2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include <linux/ratelimit.h>
33 * Inode locking rules:
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget()
37 * inode->i_sb->s_inode_lru_lock protects:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode_sb_list_lock protects:
40 * sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
50 * inode->i_sb->s_inode_lru_lock
63 static unsigned int i_hash_mask __read_mostly
;
64 static unsigned int i_hash_shift __read_mostly
;
65 static struct hlist_head
*inode_hashtable __read_mostly
;
66 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
68 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
71 * Empty aops. Can be used for the cases where the user does not
72 * define any of the address_space operations.
74 const struct address_space_operations empty_aops
= {
76 EXPORT_SYMBOL(empty_aops
);
79 * Statistics gathering..
81 struct inodes_stat_t inodes_stat
;
83 static DEFINE_PER_CPU(unsigned int, nr_inodes
);
84 static DEFINE_PER_CPU(unsigned int, nr_unused
);
86 static struct kmem_cache
*inode_cachep __read_mostly
;
88 static int get_nr_inodes(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_inodes
, i
);
94 return sum
< 0 ? 0 : sum
;
97 static inline int get_nr_inodes_unused(void)
101 for_each_possible_cpu(i
)
102 sum
+= per_cpu(nr_unused
, i
);
103 return sum
< 0 ? 0 : sum
;
106 int get_nr_dirty_inodes(void)
108 /* not actually dirty inodes, but a wild approximation */
109 int nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
110 return nr_dirty
> 0 ? nr_dirty
: 0;
114 * Handle nr_inode sysctl
117 int proc_nr_inodes(ctl_table
*table
, int write
,
118 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
120 inodes_stat
.nr_inodes
= get_nr_inodes();
121 inodes_stat
.nr_unused
= get_nr_inodes_unused();
122 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
127 * inode_init_always - perform inode structure intialisation
128 * @sb: superblock inode belongs to
129 * @inode: inode to initialise
131 * These are initializations that need to be done on every inode
132 * allocation as the fields are not initialised by slab allocation.
134 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
136 static const struct inode_operations empty_iops
;
137 static const struct file_operations empty_fops
;
138 struct address_space
*const mapping
= &inode
->i_data
;
141 inode
->i_blkbits
= sb
->s_blocksize_bits
;
143 atomic_set(&inode
->i_count
, 1);
144 inode
->i_op
= &empty_iops
;
145 inode
->i_fop
= &empty_fops
;
146 inode
->__i_nlink
= 1;
147 inode
->i_opflags
= 0;
150 atomic_set(&inode
->i_writecount
, 0);
154 inode
->i_generation
= 0;
156 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
158 inode
->i_pipe
= NULL
;
159 inode
->i_bdev
= NULL
;
160 inode
->i_cdev
= NULL
;
162 inode
->dirtied_when
= 0;
164 if (security_inode_alloc(inode
))
166 spin_lock_init(&inode
->i_lock
);
167 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
169 mutex_init(&inode
->i_mutex
);
170 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
172 atomic_set(&inode
->i_dio_count
, 0);
174 mapping
->a_ops
= &empty_aops
;
175 mapping
->host
= inode
;
177 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
178 mapping
->assoc_mapping
= NULL
;
179 mapping
->backing_dev_info
= &default_backing_dev_info
;
180 mapping
->writeback_index
= 0;
183 * If the block_device provides a backing_dev_info for client
184 * inodes then use that. Otherwise the inode share the bdev's
188 struct backing_dev_info
*bdi
;
190 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
191 mapping
->backing_dev_info
= bdi
;
193 inode
->i_private
= NULL
;
194 inode
->i_mapping
= mapping
;
195 INIT_LIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
200 #ifdef CONFIG_FSNOTIFY
201 inode
->i_fsnotify_mask
= 0;
204 this_cpu_inc(nr_inodes
);
210 EXPORT_SYMBOL(inode_init_always
);
212 static struct inode
*alloc_inode(struct super_block
*sb
)
216 if (sb
->s_op
->alloc_inode
)
217 inode
= sb
->s_op
->alloc_inode(sb
);
219 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
224 if (unlikely(inode_init_always(sb
, inode
))) {
225 if (inode
->i_sb
->s_op
->destroy_inode
)
226 inode
->i_sb
->s_op
->destroy_inode(inode
);
228 kmem_cache_free(inode_cachep
, inode
);
235 void free_inode_nonrcu(struct inode
*inode
)
237 kmem_cache_free(inode_cachep
, inode
);
239 EXPORT_SYMBOL(free_inode_nonrcu
);
241 void __destroy_inode(struct inode
*inode
)
243 BUG_ON(inode_has_buffers(inode
));
244 security_inode_free(inode
);
245 fsnotify_inode_delete(inode
);
246 if (!inode
->i_nlink
) {
247 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
248 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
251 #ifdef CONFIG_FS_POSIX_ACL
252 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
253 posix_acl_release(inode
->i_acl
);
254 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
255 posix_acl_release(inode
->i_default_acl
);
257 this_cpu_dec(nr_inodes
);
259 EXPORT_SYMBOL(__destroy_inode
);
261 static void i_callback(struct rcu_head
*head
)
263 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
264 kmem_cache_free(inode_cachep
, inode
);
267 static void destroy_inode(struct inode
*inode
)
269 BUG_ON(!list_empty(&inode
->i_lru
));
270 __destroy_inode(inode
);
271 if (inode
->i_sb
->s_op
->destroy_inode
)
272 inode
->i_sb
->s_op
->destroy_inode(inode
);
274 call_rcu(&inode
->i_rcu
, i_callback
);
278 * drop_nlink - directly drop an inode's link count
281 * This is a low-level filesystem helper to replace any
282 * direct filesystem manipulation of i_nlink. In cases
283 * where we are attempting to track writes to the
284 * filesystem, a decrement to zero means an imminent
285 * write when the file is truncated and actually unlinked
288 void drop_nlink(struct inode
*inode
)
290 WARN_ON(inode
->i_nlink
== 0);
293 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
295 EXPORT_SYMBOL(drop_nlink
);
298 * clear_nlink - directly zero an inode's link count
301 * This is a low-level filesystem helper to replace any
302 * direct filesystem manipulation of i_nlink. See
303 * drop_nlink() for why we care about i_nlink hitting zero.
