2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
86 pgoff_t start
; /* start of range currently being fallocated */
87 pgoff_t next
; /* the next page offset to be fallocated */
88 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
89 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
92 /* Flag allocation requirements to shmem_getpage */
94 SGP_READ
, /* don't exceed i_size, don't allocate page */
95 SGP_CACHE
, /* don't exceed i_size, may allocate page */
96 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
97 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
98 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages
/ 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
113 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
114 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
115 struct shmem_inode_info
*info
, pgoff_t index
);
116 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
117 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
119 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
120 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
122 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
123 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
126 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
128 return sb
->s_fs_info
;
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
137 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
139 return (flags
& VM_NORESERVE
) ?
140 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
143 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
145 if (!(flags
& VM_NORESERVE
))
146 vm_unacct_memory(VM_ACCT(size
));
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
155 static inline int shmem_acct_block(unsigned long flags
)
157 return (flags
& VM_NORESERVE
) ?
158 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
161 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
163 if (flags
& VM_NORESERVE
)
164 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
167 static const struct super_operations shmem_ops
;
168 static const struct address_space_operations shmem_aops
;
169 static const struct file_operations shmem_file_operations
;
170 static const struct inode_operations shmem_inode_operations
;
171 static const struct inode_operations shmem_dir_inode_operations
;
172 static const struct inode_operations shmem_special_inode_operations
;
173 static const struct vm_operations_struct shmem_vm_ops
;
175 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
176 .ra_pages
= 0, /* No readahead */
177 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
180 static LIST_HEAD(shmem_swaplist
);
181 static DEFINE_MUTEX(shmem_swaplist_mutex
);
183 static int shmem_reserve_inode(struct super_block
*sb
)
185 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
186 if (sbinfo
->max_inodes
) {
187 spin_lock(&sbinfo
->stat_lock
);
188 if (!sbinfo
->free_inodes
) {
189 spin_unlock(&sbinfo
->stat_lock
);
192 sbinfo
->free_inodes
--;
193 spin_unlock(&sbinfo
->stat_lock
);
198 static void shmem_free_inode(struct super_block
*sb
)
200 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
201 if (sbinfo
->max_inodes
) {
202 spin_lock(&sbinfo
->stat_lock
);
203 sbinfo
->free_inodes
++;
204 spin_unlock(&sbinfo
->stat_lock
);
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
215 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
218 * It has to be called with the spinlock held.
220 static void shmem_recalc_inode(struct inode
*inode
)
222 struct shmem_inode_info
*info
= SHMEM_I(inode
);
225 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
227 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
228 if (sbinfo
->max_blocks
)
229 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
230 info
->alloced
-= freed
;
231 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
232 shmem_unacct_blocks(info
->flags
, freed
);
237 * Replace item expected in radix tree by a new item, while holding tree lock.
239 static int shmem_radix_tree_replace(struct address_space
*mapping
,
240 pgoff_t index
, void *expected
, void *replacement
)
245 VM_BUG_ON(!expected
);
246 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
248 item
= radix_tree_deref_slot_protected(pslot
,
249 &mapping
->tree_lock
);
250 if (item
!= expected
)
253 radix_tree_replace_slot(pslot
, replacement
);
255 radix_tree_delete(&mapping
->page_tree
, index
);
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
266 static bool shmem_confirm_swap(struct address_space
*mapping
,
267 pgoff_t index
, swp_entry_t swap
)
272 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
274 return item
== swp_to_radix_entry(swap
);
278 * Like add_to_page_cache_locked, but error if expected item has gone.
280 static int shmem_add_to_page_cache(struct page
*page
,
281 struct address_space
*mapping
,
282 pgoff_t index
, gfp_t gfp
, void *expected
)
286 VM_BUG_ON(!PageLocked(page
));
287 VM_BUG_ON(!PageSwapBacked(page
));
289 page_cache_get(page
);
290 page
->mapping
= mapping
;
293 spin_lock_irq(&mapping
->tree_lock
);
295 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
297 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
301 __inc_zone_page_state(page
, NR_FILE_PAGES
);
302 __inc_zone_page_state(page
, NR_SHMEM
);
303 spin_unlock_irq(&mapping
->tree_lock
);
305 page
->mapping
= NULL
;
306 spin_unlock_irq(&mapping
->tree_lock
);
307 page_cache_release(page
);
313 * Like delete_from_page_cache, but substitutes swap for page.
315 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
317 struct address_space
*mapping
= page
->mapping
;
320 spin_lock_irq(&mapping
->tree_lock
);
321 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
322 page
->mapping
= NULL
;
324 __dec_zone_page_state(page
, NR_FILE_PAGES
);
325 __dec_zone_page_state(page
, NR_SHMEM
);
326 spin_unlock_irq(&mapping
->tree_lock
);
327 page_cache_release(page
);
332 * Like find_get_pages, but collecting swap entries as well as pages.
