kill vmalloc_earlyreserve
[linux-2.6/libata-dev.git] / include / linux / mm.h
blobbbd427e8741a950cbef02ec4fea4883ed2cf360f
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/errno.h>
5 #include <linux/capability.h>
7 #ifdef __KERNEL__
9 #include <linux/gfp.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/fs.h>
15 #include <linux/mutex.h>
16 #include <linux/debug_locks.h>
17 #include <linux/backing-dev.h>
18 #include <linux/mm_types.h>
20 struct mempolicy;
21 struct anon_vma;
22 struct user_struct;
24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
28 extern unsigned long num_physpages;
29 extern void * high_memory;
30 extern int page_cluster;
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
54 * This struct defines a memory VMM memory area. There is one of these
55 * per VM-area/task. A VM area is any part of the process virtual memory
56 * space that has a special rule for the page-fault handlers (ie a shared
57 * library, the executable area etc).
59 struct vm_area_struct {
60 struct mm_struct * vm_mm; /* The address space we belong to. */
61 unsigned long vm_start; /* Our start address within vm_mm. */
62 unsigned long vm_end; /* The first byte after our end address
63 within vm_mm. */
65 /* linked list of VM areas per task, sorted by address */
66 struct vm_area_struct *vm_next;
68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
69 unsigned long vm_flags; /* Flags, listed below. */
71 struct rb_node vm_rb;
74 * For areas with an address space and backing store,
75 * linkage into the address_space->i_mmap prio tree, or
76 * linkage to the list of like vmas hanging off its node, or
77 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 union {
80 struct {
81 struct list_head list;
82 void *parent; /* aligns with prio_tree_node parent */
83 struct vm_area_struct *head;
84 } vm_set;
86 struct raw_prio_tree_node prio_tree_node;
87 } shared;
90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
91 * list, after a COW of one of the file pages. A MAP_SHARED vma
92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
93 * or brk vma (with NULL file) can only be in an anon_vma list.
95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98 /* Function pointers to deal with this struct. */
99 struct vm_operations_struct * vm_ops;
101 /* Information about our backing store: */
102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
103 units, *not* PAGE_CACHE_SIZE */
104 struct file * vm_file; /* File we map to (can be NULL). */
105 void * vm_private_data; /* was vm_pte (shared mem) */
106 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108 #ifndef CONFIG_MMU
109 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
110 #endif
111 #ifdef CONFIG_NUMA
112 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
113 #endif
116 extern struct kmem_cache *vm_area_cachep;
119 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
120 * disabled, then there's a single shared list of VMAs maintained by the
121 * system, and mm's subscribe to these individually
123 struct vm_list_struct {
124 struct vm_list_struct *next;
125 struct vm_area_struct *vma;
128 #ifndef CONFIG_MMU
129 extern struct rb_root nommu_vma_tree;
130 extern struct rw_semaphore nommu_vma_sem;
132 extern unsigned int kobjsize(const void *objp);
133 #endif
136 * vm_flags..
138 #define VM_READ 0x00000001 /* currently active flags */
139 #define VM_WRITE 0x00000002
140 #define VM_EXEC 0x00000004
141 #define VM_SHARED 0x00000008
143 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
144 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
145 #define VM_MAYWRITE 0x00000020
146 #define VM_MAYEXEC 0x00000040
147 #define VM_MAYSHARE 0x00000080
149 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
150 #define VM_GROWSUP 0x00000200
151 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
152 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
154 #define VM_EXECUTABLE 0x00001000
155 #define VM_LOCKED 0x00002000
156 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
158 /* Used by sys_madvise() */
159 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
160 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
162 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
163 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
164 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
165 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
166 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
167 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
168 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
169 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
170 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
172 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
173 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
174 #endif
176 #ifdef CONFIG_STACK_GROWSUP
177 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
178 #else
179 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
180 #endif
182 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
183 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
184 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
185 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
186 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
189 * mapping from the currently active vm_flags protection bits (the
190 * low four bits) to a page protection mask..
192 extern pgprot_t protection_map[16];
196 * These are the virtual MM functions - opening of an area, closing and
197 * unmapping it (needed to keep files on disk up-to-date etc), pointer
198 * to the functions called when a no-page or a wp-page exception occurs.
