2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
40 #define pid_hashfn(nr, ns) \
41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head
*pid_hash
;
43 static unsigned int pidhash_shift
= 4;
44 struct pid init_struct_pid
= INIT_STRUCT_PID
;
46 int pid_max
= PID_MAX_DEFAULT
;
48 #define RESERVED_PIDS 300
50 int pid_max_min
= RESERVED_PIDS
+ 1;
51 int pid_max_max
= PID_MAX_LIMIT
;
53 #define BITS_PER_PAGE (PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
56 static inline int mk_pid(struct pid_namespace
*pid_ns
,
57 struct pidmap
*map
, int off
)
59 return (map
- pid_ns
->pidmap
)*BITS_PER_PAGE
+ off
;
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
71 struct pid_namespace init_pid_ns
= {
73 .refcount
= ATOMIC_INIT(2),
76 [ 0 ... PIDMAP_ENTRIES
-1] = { ATOMIC_INIT(BITS_PER_PAGE
), NULL
}
80 .child_reaper
= &init_task
,
82 EXPORT_SYMBOL_GPL(init_pid_ns
);
84 int is_container_init(struct task_struct
*tsk
)
91 if (pid
!= NULL
&& pid
->numbers
[pid
->level
].nr
== 1)
97 EXPORT_SYMBOL(is_container_init
);
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
113 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
115 static void free_pidmap(struct upid
*upid
)
118 struct pidmap
*map
= upid
->ns
->pidmap
+ nr
/ BITS_PER_PAGE
;
119 int offset
= nr
& BITS_PER_PAGE_MASK
;
121 clear_bit(offset
, map
->page
);
122 atomic_inc(&map
->nr_free
);
126 * If we started walking pids at 'base', is 'a' seen before 'b'?
128 static int pid_before(int base
, int a
, int b
)
131 * This is the same as saying
133 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
134 * and that mapping orders 'a' and 'b' with respect to 'base'.
136 return (unsigned)(a
- base
) < (unsigned)(b
- base
);
140 * We might be racing with someone else trying to set pid_ns->last_pid
141 * at the pid allocation time (there's also a sysctl for this, but racing
142 * with this one is OK, see comment in kernel/pid_namespace.c about it).
143 * We want the winner to have the "later" value, because if the
144 * "earlier" value prevails, then a pid may get reused immediately.
146 * Since pids rollover, it is not sufficient to just pick the bigger
147 * value. We have to consider where we started counting from.
149 * 'base' is the value of pid_ns->last_pid that we observed when
150 * we started looking for a pid.
152 * 'pid' is the pid that we eventually found.
154 static void set_last_pid(struct pid_namespace
*pid_ns
, int base
, int pid
)
157 int last_write
= base
;
160 last_write
= cmpxchg(&pid_ns
->last_pid
, prev
, pid
);
161 } while ((prev
!= last_write
) && (pid_before(base
, last_write
, pid
)));
164 static int alloc_pidmap(struct pid_namespace
*pid_ns
)
166 int i
, offset
, max_scan
, pid
, last
= pid_ns
->last_pid
;
172 offset
= pid
& BITS_PER_PAGE_MASK
;
173 map
= &pid_ns
->pidmap
[pid
/BITS_PER_PAGE
];
175 * If last_pid points into the middle of the map->page we
176 * want to scan this bitmap block twice, the second time
177 * we start with offset == 0 (or RESERVED_PIDS).
