SLUB: Do not use page->mapping
[linux-2.6/libata-dev.git] / mm / slub.c
blobaa8bb072651b86aa5ea3ffefac8525d30aa1c202
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
102 #define FROZEN (1 << PG_active)
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
110 static inline int SlabFrozen(struct page *page)
112 return page->flags & FROZEN;
115 static inline void SetSlabFrozen(struct page *page)
117 page->flags |= FROZEN;
120 static inline void ClearSlabFrozen(struct page *page)
122 page->flags &= ~FROZEN;
125 static inline int SlabDebug(struct page *page)
127 return page->flags & SLABDEBUG;
130 static inline void SetSlabDebug(struct page *page)
132 page->flags |= SLABDEBUG;
135 static inline void ClearSlabDebug(struct page *page)
137 page->flags &= ~SLABDEBUG;
141 * Issues still to be resolved:
143 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 * - Variable sizing of the per node arrays
148 /* Enable to test recovery from slab corruption on boot */
149 #undef SLUB_RESILIENCY_TEST
151 #if PAGE_SHIFT <= 12
154 * Small page size. Make sure that we do not fragment memory
156 #define DEFAULT_MAX_ORDER 1
157 #define DEFAULT_MIN_OBJECTS 4
159 #else
162 * Large page machines are customarily able to handle larger
163 * page orders.
165 #define DEFAULT_MAX_ORDER 2
166 #define DEFAULT_MIN_OBJECTS 8
168 #endif
171 * Mininum number of partial slabs. These will be left on the partial
172 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 #define MIN_PARTIAL 2
177 * Maximum number of desirable partial slabs.
178 * The existence of more partial slabs makes kmem_cache_shrink
179 * sort the partial list by the number of objects in the.
181 #define MAX_PARTIAL 10
183 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
184 SLAB_POISON | SLAB_STORE_USER)
187 * Set of flags that will prevent slab merging
189 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
190 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
193 SLAB_CACHE_DMA)
195 #ifndef ARCH_KMALLOC_MINALIGN
196 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
197 #endif
199 #ifndef ARCH_SLAB_MINALIGN
200 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
201 #endif
204 * The page->inuse field is 16 bit thus we have this limitation
206 #define MAX_OBJECTS_PER_SLAB 65535
208 /* Internal SLUB flags */
209 #define __OBJECT_POISON 0x80000000 /* Poison object */
210 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
212 /* Not all arches define cache_line_size */
213 #ifndef cache_line_size
214 #define cache_line_size() L1_CACHE_BYTES
215 #endif
217 static int kmem_size = sizeof(struct kmem_cache);
219 #ifdef CONFIG_SMP
220 static struct notifier_block slab_notifier;
221 #endif
223 static enum {
224 DOWN, /* No slab functionality available */
225 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
226 UP, /* Everything works but does not show up in sysfs */
227 SYSFS /* Sysfs up */
228 } slab_state = DOWN;
230 /* A list of all slab caches on the system */
231 static DECLARE_RWSEM(slub_lock);
232 static LIST_HEAD(slab_caches);
235 * Tracking user of a slab.
237 struct track {
238 void *addr; /* Called from address */
239 int cpu; /* Was running on cpu */
240 int pid; /* Pid context */
241 unsigned long when; /* When did the operation occur */
244 enum track_item { TRACK_ALLOC, TRACK_FREE };
246 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
247 static int sysfs_slab_add(struct kmem_cache *);
248 static int sysfs_slab_alias(struct kmem_cache *, const char *);
249 static void sysfs_slab_remove(struct kmem_cache *);
250 #else
251 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
252 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
253 { return 0; }
254 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
255 #endif
257 /********************************************************************
258 * Core slab cache functions
259 *******************************************************************/
261 int slab_is_available(void)
263 return slab_state >= UP;
266 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
268 #ifdef CONFIG_NUMA
269 return s->node[node];
270 #else
271 return &s->local_node;
272 #endif
275 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
277 return &s->cpu_slab[cpu];
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 struct page *page, const void *object)
283 void *base;
285 if (!object)
286 return 1;
288 base = page_address(page);
289 if (object < base || object >= base + s->objects * s->size ||
290 (object - base) % s->size) {
291 return 0;
294 return 1;
298 * Slow version of get and set free pointer.
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
306 return *(void **)(object + s->offset);
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
311 *(void **)(object + s->offset) = fp;
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 __p += (__s)->size)
319 /* Scan freelist */
320 #define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
326 return (p - addr) / s->size;
329 #ifdef CONFIG_SLUB_DEBUG
331 * Debug settings:
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
335 #else
336 static int slub_debug;
337 #endif
339 static char *slub_debug_slabs;
342 * Object debugging
344 static void print_section(char *text, u8 *addr, unsigned int length)
346 int i, offset;
347 int newline = 1;
348 char ascii[17];
350 ascii[16] = 0;
352 for (i = 0; i < length; i++) {
353 if (newline) {
354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355 newline = 0;
357 printk(" %02x", addr[i]);
358 offset = i % 16;
359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 if (offset == 15) {
361 printk(" %s\n",ascii);
362 newline = 1;
365 if (!newline) {
366 i %= 16;
367 while (i < 16) {
368 printk(" ");
369 ascii[i] = ' ';
370 i++;
372 printk(" %s\n", ascii);
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 enum track_item alloc)
379 struct track *p;
381 if (s->offset)
382 p = object + s->offset + sizeof(void *);
383 else
384 p = object + s->inuse;
386 return p + alloc;
389 static void set_track(struct kmem_cache *s, void *object,
390 enum track_item alloc, void *addr)
392 struct track *p;
394 if (s->offset)
395 p = object + s->offset + sizeof(void *);
396 else
397 p = object + s->inuse;
399 p += alloc;
400 if (addr) {
401 p->addr = addr;
402 p->cpu = smp_processor_id();
403 p->pid = current ? current->pid : -1;
404 p->when = jiffies;
405 } else
406 memset(p, 0, sizeof(struct track));
409 static void init_tracking(struct kmem_cache *s, void *object)
411 if (!(s->flags & SLAB_STORE_USER))
412 return;
414 set_track(s, object, TRACK_FREE, NULL);
415 set_track(s, object, TRACK_ALLOC, NULL);
418 static void print_track(const char *s, struct track *t)
420 if (!t->addr)
421 return;
423 printk(KERN_ERR "INFO: %s in ", s);
424 __print_symbol("%s", (unsigned long)t->addr);
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
428 static void print_tracking(struct kmem_cache *s, void *object)
430 if (!(s->flags & SLAB_STORE_USER))
431 return;
433 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 print_track("Freed", get_track(s, object, TRACK_FREE));
437 static void print_page_info(struct page *page)
439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page, page->inuse, page->freelist, page->flags);
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
446 va_list args;
447 char buf[100];
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "========================================"
453 "=====================================\n");
454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 printk(KERN_ERR "----------------------------------------"
456 "-------------------------------------\n\n");
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
461 va_list args;
462 char buf[100];
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
472 unsigned int off; /* Offset of last byte */
473 u8 *addr = page_address(page);
475 print_tracking(s, p);
477 print_page_info(page);
479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p, p - addr, get_freepointer(s, p));
482 if (p > addr + 16)
483 print_section("Bytes b4", p - 16, 16);
485 print_section("Object", p, min(s->objsize, 128));
487 if (s->flags & SLAB_RED_ZONE)
488 print_section("Redzone", p + s->objsize,
489 s->inuse - s->objsize);
491 if (s->offset)
492 off = s->offset + sizeof(void *);
493 else
494 off = s->inuse;
496 if (s->flags & SLAB_STORE_USER)
497 off += 2 * sizeof(struct track);
499 if (off != s->size)
500 /* Beginning of the filler is the free pointer */
501 print_section("Padding", p + off, s->size - off);
503 dump_stack();
506 static void object_err(struct kmem_cache *s, struct page *page,
507 u8 *object, char *reason)
509 slab_bug(s, reason);
510 print_trailer(s, page, object);
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
515 va_list args;
516 char buf[100];
518 va_start(args, fmt);
519 vsnprintf(buf, sizeof(buf), fmt, args);
520 va_end(args);
521 slab_bug(s, fmt);
522 print_page_info(page);
523 dump_stack();
526 static void init_object(struct kmem_cache *s, void *object, int active)
528 u8 *p = object;
530 if (s->flags & __OBJECT_POISON) {
531 memset(p, POISON_FREE, s->objsize - 1);
532 p[s->objsize -1] = POISON_END;
535 if (s->flags & SLAB_RED_ZONE)
536 memset(p + s->objsize,
537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 s->inuse - s->objsize);
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
543 while (bytes) {
544 if (*start != (u8)value)
545 return start;
546 start++;
547 bytes--;
549 return NULL;
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 void *from, void *to)
555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 memset(from, data, to - from);
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 u8 *object, char *what,
561 u8* start, unsigned int value, unsigned int bytes)
563 u8 *fault;
564 u8 *end;
566 fault = check_bytes(start, value, bytes);
567 if (!fault)
568 return 1;
570 end = start + bytes;
571 while (end > fault && end[-1] == value)
572 end--;
574 slab_bug(s, "%s overwritten", what);
575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault, end - 1, fault[0], value);
577 print_trailer(s, page, object);
579 restore_bytes(s, what, value, fault, end);
580 return 0;
584 * Object layout:
586 * object address
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 0xa5 (POISON_END)
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
596 * Padding is extended by another word if Redzoning is enabled and
597 * objsize == inuse.
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
602 * object + s->inuse
603 * Meta data starts here.
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
611 * Padding is done using 0x5a (POISON_INUSE)
613 * object + s->size
614 * Nothing is used beyond s->size.
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
623 unsigned long off = s->inuse; /* The end of info */
625 if (s->offset)
626 /* Freepointer is placed after the object. */
627 off += sizeof(void *);
629 if (s->flags & SLAB_STORE_USER)
630 /* We also have user information there */
631 off += 2 * sizeof(struct track);
633 if (s->size == off)
634 return 1;
636 return check_bytes_and_report(s, page, p, "Object padding",
637 p + off, POISON_INUSE, s->size - off);
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
642 u8 *start;
643 u8 *fault;
644 u8 *end;
645 int length;
646 int remainder;
648 if (!(s->flags & SLAB_POISON))
649 return 1;
651 start = page_address(page);
652 end = start + (PAGE_SIZE << s->order);
653 length = s->objects * s->size;
654 remainder = end - (start + length);
655 if (!remainder)
656 return 1;
658 fault = check_bytes(start + length, POISON_INUSE, remainder);
659 if (!fault)
660 return 1;
661 while (end > fault && end[-1] == POISON_INUSE)
662 end--;
664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 print_section("Padding", start, length);
667 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 return 0;
671 static int check_object(struct kmem_cache *s, struct page *page,
672 void *object, int active)
674 u8 *p = object;
675 u8 *endobject = object + s->objsize;
677 if (s->flags & SLAB_RED_ZONE) {
678 unsigned int red =
679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
681 if (!check_bytes_and_report(s, page, object, "Redzone",
682 endobject, red, s->inuse - s->objsize))
683 return 0;
684 } else {
685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 POISON_INUSE, s->inuse - s->objsize);
690 if (s->flags & SLAB_POISON) {
691 if (!active && (s->flags & __OBJECT_POISON) &&
692 (!check_bytes_and_report(s, page, p, "Poison", p,
693 POISON_FREE, s->objsize - 1) ||
694 !check_bytes_and_report(s, page, p, "Poison",
695 p + s->objsize -1, POISON_END, 1)))
696 return 0;
698 * check_pad_bytes cleans up on its own.