200 struct vm_operations_struct {
201 void (*open)(struct vm_area_struct * area);
202 void (*close)(struct vm_area_struct * area);
203 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
204 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
205 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
207 /* notification that a previously read-only page is about to become
208 * writable, if an error is returned it will cause a SIGBUS */
209 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
210 #ifdef CONFIG_NUMA
211 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
212 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
213 unsigned long addr);
214 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
215 const nodemask_t *to, unsigned long flags);
216 #endif
219 struct mmu_gather;
220 struct inode;
222 #define page_private(page) ((page)->private)
223 #define set_page_private(page, v) ((page)->private = (v))
226 * FIXME: take this include out, include page-flags.h in
227 * files which need it (119 of them)
229 #include <linux/page-flags.h>
231 #ifdef CONFIG_DEBUG_VM
232 #define VM_BUG_ON(cond) BUG_ON(cond)
233 #else
234 #define VM_BUG_ON(condition) do { } while(0)
235 #endif
238 * Methods to modify the page usage count.
240 * What counts for a page usage:
241 * - cache mapping (page->mapping)
242 * - private data (page->private)
243 * - page mapped in a task's page tables, each mapping
244 * is counted separately
246 * Also, many kernel routines increase the page count before a critical
247 * routine so they can be sure the page doesn't go away from under them.
251 * Drop a ref, return true if the refcount fell to zero (the page has no users)
253 static inline int put_page_testzero(struct page *page)
255 VM_BUG_ON(atomic_read(&page->_count) == 0);
256 return atomic_dec_and_test(&page->_count);
260 * Try to grab a ref unless the page has a refcount of zero, return false if
261 * that is the case.
263 static inline int get_page_unless_zero(struct page *page)
265 VM_BUG_ON(PageCompound(page));
266 return atomic_inc_not_zero(&page->_count);
269 static inline struct page *compound_head(struct page *page)
271 if (unlikely(PageTail(page)))
272 return page->first_page;
273 return page;
276 static inline int page_count(struct page *page)
278 return atomic_read(&compound_head(page)->_count);
281 static inline void get_page(struct page *page)
283 page = compound_head(page);
284 VM_BUG_ON(atomic_read(&page->_count) == 0);
285 atomic_inc(&page->_count);
288 static inline struct page *virt_to_head_page(const void *x)
290 struct page *page = virt_to_page(x);
291 return compound_head(page);
295 * Setup the page count before being freed into the page allocator for
296 * the first time (boot or memory hotplug)
298 static inline void init_page_count(struct page *page)
300 atomic_set(&page->_count, 1);
303 void put_page(struct page *page);
304 void put_pages_list(struct list_head *pages);
306 void split_page(struct page *page, unsigned int order);
309 * Compound pages have a destructor function. Provide a
310 * prototype for that function and accessor functions.
311 * These are _only_ valid on the head of a PG_compound page.
313 typedef void compound_page_dtor(struct page *);
315 static inline void set_compound_page_dtor(struct page *page,
316 compound_page_dtor *dtor)
318 page[1].lru.next = (void *)dtor;
321 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
323 return (compound_page_dtor *)page[1].lru.next;
326 static inline int compound_order(struct page *page)
328 if (!PageHead(page))
329 return 0;
330 return (unsigned long)page[1].lru.prev;
333 static inline void set_compound_order(struct page *page, unsigned long order)
335 page[1].lru.prev = (void *)order;
339 * Multiple processes may "see" the same page. E.g. for untouched
340 * mappings of /dev/null, all processes see the same page full of
341 * zeroes, and text pages of executables and shared libraries have
342 * only one copy in memory, at most, normally.
344 * For the non-reserved pages, page_count(page) denotes a reference count.
345 * page_count() == 0 means the page is free. page->lru is then used for
346 * freelist management in the buddy allocator.
347 * page_count() > 0 means the page has been allocated.