305 void clear_nlink(struct inode
*inode
)
307 if (inode
->i_nlink
) {
308 inode
->__i_nlink
= 0;
309 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
312 EXPORT_SYMBOL(clear_nlink
);
315 * set_nlink - directly set an inode's link count
317 * @nlink: new nlink (should be non-zero)
319 * This is a low-level filesystem helper to replace any
320 * direct filesystem manipulation of i_nlink.
322 void set_nlink(struct inode
*inode
, unsigned int nlink
)
327 /* Yes, some filesystems do change nlink from zero to one */
328 if (inode
->i_nlink
== 0)
329 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
331 inode
->__i_nlink
= nlink
;
334 EXPORT_SYMBOL(set_nlink
);
337 * inc_nlink - directly increment an inode's link count
340 * This is a low-level filesystem helper to replace any
341 * direct filesystem manipulation of i_nlink. Currently,
342 * it is only here for parity with dec_nlink().
344 void inc_nlink(struct inode
*inode
)
346 if (WARN_ON(inode
->i_nlink
== 0))
347 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
351 EXPORT_SYMBOL(inc_nlink
);
353 void address_space_init_once(struct address_space
*mapping
)
355 memset(mapping
, 0, sizeof(*mapping
));
356 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
357 spin_lock_init(&mapping
->tree_lock
);
358 mutex_init(&mapping
->i_mmap_mutex
);
359 INIT_LIST_HEAD(&mapping
->private_list
);
360 spin_lock_init(&mapping
->private_lock
);
361 INIT_RAW_PRIO_TREE_ROOT(&mapping
->i_mmap
);
362 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
364 EXPORT_SYMBOL(address_space_init_once
);
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
371 void inode_init_once(struct inode
*inode
)
373 memset(inode
, 0, sizeof(*inode
));
374 INIT_HLIST_NODE(&inode
->i_hash
);
375 INIT_LIST_HEAD(&inode
->i_devices
);
376 INIT_LIST_HEAD(&inode
->i_wb_list
);
377 INIT_LIST_HEAD(&inode
->i_lru
);
378 address_space_init_once(&inode
->i_data
);
379 i_size_ordered_init(inode
);
380 #ifdef CONFIG_FSNOTIFY
381 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
384 EXPORT_SYMBOL(inode_init_once
);
386 static void init_once(void *foo
)
388 struct inode
*inode
= (struct inode
*) foo
;
390 inode_init_once(inode
);
394 * inode->i_lock must be held
396 void __iget(struct inode
*inode
)
398 atomic_inc(&inode
->i_count
);
402 * get additional reference to inode; caller must already hold one.
404 void ihold(struct inode
*inode
)
406 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
408 EXPORT_SYMBOL(ihold
);
410 static void inode_lru_list_add(struct inode
*inode
)
412 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
413 if (list_empty(&inode
->i_lru
)) {
414 list_add(&inode
->i_lru
, &inode
->i_sb
->s_inode_lru
);
415 inode
->i_sb
->s_nr_inodes_unused
++;
416 this_cpu_inc(nr_unused
);
418 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
421 static void inode_lru_list_del(struct inode
*inode
)
423 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
424 if (!list_empty(&inode
->i_lru
)) {
425 list_del_init(&inode
->i_lru
);
426 inode
->i_sb
->s_nr_inodes_unused
--;
427 this_cpu_dec(nr_unused
);
429 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
433 * inode_sb_list_add - add inode to the superblock list of inodes
434 * @inode: inode to add
436 void inode_sb_list_add(struct inode
*inode
)
438 spin_lock(&inode_sb_list_lock
);
439 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
440 spin_unlock(&inode_sb_list_lock
);
442 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
444 static inline void inode_sb_list_del(struct inode
*inode
)
446 if (!list_empty(&inode
->i_sb_list
)) {
447 spin_lock(&inode_sb_list_lock
);
448 list_del_init(&inode
->i_sb_list
);
449 spin_unlock(&inode_sb_list_lock
);
453 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
457 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
459 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
460 return tmp
& i_hash_mask
;
464 * __insert_inode_hash - hash an inode
465 * @inode: unhashed inode
466 * @hashval: unsigned long value used to locate this object in the
469 * Add an inode to the inode hash for this superblock.
471 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
473 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
475 spin_lock(&inode_hash_lock
);
476 spin_lock(&inode
->i_lock
);
477 hlist_add_head(&inode
->i_hash
, b
);
478 spin_unlock(&inode
->i_lock
);
479 spin_unlock(&inode_hash_lock
);
481 EXPORT_SYMBOL(__insert_inode_hash
);
484 * __remove_inode_hash - remove an inode from the hash
485 * @inode: inode to unhash
487 * Remove an inode from the superblock.