334 static unsigned shmem_find_get_pages_and_swap(struct address_space
*mapping
,
335 pgoff_t start
, unsigned int nr_pages
,
336 struct page
**pages
, pgoff_t
*indices
)
340 unsigned int nr_found
;
344 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
345 (void ***)pages
, indices
, start
, nr_pages
);
347 for (i
= 0; i
< nr_found
; i
++) {
350 page
= radix_tree_deref_slot((void **)pages
[i
]);
353 if (radix_tree_exception(page
)) {
354 if (radix_tree_deref_retry(page
))
357 * Otherwise, we must be storing a swap entry
358 * here as an exceptional entry: so return it
359 * without attempting to raise page count.
363 if (!page_cache_get_speculative(page
))
366 /* Has the page moved? */
367 if (unlikely(page
!= *((void **)pages
[i
]))) {
368 page_cache_release(page
);
372 indices
[ret
] = indices
[i
];
376 if (unlikely(!ret
&& nr_found
))
383 * Remove swap entry from radix tree, free the swap and its page cache.
385 static int shmem_free_swap(struct address_space
*mapping
,
386 pgoff_t index
, void *radswap
)
390 spin_lock_irq(&mapping
->tree_lock
);
391 error
= shmem_radix_tree_replace(mapping
, index
, radswap
, NULL
);
392 spin_unlock_irq(&mapping
->tree_lock
);
394 free_swap_and_cache(radix_to_swp_entry(radswap
));
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
401 static void shmem_deswap_pagevec(struct pagevec
*pvec
)
405 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
406 struct page
*page
= pvec
->pages
[i
];
407 if (!radix_tree_exceptional_entry(page
))
408 pvec
->pages
[j
++] = page
;
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416 void shmem_unlock_mapping(struct address_space
*mapping
)
419 pgoff_t indices
[PAGEVEC_SIZE
];
422 pagevec_init(&pvec
, 0);
424 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426 while (!mapping_unevictable(mapping
)) {
428 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
432 PAGEVEC_SIZE
, pvec
.pages
, indices
);
435 index
= indices
[pvec
.nr
- 1] + 1;
436 shmem_deswap_pagevec(&pvec
);
437 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
438 pagevec_release(&pvec
);
444 * Remove range of pages and swap entries from radix tree, and free them.
445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
450 struct address_space
*mapping
= inode
->i_mapping
;
451 struct shmem_inode_info
*info
= SHMEM_I(inode
);
452 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
453 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
454 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
455 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
457 pgoff_t indices
[PAGEVEC_SIZE
];
458 long nr_swaps_freed
= 0;
463 end
= -1; /* unsigned, so actually very big */
465 pagevec_init(&pvec
, 0);
467 while (index
< end
) {
468 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
469 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
470 pvec
.pages
, indices
);
473 mem_cgroup_uncharge_start();
474 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
475 struct page
*page
= pvec
.pages
[i
];
481 if (radix_tree_exceptional_entry(page
)) {
484 nr_swaps_freed
+= !shmem_free_swap(mapping
,
489 if (!trylock_page(page
))
491 if (!unfalloc
|| !PageUptodate(page
)) {
492 if (page
->mapping
== mapping
) {
493 VM_BUG_ON(PageWriteback(page
));
494 truncate_inode_page(mapping
, page
);
499 shmem_deswap_pagevec(&pvec
);
500 pagevec_release(&pvec
);
501 mem_cgroup_uncharge_end();
507 struct page
*page
= NULL
;
508 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
510 unsigned int top
= PAGE_CACHE_SIZE
;
515 zero_user_segment(page
, partial_start
, top
);
516 set_page_dirty(page
);
518 page_cache_release(page
);
522 struct page
*page
= NULL
;
523 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
525 zero_user_segment(page
, 0, partial_end
);
526 set_page_dirty(page
);
528 page_cache_release(page
);
537 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
538 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
539 pvec
.pages
, indices
);
541 if (index
== start
|| unfalloc
)
546 if ((index
== start
|| unfalloc
) && indices
[0] >= end
) {
547 shmem_deswap_pagevec(&pvec
);
548 pagevec_release(&pvec
);
551 mem_cgroup_uncharge_start();
552 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
553 struct page
*page
= pvec
.pages
[i
];
559 if (radix_tree_exceptional_entry(page
)) {
562 nr_swaps_freed
+= !shmem_free_swap(mapping
,
568 if (!unfalloc
|| !PageUptodate(page
)) {
569 if (page
->mapping
== mapping
) {
570 VM_BUG_ON(PageWriteback(page
));
571 truncate_inode_page(mapping
, page
);
576 shmem_deswap_pagevec(&pvec
);
577 pagevec_release(&pvec
);
578 mem_cgroup_uncharge_end();
582 spin_lock(&info
->lock
);
583 info
->swapped
-= nr_swaps_freed
;
584 shmem_recalc_inode(inode
);
585 spin_unlock(&info
->lock
);
588 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
590 shmem_undo_range(inode
, lstart
, lend
, false);
591 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
593 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
595 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
597 struct inode
*inode
= dentry
->d_inode
;
600 error
= inode_change_ok(inode
, attr
);
604 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
605 loff_t oldsize
= inode
->i_size
;
606 loff_t newsize
= attr
->ia_size
;
608 if (newsize
!= oldsize
) {
609 i_size_write(inode
, newsize
);
610 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
612 if (newsize
< oldsize
) {
613 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
614 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
615 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
616 /* unmap again to remove racily COWed private pages */
617 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
621 setattr_copy(inode
, attr
);
622 #ifdef CONFIG_TMPFS_POSIX_ACL
623 if (attr
->ia_valid
& ATTR_MODE
)
624 error
= generic_acl_chmod(inode
);
629 static void shmem_evict_inode(struct inode
*inode
)
631 struct shmem_inode_info
*info
= SHMEM_I(inode
);
633 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
634 shmem_unacct_size(info
->flags
, inode
->i_size
);
636 shmem_truncate_range(inode
, 0, (loff_t
)-1);
637 if (!list_empty(&info
->swaplist
)) {
638 mutex_lock(&shmem_swaplist_mutex
);
639 list_del_init(&info
->swaplist
);
640 mutex_unlock(&shmem_swaplist_mutex
);
643 kfree(info
->symlink
);
645 simple_xattrs_free(&info
->xattrs
);
646 WARN_ON(inode
->i_blocks
);
647 shmem_free_inode(inode
->i_sb
);
652 * If swap found in inode, free it and move page from swapcache to filecache.