349 * Pages are allocated by the slab allocator in order to provide memory
350 * to kmalloc and kmem_cache_alloc. In this case, the management of the
351 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
352 * unless a particular usage is carefully commented. (the responsibility of
353 * freeing the kmalloc memory is the caller's, of course).
355 * A page may be used by anyone else who does a __get_free_page().
356 * In this case, page_count still tracks the references, and should only
357 * be used through the normal accessor functions. The top bits of page->flags
358 * and page->virtual store page management information, but all other fields
359 * are unused and could be used privately, carefully. The management of this
360 * page is the responsibility of the one who allocated it, and those who have
361 * subsequently been given references to it.
363 * The other pages (we may call them "pagecache pages") are completely
364 * managed by the Linux memory manager: I/O, buffers, swapping etc.
365 * The following discussion applies only to them.
367 * A pagecache page contains an opaque `private' member, which belongs to the
368 * page's address_space. Usually, this is the address of a circular list of
369 * the page's disk buffers. PG_private must be set to tell the VM to call
370 * into the filesystem to release these pages.
372 * A page may belong to an inode's memory mapping. In this case, page->mapping
373 * is the pointer to the inode, and page->index is the file offset of the page,
374 * in units of PAGE_CACHE_SIZE.
376 * If pagecache pages are not associated with an inode, they are said to be
377 * anonymous pages. These may become associated with the swapcache, and in that
378 * case PG_swapcache is set, and page->private is an offset into the swapcache.
380 * In either case (swapcache or inode backed), the pagecache itself holds one
381 * reference to the page. Setting PG_private should also increment the
382 * refcount. The each user mapping also has a reference to the page.
384 * The pagecache pages are stored in a per-mapping radix tree, which is
385 * rooted at mapping->page_tree, and indexed by offset.
386 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
387 * lists, we instead now tag pages as dirty/writeback in the radix tree.
389 * All pagecache pages may be subject to I/O:
390 * - inode pages may need to be read from disk,
391 * - inode pages which have been modified and are MAP_SHARED may need
392 * to be written back to the inode on disk,
393 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
394 * modified may need to be swapped out to swap space and (later) to be read
395 * back into memory.
399 * The zone field is never updated after free_area_init_core()
400 * sets it, so none of the operations on it need to be atomic.
405 * page->flags layout:
407 * There are three possibilities for how page->flags get
408 * laid out. The first is for the normal case, without
409 * sparsemem. The second is for sparsemem when there is
410 * plenty of space for node and section. The last is when
411 * we have run out of space and have to fall back to an
412 * alternate (slower) way of determining the node.
414 * No sparsemem: | NODE | ZONE | ... | FLAGS |
415 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
416 * no space for node: | SECTION | ZONE | ... | FLAGS |
418 #ifdef CONFIG_SPARSEMEM
419 #define SECTIONS_WIDTH SECTIONS_SHIFT
420 #else
421 #define SECTIONS_WIDTH 0
422 #endif
424 #define ZONES_WIDTH ZONES_SHIFT
426 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
427 #define NODES_WIDTH NODES_SHIFT
428 #else
429 #define NODES_WIDTH 0
430 #endif
432 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
433 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
434 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
435 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
438 * We are going to use the flags for the page to node mapping if its in
439 * there. This includes the case where there is no node, so it is implicit.
441 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
442 #define NODE_NOT_IN_PAGE_FLAGS
443 #endif
445 #ifndef PFN_SECTION_SHIFT
446 #define PFN_SECTION_SHIFT 0
447 #endif
450 * Define the bit shifts to access each section. For non-existant
451 * sections we define the shift as 0; that plus a 0 mask ensures
452 * the compiler will optimise away reference to them.
454 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
455 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
456 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
458 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
459 #ifdef NODE_NOT_IN_PAGEFLAGS
460 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
461 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
462 SECTIONS_PGOFF : ZONES_PGOFF)
463 #else
464 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
465 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
466 NODES_PGOFF : ZONES_PGOFF)
467 #endif
469 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
471 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
472 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
473 #endif
475 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
476 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
477 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
478 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
480 static inline enum zone_type page_zonenum(struct page *page)
482 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
486 * The identification function is only used by the buddy allocator for
487 * determining if two pages could be buddies. We are not really
488 * identifying a zone since we could be using a the section number
489 * id if we have not node id available in page flags.