489 void __remove_inode_hash(struct inode
*inode
)
491 spin_lock(&inode_hash_lock
);
492 spin_lock(&inode
->i_lock
);
493 hlist_del_init(&inode
->i_hash
);
494 spin_unlock(&inode
->i_lock
);
495 spin_unlock(&inode_hash_lock
);
497 EXPORT_SYMBOL(__remove_inode_hash
);
499 void end_writeback(struct inode
*inode
)
503 * We have to cycle tree_lock here because reclaim can be still in the
504 * process of removing the last page (in __delete_from_page_cache())
505 * and we must not free mapping under it.
507 spin_lock_irq(&inode
->i_data
.tree_lock
);
508 BUG_ON(inode
->i_data
.nrpages
);
509 spin_unlock_irq(&inode
->i_data
.tree_lock
);
510 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
511 BUG_ON(!(inode
->i_state
& I_FREEING
));
512 BUG_ON(inode
->i_state
& I_CLEAR
);
513 inode_sync_wait(inode
);
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode
->i_state
= I_FREEING
| I_CLEAR
;
517 EXPORT_SYMBOL(end_writeback
);
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
532 static void evict(struct inode
*inode
)
534 const struct super_operations
*op
= inode
->i_sb
->s_op
;
536 BUG_ON(!(inode
->i_state
& I_FREEING
));
537 BUG_ON(!list_empty(&inode
->i_lru
));
539 if (!list_empty(&inode
->i_wb_list
))
540 inode_wb_list_del(inode
);
542 inode_sb_list_del(inode
);
544 if (op
->evict_inode
) {
545 op
->evict_inode(inode
);
547 if (inode
->i_data
.nrpages
)
548 truncate_inode_pages(&inode
->i_data
, 0);
549 end_writeback(inode
);
551 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
553 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
556 remove_inode_hash(inode
);
558 spin_lock(&inode
->i_lock
);
559 wake_up_bit(&inode
->i_state
, __I_NEW
);
560 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
561 spin_unlock(&inode
->i_lock
);
563 destroy_inode(inode
);
567 * dispose_list - dispose of the contents of a local list
568 * @head: the head of the list to free
570 * Dispose-list gets a local list with local inodes in it, so it doesn't
571 * need to worry about list corruption and SMP locks.
573 static void dispose_list(struct list_head
*head
)
575 while (!list_empty(head
)) {
578 inode
= list_first_entry(head
, struct inode
, i_lru
);
579 list_del_init(&inode
->i_lru
);
586 * evict_inodes - evict all evictable inodes for a superblock
587 * @sb: superblock to operate on
589 * Make sure that no inodes with zero refcount are retained. This is
590 * called by superblock shutdown after having MS_ACTIVE flag removed,
591 * so any inode reaching zero refcount during or after that call will
592 * be immediately evicted.
594 void evict_inodes(struct super_block
*sb
)
596 struct inode
*inode
, *next
;
599 spin_lock(&inode_sb_list_lock
);
600 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
601 if (atomic_read(&inode
->i_count
))
604 spin_lock(&inode
->i_lock
);
605 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
606 spin_unlock(&inode
->i_lock
);
610 inode
->i_state
|= I_FREEING
;
611 inode_lru_list_del(inode
);
612 spin_unlock(&inode
->i_lock
);
613 list_add(&inode
->i_lru
, &dispose
);
615 spin_unlock(&inode_sb_list_lock
);
617 dispose_list(&dispose
);
621 * invalidate_inodes - attempt to free all inodes on a superblock
622 * @sb: superblock to operate on
623 * @kill_dirty: flag to guide handling of dirty inodes
625 * Attempts to free all inodes for a given superblock. If there were any
626 * busy inodes return a non-zero value, else zero.
627 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
630 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
633 struct inode
*inode
, *next
;
636 spin_lock(&inode_sb_list_lock
);
637 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
638 spin_lock(&inode
->i_lock
);
639 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
640 spin_unlock(&inode
->i_lock
);
643 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
644 spin_unlock(&inode
->i_lock
);
648 if (atomic_read(&inode
->i_count
)) {
649 spin_unlock(&inode
->i_lock
);
654 inode
->i_state
|= I_FREEING
;
655 inode_lru_list_del(inode
);
656 spin_unlock(&inode
->i_lock
);
657 list_add(&inode
->i_lru
, &dispose
);
659 spin_unlock(&inode_sb_list_lock
);
661 dispose_list(&dispose
);
666 static int can_unuse(struct inode
*inode
)
668 if (inode
->i_state
& ~I_REFERENCED
)
670 if (inode_has_buffers(inode
))
672 if (atomic_read(&inode
->i_count
))
674 if (inode
->i_data
.nrpages
)
680 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
681 * This is called from the superblock shrinker function with a number of inodes
682 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
683 * then are freed outside inode_lock by dispose_list().
685 * Any inodes which are pinned purely because of attached pagecache have their
686 * pagecache removed. If the inode has metadata buffers attached to
687 * mapping->private_list then try to remove them.
689 * If the inode has the I_REFERENCED flag set, then it means that it has been
690 * used recently - the flag is set in iput_final(). When we encounter such an
691 * inode, clear the flag and move it to the back of the LRU so it gets another
692 * pass through the LRU before it gets reclaimed. This is necessary because of
693 * the fact we are doing lazy LRU updates to minimise lock contention so the
694 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
695 * with this flag set because they are the inodes that are out of order.