700 check_pad_bytes(s, page, p);
703 if (!s->offset && active)
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
708 return 1;
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 object_err(s, page, p, "Freepointer corrupt");
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
716 * another error because the object count is now wrong.
718 set_freepointer(s, p, NULL);
719 return 0;
721 return 1;
724 static int check_slab(struct kmem_cache *s, struct page *page)
726 VM_BUG_ON(!irqs_disabled());
728 if (!PageSlab(page)) {
729 slab_err(s, page, "Not a valid slab page");
730 return 0;
732 if (page->offset * sizeof(void *) != s->offset) {
733 slab_err(s, page, "Corrupted offset %lu",
734 (unsigned long)(page->offset * sizeof(void *)));
735 return 0;
737 if (page->inuse > s->objects) {
738 slab_err(s, page, "inuse %u > max %u",
739 s->name, page->inuse, s->objects);
740 return 0;
742 /* Slab_pad_check fixes things up after itself */
743 slab_pad_check(s, page);
744 return 1;
748 * Determine if a certain object on a page is on the freelist. Must hold the
749 * slab lock to guarantee that the chains are in a consistent state.
751 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
753 int nr = 0;
754 void *fp = page->freelist;
755 void *object = NULL;
757 while (fp && nr <= s->objects) {
758 if (fp == search)
759 return 1;
760 if (!check_valid_pointer(s, page, fp)) {
761 if (object) {
762 object_err(s, page, object,
763 "Freechain corrupt");
764 set_freepointer(s, object, NULL);
765 break;
766 } else {
767 slab_err(s, page, "Freepointer corrupt");
768 page->freelist = NULL;
769 page->inuse = s->objects;
770 slab_fix(s, "Freelist cleared");
771 return 0;
773 break;
775 object = fp;
776 fp = get_freepointer(s, object);
777 nr++;
780 if (page->inuse != s->objects - nr) {
781 slab_err(s, page, "Wrong object count. Counter is %d but "
782 "counted were %d", page->inuse, s->objects - nr);
783 page->inuse = s->objects - nr;
784 slab_fix(s, "Object count adjusted.");
786 return search == NULL;
789 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
801 dump_stack();
806 * Tracking of fully allocated slabs for debugging purposes.
808 static void add_full(struct kmem_cache_node *n, struct page *page)
810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
815 static void remove_full(struct kmem_cache *s, struct page *page)
817 struct kmem_cache_node *n;
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
822 n = get_node(s, page_to_nid(page));
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
829 static void setup_object_debug(struct kmem_cache *s, struct page *page,
830 void *object)
832 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
833 return;
835 init_object(s, object, 0);
836 init_tracking(s, object);
839 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
840 void *object, void *addr)
842 if (!check_slab(s, page))
843 goto bad;
845 if (object && !on_freelist(s, page, object)) {
846 object_err(s, page, object, "Object already allocated");
847 goto bad;
850 if (!check_valid_pointer(s, page, object)) {
851 object_err(s, page, object, "Freelist Pointer check fails");
852 goto bad;
855 if (object && !check_object(s, page, object, 0))
856 goto bad;
858 /* Success perform special debug activities for allocs */
859 if (s->flags & SLAB_STORE_USER)
860 set_track(s, object, TRACK_ALLOC, addr);
861 trace(s, page, object, 1);
862 init_object(s, object, 1);
863 return 1;
865 bad:
866 if (PageSlab(page)) {
868 * If this is a slab page then lets do the best we can
869 * to avoid issues in the future. Marking all objects
870 * as used avoids touching the remaining objects.
872 slab_fix(s, "Marking all objects used");
873 page->inuse = s->objects;
874 page->freelist = NULL;
875 /* Fix up fields that may be corrupted */
876 page->offset = s->offset / sizeof(void *);
878 return 0;
881 static int free_debug_processing(struct kmem_cache *s, struct page *page,
882 void *object, void *addr)
884 if (!check_slab(s, page))
885 goto fail;
887 if (!check_valid_pointer(s, page, object)) {
888 slab_err(s, page, "Invalid object pointer 0x%p", object);
889 goto fail;
892 if (on_freelist(s, page, object)) {
893 object_err(s, page, object, "Object already free");
894 goto fail;
897 if (!check_object(s, page, object, 1))
898 return 0;
900 if (unlikely(s != page->slab)) {
901 if (!PageSlab(page))
902 slab_err(s, page, "Attempt to free object(0x%p) "
903 "outside of slab", object);
904 else
905 if (!page->slab) {
906 printk(KERN_ERR
907 "SLUB <none>: no slab for object 0x%p.\n",
908 object);
909 dump_stack();
911 else
912 object_err(s, page, object,
913 "page slab pointer corrupt.");
914 goto fail;
917 /* Special debug activities for freeing objects */
918 if (!SlabFrozen(page) && !page->freelist)
919 remove_full(s, page);
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_FREE, addr);
922 trace(s, page, object, 0);
923 init_object(s, object, 0);
924 return 1;
926 fail:
927 slab_fix(s, "Object at 0x%p not freed", object);
928 return 0;
931 static int __init setup_slub_debug(char *str)
933 slub_debug = DEBUG_DEFAULT_FLAGS;
934 if (*str++ != '=' || !*str)
936 * No options specified. Switch on full debugging.
938 goto out;
940 if (*str == ',')
942 * No options but restriction on slabs. This means full
943 * debugging for slabs matching a pattern.
945 goto check_slabs;
947 slub_debug = 0;
948 if (*str == '-')
950 * Switch off all debugging measures.
952 goto out;
955 * Determine which debug features should be switched on
957 for ( ;*str && *str != ','; str++) {
958 switch (tolower(*str)) {
959 case 'f':
960 slub_debug |= SLAB_DEBUG_FREE;
961 break;
962 case 'z':
963 slub_debug |= SLAB_RED_ZONE;
964 break;
965 case 'p':
966 slub_debug |= SLAB_POISON;
967 break;
968 case 'u':
969 slub_debug |= SLAB_STORE_USER;
970 break;
971 case 't':
972 slub_debug |= SLAB_TRACE;
973 break;
974 default:
975 printk(KERN_ERR "slub_debug option '%c' "
976 "unknown. skipped\n",*str);
980 check_slabs:
981 if (*str == ',')
982 slub_debug_slabs = str + 1;
983 out:
984 return 1;
987 __setup("slub_debug", setup_slub_debug);
989 static unsigned long kmem_cache_flags(unsigned long objsize,
990 unsigned long flags, const char *name,
991 void (*ctor)(void *, struct kmem_cache *, unsigned long))
994 * The page->offset field is only 16 bit wide. This is an offset
995 * in units of words from the beginning of an object. If the slab
996 * size is bigger then we cannot move the free pointer behind the
997 * object anymore.
999 * On 32 bit platforms the limit is 256k. On 64bit platforms
1000 * the limit is 512k.
1002 * Debugging or ctor may create a need to move the free
1003 * pointer. Fail if this happens.
1005 if (objsize >= 65535 * sizeof(void *)) {
1006 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1007 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1008 BUG_ON(ctor);
1009 } else {
1011 * Enable debugging if selected on the kernel commandline.
1013 if (slub_debug && (!slub_debug_slabs ||
1014 strncmp(slub_debug_slabs, name,
1015 strlen(slub_debug_slabs)) == 0))
1016 flags |= slub_debug;
1019 return flags;
1021 #else
1022 static inline void setup_object_debug(struct kmem_cache *s,
1023 struct page *page, void *object) {}
1025 static inline int alloc_debug_processing(struct kmem_cache *s,
1026 struct page *page, void *object, void *addr) { return 0; }
1028 static inline int free_debug_processing(struct kmem_cache *s,
1029 struct page *page, void *object, void *addr) { return 0; }
1031 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1032 { return 1; }
1033 static inline int check_object(struct kmem_cache *s, struct page *page,
1034 void *object, int active) { return 1; }
1035 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1036 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1037 unsigned long flags, const char *name,
1038 void (*ctor)(void *, struct kmem_cache *, unsigned long))
1040 return flags;
1042 #define slub_debug 0
1043 #endif
1045 * Slab allocation and freeing
1047 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1049 struct page * page;
1050 int pages = 1 << s->order;
1052 if (s->order)
1053 flags |= __GFP_COMP;
1055 if (s->flags & SLAB_CACHE_DMA)
1056 flags |= SLUB_DMA;
1058 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1059 flags |= __GFP_RECLAIMABLE;
1061 if (node == -1)
1062 page = alloc_pages(flags, s->order);
1063 else
1064 page = alloc_pages_node(node, flags, s->order);
1066 if (!page)
1067 return NULL;
1069 mod_zone_page_state(page_zone(page),
1070 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1071 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1072 pages);
1074 return page;
1077 static void setup_object(struct kmem_cache *s, struct page *page,
1078 void *object)
1080 setup_object_debug(s, page, object);
1081 if (unlikely(s->ctor))
1082 s->ctor(object, s, 0);
1085 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1087 struct page *page;
1088 struct kmem_cache_node *n;
1089 void *start;
1090 void *end;
1091 void *last;
1092 void *p;
1094 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1096 if (flags & __GFP_WAIT)
1097 local_irq_enable();
1099 page = allocate_slab(s,
1100 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1101 if (!page)
1102 goto out;
1104 n = get_node(s, page_to_nid(page));
1105 if (n)
1106 atomic_long_inc(&n->nr_slabs);
1107 page->offset = s->offset / sizeof(void *);
1108 page->slab = s;
1109 page->flags |= 1 << PG_slab;
1110 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1111 SLAB_STORE_USER | SLAB_TRACE))
1112 SetSlabDebug(page);
1114 start = page_address(page);
1115 end = start + s->objects * s->size;
1117 if (unlikely(s->flags & SLAB_POISON))
1118 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1120 last = start;
1121 for_each_object(p, s, start) {
1122 setup_object(s, page, last);
1123 set_freepointer(s, last, p);
1124 last = p;
1126 setup_object(s, page, last);
1127 set_freepointer(s, last, NULL);
1129 page->freelist = start;
1130 page->inuse = 0;
1131 out:
1132 if (flags & __GFP_WAIT)
1133 local_irq_disable();
1134 return page;
1137 static void __free_slab(struct kmem_cache *s, struct page *page)
1139 int pages = 1 << s->order;
1141 if (unlikely(SlabDebug(page))) {
1142 void *p;
1144 slab_pad_check(s, page);
1145 for_each_object(p, s, page_address(page))
1146 check_object(s, page, p, 0);
1147 ClearSlabDebug(page);
1150 mod_zone_page_state(page_zone(page),
1151 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1152 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1153 - pages);
1155 __free_pages(page, s->order);
1158 static void rcu_free_slab(struct rcu_head *h)
1160 struct page *page;
1162 page = container_of((struct list_head *)h, struct page, lru);
1163 __free_slab(page->slab, page);
1166 static void free_slab(struct kmem_cache *s, struct page *page)
1168 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1170 * RCU free overloads the RCU head over the LRU
1172 struct rcu_head *head = (void *)&page->lru;
1174 call_rcu(head, rcu_free_slab);
1175 } else
1176 __free_slab(s, page);
1179 static void discard_slab(struct kmem_cache *s, struct page *page)
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1183 atomic_long_dec(&n->nr_slabs);
1184 reset_page_mapcount(page);
1185 __ClearPageSlab(page);
1186 free_slab(s, page);
1190 * Per slab locking using the pagelock
1192 static __always_inline void slab_lock(struct page *page)
1194 bit_spin_lock(PG_locked, &page->flags);
1197 static __always_inline void slab_unlock(struct page *page)
1199 bit_spin_unlock(PG_locked, &page->flags);
1202 static __always_inline int slab_trylock(struct page *page)
1204 int rc = 1;
1206 rc = bit_spin_trylock(PG_locked, &page->flags);
1207 return rc;
1211 * Management of partially allocated slabs
1213 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1215 spin_lock(&n->list_lock);
1216 n->nr_partial++;
1217 list_add_tail(&page->lru, &n->partial);
1218 spin_unlock(&n->list_lock);
1221 static void add_partial(struct kmem_cache_node *n, struct page *page)
1223 spin_lock(&n->list_lock);
1224 n->nr_partial++;
1225 list_add(&page->lru, &n->partial);
1226 spin_unlock(&n->list_lock);
1229 static void remove_partial(struct kmem_cache *s,
1230 struct page *page)
1232 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1234 spin_lock(&n->list_lock);
1235 list_del(&page->lru);
1236 n->nr_partial--;
1237 spin_unlock(&n->list_lock);
1241 * Lock slab and remove from the partial list.