654 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
655 swp_entry_t swap
, struct page
**pagep
)
657 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
663 radswap
= swp_to_radix_entry(swap
);
664 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
669 * Move _head_ to start search for next from here.
670 * But be careful: shmem_evict_inode checks list_empty without taking
671 * mutex, and there's an instant in list_move_tail when info->swaplist
672 * would appear empty, if it were the only one on shmem_swaplist.
674 if (shmem_swaplist
.next
!= &info
->swaplist
)
675 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
677 gfp
= mapping_gfp_mask(mapping
);
678 if (shmem_should_replace_page(*pagep
, gfp
)) {
679 mutex_unlock(&shmem_swaplist_mutex
);
680 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
681 mutex_lock(&shmem_swaplist_mutex
);
683 * We needed to drop mutex to make that restrictive page
684 * allocation, but the inode might have been freed while we
685 * dropped it: although a racing shmem_evict_inode() cannot
686 * complete without emptying the radix_tree, our page lock
687 * on this swapcache page is not enough to prevent that -
688 * free_swap_and_cache() of our swap entry will only
689 * trylock_page(), removing swap from radix_tree whatever.
691 * We must not proceed to shmem_add_to_page_cache() if the
692 * inode has been freed, but of course we cannot rely on
693 * inode or mapping or info to check that. However, we can
694 * safely check if our swap entry is still in use (and here
695 * it can't have got reused for another page): if it's still
696 * in use, then the inode cannot have been freed yet, and we
697 * can safely proceed (if it's no longer in use, that tells
698 * nothing about the inode, but we don't need to unuse swap).
700 if (!page_swapcount(*pagep
))
705 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707 * beneath us (pagelock doesn't help until the page is in pagecache).
710 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
711 GFP_NOWAIT
, radswap
);
712 if (error
!= -ENOMEM
) {
714 * Truncation and eviction use free_swap_and_cache(), which
715 * only does trylock page: if we raced, best clean up here.
717 delete_from_swap_cache(*pagep
);
718 set_page_dirty(*pagep
);
720 spin_lock(&info
->lock
);
722 spin_unlock(&info
->lock
);
725 error
= 1; /* not an error, but entry was found */
731 * Search through swapped inodes to find and replace swap by page.
733 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
735 struct list_head
*this, *next
;
736 struct shmem_inode_info
*info
;
741 * There's a faint possibility that swap page was replaced before
742 * caller locked it: caller will come back later with the right page.
744 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
748 * Charge page using GFP_KERNEL while we can wait, before taking
749 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750 * Charged back to the user (not to caller) when swap account is used.
752 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
755 /* No radix_tree_preload: swap entry keeps a place for page in tree */
757 mutex_lock(&shmem_swaplist_mutex
);
758 list_for_each_safe(this, next
, &shmem_swaplist
) {
759 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
761 found
= shmem_unuse_inode(info
, swap
, &page
);
763 list_del_init(&info
->swaplist
);
768 mutex_unlock(&shmem_swaplist_mutex
);
774 page_cache_release(page
);
779 * Move the page from the page cache to the swap cache.
781 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
783 struct shmem_inode_info
*info
;
784 struct address_space
*mapping
;
789 BUG_ON(!PageLocked(page
));
790 mapping
= page
->mapping
;
792 inode
= mapping
->host
;
793 info
= SHMEM_I(inode
);
794 if (info
->flags
& VM_LOCKED
)
796 if (!total_swap_pages
)
800 * shmem_backing_dev_info's capabilities prevent regular writeback or
801 * sync from ever calling shmem_writepage; but a stacking filesystem
802 * might use ->writepage of its underlying filesystem, in which case
803 * tmpfs should write out to swap only in response to memory pressure,
804 * and not for the writeback threads or sync.
806 if (!wbc
->for_reclaim
) {
807 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
812 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813 * value into swapfile.c, the only way we can correctly account for a
814 * fallocated page arriving here is now to initialize it and write it.
816 * That's okay for a page already fallocated earlier, but if we have
817 * not yet completed the fallocation, then (a) we want to keep track
818 * of this page in case we have to undo it, and (b) it may not be a
819 * good idea to continue anyway, once we're pushing into swap. So
820 * reactivate the page, and let shmem_fallocate() quit when too many.