697 void prune_icache_sb(struct super_block
*sb
, int nr_to_scan
)
701 unsigned long reap
= 0;
703 spin_lock(&sb
->s_inode_lru_lock
);
704 for (nr_scanned
= nr_to_scan
; nr_scanned
>= 0; nr_scanned
--) {
707 if (list_empty(&sb
->s_inode_lru
))
710 inode
= list_entry(sb
->s_inode_lru
.prev
, struct inode
, i_lru
);
713 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
714 * so use a trylock. If we fail to get the lock, just move the
715 * inode to the back of the list so we don't spin on it.
717 if (!spin_trylock(&inode
->i_lock
)) {
718 list_move_tail(&inode
->i_lru
, &sb
->s_inode_lru
);
723 * Referenced or dirty inodes are still in use. Give them
724 * another pass through the LRU as we canot reclaim them now.
726 if (atomic_read(&inode
->i_count
) ||
727 (inode
->i_state
& ~I_REFERENCED
)) {
728 list_del_init(&inode
->i_lru
);
729 spin_unlock(&inode
->i_lock
);
730 sb
->s_nr_inodes_unused
--;
731 this_cpu_dec(nr_unused
);
735 /* recently referenced inodes get one more pass */
736 if (inode
->i_state
& I_REFERENCED
) {
737 inode
->i_state
&= ~I_REFERENCED
;
738 list_move(&inode
->i_lru
, &sb
->s_inode_lru
);
739 spin_unlock(&inode
->i_lock
);
742 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
744 spin_unlock(&inode
->i_lock
);
745 spin_unlock(&sb
->s_inode_lru_lock
);
746 if (remove_inode_buffers(inode
))
747 reap
+= invalidate_mapping_pages(&inode
->i_data
,
750 spin_lock(&sb
->s_inode_lru_lock
);
752 if (inode
!= list_entry(sb
->s_inode_lru
.next
,
753 struct inode
, i_lru
))
754 continue; /* wrong inode or list_empty */
755 /* avoid lock inversions with trylock */
756 if (!spin_trylock(&inode
->i_lock
))
758 if (!can_unuse(inode
)) {
759 spin_unlock(&inode
->i_lock
);
763 WARN_ON(inode
->i_state
& I_NEW
);
764 inode
->i_state
|= I_FREEING
;
765 spin_unlock(&inode
->i_lock
);
767 list_move(&inode
->i_lru
, &freeable
);
768 sb
->s_nr_inodes_unused
--;
769 this_cpu_dec(nr_unused
);
771 if (current_is_kswapd())
772 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
774 __count_vm_events(PGINODESTEAL
, reap
);
775 spin_unlock(&sb
->s_inode_lru_lock
);
776 if (current
->reclaim_state
)
777 current
->reclaim_state
->reclaimed_slab
+= reap
;
779 dispose_list(&freeable
);
782 static void __wait_on_freeing_inode(struct inode
*inode
);
784 * Called with the inode lock held.
786 static struct inode
*find_inode(struct super_block
*sb
,
787 struct hlist_head
*head
,
788 int (*test
)(struct inode
*, void *),
791 struct hlist_node
*node
;
792 struct inode
*inode
= NULL
;
795 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
796 spin_lock(&inode
->i_lock
);
797 if (inode
->i_sb
!= sb
) {
798 spin_unlock(&inode
->i_lock
);
801 if (!test(inode
, data
)) {
802 spin_unlock(&inode
->i_lock
);
805 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
806 __wait_on_freeing_inode(inode
);
810 spin_unlock(&inode
->i_lock
);
817 * find_inode_fast is the fast path version of find_inode, see the comment at
818 * iget_locked for details.
820 static struct inode
*find_inode_fast(struct super_block
*sb
,
821 struct hlist_head
*head
, unsigned long ino
)
823 struct hlist_node
*node
;
824 struct inode
*inode
= NULL
;
827 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
828 spin_lock(&inode
->i_lock
);
829 if (inode
->i_ino
!= ino
) {
830 spin_unlock(&inode
->i_lock
);
833 if (inode
->i_sb
!= sb
) {
834 spin_unlock(&inode
->i_lock
);
837 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
838 __wait_on_freeing_inode(inode
);
842 spin_unlock(&inode
->i_lock
);
849 * Each cpu owns a range of LAST_INO_BATCH numbers.
850 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
851 * to renew the exhausted range.
853 * This does not significantly increase overflow rate because every CPU can
854 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
855 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
856 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
857 * overflow rate by 2x, which does not seem too significant.
859 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
860 * error if st_ino won't fit in target struct field. Use 32bit counter
861 * here to attempt to avoid that.
863 #define LAST_INO_BATCH 1024
864 static DEFINE_PER_CPU(unsigned int, last_ino
);
866 unsigned int get_next_ino(void)
868 unsigned int *p
= &get_cpu_var(last_ino
);
869 unsigned int res
= *p
;
872 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
873 static atomic_t shared_last_ino
;
874 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
876 res
= next
- LAST_INO_BATCH
;
881 put_cpu_var(last_ino
);
884 EXPORT_SYMBOL(get_next_ino
);
887 * new_inode_pseudo - obtain an inode
890 * Allocates a new inode for given superblock.