1243 * Must hold list_lock.
1245 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1247 if (slab_trylock(page)) {
1248 list_del(&page->lru);
1249 n->nr_partial--;
1250 SetSlabFrozen(page);
1251 return 1;
1253 return 0;
1257 * Try to allocate a partial slab from a specific node.
1259 static struct page *get_partial_node(struct kmem_cache_node *n)
1261 struct page *page;
1264 * Racy check. If we mistakenly see no partial slabs then we
1265 * just allocate an empty slab. If we mistakenly try to get a
1266 * partial slab and there is none available then get_partials()
1267 * will return NULL.
1269 if (!n || !n->nr_partial)
1270 return NULL;
1272 spin_lock(&n->list_lock);
1273 list_for_each_entry(page, &n->partial, lru)
1274 if (lock_and_freeze_slab(n, page))
1275 goto out;
1276 page = NULL;
1277 out:
1278 spin_unlock(&n->list_lock);
1279 return page;
1283 * Get a page from somewhere. Search in increasing NUMA distances.
1285 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1287 #ifdef CONFIG_NUMA
1288 struct zonelist *zonelist;
1289 struct zone **z;
1290 struct page *page;
1293 * The defrag ratio allows a configuration of the tradeoffs between
1294 * inter node defragmentation and node local allocations. A lower
1295 * defrag_ratio increases the tendency to do local allocations
1296 * instead of attempting to obtain partial slabs from other nodes.
1298 * If the defrag_ratio is set to 0 then kmalloc() always
1299 * returns node local objects. If the ratio is higher then kmalloc()
1300 * may return off node objects because partial slabs are obtained
1301 * from other nodes and filled up.
1303 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1304 * defrag_ratio = 1000) then every (well almost) allocation will
1305 * first attempt to defrag slab caches on other nodes. This means
1306 * scanning over all nodes to look for partial slabs which may be
1307 * expensive if we do it every time we are trying to find a slab
1308 * with available objects.
1310 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1311 return NULL;
1313 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1314 ->node_zonelists[gfp_zone(flags)];
1315 for (z = zonelist->zones; *z; z++) {
1316 struct kmem_cache_node *n;
1318 n = get_node(s, zone_to_nid(*z));
1320 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1321 n->nr_partial > MIN_PARTIAL) {
1322 page = get_partial_node(n);
1323 if (page)
1324 return page;
1327 #endif
1328 return NULL;
1332 * Get a partial page, lock it and return it.
1334 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1336 struct page *page;
1337 int searchnode = (node == -1) ? numa_node_id() : node;
1339 page = get_partial_node(get_node(s, searchnode));
1340 if (page || (flags & __GFP_THISNODE))
1341 return page;
1343 return get_any_partial(s, flags);
1347 * Move a page back to the lists.
1349 * Must be called with the slab lock held.
1351 * On exit the slab lock will have been dropped.
1353 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1355 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1357 ClearSlabFrozen(page);
1358 if (page->inuse) {
1360 if (page->freelist)
1361 add_partial(n, page);
1362 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1363 add_full(n, page);
1364 slab_unlock(page);
1366 } else {
1367 if (n->nr_partial < MIN_PARTIAL) {
1369 * Adding an empty slab to the partial slabs in order
1370 * to avoid page allocator overhead. This slab needs
1371 * to come after the other slabs with objects in
1372 * order to fill them up. That way the size of the
1373 * partial list stays small. kmem_cache_shrink can
1374 * reclaim empty slabs from the partial list.
1376 add_partial_tail(n, page);
1377 slab_unlock(page);
1378 } else {
1379 slab_unlock(page);
1380 discard_slab(s, page);
1386 * Remove the cpu slab
1388 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1390 struct page *page = c->page;
1392 * Merge cpu freelist into freelist. Typically we get here
1393 * because both freelists are empty. So this is unlikely
1394 * to occur.
1396 while (unlikely(c->freelist)) {
1397 void **object;
1399 /* Retrieve object from cpu_freelist */
1400 object = c->freelist;
1401 c->freelist = c->freelist[page->offset];
1403 /* And put onto the regular freelist */
1404 object[page->offset] = page->freelist;
1405 page->freelist = object;
1406 page->inuse--;
1408 c->page = NULL;
1409 unfreeze_slab(s, page);
1412 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1414 slab_lock(c->page);
1415 deactivate_slab(s, c);
1419 * Flush cpu slab.
1420 * Called from IPI handler with interrupts disabled.
1422 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1424 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1426 if (likely(c && c->page))
1427 flush_slab(s, c);
1430 static void flush_cpu_slab(void *d)
1432 struct kmem_cache *s = d;
1434 __flush_cpu_slab(s, smp_processor_id());
1437 static void flush_all(struct kmem_cache *s)
1439 #ifdef CONFIG_SMP
1440 on_each_cpu(flush_cpu_slab, s, 1, 1);
1441 #else
1442 unsigned long flags;
1444 local_irq_save(flags);
1445 flush_cpu_slab(s);
1446 local_irq_restore(flags);
1447 #endif
1451 * Check if the objects in a per cpu structure fit numa
1452 * locality expectations.
1454 static inline int node_match(struct kmem_cache_cpu *c, int node)
1456 #ifdef CONFIG_NUMA
1457 if (node != -1 && c->node != node)
1458 return 0;
1459 #endif
1460 return 1;
1464 * Slow path. The lockless freelist is empty or we need to perform
1465 * debugging duties.
1467 * Interrupts are disabled.
1469 * Processing is still very fast if new objects have been freed to the
1470 * regular freelist. In that case we simply take over the regular freelist
1471 * as the lockless freelist and zap the regular freelist.
1473 * If that is not working then we fall back to the partial lists. We take the
1474 * first element of the freelist as the object to allocate now and move the
1475 * rest of the freelist to the lockless freelist.
1477 * And if we were unable to get a new slab from the partial slab lists then
1478 * we need to allocate a new slab. This is slowest path since we may sleep.
1480 static void *__slab_alloc(struct kmem_cache *s,
1481 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1483 void **object;
1484 struct page *new;
1486 if (!c->page)
1487 goto new_slab;
1489 slab_lock(c->page);
1490 if (unlikely(!node_match(c, node)))
1491 goto another_slab;
1492 load_freelist:
1493 object = c->page->freelist;
1494 if (unlikely(!object))
1495 goto another_slab;
1496 if (unlikely(SlabDebug(c->page)))
1497 goto debug;
1499 object = c->page->freelist;
1500 c->freelist = object[c->page->offset];
1501 c->page->inuse = s->objects;
1502 c->page->freelist = NULL;
1503 c->node = page_to_nid(c->page);
1504 slab_unlock(c->page);
1505 return object;
1507 another_slab:
1508 deactivate_slab(s, c);
1510 new_slab:
1511 new = get_partial(s, gfpflags, node);
1512 if (new) {
1513 c->page = new;
1514 goto load_freelist;
1517 new = new_slab(s, gfpflags, node);
1518 if (new) {
1519 c = get_cpu_slab(s, smp_processor_id());
1520 if (c->page) {
1522 * Someone else populated the cpu_slab while we
1523 * enabled interrupts, or we have gotten scheduled
1524 * on another cpu. The page may not be on the
1525 * requested node even if __GFP_THISNODE was
1526 * specified. So we need to recheck.
1528 if (node_match(c, node)) {
1530 * Current cpuslab is acceptable and we
1531 * want the current one since its cache hot
1533 discard_slab(s, new);
1534 slab_lock(c->page);
1535 goto load_freelist;
1537 /* New slab does not fit our expectations */
1538 flush_slab(s, c);
1540 slab_lock(new);
1541 SetSlabFrozen(new);
1542 c->page = new;
1543 goto load_freelist;
1545 return NULL;
1546 debug:
1547 object = c->page->freelist;
1548 if (!alloc_debug_processing(s, c->page, object, addr))
1549 goto another_slab;
1551 c->page->inuse++;
1552 c->page->freelist = object[c->page->offset];
1553 slab_unlock(c->page);
1554 return object;
1558 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1559 * have the fastpath folded into their functions. So no function call
1560 * overhead for requests that can be satisfied on the fastpath.
1562 * The fastpath works by first checking if the lockless freelist can be used.
1563 * If not then __slab_alloc is called for slow processing.
1565 * Otherwise we can simply pick the next object from the lockless free list.
1567 static void __always_inline *slab_alloc(struct kmem_cache *s,
1568 gfp_t gfpflags, int node, void *addr)
1570 void **object;
1571 unsigned long flags;
1572 struct kmem_cache_cpu *c;
1574 local_irq_save(flags);
1575 c = get_cpu_slab(s, smp_processor_id());
1576 if (unlikely(!c->page || !c->freelist ||
1577 !node_match(c, node)))
1579 object = __slab_alloc(s, gfpflags, node, addr, c);
1581 else {
1582 object = c->freelist;
1583 c->freelist = object[c->page->offset];
1585 local_irq_restore(flags);
1587 if (unlikely((gfpflags & __GFP_ZERO) && object))
1588 memset(object, 0, s->objsize);
1590 return object;
1593 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1595 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1597 EXPORT_SYMBOL(kmem_cache_alloc);
1599 #ifdef CONFIG_NUMA
1600 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1602 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1604 EXPORT_SYMBOL(kmem_cache_alloc_node);
1605 #endif
1608 * Slow patch handling. This may still be called frequently since objects
1609 * have a longer lifetime than the cpu slabs in most processing loads.
1611 * So we still attempt to reduce cache line usage. Just take the slab
1612 * lock and free the item. If there is no additional partial page
1613 * handling required then we can return immediately.
1615 static void __slab_free(struct kmem_cache *s, struct page *page,
1616 void *x, void *addr)
1618 void *prior;
1619 void **object = (void *)x;
1621 slab_lock(page);
1623 if (unlikely(SlabDebug(page)))
1624 goto debug;
1625 checks_ok:
1626 prior = object[page->offset] = page->freelist;
1627 page->freelist = object;
1628 page->inuse--;
1630 if (unlikely(SlabFrozen(page)))
1631 goto out_unlock;
1633 if (unlikely(!page->inuse))
1634 goto slab_empty;
1637 * Objects left in the slab. If it
1638 * was not on the partial list before
1639 * then add it.
1641 if (unlikely(!prior))
1642 add_partial(get_node(s, page_to_nid(page)), page);
1644 out_unlock:
1645 slab_unlock(page);
1646 return;
1648 slab_empty:
1649 if (prior)
1651 * Slab still on the partial list.