822 if (!PageUptodate(page
)) {
823 if (inode
->i_private
) {
824 struct shmem_falloc
*shmem_falloc
;
825 spin_lock(&inode
->i_lock
);
826 shmem_falloc
= inode
->i_private
;
828 index
>= shmem_falloc
->start
&&
829 index
< shmem_falloc
->next
)
830 shmem_falloc
->nr_unswapped
++;
833 spin_unlock(&inode
->i_lock
);
837 clear_highpage(page
);
838 flush_dcache_page(page
);
839 SetPageUptodate(page
);
842 swap
= get_swap_page();
847 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848 * if it's not already there. Do it now before the page is
849 * moved to swap cache, when its pagelock no longer protects
850 * the inode from eviction. But don't unlock the mutex until
851 * we've incremented swapped, because shmem_unuse_inode() will
852 * prune a !swapped inode from the swaplist under this mutex.
854 mutex_lock(&shmem_swaplist_mutex
);
855 if (list_empty(&info
->swaplist
))
856 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
858 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
859 swap_shmem_alloc(swap
);
860 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
862 spin_lock(&info
->lock
);
864 shmem_recalc_inode(inode
);
865 spin_unlock(&info
->lock
);
867 mutex_unlock(&shmem_swaplist_mutex
);
868 BUG_ON(page_mapped(page
));
869 swap_writepage(page
, wbc
);
873 mutex_unlock(&shmem_swaplist_mutex
);
874 swapcache_free(swap
, NULL
);
876 set_page_dirty(page
);
877 if (wbc
->for_reclaim
)
878 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
885 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
889 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
890 return; /* show nothing */
892 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
894 seq_printf(seq
, ",mpol=%s", buffer
);
897 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
899 struct mempolicy
*mpol
= NULL
;
901 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
904 spin_unlock(&sbinfo
->stat_lock
);
908 #endif /* CONFIG_TMPFS */
910 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
911 struct shmem_inode_info
*info
, pgoff_t index
)
913 struct mempolicy mpol
, *spol
;
914 struct vm_area_struct pvma
;
916 spol
= mpol_cond_copy(&mpol
,
917 mpol_shared_policy_lookup(&info
->policy
, index
));
919 /* Create a pseudo vma that just contains the policy */
921 /* Bias interleave by inode number to distribute better across nodes */
922 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
924 pvma
.vm_policy
= spol
;
925 return swapin_readahead(swap
, gfp
, &pvma
, 0);
928 static struct page
*shmem_alloc_page(gfp_t gfp
,
929 struct shmem_inode_info
*info
, pgoff_t index
)
931 struct vm_area_struct pvma
;
933 /* Create a pseudo vma that just contains the policy */
935 /* Bias interleave by inode number to distribute better across nodes */
936 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
938 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
941 * alloc_page_vma() will drop the shared policy reference
943 return alloc_page_vma(gfp
, &pvma
, 0);
945 #else /* !CONFIG_NUMA */
947 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
950 #endif /* CONFIG_TMPFS */
952 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
953 struct shmem_inode_info
*info
, pgoff_t index
)
955 return swapin_readahead(swap
, gfp
, NULL
, 0);
958 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
959 struct shmem_inode_info
*info
, pgoff_t index
)
961 return alloc_page(gfp
);
963 #endif /* CONFIG_NUMA */
965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to. If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
984 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
986 return page_zonenum(page
) > gfp_zone(gfp
);
989 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
990 struct shmem_inode_info
*info
, pgoff_t index
)
992 struct page
*oldpage
, *newpage
;
993 struct address_space
*swap_mapping
;
998 swap_index
= page_private(oldpage
);
999 swap_mapping
= page_mapping(oldpage
);
1002 * We have arrived here because our zones are constrained, so don't
1003 * limit chance of success by further cpuset and node constraints.
1005 gfp
&= ~GFP_CONSTRAINT_MASK
;
1006 newpage
= shmem_alloc_page(gfp
, info
, index
);
1010 page_cache_get(newpage
);
1011 copy_highpage(newpage
, oldpage
);
1012 flush_dcache_page(newpage
);
1014 __set_page_locked(newpage
);
1015 SetPageUptodate(newpage
);
1016 SetPageSwapBacked(newpage
);
1017 set_page_private(newpage
, swap_index
);
1018 SetPageSwapCache(newpage
);
1021 * Our caller will very soon move newpage out of swapcache, but it's
1022 * a nice clean interface for us to replace oldpage by newpage there.
1024 spin_lock_irq(&swap_mapping
->tree_lock
);
1025 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1028 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1029 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1031 spin_unlock_irq(&swap_mapping
->tree_lock
);
1033 if (unlikely(error
)) {
1035 * Is this possible? I think not, now that our callers check
1036 * both PageSwapCache and page_private after getting page lock;
1037 * but be defensive. Reverse old to newpage for clear and free.