891 * Inode wont be chained in superblock s_inodes list
893 * - fs can't be unmount
894 * - quotas, fsnotify, writeback can't work
896 struct inode
*new_inode_pseudo(struct super_block
*sb
)
898 struct inode
*inode
= alloc_inode(sb
);
901 spin_lock(&inode
->i_lock
);
903 spin_unlock(&inode
->i_lock
);
904 INIT_LIST_HEAD(&inode
->i_sb_list
);
910 * new_inode - obtain an inode
913 * Allocates a new inode for given superblock. The default gfp_mask
914 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
915 * If HIGHMEM pages are unsuitable or it is known that pages allocated
916 * for the page cache are not reclaimable or migratable,
917 * mapping_set_gfp_mask() must be called with suitable flags on the
918 * newly created inode's mapping
921 struct inode
*new_inode(struct super_block
*sb
)
925 spin_lock_prefetch(&inode_sb_list_lock
);
927 inode
= new_inode_pseudo(sb
);
929 inode_sb_list_add(inode
);
932 EXPORT_SYMBOL(new_inode
);
934 #ifdef CONFIG_DEBUG_LOCK_ALLOC
935 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
937 if (S_ISDIR(inode
->i_mode
)) {
938 struct file_system_type
*type
= inode
->i_sb
->s_type
;
940 /* Set new key only if filesystem hasn't already changed it */
941 if (lockdep_match_class(&inode
->i_mutex
, &type
->i_mutex_key
)) {
943 * ensure nobody is actually holding i_mutex
945 mutex_destroy(&inode
->i_mutex
);
946 mutex_init(&inode
->i_mutex
);
947 lockdep_set_class(&inode
->i_mutex
,
948 &type
->i_mutex_dir_key
);
952 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
956 * unlock_new_inode - clear the I_NEW state and wake up any waiters
957 * @inode: new inode to unlock
959 * Called when the inode is fully initialised to clear the new state of the
960 * inode and wake up anyone waiting for the inode to finish initialisation.
962 void unlock_new_inode(struct inode
*inode
)
964 lockdep_annotate_inode_mutex_key(inode
);
965 spin_lock(&inode
->i_lock
);
966 WARN_ON(!(inode
->i_state
& I_NEW
));
967 inode
->i_state
&= ~I_NEW
;
969 wake_up_bit(&inode
->i_state
, __I_NEW
);
970 spin_unlock(&inode
->i_lock
);
972 EXPORT_SYMBOL(unlock_new_inode
);
975 * iget5_locked - obtain an inode from a mounted file system
976 * @sb: super block of file system
977 * @hashval: hash value (usually inode number) to get
978 * @test: callback used for comparisons between inodes
979 * @set: callback used to initialize a new struct inode
980 * @data: opaque data pointer to pass to @test and @set
982 * Search for the inode specified by @hashval and @data in the inode cache,
983 * and if present it is return it with an increased reference count. This is
984 * a generalized version of iget_locked() for file systems where the inode
985 * number is not sufficient for unique identification of an inode.
987 * If the inode is not in cache, allocate a new inode and return it locked,
988 * hashed, and with the I_NEW flag set. The file system gets to fill it in
989 * before unlocking it via unlock_new_inode().
991 * Note both @test and @set are called with the inode_hash_lock held, so can't
994 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
995 int (*test
)(struct inode
*, void *),
996 int (*set
)(struct inode
*, void *), void *data
)
998 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1001 spin_lock(&inode_hash_lock
);
1002 inode
= find_inode(sb
, head
, test
, data
);
1003 spin_unlock(&inode_hash_lock
);
1006 wait_on_inode(inode
);
1010 inode
= alloc_inode(sb
);
1014 spin_lock(&inode_hash_lock
);
1015 /* We released the lock, so.. */
1016 old
= find_inode(sb
, head
, test
, data
);
1018 if (set(inode
, data
))
1021 spin_lock(&inode
->i_lock
);
1022 inode
->i_state
= I_NEW
;
1023 hlist_add_head(&inode
->i_hash
, head
);
1024 spin_unlock(&inode
->i_lock
);
1025 inode_sb_list_add(inode
);
1026 spin_unlock(&inode_hash_lock
);
1028 /* Return the locked inode with I_NEW set, the
1029 * caller is responsible for filling in the contents
1035 * Uhhuh, somebody else created the same inode under
1036 * us. Use the old inode instead of the one we just
1039 spin_unlock(&inode_hash_lock
);
1040 destroy_inode(inode
);
1042 wait_on_inode(inode
);
1047 spin_unlock(&inode_hash_lock
);
1048 destroy_inode(inode
);
1051 EXPORT_SYMBOL(iget5_locked
);
1054 * iget_locked - obtain an inode from a mounted file system
1055 * @sb: super block of file system
1056 * @ino: inode number to get
1058 * Search for the inode specified by @ino in the inode cache and if present
1059 * return it with an increased reference count. This is for file systems
1060 * where the inode number is sufficient for unique identification of an inode.
1062 * If the inode is not in cache, allocate a new inode and return it locked,
1063 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1064 * before unlocking it via unlock_new_inode().
1066 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1068 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1069 struct inode
*inode
;
1071 spin_lock(&inode_hash_lock
);
1072 inode
= find_inode_fast(sb
, head
, ino
);
1073 spin_unlock(&inode_hash_lock
);
1075 wait_on_inode(inode
);
1079 inode
= alloc_inode(sb
);
1083 spin_lock(&inode_hash_lock
);
1084 /* We released the lock, so.. */
1085 old
= find_inode_fast(sb
, head
, ino
);
1088 spin_lock(&inode
->i_lock
);
1089 inode
->i_state
= I_NEW
;
1090 hlist_add_head(&inode
->i_hash
, head
);
1091 spin_unlock(&inode
->i_lock
);
1092 inode_sb_list_add(inode
);
1093 spin_unlock(&inode_hash_lock
);
1095 /* Return the locked inode with I_NEW set, the
1096 * caller is responsible for filling in the contents
1102 * Uhhuh, somebody else created the same inode under
1103 * us. Use the old inode instead of the one we just
1106 spin_unlock(&inode_hash_lock
);
1107 destroy_inode(inode
);
1109 wait_on_inode(inode
);
1113 EXPORT_SYMBOL(iget_locked
);
1116 * search the inode cache for a matching inode number.