1653 remove_partial(s, page);
1655 slab_unlock(page);
1656 discard_slab(s, page);
1657 return;
1659 debug:
1660 if (!free_debug_processing(s, page, x, addr))
1661 goto out_unlock;
1662 goto checks_ok;
1666 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1667 * can perform fastpath freeing without additional function calls.
1669 * The fastpath is only possible if we are freeing to the current cpu slab
1670 * of this processor. This typically the case if we have just allocated
1671 * the item before.
1673 * If fastpath is not possible then fall back to __slab_free where we deal
1674 * with all sorts of special processing.
1676 static void __always_inline slab_free(struct kmem_cache *s,
1677 struct page *page, void *x, void *addr)
1679 void **object = (void *)x;
1680 unsigned long flags;
1681 struct kmem_cache_cpu *c;
1683 local_irq_save(flags);
1684 debug_check_no_locks_freed(object, s->objsize);
1685 c = get_cpu_slab(s, smp_processor_id());
1686 if (likely(page == c->page && !SlabDebug(page))) {
1687 object[page->offset] = c->freelist;
1688 c->freelist = object;
1689 } else
1690 __slab_free(s, page, x, addr);
1692 local_irq_restore(flags);
1695 void kmem_cache_free(struct kmem_cache *s, void *x)
1697 struct page *page;
1699 page = virt_to_head_page(x);
1701 slab_free(s, page, x, __builtin_return_address(0));
1703 EXPORT_SYMBOL(kmem_cache_free);
1705 /* Figure out on which slab object the object resides */
1706 static struct page *get_object_page(const void *x)
1708 struct page *page = virt_to_head_page(x);
1710 if (!PageSlab(page))
1711 return NULL;
1713 return page;
1717 * Object placement in a slab is made very easy because we always start at
1718 * offset 0. If we tune the size of the object to the alignment then we can
1719 * get the required alignment by putting one properly sized object after
1720 * another.
1722 * Notice that the allocation order determines the sizes of the per cpu
1723 * caches. Each processor has always one slab available for allocations.
1724 * Increasing the allocation order reduces the number of times that slabs
1725 * must be moved on and off the partial lists and is therefore a factor in
1726 * locking overhead.
1730 * Mininum / Maximum order of slab pages. This influences locking overhead
1731 * and slab fragmentation. A higher order reduces the number of partial slabs
1732 * and increases the number of allocations possible without having to
1733 * take the list_lock.
1735 static int slub_min_order;
1736 static int slub_max_order = DEFAULT_MAX_ORDER;
1737 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1740 * Merge control. If this is set then no merging of slab caches will occur.
1741 * (Could be removed. This was introduced to pacify the merge skeptics.)
1743 static int slub_nomerge;
1746 * Calculate the order of allocation given an slab object size.
1748 * The order of allocation has significant impact on performance and other
1749 * system components. Generally order 0 allocations should be preferred since
1750 * order 0 does not cause fragmentation in the page allocator. Larger objects
1751 * be problematic to put into order 0 slabs because there may be too much
1752 * unused space left. We go to a higher order if more than 1/8th of the slab
1753 * would be wasted.
1755 * In order to reach satisfactory performance we must ensure that a minimum
1756 * number of objects is in one slab. Otherwise we may generate too much
1757 * activity on the partial lists which requires taking the list_lock. This is
1758 * less a concern for large slabs though which are rarely used.
1760 * slub_max_order specifies the order where we begin to stop considering the
1761 * number of objects in a slab as critical. If we reach slub_max_order then
1762 * we try to keep the page order as low as possible. So we accept more waste
1763 * of space in favor of a small page order.
1765 * Higher order allocations also allow the placement of more objects in a
1766 * slab and thereby reduce object handling overhead. If the user has
1767 * requested a higher mininum order then we start with that one instead of
1768 * the smallest order which will fit the object.
1770 static inline int slab_order(int size, int min_objects,
1771 int max_order, int fract_leftover)
1773 int order;
1774 int rem;
1775 int min_order = slub_min_order;
1778 * If we would create too many object per slab then reduce
1779 * the slab order even if it goes below slub_min_order.
1781 while (min_order > 0 &&
1782 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1783 min_order--;
1785 for (order = max(min_order,
1786 fls(min_objects * size - 1) - PAGE_SHIFT);
1787 order <= max_order; order++) {
1789 unsigned long slab_size = PAGE_SIZE << order;
1791 if (slab_size < min_objects * size)
1792 continue;
1794 rem = slab_size % size;
1796 if (rem <= slab_size / fract_leftover)
1797 break;
1799 /* If the next size is too high then exit now */
1800 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1801 break;
1804 return order;
1807 static inline int calculate_order(int size)
1809 int order;
1810 int min_objects;
1811 int fraction;
1814 * Attempt to find best configuration for a slab. This
1815 * works by first attempting to generate a layout with
1816 * the best configuration and backing off gradually.
1818 * First we reduce the acceptable waste in a slab. Then
1819 * we reduce the minimum objects required in a slab.
1821 min_objects = slub_min_objects;
1822 while (min_objects > 1) {
1823 fraction = 8;
1824 while (fraction >= 4) {
1825 order = slab_order(size, min_objects,
1826 slub_max_order, fraction);
1827 if (order <= slub_max_order)
1828 return order;
1829 fraction /= 2;
1831 min_objects /= 2;
1835 * We were unable to place multiple objects in a slab. Now
1836 * lets see if we can place a single object there.
1838 order = slab_order(size, 1, slub_max_order, 1);
1839 if (order <= slub_max_order)
1840 return order;
1843 * Doh this slab cannot be placed using slub_max_order.
1845 order = slab_order(size, 1, MAX_ORDER, 1);
1846 if (order <= MAX_ORDER)
1847 return order;
1848 return -ENOSYS;
1852 * Figure out what the alignment of the objects will be.
1854 static unsigned long calculate_alignment(unsigned long flags,
1855 unsigned long align, unsigned long size)
1858 * If the user wants hardware cache aligned objects then
1859 * follow that suggestion if the object is sufficiently
1860 * large.
1862 * The hardware cache alignment cannot override the
1863 * specified alignment though. If that is greater
1864 * then use it.
1866 if ((flags & SLAB_HWCACHE_ALIGN) &&
1867 size > cache_line_size() / 2)
1868 return max_t(unsigned long, align, cache_line_size());
1870 if (align < ARCH_SLAB_MINALIGN)
1871 return ARCH_SLAB_MINALIGN;
1873 return ALIGN(align, sizeof(void *));
1876 static void init_kmem_cache_cpu(struct kmem_cache *s,
1877 struct kmem_cache_cpu *c)
1879 c->page = NULL;
1880 c->freelist = NULL;
1881 c->node = 0;
1884 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1886 int cpu;
1888 for_each_possible_cpu(cpu)
1889 init_kmem_cache_cpu(s, get_cpu_slab(s, cpu));
1891 return 1;
1894 static void init_kmem_cache_node(struct kmem_cache_node *n)
1896 n->nr_partial = 0;
1897 atomic_long_set(&n->nr_slabs, 0);
1898 spin_lock_init(&n->list_lock);
1899 INIT_LIST_HEAD(&n->partial);
1900 #ifdef CONFIG_SLUB_DEBUG
1901 INIT_LIST_HEAD(&n->full);
1902 #endif
1905 #ifdef CONFIG_NUMA
1907 * No kmalloc_node yet so do it by hand. We know that this is the first
1908 * slab on the node for this slabcache. There are no concurrent accesses
1909 * possible.
1911 * Note that this function only works on the kmalloc_node_cache
1912 * when allocating for the kmalloc_node_cache.
1914 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1915 int node)
1917 struct page *page;
1918 struct kmem_cache_node *n;
1920 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1922 page = new_slab(kmalloc_caches, gfpflags, node);
1924 BUG_ON(!page);
1925 if (page_to_nid(page) != node) {
1926 printk(KERN_ERR "SLUB: Unable to allocate memory from "
1927 "node %d\n", node);
1928 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
1929 "in order to be able to continue\n");
1932 n = page->freelist;
1933 BUG_ON(!n);
1934 page->freelist = get_freepointer(kmalloc_caches, n);
1935 page->inuse++;
1936 kmalloc_caches->node[node] = n;
1937 #ifdef CONFIG_SLUB_DEBUG
1938 init_object(kmalloc_caches, n, 1);
1939 init_tracking(kmalloc_caches, n);
1940 #endif
1941 init_kmem_cache_node(n);
1942 atomic_long_inc(&n->nr_slabs);
1943 add_partial(n, page);
1946 * new_slab() disables interupts. If we do not reenable interrupts here
1947 * then bootup would continue with interrupts disabled.
1949 local_irq_enable();
1950 return n;
1953 static void free_kmem_cache_nodes(struct kmem_cache *s)
1955 int node;
1957 for_each_node_state(node, N_NORMAL_MEMORY) {
1958 struct kmem_cache_node *n = s->node[node];
1959 if (n && n != &s->local_node)
1960 kmem_cache_free(kmalloc_caches, n);
1961 s->node[node] = NULL;
1965 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1967 int node;
1968 int local_node;
1970 if (slab_state >= UP)
1971 local_node = page_to_nid(virt_to_page(s));
1972 else
1973 local_node = 0;
1975 for_each_node_state(node, N_NORMAL_MEMORY) {
1976 struct kmem_cache_node *n;
1978 if (local_node == node)
1979 n = &s->local_node;
1980 else {
1981 if (slab_state == DOWN) {
1982 n = early_kmem_cache_node_alloc(gfpflags,
1983 node);
1984 continue;
1986 n = kmem_cache_alloc_node(kmalloc_caches,
1987 gfpflags, node);
1989 if (!n) {
1990 free_kmem_cache_nodes(s);
1991 return 0;
1995 s->node[node] = n;
1996 init_kmem_cache_node(n);
1998 return 1;
2000 #else
2001 static void free_kmem_cache_nodes(struct kmem_cache *s)
2005 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2007 init_kmem_cache_node(&s->local_node);
2008 return 1;
2010 #endif
2013 * calculate_sizes() determines the order and the distribution of data within
2014 * a slab object.
2016 static int calculate_sizes(struct kmem_cache *s)
2018 unsigned long flags = s->flags;
2019 unsigned long size = s->objsize;
2020 unsigned long align = s->align;
2023 * Determine if we can poison the object itself. If the user of
2024 * the slab may touch the object after free or before allocation
2025 * then we should never poison the object itself.
2027 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2028 !s->ctor)
2029 s->flags |= __OBJECT_POISON;
2030 else
2031 s->flags &= ~__OBJECT_POISON;
2034 * Round up object size to the next word boundary. We can only
2035 * place the free pointer at word boundaries and this determines
2036 * the possible location of the free pointer.
2038 size = ALIGN(size, sizeof(void *));
2040 #ifdef CONFIG_SLUB_DEBUG
2042 * If we are Redzoning then check if there is some space between the
2043 * end of the object and the free pointer. If not then add an
2044 * additional word to have some bytes to store Redzone information.
2046 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2047 size += sizeof(void *);
2048 #endif
2051 * With that we have determined the number of bytes in actual use
2052 * by the object. This is the potential offset to the free pointer.
2054 s->inuse = size;
2056 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2057 s->ctor)) {
2059 * Relocate free pointer after the object if it is not
2060 * permitted to overwrite the first word of the object on
2061 * kmem_cache_free.
2063 * This is the case if we do RCU, have a constructor or
2064 * destructor or are poisoning the objects.