179 max_scan
= DIV_ROUND_UP(pid_max
, BITS_PER_PAGE
) - !offset
;
180 for (i
= 0; i
<= max_scan
; ++i
) {
181 if (unlikely(!map
->page
)) {
182 void *page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
184 * Free the page if someone raced with us
187 spin_lock_irq(&pidmap_lock
);
192 spin_unlock_irq(&pidmap_lock
);
194 if (unlikely(!map
->page
))
197 if (likely(atomic_read(&map
->nr_free
))) {
199 if (!test_and_set_bit(offset
, map
->page
)) {
200 atomic_dec(&map
->nr_free
);
201 set_last_pid(pid_ns
, last
, pid
);
204 offset
= find_next_offset(map
, offset
);
205 pid
= mk_pid(pid_ns
, map
, offset
);
206 } while (offset
< BITS_PER_PAGE
&& pid
< pid_max
);
208 if (map
< &pid_ns
->pidmap
[(pid_max
-1)/BITS_PER_PAGE
]) {
212 map
= &pid_ns
->pidmap
[0];
213 offset
= RESERVED_PIDS
;
214 if (unlikely(last
== offset
))
217 pid
= mk_pid(pid_ns
, map
, offset
);
222 int next_pidmap(struct pid_namespace
*pid_ns
, unsigned int last
)
225 struct pidmap
*map
, *end
;
227 if (last
>= PID_MAX_LIMIT
)
230 offset
= (last
+ 1) & BITS_PER_PAGE_MASK
;
231 map
= &pid_ns
->pidmap
[(last
+ 1)/BITS_PER_PAGE
];
232 end
= &pid_ns
->pidmap
[PIDMAP_ENTRIES
];
233 for (; map
< end
; map
++, offset
= 0) {
234 if (unlikely(!map
->page
))
236 offset
= find_next_bit((map
)->page
, BITS_PER_PAGE
, offset
);
237 if (offset
< BITS_PER_PAGE
)
238 return mk_pid(pid_ns
, map
, offset
);
243 void put_pid(struct pid
*pid
)
245 struct pid_namespace
*ns
;
250 ns
= pid
->numbers
[pid
->level
].ns
;
251 if ((atomic_read(&pid
->count
) == 1) ||
252 atomic_dec_and_test(&pid
->count
)) {
253 kmem_cache_free(ns
->pid_cachep
, pid
);
257 EXPORT_SYMBOL_GPL(put_pid
);
259 static void delayed_put_pid(struct rcu_head
*rhp
)
261 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
265 void free_pid(struct pid
*pid
)
267 /* We can be called with write_lock_irq(&tasklist_lock) held */
271 spin_lock_irqsave(&pidmap_lock
, flags
);
272 for (i
= 0; i
<= pid
->level
; i
++)
273 hlist_del_rcu(&pid
->numbers
[i
].pid_chain
);
274 spin_unlock_irqrestore(&pidmap_lock
, flags
);
276 for (i
= 0; i
<= pid
->level
; i
++)
277 free_pidmap(pid
->numbers
+ i
);
279 call_rcu(&pid
->rcu
, delayed_put_pid
);
282 struct pid
*alloc_pid(struct pid_namespace
*ns
)
287 struct pid_namespace
*tmp
;
290 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
295 for (i
= ns
->level
; i
>= 0; i
--) {
296 nr
= alloc_pidmap(tmp
);
300 pid
->numbers
[i
].nr
= nr
;
301 pid
->numbers
[i
].ns
= tmp
;
306 pid
->level
= ns
->level
;
307 atomic_set(&pid
->count
, 1);
308 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
309 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
311 upid
= pid
->numbers
+ ns
->level
;
312 spin_lock_irq(&pidmap_lock
);
313 for ( ; upid
>= pid
->numbers
; --upid
)
314 hlist_add_head_rcu(&upid
->pid_chain
,
315 &pid_hash
[pid_hashfn(upid
->nr
, upid
->ns
)]);
316 spin_unlock_irq(&pidmap_lock
);
322 while (++i
<= ns
->level
)
323 free_pidmap(pid
->numbers
+ i
);
325 kmem_cache_free(ns
->pid_cachep
, pid
);
330 struct pid
*find_pid_ns(int nr
, struct pid_namespace
*ns
)
332 struct hlist_node
*elem
;
335 hlist_for_each_entry_rcu(pnr
, elem
,
336 &pid_hash
[pid_hashfn(nr
, ns
)], pid_chain
)
337 if (pnr
->nr
== nr
&& pnr
->ns
== ns
)
338 return container_of(pnr
, struct pid
,
343 EXPORT_SYMBOL_GPL(find_pid_ns
);
345 struct pid
*find_vpid(int nr
)
347 return find_pid_ns(nr
, current
->nsproxy
->pid_ns
);
349 EXPORT_SYMBOL_GPL(find_vpid
);
352 * attach_pid() must be called with the tasklist_lock write-held.
354 void attach_pid(struct task_struct
*task
, enum pid_type type
,
357 struct pid_link
*link
;
359 link
= &task
->pids
[type
];
361 hlist_add_head_rcu(&link
->node
, &pid
->tasks
[type
]);
364 static void __change_pid(struct task_struct
*task
, enum pid_type type
,
367 struct pid_link
*link
;
371 link
= &task
->pids
[type
];
374 hlist_del_rcu(&link
->node
);
377 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
378 if (!hlist_empty(&pid
->tasks
[tmp
]))
384 void detach_pid(struct task_struct
*task
, enum pid_type type
)
386 __change_pid(task
, type
, NULL
);
389 void change_pid(struct task_struct
*task
, enum pid_type type
,
392 __change_pid(task
, type
, pid
);
393 attach_pid(task
, type
, pid
);
396 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
397 void transfer_pid(struct task_struct
*old
, struct task_struct
*new,
400 new->pids
[type
].pid
= old
->pids
[type
].pid
;
401 hlist_replace_rcu(&old
->pids
[type
].node
, &new->pids
[type
].node
);
404 struct task_struct
*pid_task(struct pid
*pid
, enum pid_type type
)
406 struct task_struct
*result
= NULL
;
408 struct hlist_node
*first
;
409 first
= rcu_dereference_check(hlist_first_rcu(&pid
->tasks
[type
]),
410 lockdep_tasklist_lock_is_held());
412 result
= hlist_entry(first
, struct task_struct
, pids
[(type
)].node
);
416 EXPORT_SYMBOL(pid_task
);
419 * Must be called under rcu_read_lock().