1117 * If we find one, then the inode number we are trying to
1118 * allocate is not unique and so we should not use it.
1120 * Returns 1 if the inode number is unique, 0 if it is not.
1122 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1124 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1125 struct hlist_node
*node
;
1126 struct inode
*inode
;
1128 spin_lock(&inode_hash_lock
);
1129 hlist_for_each_entry(inode
, node
, b
, i_hash
) {
1130 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1131 spin_unlock(&inode_hash_lock
);
1135 spin_unlock(&inode_hash_lock
);
1141 * iunique - get a unique inode number
1143 * @max_reserved: highest reserved inode number
1145 * Obtain an inode number that is unique on the system for a given
1146 * superblock. This is used by file systems that have no natural
1147 * permanent inode numbering system. An inode number is returned that
1148 * is higher than the reserved limit but unique.
1151 * With a large number of inodes live on the file system this function
1152 * currently becomes quite slow.
1154 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1157 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1158 * error if st_ino won't fit in target struct field. Use 32bit counter
1159 * here to attempt to avoid that.
1161 static DEFINE_SPINLOCK(iunique_lock
);
1162 static unsigned int counter
;
1165 spin_lock(&iunique_lock
);
1167 if (counter
<= max_reserved
)
1168 counter
= max_reserved
+ 1;
1170 } while (!test_inode_iunique(sb
, res
));
1171 spin_unlock(&iunique_lock
);
1175 EXPORT_SYMBOL(iunique
);
1177 struct inode
*igrab(struct inode
*inode
)
1179 spin_lock(&inode
->i_lock
);
1180 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1182 spin_unlock(&inode
->i_lock
);
1184 spin_unlock(&inode
->i_lock
);
1186 * Handle the case where s_op->clear_inode is not been
1187 * called yet, and somebody is calling igrab
1188 * while the inode is getting freed.
1194 EXPORT_SYMBOL(igrab
);
1197 * ilookup5_nowait - search for an inode in the inode cache
1198 * @sb: super block of file system to search
1199 * @hashval: hash value (usually inode number) to search for
1200 * @test: callback used for comparisons between inodes
1201 * @data: opaque data pointer to pass to @test
1203 * Search for the inode specified by @hashval and @data in the inode cache.
1204 * If the inode is in the cache, the inode is returned with an incremented
1207 * Note: I_NEW is not waited upon so you have to be very careful what you do
1208 * with the returned inode. You probably should be using ilookup5() instead.
1210 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1212 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1213 int (*test
)(struct inode
*, void *), void *data
)
1215 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1216 struct inode
*inode
;
1218 spin_lock(&inode_hash_lock
);
1219 inode
= find_inode(sb
, head
, test
, data
);
1220 spin_unlock(&inode_hash_lock
);
1224 EXPORT_SYMBOL(ilookup5_nowait
);
1227 * ilookup5 - search for an inode in the inode cache
1228 * @sb: super block of file system to search
1229 * @hashval: hash value (usually inode number) to search for
1230 * @test: callback used for comparisons between inodes
1231 * @data: opaque data pointer to pass to @test
1233 * Search for the inode specified by @hashval and @data in the inode cache,
1234 * and if the inode is in the cache, return the inode with an incremented
1235 * reference count. Waits on I_NEW before returning the inode.
1236 * returned with an incremented reference count.
1238 * This is a generalized version of ilookup() for file systems where the
1239 * inode number is not sufficient for unique identification of an inode.
1241 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1243 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1244 int (*test
)(struct inode
*, void *), void *data
)
1246 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1249 wait_on_inode(inode
);
1252 EXPORT_SYMBOL(ilookup5
);
1255 * ilookup - search for an inode in the inode cache
1256 * @sb: super block of file system to search
1257 * @ino: inode number to search for
1259 * Search for the inode @ino in the inode cache, and if the inode is in the
1260 * cache, the inode is returned with an incremented reference count.