2066 s->offset = size;
2067 size += sizeof(void *);
2070 #ifdef CONFIG_SLUB_DEBUG
2071 if (flags & SLAB_STORE_USER)
2073 * Need to store information about allocs and frees after
2074 * the object.
2076 size += 2 * sizeof(struct track);
2078 if (flags & SLAB_RED_ZONE)
2080 * Add some empty padding so that we can catch
2081 * overwrites from earlier objects rather than let
2082 * tracking information or the free pointer be
2083 * corrupted if an user writes before the start
2084 * of the object.
2086 size += sizeof(void *);
2087 #endif
2090 * Determine the alignment based on various parameters that the
2091 * user specified and the dynamic determination of cache line size
2092 * on bootup.
2094 align = calculate_alignment(flags, align, s->objsize);
2097 * SLUB stores one object immediately after another beginning from
2098 * offset 0. In order to align the objects we have to simply size
2099 * each object to conform to the alignment.
2101 size = ALIGN(size, align);
2102 s->size = size;
2104 s->order = calculate_order(size);
2105 if (s->order < 0)
2106 return 0;
2109 * Determine the number of objects per slab
2111 s->objects = (PAGE_SIZE << s->order) / size;
2114 * Verify that the number of objects is within permitted limits.
2115 * The page->inuse field is only 16 bit wide! So we cannot have
2116 * more than 64k objects per slab.
2118 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
2119 return 0;
2120 return 1;
2124 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2125 const char *name, size_t size,
2126 size_t align, unsigned long flags,
2127 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2129 memset(s, 0, kmem_size);
2130 s->name = name;
2131 s->ctor = ctor;
2132 s->objsize = size;
2133 s->align = align;
2134 s->flags = kmem_cache_flags(size, flags, name, ctor);
2136 if (!calculate_sizes(s))
2137 goto error;
2139 s->refcount = 1;
2140 #ifdef CONFIG_NUMA
2141 s->defrag_ratio = 100;
2142 #endif
2143 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2144 goto error;
2146 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2147 return 1;
2148 error:
2149 if (flags & SLAB_PANIC)
2150 panic("Cannot create slab %s size=%lu realsize=%u "
2151 "order=%u offset=%u flags=%lx\n",
2152 s->name, (unsigned long)size, s->size, s->order,
2153 s->offset, flags);
2154 return 0;
2158 * Check if a given pointer is valid
2160 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2162 struct page * page;
2164 page = get_object_page(object);
2166 if (!page || s != page->slab)
2167 /* No slab or wrong slab */
2168 return 0;
2170 if (!check_valid_pointer(s, page, object))
2171 return 0;
2174 * We could also check if the object is on the slabs freelist.
2175 * But this would be too expensive and it seems that the main
2176 * purpose of kmem_ptr_valid is to check if the object belongs
2177 * to a certain slab.
2179 return 1;
2181 EXPORT_SYMBOL(kmem_ptr_validate);
2184 * Determine the size of a slab object
2186 unsigned int kmem_cache_size(struct kmem_cache *s)
2188 return s->objsize;
2190 EXPORT_SYMBOL(kmem_cache_size);
2192 const char *kmem_cache_name(struct kmem_cache *s)
2194 return s->name;
2196 EXPORT_SYMBOL(kmem_cache_name);
2199 * Attempt to free all slabs on a node. Return the number of slabs we
2200 * were unable to free.
2202 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2203 struct list_head *list)
2205 int slabs_inuse = 0;
2206 unsigned long flags;
2207 struct page *page, *h;
2209 spin_lock_irqsave(&n->list_lock, flags);
2210 list_for_each_entry_safe(page, h, list, lru)
2211 if (!page->inuse) {
2212 list_del(&page->lru);
2213 discard_slab(s, page);
2214 } else
2215 slabs_inuse++;
2216 spin_unlock_irqrestore(&n->list_lock, flags);
2217 return slabs_inuse;
2221 * Release all resources used by a slab cache.
2223 static inline int kmem_cache_close(struct kmem_cache *s)
2225 int node;
2227 flush_all(s);
2229 /* Attempt to free all objects */
2230 for_each_node_state(node, N_NORMAL_MEMORY) {
2231 struct kmem_cache_node *n = get_node(s, node);
2233 n->nr_partial -= free_list(s, n, &n->partial);
2234 if (atomic_long_read(&n->nr_slabs))
2235 return 1;
2237 free_kmem_cache_nodes(s);
2238 return 0;
2242 * Close a cache and release the kmem_cache structure
2243 * (must be used for caches created using kmem_cache_create)
2245 void kmem_cache_destroy(struct kmem_cache *s)
2247 down_write(&slub_lock);
2248 s->refcount--;
2249 if (!s->refcount) {
2250 list_del(&s->list);
2251 up_write(&slub_lock);
2252 if (kmem_cache_close(s))
2253 WARN_ON(1);
2254 sysfs_slab_remove(s);
2255 kfree(s);
2256 } else
2257 up_write(&slub_lock);
2259 EXPORT_SYMBOL(kmem_cache_destroy);
2261 /********************************************************************
2262 * Kmalloc subsystem
2263 *******************************************************************/
2265 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2266 EXPORT_SYMBOL(kmalloc_caches);
2268 #ifdef CONFIG_ZONE_DMA
2269 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2270 #endif
2272 static int __init setup_slub_min_order(char *str)
2274 get_option (&str, &slub_min_order);
2276 return 1;
2279 __setup("slub_min_order=", setup_slub_min_order);
2281 static int __init setup_slub_max_order(char *str)
2283 get_option (&str, &slub_max_order);
2285 return 1;
2288 __setup("slub_max_order=", setup_slub_max_order);
2290 static int __init setup_slub_min_objects(char *str)
2292 get_option (&str, &slub_min_objects);
2294 return 1;
2297 __setup("slub_min_objects=", setup_slub_min_objects);
2299 static int __init setup_slub_nomerge(char *str)
2301 slub_nomerge = 1;
2302 return 1;
2305 __setup("slub_nomerge", setup_slub_nomerge);
2307 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2308 const char *name, int size, gfp_t gfp_flags)
2310 unsigned int flags = 0;
2312 if (gfp_flags & SLUB_DMA)
2313 flags = SLAB_CACHE_DMA;
2315 down_write(&slub_lock);
2316 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2317 flags, NULL))
2318 goto panic;
2320 list_add(&s->list, &slab_caches);
2321 up_write(&slub_lock);
2322 if (sysfs_slab_add(s))
2323 goto panic;
2324 return s;
2326 panic:
2327 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2330 #ifdef CONFIG_ZONE_DMA
2332 static void sysfs_add_func(struct work_struct *w)
2334 struct kmem_cache *s;
2336 down_write(&slub_lock);
2337 list_for_each_entry(s, &slab_caches, list) {
2338 if (s->flags & __SYSFS_ADD_DEFERRED) {
2339 s->flags &= ~__SYSFS_ADD_DEFERRED;
2340 sysfs_slab_add(s);
2343 up_write(&slub_lock);
2346 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2348 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2350 struct kmem_cache *s;
2351 char *text;
2352 size_t realsize;
2354 s = kmalloc_caches_dma[index];
2355 if (s)
2356 return s;
2358 /* Dynamically create dma cache */
2359 if (flags & __GFP_WAIT)
2360 down_write(&slub_lock);
2361 else {
2362 if (!down_write_trylock(&slub_lock))
2363 goto out;
2366 if (kmalloc_caches_dma[index])
2367 goto unlock_out;
2369 realsize = kmalloc_caches[index].objsize;
2370 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2371 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2373 if (!s || !text || !kmem_cache_open(s, flags, text,
2374 realsize, ARCH_KMALLOC_MINALIGN,
2375 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2376 kfree(s);
2377 kfree(text);
2378 goto unlock_out;
2381 list_add(&s->list, &slab_caches);
2382 kmalloc_caches_dma[index] = s;
2384 schedule_work(&sysfs_add_work);
2386 unlock_out:
2387 up_write(&slub_lock);
2388 out:
2389 return kmalloc_caches_dma[index];
2391 #endif
2394 * Conversion table for small slabs sizes / 8 to the index in the
2395 * kmalloc array. This is necessary for slabs < 192 since we have non power
2396 * of two cache sizes there. The size of larger slabs can be determined using
2397 * fls.
2399 static s8 size_index[24] = {
2400 3, /* 8 */
2401 4, /* 16 */
2402 5, /* 24 */
2403 5, /* 32 */
2404 6, /* 40 */
2405 6, /* 48 */
2406 6, /* 56 */
2407 6, /* 64 */
2408 1, /* 72 */
2409 1, /* 80 */
2410 1, /* 88 */
2411 1, /* 96 */
2412 7, /* 104 */
2413 7, /* 112 */
2414 7, /* 120 */
2415 7, /* 128 */
2416 2, /* 136 */
2417 2, /* 144 */
2418 2, /* 152 */
2419 2, /* 160 */
2420 2, /* 168 */
2421 2, /* 176 */
2422 2, /* 184 */
2423 2 /* 192 */
2426 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2428 int index;
2430 if (size <= 192) {
2431 if (!size)
2432 return ZERO_SIZE_PTR;
2434 index = size_index[(size - 1) / 8];
2435 } else
2436 index = fls(size - 1);
2438 #ifdef CONFIG_ZONE_DMA
2439 if (unlikely((flags & SLUB_DMA)))
2440 return dma_kmalloc_cache(index, flags);
2442 #endif
2443 return &kmalloc_caches[index];
2446 void *__kmalloc(size_t size, gfp_t flags)
2448 struct kmem_cache *s;
2450 if (unlikely(size > PAGE_SIZE / 2))
2451 return (void *)__get_free_pages(flags | __GFP_COMP,
2452 get_order(size));
2454 s = get_slab(size, flags);
2456 if (unlikely(ZERO_OR_NULL_PTR(s)))
2457 return s;
2459 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2461 EXPORT_SYMBOL(__kmalloc);
2463 #ifdef CONFIG_NUMA
2464 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2466 struct kmem_cache *s;
2468 if (unlikely(size > PAGE_SIZE / 2))
2469 return (void *)__get_free_pages(flags | __GFP_COMP,
2470 get_order(size));
2472 s = get_slab(size, flags);
2474 if (unlikely(ZERO_OR_NULL_PTR(s)))
2475 return s;
2477 return slab_alloc(s, flags, node, __builtin_return_address(0));
2479 EXPORT_SYMBOL(__kmalloc_node);
2480 #endif
2482 size_t ksize(const void *object)
2484 struct page *page;
2485 struct kmem_cache *s;
2487 BUG_ON(!object);
2488 if (unlikely(object == ZERO_SIZE_PTR))
2489 return 0;
2491 page = get_object_page(object);
2492 BUG_ON(!page);
2493 s = page->slab;
2494 BUG_ON(!s);
2497 * Debugging requires use of the padding between object
2498 * and whatever may come after it.
2500 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2501 return s->objsize;
2504 * If we have the need to store the freelist pointer
2505 * back there or track user information then we can
2506 * only use the space before that information.
2508 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2509 return s->inuse;
2512 * Else we can use all the padding etc for the allocation
2514 return s->size;
2516 EXPORT_SYMBOL(ksize);
2518 void kfree(const void *x)
2520 struct page *page;
2522 if (unlikely(ZERO_OR_NULL_PTR(x)))
2523 return;
2525 page = virt_to_head_page(x);
2526 if (unlikely(!PageSlab(page))) {
2527 put_page(page);
2528 return;
2530 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2532 EXPORT_SYMBOL(kfree);
2535 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2536 * the remaining slabs by the number of items in use. The slabs with the
2537 * most items in use come first. New allocations will then fill those up
2538 * and thus they can be removed from the partial lists.