490 * We guarantee only that it will return the same value for two
491 * combinable pages in a zone.
493 static inline int page_zone_id(struct page *page)
495 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
498 static inline int zone_to_nid(struct zone *zone)
500 #ifdef CONFIG_NUMA
501 return zone->node;
502 #else
503 return 0;
504 #endif
507 #ifdef NODE_NOT_IN_PAGE_FLAGS
508 extern int page_to_nid(struct page *page);
509 #else
510 static inline int page_to_nid(struct page *page)
512 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
514 #endif
516 static inline struct zone *page_zone(struct page *page)
518 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
521 static inline unsigned long page_to_section(struct page *page)
523 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
526 static inline void set_page_zone(struct page *page, enum zone_type zone)
528 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
529 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
532 static inline void set_page_node(struct page *page, unsigned long node)
534 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
535 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
538 static inline void set_page_section(struct page *page, unsigned long section)
540 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
541 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
544 static inline void set_page_links(struct page *page, enum zone_type zone,
545 unsigned long node, unsigned long pfn)
547 set_page_zone(page, zone);
548 set_page_node(page, node);
549 set_page_section(page, pfn_to_section_nr(pfn));
553 * Some inline functions in vmstat.h depend on page_zone()
555 #include <linux/vmstat.h>
557 static __always_inline void *lowmem_page_address(struct page *page)
559 return __va(page_to_pfn(page) << PAGE_SHIFT);
562 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
563 #define HASHED_PAGE_VIRTUAL
564 #endif
566 #if defined(WANT_PAGE_VIRTUAL)
567 #define page_address(page) ((page)->virtual)
568 #define set_page_address(page, address) \
569 do { \
570 (page)->virtual = (address); \
571 } while(0)
572 #define page_address_init() do { } while(0)
573 #endif
575 #if defined(HASHED_PAGE_VIRTUAL)
576 void *page_address(struct page *page);
577 void set_page_address(struct page *page, void *virtual);
578 void page_address_init(void);
579 #endif
581 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
582 #define page_address(page) lowmem_page_address(page)
583 #define set_page_address(page, address) do { } while(0)
584 #define page_address_init() do { } while(0)
585 #endif
588 * On an anonymous page mapped into a user virtual memory area,
589 * page->mapping points to its anon_vma, not to a struct address_space;
590 * with the PAGE_MAPPING_ANON bit set to distinguish it.
592 * Please note that, confusingly, "page_mapping" refers to the inode
593 * address_space which maps the page from disk; whereas "page_mapped"
594 * refers to user virtual address space into which the page is mapped.
596 #define PAGE_MAPPING_ANON 1
598 extern struct address_space swapper_space;
599 static inline struct address_space *page_mapping(struct page *page)
601 struct address_space *mapping = page->mapping;
603 if (unlikely(PageSwapCache(page)))
604 mapping = &swapper_space;
605 #ifdef CONFIG_SLUB
606 else if (unlikely(PageSlab(page)))
607 mapping = NULL;
608 #endif
609 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
610 mapping = NULL;
611 return mapping;
614 static inline int PageAnon(struct page *page)
616 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
620 * Return the pagecache index of the passed page. Regular pagecache pages
621 * use ->index whereas swapcache pages use ->private
623 static inline pgoff_t page_index(struct page *page)
625 if (unlikely(PageSwapCache(page)))
626 return page_private(page);
627 return page->index;
631 * The atomic page->_mapcount, like _count, starts from -1:
632 * so that transitions both from it and to it can be tracked,
633 * using atomic_inc_and_test and atomic_add_negative(-1).
635 static inline void reset_page_mapcount(struct page *page)
637 atomic_set(&(page)->_mapcount, -1);
640 static inline int page_mapcount(struct page *page)
642 return atomic_read(&(page)->_mapcount) + 1;
646 * Return true if this page is mapped into pagetables.
