 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1716 break;
1717 case CPU_DEAD:
1718 case CPU_DEAD_FROZEN:
1720 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1721 migrate_hrtimers(scpu);
1722 break;
1724 #endif
1726 default:
1727 break;
1730 return NOTIFY_OK;
1733 static struct notifier_block __cpuinitdata hrtimers_nb = {
1734 .notifier_call = hrtimer_cpu_notify,
1737 void __init hrtimers_init(void)
1739 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1740 (void *)(long)smp_processor_id());
1741 register_cpu_notifier(&hrtimers_nb);
1742 #ifdef CONFIG_HIGH_RES_TIMERS
1743 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1744 #endif
1748 * schedule_hrtimeout_range_clock - sleep until timeout
1749 * @expires: timeout value (ktime_t)
1750 * @delta: slack in expires timeout (ktime_t)
1751 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1752 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1754 int __sched
1755 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1756 const enum hrtimer_mode mode, int clock)
1758 struct hrtimer_sleeper t;
1761 * Optimize when a zero timeout value is given. It does not
1762 * matter whether this is an absolute or a relative time.
1764 if (expires && !expires->tv64) {
1765 __set_current_state(TASK_RUNNING);
1766 return 0;
1770 * A NULL parameter means "inifinte"
1772 if (!expires) {
1773 schedule();
1774 __set_current_state(TASK_RUNNING);
1775 return -EINTR;
1778 hrtimer_init_on_stack(&t.timer, clock, mode);
1779 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1781 hrtimer_init_sleeper(&t, current);
1783 hrtimer_start_expires(&t.timer, mode);
1784 if (!hrtimer_active(&t.timer))
1785 t.task = NULL;
1787 if (likely(t.task))
1788 schedule();
1790 hrtimer_cancel(&t.timer);
1791 destroy_hrtimer_on_stack(&t.timer);
1793 __set_current_state(TASK_RUNNING);
1795 return !t.task ? 0 : -EINTR;
1799 * schedule_hrtimeout_range - sleep until timeout
1800 * @expires: timeout value (ktime_t)
1801 * @delta: slack in expires timeout (ktime_t)
1802 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1804 * Make the current task sleep until the given expiry time has
1805 * elapsed. The routine will return immediately unless
1806 * the current task state has been set (see set_current_state()).
1808 * The @delta argument gives the kernel the freedom to schedule the
1809 * actual wakeup to a time that is both power and performance friendly.
1810 * The kernel give the normal best effort behavior for "@expires+@delta",
1811 * but may decide to fire the timer earlier, but no earlier than @expires.
1813 * You can set the task state as follows -
1815 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1816 * pass before the routine returns.
1818 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1819 * delivered to the current task.
1821 * The current task state is guaranteed to be TASK_RUNNING when this
1822 * routine returns.
1824 * Returns 0 when the timer has expired otherwise -EINTR
1826 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1827 const enum hrtimer_mode mode)
1829 return schedule_hrtimeout_range_clock(expires, delta, mode,
1830 CLOCK_MONOTONIC);
1832 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1835 * schedule_hrtimeout - sleep until timeout
1836 * @expires: timeout value (ktime_t)
1837 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1839 * Make the current task sleep until the given expiry time has
1840 * elapsed. The routine will return immediately unless
1841 * the current task state has been set (see set_current_state()).
1843 * You can set the task state as follows -
1845 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1846 * pass before the routine returns.
1848 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1849 * delivered to the current task.
1851 * The current task state is guaranteed to be TASK_RUNNING when this
1852 * routine returns.
1854 * Returns 0 when the timer has expired otherwise -EINTR
1856 int __sched schedule_hrtimeout(ktime_t *expires,
1857 const enum hrtimer_mode mode)
1859 return schedule_hrtimeout_range(expires, 0, mode);
1861 EXPORT_SYMBOL_GPL(schedule_hrtimeout);