2540 * The slabs with the least items are placed last. This results in them
2541 * being allocated from last increasing the chance that the last objects
2542 * are freed in them.
2544 int kmem_cache_shrink(struct kmem_cache *s)
2546 int node;
2547 int i;
2548 struct kmem_cache_node *n;
2549 struct page *page;
2550 struct page *t;
2551 struct list_head *slabs_by_inuse =
2552 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2553 unsigned long flags;
2555 if (!slabs_by_inuse)
2556 return -ENOMEM;
2558 flush_all(s);
2559 for_each_node_state(node, N_NORMAL_MEMORY) {
2560 n = get_node(s, node);
2562 if (!n->nr_partial)
2563 continue;
2565 for (i = 0; i < s->objects; i++)
2566 INIT_LIST_HEAD(slabs_by_inuse + i);
2568 spin_lock_irqsave(&n->list_lock, flags);
2571 * Build lists indexed by the items in use in each slab.
2573 * Note that concurrent frees may occur while we hold the
2574 * list_lock. page->inuse here is the upper limit.
2576 list_for_each_entry_safe(page, t, &n->partial, lru) {
2577 if (!page->inuse && slab_trylock(page)) {
2579 * Must hold slab lock here because slab_free
2580 * may have freed the last object and be
2581 * waiting to release the slab.
2583 list_del(&page->lru);
2584 n->nr_partial--;
2585 slab_unlock(page);
2586 discard_slab(s, page);
2587 } else {
2588 list_move(&page->lru,
2589 slabs_by_inuse + page->inuse);
2594 * Rebuild the partial list with the slabs filled up most
2595 * first and the least used slabs at the end.
2597 for (i = s->objects - 1; i >= 0; i--)
2598 list_splice(slabs_by_inuse + i, n->partial.prev);
2600 spin_unlock_irqrestore(&n->list_lock, flags);
2603 kfree(slabs_by_inuse);
2604 return 0;
2606 EXPORT_SYMBOL(kmem_cache_shrink);
2608 /********************************************************************
2609 * Basic setup of slabs
2610 *******************************************************************/
2612 void __init kmem_cache_init(void)
2614 int i;
2615 int caches = 0;
2617 #ifdef CONFIG_NUMA
2619 * Must first have the slab cache available for the allocations of the
2620 * struct kmem_cache_node's. There is special bootstrap code in
2621 * kmem_cache_open for slab_state == DOWN.
2623 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2624 sizeof(struct kmem_cache_node), GFP_KERNEL);
2625 kmalloc_caches[0].refcount = -1;
2626 caches++;
2627 #endif
2629 /* Able to allocate the per node structures */
2630 slab_state = PARTIAL;
2632 /* Caches that are not of the two-to-the-power-of size */
2633 if (KMALLOC_MIN_SIZE <= 64) {
2634 create_kmalloc_cache(&kmalloc_caches[1],
2635 "kmalloc-96", 96, GFP_KERNEL);
2636 caches++;
2638 if (KMALLOC_MIN_SIZE <= 128) {
2639 create_kmalloc_cache(&kmalloc_caches[2],
2640 "kmalloc-192", 192, GFP_KERNEL);
2641 caches++;
2644 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2645 create_kmalloc_cache(&kmalloc_caches[i],
2646 "kmalloc", 1 << i, GFP_KERNEL);
2647 caches++;
2652 * Patch up the size_index table if we have strange large alignment
2653 * requirements for the kmalloc array. This is only the case for
2654 * mips it seems. The standard arches will not generate any code here.
2656 * Largest permitted alignment is 256 bytes due to the way we
2657 * handle the index determination for the smaller caches.
2659 * Make sure that nothing crazy happens if someone starts tinkering
2660 * around with ARCH_KMALLOC_MINALIGN
2662 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2663 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2665 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2666 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2668 slab_state = UP;
2670 /* Provide the correct kmalloc names now that the caches are up */
2671 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2672 kmalloc_caches[i]. name =
2673 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2675 #ifdef CONFIG_SMP
2676 register_cpu_notifier(&slab_notifier);
2677 #endif
2679 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2680 nr_cpu_ids * sizeof(struct kmem_cache_cpu);
2682 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2683 " CPUs=%d, Nodes=%d\n",
2684 caches, cache_line_size(),
2685 slub_min_order, slub_max_order, slub_min_objects,
2686 nr_cpu_ids, nr_node_ids);
2690 * Find a mergeable slab cache
2692 static int slab_unmergeable(struct kmem_cache *s)
2694 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2695 return 1;
2697 if (s->ctor)
2698 return 1;
2701 * We may have set a slab to be unmergeable during bootstrap.
2703 if (s->refcount < 0)
2704 return 1;
2706 return 0;
2709 static struct kmem_cache *find_mergeable(size_t size,
2710 size_t align, unsigned long flags, const char *name,
2711 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2713 struct kmem_cache *s;
2715 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2716 return NULL;
2718 if (ctor)
2719 return NULL;
2721 size = ALIGN(size, sizeof(void *));
2722 align = calculate_alignment(flags, align, size);
2723 size = ALIGN(size, align);
2724 flags = kmem_cache_flags(size, flags, name, NULL);
2726 list_for_each_entry(s, &slab_caches, list) {
2727 if (slab_unmergeable(s))
2728 continue;
2730 if (size > s->size)
2731 continue;
2733 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2734 continue;
2736 * Check if alignment is compatible.
2737 * Courtesy of Adrian Drzewiecki
2739 if ((s->size & ~(align -1)) != s->size)
2740 continue;
2742 if (s->size - size >= sizeof(void *))
2743 continue;
2745 return s;
2747 return NULL;
2750 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2751 size_t align, unsigned long flags,
2752 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2754 struct kmem_cache *s;
2756 down_write(&slub_lock);
2757 s = find_mergeable(size, align, flags, name, ctor);
2758 if (s) {
2759 s->refcount++;
2761 * Adjust the object sizes so that we clear
2762 * the complete object on kzalloc.
2764 s->objsize = max(s->objsize, (int)size);
2765 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2766 up_write(&slub_lock);
2767 if (sysfs_slab_alias(s, name))
2768 goto err;
2769 return s;
2771 s = kmalloc(kmem_size, GFP_KERNEL);
2772 if (s) {
2773 if (kmem_cache_open(s, GFP_KERNEL, name,
2774 size, align, flags, ctor)) {
2775 list_add(&s->list, &slab_caches);
2776 up_write(&slub_lock);
2777 if (sysfs_slab_add(s))
2778 goto err;
2779 return s;
2781 kfree(s);
2783 up_write(&slub_lock);
2785 err:
2786 if (flags & SLAB_PANIC)
2787 panic("Cannot create slabcache %s\n", name);
2788 else
2789 s = NULL;
2790 return s;
2792 EXPORT_SYMBOL(kmem_cache_create);
2794 #ifdef CONFIG_SMP
2796 * Use the cpu notifier to insure that the cpu slabs are flushed when
2797 * necessary.
2799 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2800 unsigned long action, void *hcpu)
2802 long cpu = (long)hcpu;
2803 struct kmem_cache *s;
2804 unsigned long flags;
2806 switch (action) {
2807 case CPU_UP_CANCELED:
2808 case CPU_UP_CANCELED_FROZEN:
2809 case CPU_DEAD:
2810 case CPU_DEAD_FROZEN:
2811 down_read(&slub_lock);
2812 list_for_each_entry(s, &slab_caches, list) {
2813 local_irq_save(flags);
2814 __flush_cpu_slab(s, cpu);
2815 local_irq_restore(flags);
2817 up_read(&slub_lock);
2818 break;
2819 default:
2820 break;
2822 return NOTIFY_OK;
2825 static struct notifier_block __cpuinitdata slab_notifier =
2826 { &slab_cpuup_callback, NULL, 0 };
2828 #endif
2830 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2832 struct kmem_cache *s;
2834 if (unlikely(size > PAGE_SIZE / 2))
2835 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2836 get_order(size));
2837 s = get_slab(size, gfpflags);
2839 if (unlikely(ZERO_OR_NULL_PTR(s)))
2840 return s;
2842 return slab_alloc(s, gfpflags, -1, caller);
2845 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2846 int node, void *caller)
2848 struct kmem_cache *s;
2850 if (unlikely(size > PAGE_SIZE / 2))
2851 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2852 get_order(size));
2853 s = get_slab(size, gfpflags);
2855 if (unlikely(ZERO_OR_NULL_PTR(s)))
2856 return s;
2858 return slab_alloc(s, gfpflags, node, caller);
2861 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2862 static int validate_slab(struct kmem_cache *s, struct page *page,
2863 unsigned long *map)
2865 void *p;
2866 void *addr = page_address(page);
2868 if (!check_slab(s, page) ||
2869 !on_freelist(s, page, NULL))
2870 return 0;
2872 /* Now we know that a valid freelist exists */
2873 bitmap_zero(map, s->objects);
2875 for_each_free_object(p, s, page->freelist) {
2876 set_bit(slab_index(p, s, addr), map);
2877 if (!check_object(s, page, p, 0))
2878 return 0;
2881 for_each_object(p, s, addr)
2882 if (!test_bit(slab_index(p, s, addr), map))
2883 if (!check_object(s, page, p, 1))
2884 return 0;
2885 return 1;
2888 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2889 unsigned long *map)
2891 if (slab_trylock(page)) {
2892 validate_slab(s, page, map);
2893 slab_unlock(page);
2894 } else
2895 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2896 s->name, page);
2898 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2899 if (!SlabDebug(page))
2900 printk(KERN_ERR "SLUB %s: SlabDebug not set "
2901 "on slab 0x%p\n", s->name, page);
2902 } else {
2903 if (SlabDebug(page))
2904 printk(KERN_ERR "SLUB %s: SlabDebug set on "
2905 "slab 0x%p\n", s->name, page);
2909 static int validate_slab_node(struct kmem_cache *s,
2910 struct kmem_cache_node *n, unsigned long *map)
2912 unsigned long count = 0;
2913 struct page *page;
2914 unsigned long flags;
2916 spin_lock_irqsave(&n->list_lock, flags);
2918 list_for_each_entry(page, &n->partial, lru) {
2919 validate_slab_slab(s, page, map);
2920 count++;
2922 if (count != n->nr_partial)
2923 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2924 "counter=%ld\n", s->name, count, n->nr_partial);
2926 if (!(s->flags & SLAB_STORE_USER))
2927 goto out;
2929 list_for_each_entry(page, &n->full, lru) {
2930 validate_slab_slab(s, page, map);
2931 count++;
2933 if (count != atomic_long_read(&n->nr_slabs))
2934 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2935 "counter=%ld\n", s->name, count,
2936 atomic_long_read(&n->nr_slabs));
2938 out:
2939 spin_unlock_irqrestore(&n->list_lock, flags);
2940 return count;
2943 static long validate_slab_cache(struct kmem_cache *s)
2945 int node;
2946 unsigned long count = 0;
2947 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2948 sizeof(unsigned long), GFP_KERNEL);
2950 if (!map)
2951 return -ENOMEM;
2953 flush_all(s);
2954 for_each_node_state(node, N_NORMAL_MEMORY) {
2955 struct kmem_cache_node *n = get_node(s, node);
2957 count += validate_slab_node(s, n, map);
2959 kfree(map);
2960 return count;
2963 #ifdef SLUB_RESILIENCY_TEST
2964 static void resiliency_test(void)
2966 u8 *p;
2968 printk(KERN_ERR "SLUB resiliency testing\n");
2969 printk(KERN_ERR "-----------------------\n");
2970 printk(KERN_ERR "A. Corruption after allocation\n");
2972 p = kzalloc(16, GFP_KERNEL);
2973 p[16] = 0x12;
2974 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2975 " 0x12->0x%p\n\n", p + 16);
2977 validate_slab_cache(kmalloc_caches + 4);
2979 /* Hmmm... The next two are dangerous */
2980 p = kzalloc(32, GFP_KERNEL);
2981 p[32 + sizeof(void *)] = 0x34;
2982 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2983 " 0x34 -> -0x%p\n", p);
2984 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2986 validate_slab_cache(kmalloc_caches + 5);
2987 p = kzalloc(64, GFP_KERNEL);
2988 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2989 *p = 0x56;
2990 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2992 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2993 validate_slab_cache(kmalloc_caches + 6);
2995 printk(KERN_ERR "\nB. Corruption after free\n");
2996 p = kzalloc(128, GFP_KERNEL);
2997 kfree(p);
2998 *p = 0x78;
2999 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3000 validate_slab_cache(kmalloc_caches + 7);
3002 p = kzalloc(256, GFP_KERNEL);
3003 kfree(p);
3004 p[50] = 0x9a;
3005 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3006 validate_slab_cache(kmalloc_caches + 8);
3008 p = kzalloc(512, GFP_KERNEL);
3009 kfree(p);
3010 p[512] = 0xab;
3011 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3012 validate_slab_cache(kmalloc_caches + 9);
3014 #else
3015 static void resiliency_test(void) {};
3016 #endif
3019 * Generate lists of code addresses where slabcache objects are allocated
3020 * and freed.