648 static inline int page_mapped(struct page *page)
650 return atomic_read(&(page)->_mapcount) >= 0;
654 * Error return values for the *_nopage functions
656 #define NOPAGE_SIGBUS (NULL)
657 #define NOPAGE_OOM ((struct page *) (-1))
658 #define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
661 * Error return values for the *_nopfn functions
663 #define NOPFN_SIGBUS ((unsigned long) -1)
664 #define NOPFN_OOM ((unsigned long) -2)
665 #define NOPFN_REFAULT ((unsigned long) -3)
668 * Different kinds of faults, as returned by handle_mm_fault().
669 * Used to decide whether a process gets delivered SIGBUS or
670 * just gets major/minor fault counters bumped up.
672 #define VM_FAULT_OOM 0x00
673 #define VM_FAULT_SIGBUS 0x01
674 #define VM_FAULT_MINOR 0x02
675 #define VM_FAULT_MAJOR 0x03
678 * Special case for get_user_pages.
679 * Must be in a distinct bit from the above VM_FAULT_ flags.
681 #define VM_FAULT_WRITE 0x10
683 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
685 extern void show_free_areas(void);
687 #ifdef CONFIG_SHMEM
688 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
689 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
690 unsigned long addr);
691 int shmem_lock(struct file *file, int lock, struct user_struct *user);
692 #else
693 static inline int shmem_lock(struct file *file, int lock,
694 struct user_struct *user)
696 return 0;
699 static inline int shmem_set_policy(struct vm_area_struct *vma,
700 struct mempolicy *new)
702 return 0;
705 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
706 unsigned long addr)
708 return NULL;
710 #endif
711 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
713 int shmem_zero_setup(struct vm_area_struct *);
715 #ifndef CONFIG_MMU
716 extern unsigned long shmem_get_unmapped_area(struct file *file,
717 unsigned long addr,
718 unsigned long len,
719 unsigned long pgoff,
720 unsigned long flags);
721 #endif
723 extern int can_do_mlock(void);
724 extern int user_shm_lock(size_t, struct user_struct *);
725 extern void user_shm_unlock(size_t, struct user_struct *);
728 * Parameter block passed down to zap_pte_range in exceptional cases.
730 struct zap_details {
731 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
732 struct address_space *check_mapping; /* Check page->mapping if set */
733 pgoff_t first_index; /* Lowest page->index to unmap */
734 pgoff_t last_index; /* Highest page->index to unmap */
735 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
736 unsigned long truncate_count; /* Compare vm_truncate_count */
739 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
740 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
741 unsigned long size, struct zap_details *);
742 unsigned long unmap_vmas(struct mmu_gather **tlb,
743 struct vm_area_struct *start_vma, unsigned long start_addr,
744 unsigned long end_addr, unsigned long *nr_accounted,
745 struct zap_details *);
746 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
747 unsigned long end, unsigned long floor, unsigned long ceiling);
748 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
749 unsigned long floor, unsigned long ceiling);
750 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
751 struct vm_area_struct *vma);
752 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
753 unsigned long size, pgprot_t prot);
754 void unmap_mapping_range(struct address_space *mapping,
755 loff_t const holebegin, loff_t const holelen, int even_cows);
757 static inline void unmap_shared_mapping_range(struct address_space *mapping,
758 loff_t const holebegin, loff_t const holelen)
760 unmap_mapping_range(mapping, holebegin, holelen, 0);
763 extern int vmtruncate(struct inode * inode, loff_t offset);
764 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
765 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
766 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
768 #ifdef CONFIG_MMU
769 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
770 unsigned long address, int write_access);
772 static inline int handle_mm_fault(struct mm_struct *mm,
773 struct vm_area_struct *vma, unsigned long address,
774 int write_access)
776 return __handle_mm_fault(mm, vma, address, write_access) &
777 (~VM_FAULT_WRITE);
779 #else
780 static inline int handle_mm_fault(struct mm_struct *mm,
781 struct vm_area_struct *vma, unsigned long address,
782 int write_access)
784 /* should never happen if there's no MMU */
785 BUG();
786 return VM_FAULT_SIGBUS;
788 #endif
790 extern int make_pages_present(unsigned long addr, unsigned long end);
791 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
792 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
794 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
795 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
796 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
798 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
799 extern void do_invalidatepage(struct page *page, unsigned long offset);
801 int __set_page_dirty_nobuffers(struct page *page);
802 int __set_page_dirty_no_writeback(struct page *page);
803 int redirty_page_for_writepage(struct writeback_control *wbc,
804 struct page *page);
805 int FASTCALL(set_page_dirty(struct page *page));
806 int set_page_dirty_lock(struct page *page);
807 int clear_page_dirty_for_io(struct page *page);
809 extern unsigned long do_mremap(unsigned long addr,
810 unsigned long old_len, unsigned long new_len,
811 unsigned long flags, unsigned long new_addr);
814 * Prototype to add a shrinker callback for ageable caches.