1041 mem_cgroup_replace_page_cache(oldpage
, newpage
);
1042 lru_cache_add_anon(newpage
);
1046 ClearPageSwapCache(oldpage
);
1047 set_page_private(oldpage
, 0);
1049 unlock_page(oldpage
);
1050 page_cache_release(oldpage
);
1051 page_cache_release(oldpage
);
1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1062 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1063 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1065 struct address_space
*mapping
= inode
->i_mapping
;
1066 struct shmem_inode_info
*info
;
1067 struct shmem_sb_info
*sbinfo
;
1074 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1078 page
= find_lock_page(mapping
, index
);
1079 if (radix_tree_exceptional_entry(page
)) {
1080 swap
= radix_to_swp_entry(page
);
1084 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1085 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1090 /* fallocated page? */
1091 if (page
&& !PageUptodate(page
)) {
1092 if (sgp
!= SGP_READ
)
1095 page_cache_release(page
);
1098 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1104 * Fast cache lookup did not find it:
1105 * bring it back from swap or allocate.
1107 info
= SHMEM_I(inode
);
1108 sbinfo
= SHMEM_SB(inode
->i_sb
);
1111 /* Look it up and read it in.. */
1112 page
= lookup_swap_cache(swap
);
1114 /* here we actually do the io */
1116 *fault_type
|= VM_FAULT_MAJOR
;
1117 page
= shmem_swapin(swap
, gfp
, info
, index
);
1124 /* We have to do this with page locked to prevent races */
1126 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1127 !shmem_confirm_swap(mapping
, index
, swap
)) {
1128 error
= -EEXIST
; /* try again */
1131 if (!PageUptodate(page
)) {
1135 wait_on_page_writeback(page
);
1137 if (shmem_should_replace_page(page
, gfp
)) {
1138 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1143 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1144 gfp
& GFP_RECLAIM_MASK
);
1146 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1147 gfp
, swp_to_radix_entry(swap
));
1149 * We already confirmed swap under page lock, and make
1150 * no memory allocation here, so usually no possibility
1151 * of error; but free_swap_and_cache() only trylocks a
1152 * page, so it is just possible that the entry has been
1153 * truncated or holepunched since swap was confirmed.
1154 * shmem_undo_range() will have done some of the
1155 * unaccounting, now delete_from_swap_cache() will do
1156 * the rest (including mem_cgroup_uncharge_swapcache).
1157 * Reset swap.val? No, leave it so "failed" goes back to
1158 * "repeat": reading a hole and writing should succeed.
1161 delete_from_swap_cache(page
);
1166 spin_lock(&info
->lock
);
1168 shmem_recalc_inode(inode
);
1169 spin_unlock(&info
->lock
);
1171 delete_from_swap_cache(page
);
1172 set_page_dirty(page
);
1176 if (shmem_acct_block(info
->flags
)) {
1180 if (sbinfo
->max_blocks
) {
1181 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1182 sbinfo
->max_blocks
) >= 0) {
1186 percpu_counter_inc(&sbinfo
->used_blocks
);
1189 page
= shmem_alloc_page(gfp
, info
, index
);
1195 SetPageSwapBacked(page
);
1196 __set_page_locked(page
);
1197 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1198 gfp
& GFP_RECLAIM_MASK
);
1201 error
= radix_tree_preload(gfp
& GFP_RECLAIM_MASK
);
1203 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1205 radix_tree_preload_end();
1208 mem_cgroup_uncharge_cache_page(page
);
1211 lru_cache_add_anon(page
);
1213 spin_lock(&info
->lock
);
1215 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1216 shmem_recalc_inode(inode
);
1217 spin_unlock(&info
->lock
);
1221 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1223 if (sgp
== SGP_FALLOC
)
1227 * Let SGP_WRITE caller clear ends if write does not fill page;
1228 * but SGP_FALLOC on a page fallocated earlier must initialize
1229 * it now, lest undo on failure cancel our earlier guarantee.
1231 if (sgp
!= SGP_WRITE
) {
1232 clear_highpage(page
);
1233 flush_dcache_page(page
);
1234 SetPageUptodate(page
);
1236 if (sgp
== SGP_DIRTY
)
1237 set_page_dirty(page
);
1240 /* Perhaps the file has been truncated since we checked */
1241 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1242 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1256 info
= SHMEM_I(inode
);
1257 ClearPageDirty(page
);
1258 delete_from_page_cache(page
);
1259 spin_lock(&info
->lock
);
1261 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1262 spin_unlock(&info
->lock
);
1264 sbinfo
= SHMEM_SB(inode
->i_sb
);
1265 if (sbinfo
->max_blocks
)
1266 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1268 shmem_unacct_blocks(info
->flags
, 1);
1270 if (swap
.val
&& error
!= -EINVAL
&&
1271 !shmem_confirm_swap(mapping
, index
, swap
))
1276 page_cache_release(page
);
1278 if (error
== -ENOSPC
&& !once
++) {
1279 info
= SHMEM_I(inode
);
1280 spin_lock(&info
->lock
);
1281 shmem_recalc_inode(inode
);
1282 spin_unlock(&info
->lock
);
1285 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1290 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1292 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1294 int ret
= VM_FAULT_LOCKED
;
1296 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1298 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1300 if (ret
& VM_FAULT_MAJOR
) {
1301 count_vm_event(PGMAJFAULT
);