3023 struct location {
3024 unsigned long count;
3025 void *addr;
3026 long long sum_time;
3027 long min_time;
3028 long max_time;
3029 long min_pid;
3030 long max_pid;
3031 cpumask_t cpus;
3032 nodemask_t nodes;
3035 struct loc_track {
3036 unsigned long max;
3037 unsigned long count;
3038 struct location *loc;
3041 static void free_loc_track(struct loc_track *t)
3043 if (t->max)
3044 free_pages((unsigned long)t->loc,
3045 get_order(sizeof(struct location) * t->max));
3048 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3050 struct location *l;
3051 int order;
3053 order = get_order(sizeof(struct location) * max);
3055 l = (void *)__get_free_pages(flags, order);
3056 if (!l)
3057 return 0;
3059 if (t->count) {
3060 memcpy(l, t->loc, sizeof(struct location) * t->count);
3061 free_loc_track(t);
3063 t->max = max;
3064 t->loc = l;
3065 return 1;
3068 static int add_location(struct loc_track *t, struct kmem_cache *s,
3069 const struct track *track)
3071 long start, end, pos;
3072 struct location *l;
3073 void *caddr;
3074 unsigned long age = jiffies - track->when;
3076 start = -1;
3077 end = t->count;
3079 for ( ; ; ) {
3080 pos = start + (end - start + 1) / 2;
3083 * There is nothing at "end". If we end up there
3084 * we need to add something to before end.
3086 if (pos == end)
3087 break;
3089 caddr = t->loc[pos].addr;
3090 if (track->addr == caddr) {
3092 l = &t->loc[pos];
3093 l->count++;
3094 if (track->when) {
3095 l->sum_time += age;
3096 if (age < l->min_time)
3097 l->min_time = age;
3098 if (age > l->max_time)
3099 l->max_time = age;
3101 if (track->pid < l->min_pid)
3102 l->min_pid = track->pid;
3103 if (track->pid > l->max_pid)
3104 l->max_pid = track->pid;
3106 cpu_set(track->cpu, l->cpus);
3108 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3109 return 1;
3112 if (track->addr < caddr)
3113 end = pos;
3114 else
3115 start = pos;
3119 * Not found. Insert new tracking element.
3121 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3122 return 0;
3124 l = t->loc + pos;
3125 if (pos < t->count)
3126 memmove(l + 1, l,
3127 (t->count - pos) * sizeof(struct location));
3128 t->count++;
3129 l->count = 1;
3130 l->addr = track->addr;
3131 l->sum_time = age;
3132 l->min_time = age;
3133 l->max_time = age;
3134 l->min_pid = track->pid;
3135 l->max_pid = track->pid;
3136 cpus_clear(l->cpus);
3137 cpu_set(track->cpu, l->cpus);
3138 nodes_clear(l->nodes);
3139 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3140 return 1;
3143 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3144 struct page *page, enum track_item alloc)
3146 void *addr = page_address(page);
3147 DECLARE_BITMAP(map, s->objects);
3148 void *p;
3150 bitmap_zero(map, s->objects);
3151 for_each_free_object(p, s, page->freelist)
3152 set_bit(slab_index(p, s, addr), map);
3154 for_each_object(p, s, addr)
3155 if (!test_bit(slab_index(p, s, addr), map))
3156 add_location(t, s, get_track(s, p, alloc));
3159 static int list_locations(struct kmem_cache *s, char *buf,
3160 enum track_item alloc)
3162 int n = 0;
3163 unsigned long i;
3164 struct loc_track t = { 0, 0, NULL };
3165 int node;
3167 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3168 GFP_KERNEL))
3169 return sprintf(buf, "Out of memory\n");
3171 /* Push back cpu slabs */
3172 flush_all(s);
3174 for_each_node_state(node, N_NORMAL_MEMORY) {
3175 struct kmem_cache_node *n = get_node(s, node);
3176 unsigned long flags;
3177 struct page *page;
3179 if (!atomic_long_read(&n->nr_slabs))
3180 continue;
3182 spin_lock_irqsave(&n->list_lock, flags);
3183 list_for_each_entry(page, &n->partial, lru)
3184 process_slab(&t, s, page, alloc);
3185 list_for_each_entry(page, &n->full, lru)
3186 process_slab(&t, s, page, alloc);
3187 spin_unlock_irqrestore(&n->list_lock, flags);
3190 for (i = 0; i < t.count; i++) {
3191 struct location *l = &t.loc[i];
3193 if (n > PAGE_SIZE - 100)
3194 break;
3195 n += sprintf(buf + n, "%7ld ", l->count);
3197 if (l->addr)
3198 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3199 else
3200 n += sprintf(buf + n, "<not-available>");
3202 if (l->sum_time != l->min_time) {
3203 unsigned long remainder;
3205 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3206 l->min_time,
3207 div_long_long_rem(l->sum_time, l->count, &remainder),
3208 l->max_time);
3209 } else
3210 n += sprintf(buf + n, " age=%ld",
3211 l->min_time);
3213 if (l->min_pid != l->max_pid)
3214 n += sprintf(buf + n, " pid=%ld-%ld",
3215 l->min_pid, l->max_pid);
3216 else
3217 n += sprintf(buf + n, " pid=%ld",
3218 l->min_pid);
3220 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3221 n < PAGE_SIZE - 60) {
3222 n += sprintf(buf + n, " cpus=");
3223 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3224 l->cpus);
3227 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3228 n < PAGE_SIZE - 60) {
3229 n += sprintf(buf + n, " nodes=");
3230 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3231 l->nodes);
3234 n += sprintf(buf + n, "\n");
3237 free_loc_track(&t);
3238 if (!t.count)
3239 n += sprintf(buf, "No data\n");
3240 return n;
3243 static unsigned long count_partial(struct kmem_cache_node *n)
3245 unsigned long flags;
3246 unsigned long x = 0;
3247 struct page *page;
3249 spin_lock_irqsave(&n->list_lock, flags);
3250 list_for_each_entry(page, &n->partial, lru)
3251 x += page->inuse;
3252 spin_unlock_irqrestore(&n->list_lock, flags);
3253 return x;
3256 enum slab_stat_type {
3257 SL_FULL,
3258 SL_PARTIAL,
3259 SL_CPU,
3260 SL_OBJECTS
3263 #define SO_FULL (1 << SL_FULL)
3264 #define SO_PARTIAL (1 << SL_PARTIAL)
3265 #define SO_CPU (1 << SL_CPU)
3266 #define SO_OBJECTS (1 << SL_OBJECTS)
3268 static unsigned long slab_objects(struct kmem_cache *s,
3269 char *buf, unsigned long flags)
3271 unsigned long total = 0;
3272 int cpu;
3273 int node;
3274 int x;
3275 unsigned long *nodes;
3276 unsigned long *per_cpu;
3278 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3279 per_cpu = nodes + nr_node_ids;
3281 for_each_possible_cpu(cpu) {
3282 struct page *page;
3283 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3285 if (!c)
3286 continue;
3288 page = c->page;
3289 if (page) {
3290 if (flags & SO_CPU) {
3291 int x = 0;
3293 if (flags & SO_OBJECTS)
3294 x = page->inuse;
3295 else
3296 x = 1;
3297 total += x;
3298 nodes[c->node] += x;
3300 per_cpu[c->node]++;
3304 for_each_node_state(node, N_NORMAL_MEMORY) {
3305 struct kmem_cache_node *n = get_node(s, node);
3307 if (flags & SO_PARTIAL) {
3308 if (flags & SO_OBJECTS)
3309 x = count_partial(n);
3310 else
3311 x = n->nr_partial;
3312 total += x;
3313 nodes[node] += x;
3316 if (flags & SO_FULL) {
3317 int full_slabs = atomic_long_read(&n->nr_slabs)
3318 - per_cpu[node]
3319 - n->nr_partial;
3321 if (flags & SO_OBJECTS)
3322 x = full_slabs * s->objects;
3323 else
3324 x = full_slabs;
3325 total += x;
3326 nodes[node] += x;
3330 x = sprintf(buf, "%lu", total);
3331 #ifdef CONFIG_NUMA
3332 for_each_node_state(node, N_NORMAL_MEMORY)
3333 if (nodes[node])
3334 x += sprintf(buf + x, " N%d=%lu",
3335 node, nodes[node]);
3336 #endif
3337 kfree(nodes);
3338 return x + sprintf(buf + x, "\n");
3341 static int any_slab_objects(struct kmem_cache *s)
3343 int node;
3344 int cpu;
3346 for_each_possible_cpu(cpu) {
3347 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3349 if (c && c->page)
3350 return 1;
3353 for_each_online_node(node) {
3354 struct kmem_cache_node *n = get_node(s, node);
3356 if (!n)
3357 continue;
3359 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3360 return 1;
3362 return 0;
3365 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3366 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3368 struct slab_attribute {
3369 struct attribute attr;
3370 ssize_t (*show)(struct kmem_cache *s, char *buf);
3371 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3374 #define SLAB_ATTR_RO(_name) \
3375 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3377 #define SLAB_ATTR(_name) \
3378 static struct slab_attribute _name##_attr = \
3379 __ATTR(_name, 0644, _name##_show, _name##_store)
3381 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3383 return sprintf(buf, "%d\n", s->size);
3385 SLAB_ATTR_RO(slab_size);
3387 static ssize_t align_show(struct kmem_cache *s, char *buf)
3389 return sprintf(buf, "%d\n", s->align);
3391 SLAB_ATTR_RO(align);
3393 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3395 return sprintf(buf, "%d\n", s->objsize);
3397 SLAB_ATTR_RO(object_size);
3399 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3401 return sprintf(buf, "%d\n", s->objects);
3403 SLAB_ATTR_RO(objs_per_slab);
3405 static ssize_t order_show(struct kmem_cache *s, char *buf)
3407 return sprintf(buf, "%d\n", s->order);
3409 SLAB_ATTR_RO(order);
3411 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3413 if (s->ctor) {
3414 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3416 return n + sprintf(buf + n, "\n");
3418 return 0;
3420 SLAB_ATTR_RO(ctor);
3422 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3424 return sprintf(buf, "%d\n", s->refcount - 1);
3426 SLAB_ATTR_RO(aliases);
3428 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3430 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3432 SLAB_ATTR_RO(slabs);
3434 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3436 return slab_objects(s, buf, SO_PARTIAL);
3438 SLAB_ATTR_RO(partial);
3440 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3442 return slab_objects(s, buf, SO_CPU);
3444 SLAB_ATTR_RO(cpu_slabs);
3446 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3448 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3450 SLAB_ATTR_RO(objects);
3452 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3454 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3457 static ssize_t sanity_checks_store(struct kmem_cache *s,
3458 const char *buf, size_t length)