816 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
817 * scan `nr_to_scan' objects, attempting to free them.
819 * The callback must return the number of objects which remain in the cache.
821 * The callback will be passed nr_to_scan == 0 when the VM is querying the
822 * cache size, so a fastpath for that case is appropriate.
824 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
827 * Add an aging callback. The int is the number of 'seeks' it takes
828 * to recreate one of the objects that these functions age.
831 #define DEFAULT_SEEKS 2
832 struct shrinker;
833 extern struct shrinker *set_shrinker(int, shrinker_t);
834 extern void remove_shrinker(struct shrinker *shrinker);
837 * Some shared mappigns will want the pages marked read-only
838 * to track write events. If so, we'll downgrade vm_page_prot
839 * to the private version (using protection_map[] without the
840 * VM_SHARED bit).
842 static inline int vma_wants_writenotify(struct vm_area_struct *vma)
844 unsigned int vm_flags = vma->vm_flags;
846 /* If it was private or non-writable, the write bit is already clear */
847 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
848 return 0;
850 /* The backer wishes to know when pages are first written to? */
851 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
852 return 1;
854 /* The open routine did something to the protections already? */
855 if (pgprot_val(vma->vm_page_prot) !=
856 pgprot_val(protection_map[vm_flags &
857 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
858 return 0;
860 /* Specialty mapping? */
861 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
862 return 0;
864 /* Can the mapping track the dirty pages? */
865 return vma->vm_file && vma->vm_file->f_mapping &&
866 mapping_cap_account_dirty(vma->vm_file->f_mapping);
869 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
871 #ifdef __PAGETABLE_PUD_FOLDED
872 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
873 unsigned long address)
875 return 0;
877 #else
878 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
879 #endif
881 #ifdef __PAGETABLE_PMD_FOLDED
882 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
883 unsigned long address)
885 return 0;
887 #else
888 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
889 #endif
891 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
892 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
895 * The following ifdef needed to get the 4level-fixup.h header to work.
896 * Remove it when 4level-fixup.h has been removed.
898 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
899 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
901 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
902 NULL: pud_offset(pgd, address);
905 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
907 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
908 NULL: pmd_offset(pud, address);
910 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
912 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
914 * We tuck a spinlock to guard each pagetable page into its struct page,
915 * at page->private, with BUILD_BUG_ON to make sure that this will not
916 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
917 * When freeing, reset page->mapping so free_pages_check won't complain.
919 #define __pte_lockptr(page) &((page)->ptl)
920 #define pte_lock_init(_page) do { \
921 spin_lock_init(__pte_lockptr(_page)); \
922 } while (0)
923 #define pte_lock_deinit(page) ((page)->mapping = NULL)
924 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
925 #else
927 * We use mm->page_table_lock to guard all pagetable pages of the mm.