421 struct task_struct
*find_task_by_pid_ns(pid_t nr
, struct pid_namespace
*ns
)
423 rcu_lockdep_assert(rcu_read_lock_held(),
424 "find_task_by_pid_ns() needs rcu_read_lock()"
426 return pid_task(find_pid_ns(nr
, ns
), PIDTYPE_PID
);
429 struct task_struct
*find_task_by_vpid(pid_t vnr
)
431 return find_task_by_pid_ns(vnr
, current
->nsproxy
->pid_ns
);
434 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
438 if (type
!= PIDTYPE_PID
)
439 task
= task
->group_leader
;
440 pid
= get_pid(task
->pids
[type
].pid
);
444 EXPORT_SYMBOL_GPL(get_task_pid
);
446 struct task_struct
*get_pid_task(struct pid
*pid
, enum pid_type type
)
448 struct task_struct
*result
;
450 result
= pid_task(pid
, type
);
452 get_task_struct(result
);
456 EXPORT_SYMBOL_GPL(get_pid_task
);
458 struct pid
*find_get_pid(pid_t nr
)
463 pid
= get_pid(find_vpid(nr
));
468 EXPORT_SYMBOL_GPL(find_get_pid
);
470 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
)
475 if (pid
&& ns
->level
<= pid
->level
) {
476 upid
= &pid
->numbers
[ns
->level
];
482 EXPORT_SYMBOL_GPL(pid_nr_ns
);
484 pid_t
pid_vnr(struct pid
*pid
)
486 return pid_nr_ns(pid
, current
->nsproxy
->pid_ns
);
488 EXPORT_SYMBOL_GPL(pid_vnr
);
490 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
491 struct pid_namespace
*ns
)
497 ns
= current
->nsproxy
->pid_ns
;
498 if (likely(pid_alive(task
))) {
499 if (type
!= PIDTYPE_PID
)
500 task
= task
->group_leader
;
501 nr
= pid_nr_ns(task
->pids
[type
].pid
, ns
);
507 EXPORT_SYMBOL(__task_pid_nr_ns
);
509 pid_t
task_tgid_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
)
511 return pid_nr_ns(task_tgid(tsk
), ns
);
513 EXPORT_SYMBOL(task_tgid_nr_ns
);
515 struct pid_namespace
*task_active_pid_ns(struct task_struct
*tsk
)
517 return ns_of_pid(task_pid(tsk
));
519 EXPORT_SYMBOL_GPL(task_active_pid_ns
);
522 * Used by proc to find the first pid that is greater than or equal to nr.
524 * If there is a pid at nr this function is exactly the same as find_pid_ns.
526 struct pid
*find_ge_pid(int nr
, struct pid_namespace
*ns
)
531 pid
= find_pid_ns(nr
, ns
);
534 nr
= next_pidmap(ns
, nr
);
541 * The pid hash table is scaled according to the amount of memory in the
542 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
545 void __init
pidhash_init(void)
547 unsigned int i
, pidhash_size
;
549 pid_hash
= alloc_large_system_hash("PID", sizeof(*pid_hash
), 0, 18,
550 HASH_EARLY
| HASH_SMALL
,
551 &pidhash_shift
, NULL
,
553 pidhash_size
= 1U << pidhash_shift
;
555 for (i
= 0; i
< pidhash_size
; i
++)
556 INIT_HLIST_HEAD(&pid_hash
[i
]);
559 void __init
pidmap_init(void)
561 /* bump default and minimum pid_max based on number of cpus */
562 pid_max
= min(pid_max_max
, max_t(int, pid_max
,
563 PIDS_PER_CPU_DEFAULT
* num_possible_cpus()));
564 pid_max_min
= max_t(int, pid_max_min
,
565 PIDS_PER_CPU_MIN
* num_possible_cpus());
566 pr_info("pid_max: default: %u minimum: %u\n", pid_max
, pid_max_min
);
568 init_pid_ns
.pidmap
[0].page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
569 /* Reserve PID 0. We never call free_pidmap(0) */
570 set_bit(0, init_pid_ns
.pidmap
[0].page
);
571 atomic_dec(&init_pid_ns
.pidmap
[0].nr_free
);
573 init_pid_ns
.pid_cachep
= KMEM_CACHE(pid
,
574 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);