1302 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1308 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1310 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1311 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1314 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1317 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1320 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1321 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1325 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1327 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1328 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1329 int retval
= -ENOMEM
;
1331 spin_lock(&info
->lock
);
1332 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1333 if (!user_shm_lock(inode
->i_size
, user
))
1335 info
->flags
|= VM_LOCKED
;
1336 mapping_set_unevictable(file
->f_mapping
);
1338 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1339 user_shm_unlock(inode
->i_size
, user
);
1340 info
->flags
&= ~VM_LOCKED
;
1341 mapping_clear_unevictable(file
->f_mapping
);
1346 spin_unlock(&info
->lock
);
1350 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1352 file_accessed(file
);
1353 vma
->vm_ops
= &shmem_vm_ops
;
1357 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1358 umode_t mode
, dev_t dev
, unsigned long flags
)
1360 struct inode
*inode
;
1361 struct shmem_inode_info
*info
;
1362 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1364 if (shmem_reserve_inode(sb
))
1367 inode
= new_inode(sb
);
1369 inode
->i_ino
= get_next_ino();
1370 inode_init_owner(inode
, dir
, mode
);
1371 inode
->i_blocks
= 0;
1372 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1373 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1374 inode
->i_generation
= get_seconds();
1375 info
= SHMEM_I(inode
);
1376 memset(info
, 0, (char *)inode
- (char *)info
);
1377 spin_lock_init(&info
->lock
);
1378 info
->flags
= flags
& VM_NORESERVE
;
1379 INIT_LIST_HEAD(&info
->swaplist
);
1380 simple_xattrs_init(&info
->xattrs
);
1381 cache_no_acl(inode
);
1383 switch (mode
& S_IFMT
) {
1385 inode
->i_op
= &shmem_special_inode_operations
;
1386 init_special_inode(inode
, mode
, dev
);
1389 inode
->i_mapping
->a_ops
= &shmem_aops
;
1390 inode
->i_op
= &shmem_inode_operations
;
1391 inode
->i_fop
= &shmem_file_operations
;
1392 mpol_shared_policy_init(&info
->policy
,
1393 shmem_get_sbmpol(sbinfo
));
1397 /* Some things misbehave if size == 0 on a directory */
1398 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1399 inode
->i_op
= &shmem_dir_inode_operations
;
1400 inode
->i_fop
= &simple_dir_operations
;
1404 * Must not load anything in the rbtree,
1405 * mpol_free_shared_policy will not be called.
1407 mpol_shared_policy_init(&info
->policy
, NULL
);
1411 shmem_free_inode(sb
);
1416 static const struct inode_operations shmem_symlink_inode_operations
;
1417 static const struct inode_operations shmem_short_symlink_operations
;
1419 #ifdef CONFIG_TMPFS_XATTR
1420 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1422 #define shmem_initxattrs NULL
1426 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1427 loff_t pos
, unsigned len
, unsigned flags
,
1428 struct page
**pagep
, void **fsdata
)
1430 struct inode
*inode
= mapping
->host
;
1431 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1432 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1436 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1437 loff_t pos
, unsigned len
, unsigned copied
,
1438 struct page
*page
, void *fsdata
)
1440 struct inode
*inode
= mapping
->host
;
1442 if (pos
+ copied
> inode
->i_size
)
1443 i_size_write(inode
, pos
+ copied
);
1445 if (!PageUptodate(page
)) {
1446 if (copied
< PAGE_CACHE_SIZE
) {
1447 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1448 zero_user_segments(page
, 0, from
,
1449 from
+ copied
, PAGE_CACHE_SIZE
);
1451 SetPageUptodate(page
);
1453 set_page_dirty(page
);
1455 page_cache_release(page
);
1460 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1462 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1463 struct address_space
*mapping
= inode
->i_mapping
;
1465 unsigned long offset
;
1466 enum sgp_type sgp
= SGP_READ
;
1469 * Might this read be for a stacking filesystem? Then when reading
1470 * holes of a sparse file, we actually need to allocate those pages,
1471 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1473 if (segment_eq(get_fs(), KERNEL_DS
))
1476 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1477 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1480 struct page
*page
= NULL
;
1482 unsigned long nr
, ret
;
1483 loff_t i_size
= i_size_read(inode
);
1485 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1486 if (index
> end_index
)
1488 if (index
== end_index
) {
1489 nr
= i_size
& ~PAGE_CACHE_MASK
;
1494 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1496 if (desc
->error
== -EINVAL
)
1504 * We must evaluate after, since reads (unlike writes)
1505 * are called without i_mutex protection against truncate
1507 nr
= PAGE_CACHE_SIZE
;
1508 i_size
= i_size_read(inode
);
1509 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1510 if (index
== end_index
) {
1511 nr
= i_size
& ~PAGE_CACHE_MASK
;
1514 page_cache_release(page
);
1522 * If users can be writing to this page using arbitrary
1523 * virtual addresses, take care about potential aliasing
1524 * before reading the page on the kernel side.
1526 if (mapping_writably_mapped(mapping
))
1527 flush_dcache_page(page
);
1529 * Mark the page accessed if we read the beginning.
1532 mark_page_accessed(page
);
1534 page
= ZERO_PAGE(0);
1535 page_cache_get(page
);
1539 * Ok, we have the page, and it's up-to-date, so
1540 * now we can copy it to user space...