929 #define pte_lock_init(page) do {} while (0)
930 #define pte_lock_deinit(page) do {} while (0)
931 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
932 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
934 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
935 ({ \
936 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
937 pte_t *__pte = pte_offset_map(pmd, address); \
938 *(ptlp) = __ptl; \
939 spin_lock(__ptl); \
940 __pte; \
943 #define pte_unmap_unlock(pte, ptl) do { \
944 spin_unlock(ptl); \
945 pte_unmap(pte); \
946 } while (0)
948 #define pte_alloc_map(mm, pmd, address) \
949 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
950 NULL: pte_offset_map(pmd, address))
952 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
953 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
954 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
956 #define pte_alloc_kernel(pmd, address) \
957 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
958 NULL: pte_offset_kernel(pmd, address))
960 extern void free_area_init(unsigned long * zones_size);
961 extern void free_area_init_node(int nid, pg_data_t *pgdat,
962 unsigned long * zones_size, unsigned long zone_start_pfn,
963 unsigned long *zholes_size);
964 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
966 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
967 * zones, allocate the backing mem_map and account for memory holes in a more
968 * architecture independent manner. This is a substitute for creating the
969 * zone_sizes[] and zholes_size[] arrays and passing them to
970 * free_area_init_node()
972 * An architecture is expected to register range of page frames backed by
973 * physical memory with add_active_range() before calling
974 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
975 * usage, an architecture is expected to do something like
977 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
978 * max_highmem_pfn};
979 * for_each_valid_physical_page_range()
980 * add_active_range(node_id, start_pfn, end_pfn)
981 * free_area_init_nodes(max_zone_pfns);
983 * If the architecture guarantees that there are no holes in the ranges
984 * registered with add_active_range(), free_bootmem_active_regions()
985 * will call free_bootmem_node() for each registered physical page range.
986 * Similarly sparse_memory_present_with_active_regions() calls
987 * memory_present() for each range when SPARSEMEM is enabled.
989 * See mm/page_alloc.c for more information on each function exposed by
990 * CONFIG_ARCH_POPULATES_NODE_MAP
992 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
993 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
994 unsigned long end_pfn);
995 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
996 unsigned long new_end_pfn);
997 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
998 unsigned long end_pfn);
999 extern void remove_all_active_ranges(void);
1000 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1001 unsigned long end_pfn);
1002 extern void get_pfn_range_for_nid(unsigned int nid,
1003 unsigned long *start_pfn, unsigned long *end_pfn);
1004 extern unsigned long find_min_pfn_with_active_regions(void);
1005 extern unsigned long find_max_pfn_with_active_regions(void);
1006 extern void free_bootmem_with_active_regions(int nid,
1007 unsigned long max_low_pfn);
1008 extern void sparse_memory_present_with_active_regions(int nid);
1009 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1010 extern int early_pfn_to_nid(unsigned long pfn);
1011 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1012 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1013 extern void set_dma_reserve(unsigned long new_dma_reserve);
1014 extern void memmap_init_zone(unsigned long, int, unsigned long,
1015 unsigned long, enum memmap_context);
1016 extern void setup_per_zone_pages_min(void);
1017 extern void mem_init(void);
1018 extern void show_mem(void);
1019 extern void si_meminfo(struct sysinfo * val);
1020 extern void si_meminfo_node(struct sysinfo *val, int nid);
1022 #ifdef CONFIG_NUMA
1023 extern void setup_per_cpu_pageset(void);
1024 #else
1025 static inline void setup_per_cpu_pageset(void) {}
1026 #endif
1028 /* prio_tree.c */
1029 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1030 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1031 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1032 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1033 struct prio_tree_iter *iter);
1035 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1036 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1037 (vma = vma_prio_tree_next(vma, iter)); )
1039 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1040 struct list_head *list)
1042 vma->shared.vm_set.parent = NULL;
1043 list_add_tail(&vma->shared.vm_set.list, list);
1046 /* mmap.c */
1047 extern int __vm_enough_memory(long pages, int cap_sys_admin);
1048 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1049 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1050 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1051 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1052 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1053 struct mempolicy *);
1054 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1055 extern int split_vma(struct mm_struct *,
1056 struct vm_area_struct *, unsigned long addr, int new_below);
1057 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1058 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1059 struct rb_node **, struct rb_node *);