3460 s->flags &= ~SLAB_DEBUG_FREE;
3461 if (buf[0] == '1')
3462 s->flags |= SLAB_DEBUG_FREE;
3463 return length;
3465 SLAB_ATTR(sanity_checks);
3467 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3469 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3472 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3473 size_t length)
3475 s->flags &= ~SLAB_TRACE;
3476 if (buf[0] == '1')
3477 s->flags |= SLAB_TRACE;
3478 return length;
3480 SLAB_ATTR(trace);
3482 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3484 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3487 static ssize_t reclaim_account_store(struct kmem_cache *s,
3488 const char *buf, size_t length)
3490 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3491 if (buf[0] == '1')
3492 s->flags |= SLAB_RECLAIM_ACCOUNT;
3493 return length;
3495 SLAB_ATTR(reclaim_account);
3497 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3499 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3501 SLAB_ATTR_RO(hwcache_align);
3503 #ifdef CONFIG_ZONE_DMA
3504 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3506 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3508 SLAB_ATTR_RO(cache_dma);
3509 #endif
3511 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3513 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3515 SLAB_ATTR_RO(destroy_by_rcu);
3517 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3519 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3522 static ssize_t red_zone_store(struct kmem_cache *s,
3523 const char *buf, size_t length)
3525 if (any_slab_objects(s))
3526 return -EBUSY;
3528 s->flags &= ~SLAB_RED_ZONE;
3529 if (buf[0] == '1')
3530 s->flags |= SLAB_RED_ZONE;
3531 calculate_sizes(s);
3532 return length;
3534 SLAB_ATTR(red_zone);
3536 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3538 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3541 static ssize_t poison_store(struct kmem_cache *s,
3542 const char *buf, size_t length)
3544 if (any_slab_objects(s))
3545 return -EBUSY;
3547 s->flags &= ~SLAB_POISON;
3548 if (buf[0] == '1')
3549 s->flags |= SLAB_POISON;
3550 calculate_sizes(s);
3551 return length;
3553 SLAB_ATTR(poison);
3555 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3557 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3560 static ssize_t store_user_store(struct kmem_cache *s,
3561 const char *buf, size_t length)
3563 if (any_slab_objects(s))
3564 return -EBUSY;
3566 s->flags &= ~SLAB_STORE_USER;
3567 if (buf[0] == '1')
3568 s->flags |= SLAB_STORE_USER;
3569 calculate_sizes(s);
3570 return length;
3572 SLAB_ATTR(store_user);
3574 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3576 return 0;
3579 static ssize_t validate_store(struct kmem_cache *s,
3580 const char *buf, size_t length)
3582 int ret = -EINVAL;
3584 if (buf[0] == '1') {
3585 ret = validate_slab_cache(s);
3586 if (ret >= 0)
3587 ret = length;
3589 return ret;
3591 SLAB_ATTR(validate);
3593 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3595 return 0;
3598 static ssize_t shrink_store(struct kmem_cache *s,
3599 const char *buf, size_t length)
3601 if (buf[0] == '1') {
3602 int rc = kmem_cache_shrink(s);
3604 if (rc)
3605 return rc;
3606 } else
3607 return -EINVAL;
3608 return length;
3610 SLAB_ATTR(shrink);
3612 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3614 if (!(s->flags & SLAB_STORE_USER))
3615 return -ENOSYS;
3616 return list_locations(s, buf, TRACK_ALLOC);
3618 SLAB_ATTR_RO(alloc_calls);
3620 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3622 if (!(s->flags & SLAB_STORE_USER))
3623 return -ENOSYS;
3624 return list_locations(s, buf, TRACK_FREE);
3626 SLAB_ATTR_RO(free_calls);
3628 #ifdef CONFIG_NUMA
3629 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3631 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3634 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3635 const char *buf, size_t length)
3637 int n = simple_strtoul(buf, NULL, 10);
3639 if (n < 100)
3640 s->defrag_ratio = n * 10;
3641 return length;
3643 SLAB_ATTR(defrag_ratio);
3644 #endif
3646 static struct attribute * slab_attrs[] = {
3647 &slab_size_attr.attr,
3648 &object_size_attr.attr,
3649 &objs_per_slab_attr.attr,
3650 &order_attr.attr,
3651 &objects_attr.attr,
3652 &slabs_attr.attr,
3653 &partial_attr.attr,
3654 &cpu_slabs_attr.attr,
3655 &ctor_attr.attr,
3656 &aliases_attr.attr,
3657 &align_attr.attr,
3658 &sanity_checks_attr.attr,
3659 &trace_attr.attr,
3660 &hwcache_align_attr.attr,
3661 &reclaim_account_attr.attr,
3662 &destroy_by_rcu_attr.attr,
3663 &red_zone_attr.attr,
3664 &poison_attr.attr,
3665 &store_user_attr.attr,
3666 &validate_attr.attr,
3667 &shrink_attr.attr,
3668 &alloc_calls_attr.attr,
3669 &free_calls_attr.attr,
3670 #ifdef CONFIG_ZONE_DMA
3671 &cache_dma_attr.attr,
3672 #endif
3673 #ifdef CONFIG_NUMA
3674 &defrag_ratio_attr.attr,
3675 #endif
3676 NULL
3679 static struct attribute_group slab_attr_group = {
3680 .attrs = slab_attrs,
3683 static ssize_t slab_attr_show(struct kobject *kobj,
3684 struct attribute *attr,
3685 char *buf)
3687 struct slab_attribute *attribute;
3688 struct kmem_cache *s;
3689 int err;
3691 attribute = to_slab_attr(attr);
3692 s = to_slab(kobj);
3694 if (!attribute->show)
3695 return -EIO;
3697 err = attribute->show(s, buf);
3699 return err;
3702 static ssize_t slab_attr_store(struct kobject *kobj,
3703 struct attribute *attr,
3704 const char *buf, size_t len)
3706 struct slab_attribute *attribute;
3707 struct kmem_cache *s;
3708 int err;
3710 attribute = to_slab_attr(attr);
3711 s = to_slab(kobj);
3713 if (!attribute->store)
3714 return -EIO;
3716 err = attribute->store(s, buf, len);
3718 return err;
3721 static struct sysfs_ops slab_sysfs_ops = {
3722 .show = slab_attr_show,
3723 .store = slab_attr_store,
3726 static struct kobj_type slab_ktype = {
3727 .sysfs_ops = &slab_sysfs_ops,
3730 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3732 struct kobj_type *ktype = get_ktype(kobj);
3734 if (ktype == &slab_ktype)
3735 return 1;
3736 return 0;
3739 static struct kset_uevent_ops slab_uevent_ops = {
3740 .filter = uevent_filter,
3743 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3745 #define ID_STR_LENGTH 64
3747 /* Create a unique string id for a slab cache:
3748 * format
3749 * :[flags-]size:[memory address of kmemcache]
3751 static char *create_unique_id(struct kmem_cache *s)
3753 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3754 char *p = name;
3756 BUG_ON(!name);
3758 *p++ = ':';
3760 * First flags affecting slabcache operations. We will only
3761 * get here for aliasable slabs so we do not need to support
3762 * too many flags. The flags here must cover all flags that
3763 * are matched during merging to guarantee that the id is
3764 * unique.
3766 if (s->flags & SLAB_CACHE_DMA)
3767 *p++ = 'd';
3768 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3769 *p++ = 'a';
3770 if (s->flags & SLAB_DEBUG_FREE)
3771 *p++ = 'F';
3772 if (p != name + 1)
3773 *p++ = '-';
3774 p += sprintf(p, "%07d", s->size);
3775 BUG_ON(p > name + ID_STR_LENGTH - 1);
3776 return name;
3779 static int sysfs_slab_add(struct kmem_cache *s)
3781 int err;
3782 const char *name;
3783 int unmergeable;
3785 if (slab_state < SYSFS)
3786 /* Defer until later */
3787 return 0;
3789 unmergeable = slab_unmergeable(s);
3790 if (unmergeable) {
3792 * Slabcache can never be merged so we can use the name proper.
3793 * This is typically the case for debug situations. In that
3794 * case we can catch duplicate names easily.
3796 sysfs_remove_link(&slab_subsys.kobj, s->name);
3797 name = s->name;
3798 } else {
3800 * Create a unique name for the slab as a target
3801 * for the symlinks.
3803 name = create_unique_id(s);
3806 kobj_set_kset_s(s, slab_subsys);
3807 kobject_set_name(&s->kobj, name);
3808 kobject_init(&s->kobj);
3809 err = kobject_add(&s->kobj);
3810 if (err)
3811 return err;
3813 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3814 if (err)
3815 return err;
3816 kobject_uevent(&s->kobj, KOBJ_ADD);
3817 if (!unmergeable) {
3818 /* Setup first alias */
3819 sysfs_slab_alias(s, s->name);
3820 kfree(name);
3822 return 0;
3825 static void sysfs_slab_remove(struct kmem_cache *s)
3827 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3828 kobject_del(&s->kobj);
3832 * Need to buffer aliases during bootup until sysfs becomes
3833 * available lest we loose that information.
3835 struct saved_alias {
3836 struct kmem_cache *s;
3837 const char *name;
3838 struct saved_alias *next;
3841 static struct saved_alias *alias_list;
3843 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3845 struct saved_alias *al;
3847 if (slab_state == SYSFS) {
3849 * If we have a leftover link then remove it.
3851 sysfs_remove_link(&slab_subsys.kobj, name);
3852 return sysfs_create_link(&slab_subsys.kobj,
3853 &s->kobj, name);
3856 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3857 if (!al)
3858 return -ENOMEM;
3860 al->s = s;
3861 al->name = name;
3862 al->next = alias_list;
3863 alias_list = al;
3864 return 0;
3867 static int __init slab_sysfs_init(void)
3869 struct kmem_cache *s;
3870 int err;
3872 err = subsystem_register(&slab_subsys);
3873 if (err) {
3874 printk(KERN_ERR "Cannot register slab subsystem.\n");
3875 return -ENOSYS;
3878 slab_state = SYSFS;
3880 list_for_each_entry(s, &slab_caches, list) {
3881 err = sysfs_slab_add(s);
3882 if (err)
3883 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
3884 " to sysfs\n", s->name);
3887 while (alias_list) {
3888 struct saved_alias *al = alias_list;
3890 alias_list = alias_list->next;
3891 err = sysfs_slab_alias(al->s, al->name);
3892 if (err)
3893 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
3894 " %s to sysfs\n", s->name);
3895 kfree(al);
3898 resiliency_test();
3899 return 0;
3902 __initcall(slab_sysfs_init);
3903 #endif