1542 * The actor routine returns how many bytes were actually used..
1543 * NOTE! This may not be the same as how much of a user buffer
1544 * we filled up (we may be padding etc), so we can only update
1545 * "pos" here (the actor routine has to update the user buffer
1546 * pointers and the remaining count).
1548 ret
= actor(desc
, page
, offset
, nr
);
1550 index
+= offset
>> PAGE_CACHE_SHIFT
;
1551 offset
&= ~PAGE_CACHE_MASK
;
1553 page_cache_release(page
);
1554 if (ret
!= nr
|| !desc
->count
)
1560 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1561 file_accessed(filp
);
1564 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1565 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1567 struct file
*filp
= iocb
->ki_filp
;
1571 loff_t
*ppos
= &iocb
->ki_pos
;
1573 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1577 for (seg
= 0; seg
< nr_segs
; seg
++) {
1578 read_descriptor_t desc
;
1581 desc
.arg
.buf
= iov
[seg
].iov_base
;
1582 desc
.count
= iov
[seg
].iov_len
;
1583 if (desc
.count
== 0)
1586 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1587 retval
+= desc
.written
;
1589 retval
= retval
?: desc
.error
;
1598 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1599 struct pipe_inode_info
*pipe
, size_t len
,
1602 struct address_space
*mapping
= in
->f_mapping
;
1603 struct inode
*inode
= mapping
->host
;
1604 unsigned int loff
, nr_pages
, req_pages
;
1605 struct page
*pages
[PIPE_DEF_BUFFERS
];
1606 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1608 pgoff_t index
, end_index
;
1611 struct splice_pipe_desc spd
= {
1614 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1616 .ops
= &page_cache_pipe_buf_ops
,
1617 .spd_release
= spd_release_page
,
1620 isize
= i_size_read(inode
);
1621 if (unlikely(*ppos
>= isize
))
1624 left
= isize
- *ppos
;
1625 if (unlikely(left
< len
))
1628 if (splice_grow_spd(pipe
, &spd
))
1631 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1632 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1633 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1634 nr_pages
= min(req_pages
, pipe
->buffers
);
1636 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1637 nr_pages
, spd
.pages
);
1638 index
+= spd
.nr_pages
;
1641 while (spd
.nr_pages
< nr_pages
) {
1642 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1646 spd
.pages
[spd
.nr_pages
++] = page
;
1650 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1651 nr_pages
= spd
.nr_pages
;
1654 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1655 unsigned int this_len
;
1660 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1661 page
= spd
.pages
[page_nr
];
1663 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1664 error
= shmem_getpage(inode
, index
, &page
,
1669 page_cache_release(spd
.pages
[page_nr
]);
1670 spd
.pages
[page_nr
] = page
;
1673 isize
= i_size_read(inode
);
1674 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1675 if (unlikely(!isize
|| index
> end_index
))
1678 if (end_index
== index
) {
1681 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1685 this_len
= min(this_len
, plen
- loff
);
1689 spd
.partial
[page_nr
].offset
= loff
;
1690 spd
.partial
[page_nr
].len
= this_len
;
1697 while (page_nr
< nr_pages
)
1698 page_cache_release(spd
.pages
[page_nr
++]);
1701 error
= splice_to_pipe(pipe
, &spd
);
1703 splice_shrink_spd(&spd
);
1712 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1715 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1716 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1717 struct shmem_falloc shmem_falloc
;
1718 pgoff_t start
, index
, end
;
1721 mutex_lock(&inode
->i_mutex
);
1723 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1724 struct address_space
*mapping
= file
->f_mapping
;
1725 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1726 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1728 if ((u64
)unmap_end
> (u64
)unmap_start
)
1729 unmap_mapping_range(mapping
, unmap_start
,
1730 1 + unmap_end
- unmap_start
, 0);
1731 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1732 /* No need to unmap again: hole-punching leaves COWed pages */
1737 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1738 error
= inode_newsize_ok(inode
, offset
+ len
);
1742 start
= offset
>> PAGE_CACHE_SHIFT
;
1743 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1744 /* Try to avoid a swapstorm if len is impossible to satisfy */
1745 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1750 shmem_falloc
.start
= start
;
1751 shmem_falloc
.next
= start
;
1752 shmem_falloc
.nr_falloced
= 0;
1753 shmem_falloc
.nr_unswapped
= 0;
1754 spin_lock(&inode
->i_lock
);
1755 inode
->i_private
= &shmem_falloc
;
1756 spin_unlock(&inode
->i_lock
);
1758 for (index
= start
; index
< end
; index
++) {
1762 * Good, the fallocate(2) manpage permits EINTR: we may have
1763 * been interrupted because we are using up too much memory.
1765 if (signal_pending(current
))
1767 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1770 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1773 /* Remove the !PageUptodate pages we added */
1774 shmem_undo_range(inode
,
1775 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1776 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1781 * Inform shmem_writepage() how far we have reached.
1782 * No need for lock or barrier: we have the page lock.
1784 shmem_falloc
.next
++;
1785 if (!PageUptodate(page
))
1786 shmem_falloc
.nr_falloced
++;
1789 * If !PageUptodate, leave it that way so that freeable pages
1790 * can be recognized if we need to rollback on error later.