1060 extern void unlink_file_vma(struct vm_area_struct *);
1061 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1062 unsigned long addr, unsigned long len, pgoff_t pgoff);
1063 extern void exit_mmap(struct mm_struct *);
1064 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1065 extern int install_special_mapping(struct mm_struct *mm,
1066 unsigned long addr, unsigned long len,
1067 unsigned long flags, struct page **pages);
1069 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1071 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1072 unsigned long len, unsigned long prot,
1073 unsigned long flag, unsigned long pgoff);
1075 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1076 unsigned long len, unsigned long prot,
1077 unsigned long flag, unsigned long offset)
1079 unsigned long ret = -EINVAL;
1080 if ((offset + PAGE_ALIGN(len)) < offset)
1081 goto out;
1082 if (!(offset & ~PAGE_MASK))
1083 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1084 out:
1085 return ret;
1088 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1090 extern unsigned long do_brk(unsigned long, unsigned long);
1092 /* filemap.c */
1093 extern unsigned long page_unuse(struct page *);
1094 extern void truncate_inode_pages(struct address_space *, loff_t);
1095 extern void truncate_inode_pages_range(struct address_space *,
1096 loff_t lstart, loff_t lend);
1098 /* generic vm_area_ops exported for stackable file systems */
1099 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1100 extern int filemap_populate(struct vm_area_struct *, unsigned long,
1101 unsigned long, pgprot_t, unsigned long, int);
1103 /* mm/page-writeback.c */
1104 int write_one_page(struct page *page, int wait);
1106 /* readahead.c */
1107 #define VM_MAX_READAHEAD 128 /* kbytes */
1108 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1109 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1110 * turning readahead off */
1112 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1113 pgoff_t offset, unsigned long nr_to_read);
1114 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1115 pgoff_t offset, unsigned long nr_to_read);
1116 unsigned long page_cache_readahead(struct address_space *mapping,
1117 struct file_ra_state *ra,
1118 struct file *filp,
1119 pgoff_t offset,
1120 unsigned long size);
1121 void handle_ra_miss(struct address_space *mapping,
1122 struct file_ra_state *ra, pgoff_t offset);
1123 unsigned long max_sane_readahead(unsigned long nr);
1125 /* Do stack extension */
1126 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1127 #ifdef CONFIG_IA64
1128 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1129 #endif
1131 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1132 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1133 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1134 struct vm_area_struct **pprev);
1136 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1137 NULL if none. Assume start_addr < end_addr. */
1138 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1140 struct vm_area_struct * vma = find_vma(mm,start_addr);
1142 if (vma && end_addr <= vma->vm_start)
1143 vma = NULL;
1144 return vma;
1147 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1149 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1152 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1153 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1154 struct page *vmalloc_to_page(void *addr);
1155 unsigned long vmalloc_to_pfn(void *addr);
1156 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1157 unsigned long pfn, unsigned long size, pgprot_t);
1158 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1159 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1160 unsigned long pfn);
1162 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1163 unsigned int foll_flags);
1164 #define FOLL_WRITE 0x01 /* check pte is writable */
1165 #define FOLL_TOUCH 0x02 /* mark page accessed */
1166 #define FOLL_GET 0x04 /* do get_page on page */
1167 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1169 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1170 void *data);
1171 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1172 unsigned long size, pte_fn_t fn, void *data);
1174 #ifdef CONFIG_PROC_FS
1175 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1176 #else
1177 static inline void vm_stat_account(struct mm_struct *mm,
1178 unsigned long flags, struct file *file, long pages)
1181 #endif /* CONFIG_PROC_FS */
1183 #ifndef CONFIG_DEBUG_PAGEALLOC
1184 static inline void
1185 kernel_map_pages(struct page *page, int numpages, int enable) {}
1186 #endif
1188 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1189 #ifdef __HAVE_ARCH_GATE_AREA
1190 int in_gate_area_no_task(unsigned long addr);
1191 int in_gate_area(struct task_struct *task, unsigned long addr);
1192 #else
1193 int in_gate_area_no_task(unsigned long addr);
1194 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1195 #endif /* __HAVE_ARCH_GATE_AREA */
1197 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1198 void __user *, size_t *, loff_t *);
1199 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1200 unsigned long lru_pages);
1201 void drop_pagecache(void);
1202 void drop_slab(void);
1204 #ifndef CONFIG_MMU
1205 #define randomize_va_space 0
1206 #else
1207 extern int randomize_va_space;
1208 #endif
1210 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
1212 #endif /* __KERNEL__ */
1213 #endif /* _LINUX_MM_H */