1262 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1264 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1265 struct inode
*inode
;
1267 spin_lock(&inode_hash_lock
);
1268 inode
= find_inode_fast(sb
, head
, ino
);
1269 spin_unlock(&inode_hash_lock
);
1272 wait_on_inode(inode
);
1275 EXPORT_SYMBOL(ilookup
);
1277 int insert_inode_locked(struct inode
*inode
)
1279 struct super_block
*sb
= inode
->i_sb
;
1280 ino_t ino
= inode
->i_ino
;
1281 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1284 struct hlist_node
*node
;
1285 struct inode
*old
= NULL
;
1286 spin_lock(&inode_hash_lock
);
1287 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1288 if (old
->i_ino
!= ino
)
1290 if (old
->i_sb
!= sb
)
1292 spin_lock(&old
->i_lock
);
1293 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1294 spin_unlock(&old
->i_lock
);
1299 if (likely(!node
)) {
1300 spin_lock(&inode
->i_lock
);
1301 inode
->i_state
|= I_NEW
;
1302 hlist_add_head(&inode
->i_hash
, head
);
1303 spin_unlock(&inode
->i_lock
);
1304 spin_unlock(&inode_hash_lock
);
1308 spin_unlock(&old
->i_lock
);
1309 spin_unlock(&inode_hash_lock
);
1311 if (unlikely(!inode_unhashed(old
))) {
1318 EXPORT_SYMBOL(insert_inode_locked
);
1320 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1321 int (*test
)(struct inode
*, void *), void *data
)
1323 struct super_block
*sb
= inode
->i_sb
;
1324 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1327 struct hlist_node
*node
;
1328 struct inode
*old
= NULL
;
1330 spin_lock(&inode_hash_lock
);
1331 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1332 if (old
->i_sb
!= sb
)
1334 if (!test(old
, data
))
1336 spin_lock(&old
->i_lock
);
1337 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1338 spin_unlock(&old
->i_lock
);
1343 if (likely(!node
)) {
1344 spin_lock(&inode
->i_lock
);
1345 inode
->i_state
|= I_NEW
;
1346 hlist_add_head(&inode
->i_hash
, head
);
1347 spin_unlock(&inode
->i_lock
);
1348 spin_unlock(&inode_hash_lock
);
1352 spin_unlock(&old
->i_lock
);
1353 spin_unlock(&inode_hash_lock
);
1355 if (unlikely(!inode_unhashed(old
))) {
1362 EXPORT_SYMBOL(insert_inode_locked4
);
1365 int generic_delete_inode(struct inode
*inode
)
1369 EXPORT_SYMBOL(generic_delete_inode
);
1372 * Normal UNIX filesystem behaviour: delete the
1373 * inode when the usage count drops to zero, and
1376 int generic_drop_inode(struct inode
*inode
)
1378 return !inode
->i_nlink
|| inode_unhashed(inode
);
1380 EXPORT_SYMBOL_GPL(generic_drop_inode
);
1383 * Called when we're dropping the last reference
1386 * Call the FS "drop_inode()" function, defaulting to
1387 * the legacy UNIX filesystem behaviour. If it tells
1388 * us to evict inode, do so. Otherwise, retain inode
1389 * in cache if fs is alive, sync and evict if fs is
1392 static void iput_final(struct inode
*inode
)
1394 struct super_block
*sb
= inode
->i_sb
;
1395 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1398 WARN_ON(inode
->i_state
& I_NEW
);
1401 drop
= op
->drop_inode(inode
);
1403 drop
= generic_drop_inode(inode
);
1405 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1406 inode
->i_state
|= I_REFERENCED
;
1407 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
1408 inode_lru_list_add(inode
);
1409 spin_unlock(&inode
->i_lock
);
1414 inode
->i_state
|= I_WILL_FREE
;
1415 spin_unlock(&inode
->i_lock
);
1416 write_inode_now(inode
, 1);
1417 spin_lock(&inode
->i_lock
);
1418 WARN_ON(inode
->i_state
& I_NEW
);
1419 inode
->i_state
&= ~I_WILL_FREE
;
1422 inode
->i_state
|= I_FREEING
;
1423 if (!list_empty(&inode
->i_lru
))
1424 inode_lru_list_del(inode
);
1425 spin_unlock(&inode
->i_lock
);
1431 * iput - put an inode
1432 * @inode: inode to put
1434 * Puts an inode, dropping its usage count. If the inode use count hits
1435 * zero, the inode is then freed and may also be destroyed.
1437 * Consequently, iput() can sleep.
1439 void iput(struct inode
*inode
)
1442 BUG_ON(inode
->i_state
& I_CLEAR
);
1444 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1448 EXPORT_SYMBOL(iput
);
1451 * bmap - find a block number in a file
1452 * @inode: inode of file
1453 * @block: block to find
1455 * Returns the block number on the device holding the inode that
1456 * is the disk block number for the block of the file requested.
1457 * That is, asked for block 4 of inode 1 the function will return the
1458 * disk block relative to the disk start that holds that block of the
1461 sector_t
bmap(struct inode
*inode
, sector_t block
)
1464 if (inode
->i_mapping
->a_ops
->bmap
)
1465 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1468 EXPORT_SYMBOL(bmap
);
1471 * With relative atime, only update atime if the previous atime is
1472 * earlier than either the ctime or mtime or if at least a day has
1473 * passed since the last atime update.
1475 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1476 struct timespec now
)
1479 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1482 * Is mtime younger than atime? If yes, update atime:
1484 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1487 * Is ctime younger than atime? If yes, update atime:
1489 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1493 * Is the previous atime value older than a day? If yes,
1496 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1499 * Good, we can skip the atime update:
1505 * touch_atime - update the access time
1506 * @mnt: mount the inode is accessed on
1507 * @dentry: dentry accessed
1509 * Update the accessed time on an inode and mark it for writeback.
1510 * This function automatically handles read only file systems and media,
1511 * as well as the "noatime" flag and inode specific "noatime" markers.
1513 void touch_atime(struct vfsmount
*mnt
, struct dentry
*dentry
)
1515 struct inode
*inode
= dentry
->d_inode
;
1516 struct timespec now
;
1518 if (inode
->i_flags
& S_NOATIME
)
1520 if (IS_NOATIME(inode
))
1522 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1525 if (mnt
->mnt_flags
& MNT_NOATIME
)
1527 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1530 now
= current_fs_time(inode
->i_sb
);
1532 if (!relatime_need_update(mnt
, inode
, now
))
1535 if (timespec_equal(&inode
->i_atime
, &now
))
1538 if (mnt_want_write(mnt
))
1541 inode
->i_atime
= now
;
1542 mark_inode_dirty_sync(inode
);
1543 mnt_drop_write(mnt
);
1545 EXPORT_SYMBOL(touch_atime
);
1548 * file_update_time - update mtime and ctime time
1549 * @file: file accessed
1551 * Update the mtime and ctime members of an inode and mark the inode
1552 * for writeback. Note that this function is meant exclusively for
1553 * usage in the file write path of filesystems, and filesystems may
1554 * choose to explicitly ignore update via this function with the
1555 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1556 * timestamps are handled by the server.
1559 void file_update_time(struct file
*file
)
1561 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1562 struct timespec now
;
1563 enum { S_MTIME
= 1, S_CTIME
= 2, S_VERSION
= 4 } sync_it
= 0;
1565 /* First try to exhaust all avenues to not sync */
1566 if (IS_NOCMTIME(inode
))
1569 now
= current_fs_time(inode
->i_sb
);
1570 if (!timespec_equal(&inode
->i_mtime
, &now
))
1573 if (!timespec_equal(&inode
->i_ctime
, &now
))
1576 if (IS_I_VERSION(inode
))
1577 sync_it
|= S_VERSION
;
1582 /* Finally allowed to write? Takes lock. */
1583 if (mnt_want_write_file(file
))
1586 /* Only change inode inside the lock region */
1587 if (sync_it
& S_VERSION
)
1588 inode_inc_iversion(inode
);
1589 if (sync_it
& S_CTIME
)
1590 inode
->i_ctime
= now
;
1591 if (sync_it
& S_MTIME
)
1592 inode
->i_mtime
= now
;
1593 mark_inode_dirty_sync(inode
);
1594 mnt_drop_write_file(file
);
1596 EXPORT_SYMBOL(file_update_time
);
1598 int inode_needs_sync(struct inode
*inode
)
1602 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1606 EXPORT_SYMBOL(inode_needs_sync
);
1608 int inode_wait(void *word
)
1613 EXPORT_SYMBOL(inode_wait
);
1616 * If we try to find an inode in the inode hash while it is being
1617 * deleted, we have to wait until the filesystem completes its
1618 * deletion before reporting that it isn't found. This function waits
1619 * until the deletion _might_ have completed. Callers are responsible
1620 * to recheck inode state.
1622 * It doesn't matter if I_NEW is not set initially, a call to
1623 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1626 static void __wait_on_freeing_inode(struct inode
*inode
)
1628 wait_queue_head_t
*wq
;
1629 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1630 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1631 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1632 spin_unlock(&inode
->i_lock
);
1633 spin_unlock(&inode_hash_lock
);
1635 finish_wait(wq
, &wait
.wait
);
1636 spin_lock(&inode_hash_lock
);
1639 static __initdata
unsigned long ihash_entries
;
1640 static int __init
set_ihash_entries(char *str
)
1644 ihash_entries
= simple_strtoul(str
, &str
, 0);
1647 __setup("ihash_entries=", set_ihash_entries
);
1650 * Initialize the waitqueues and inode hash table.
1652 void __init
inode_init_early(void)
1656 /* If hashes are distributed across NUMA nodes, defer
1657 * hash allocation until vmalloc space is available.
1663 alloc_large_system_hash("Inode-cache",
1664 sizeof(struct hlist_head
),
1672 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1673 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1676 void __init
inode_init(void)
1680 /* inode slab cache */
1681 inode_cachep
= kmem_cache_create("inode_cache",
1682 sizeof(struct inode
),
1684 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1688 /* Hash may have been set up in inode_init_early */
1693 alloc_large_system_hash("Inode-cache",
1694 sizeof(struct hlist_head
),
1702 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1703 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1706 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1708 inode
->i_mode
= mode
;
1709 if (S_ISCHR(mode
)) {
1710 inode
->i_fop
= &def_chr_fops
;
1711 inode
->i_rdev
= rdev
;
1712 } else if (S_ISBLK(mode
)) {
1713 inode
->i_fop
= &def_blk_fops
;
1714 inode
->i_rdev
= rdev
;
1715 } else if (S_ISFIFO(mode
))
1716 inode
->i_fop
= &def_fifo_fops
;
1717 else if (S_ISSOCK(mode
))
1718 inode
->i_fop
= &bad_sock_fops
;
1720 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1721 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1724 EXPORT_SYMBOL(init_special_inode
);
1727 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1729 * @dir: Directory inode
1730 * @mode: mode of the new inode
1732 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1735 inode
->i_uid
= current_fsuid();
1736 if (dir
&& dir
->i_mode
& S_ISGID
) {
1737 inode
->i_gid
= dir
->i_gid
;
1741 inode
->i_gid
= current_fsgid();
1742 inode
->i_mode
= mode
;
1744 EXPORT_SYMBOL(inode_init_owner
);
1747 * inode_owner_or_capable - check current task permissions to inode
1748 * @inode: inode being checked
1750 * Return true if current either has CAP_FOWNER to the inode, or
1753 bool inode_owner_or_capable(const struct inode
*inode
)
1755 struct user_namespace
*ns
= inode_userns(inode
);
1757 if (current_user_ns() == ns
&& current_fsuid() == inode
->i_uid
)
1759 if (ns_capable(ns
, CAP_FOWNER
))
1763 EXPORT_SYMBOL(inode_owner_or_capable
);