1791 * But set_page_dirty so that memory pressure will swap rather
1792 * than free the pages we are allocating (and SGP_CACHE pages
1793 * might still be clean: we now need to mark those dirty too).
1795 set_page_dirty(page
);
1797 page_cache_release(page
);
1801 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1802 i_size_write(inode
, offset
+ len
);
1803 inode
->i_ctime
= CURRENT_TIME
;
1805 spin_lock(&inode
->i_lock
);
1806 inode
->i_private
= NULL
;
1807 spin_unlock(&inode
->i_lock
);
1809 mutex_unlock(&inode
->i_mutex
);
1813 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1815 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1817 buf
->f_type
= TMPFS_MAGIC
;
1818 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1819 buf
->f_namelen
= NAME_MAX
;
1820 if (sbinfo
->max_blocks
) {
1821 buf
->f_blocks
= sbinfo
->max_blocks
;
1823 buf
->f_bfree
= sbinfo
->max_blocks
-
1824 percpu_counter_sum(&sbinfo
->used_blocks
);
1826 if (sbinfo
->max_inodes
) {
1827 buf
->f_files
= sbinfo
->max_inodes
;
1828 buf
->f_ffree
= sbinfo
->free_inodes
;
1830 /* else leave those fields 0 like simple_statfs */
1835 * File creation. Allocate an inode, and we're done..
1838 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
1840 struct inode
*inode
;
1841 int error
= -ENOSPC
;
1843 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1845 error
= security_inode_init_security(inode
, dir
,
1847 shmem_initxattrs
, NULL
);
1849 if (error
!= -EOPNOTSUPP
) {
1854 #ifdef CONFIG_TMPFS_POSIX_ACL
1855 error
= generic_acl_init(inode
, dir
);
1863 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1864 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1865 d_instantiate(dentry
, inode
);
1866 dget(dentry
); /* Extra count - pin the dentry in core */
1871 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1875 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1881 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
1884 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1890 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1892 struct inode
*inode
= old_dentry
->d_inode
;
1896 * No ordinary (disk based) filesystem counts links as inodes;
1897 * but each new link needs a new dentry, pinning lowmem, and
1898 * tmpfs dentries cannot be pruned until they are unlinked.
1900 ret
= shmem_reserve_inode(inode
->i_sb
);
1904 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1905 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1907 ihold(inode
); /* New dentry reference */
1908 dget(dentry
); /* Extra pinning count for the created dentry */
1909 d_instantiate(dentry
, inode
);
1914 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1916 struct inode
*inode
= dentry
->d_inode
;
1918 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1919 shmem_free_inode(inode
->i_sb
);
1921 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1922 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1924 dput(dentry
); /* Undo the count from "create" - this does all the work */
1928 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1930 if (!simple_empty(dentry
))
1933 drop_nlink(dentry
->d_inode
);
1935 return shmem_unlink(dir
, dentry
);
1939 * The VFS layer already does all the dentry stuff for rename,
1940 * we just have to decrement the usage count for the target if
1941 * it exists so that the VFS layer correctly free's it when it
1944 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1946 struct inode
*inode
= old_dentry
->d_inode
;
1947 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1949 if (!simple_empty(new_dentry
))
1952 if (new_dentry
->d_inode
) {
1953 (void) shmem_unlink(new_dir
, new_dentry
);
1955 drop_nlink(old_dir
);
1956 } else if (they_are_dirs
) {
1957 drop_nlink(old_dir
);
1961 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1962 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1963 old_dir
->i_ctime
= old_dir
->i_mtime
=
1964 new_dir
->i_ctime
= new_dir
->i_mtime
=
1965 inode
->i_ctime
= CURRENT_TIME
;
1969 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1973 struct inode
*inode
;
1976 struct shmem_inode_info
*info
;
1978 len
= strlen(symname
) + 1;
1979 if (len
> PAGE_CACHE_SIZE
)
1980 return -ENAMETOOLONG
;
1982 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
1986 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
1987 shmem_initxattrs
, NULL
);
1989 if (error
!= -EOPNOTSUPP
) {
1996 info
= SHMEM_I(inode
);
1997 inode
->i_size
= len
-1;
1998 if (len
<= SHORT_SYMLINK_LEN
) {
1999 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2000 if (!info
->symlink
) {
2004 inode
->i_op
= &shmem_short_symlink_operations
;
2006 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2011 inode
->i_mapping
->a_ops
= &shmem_aops
;
2012 inode
->i_op
= &shmem_symlink_inode_operations
;
2013 kaddr
= kmap_atomic(page
);
2014 memcpy(kaddr
, symname
, len
);
2015 kunmap_atomic(kaddr
);
2016 SetPageUptodate(page
);
2017 set_page_dirty(page
);
2019 page_cache_release(page
);
2021 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2022 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2023 d_instantiate(dentry
, inode
);
2028 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2030 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2034 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2036 struct page
*page
= NULL
;
2037 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2038 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2044 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2046 if (!IS_ERR(nd_get_link(nd
))) {
2047 struct page
*page
= cookie
;
2049 mark_page_accessed(page
);
2050 page_cache_release(page
);
2054 #ifdef CONFIG_TMPFS_XATTR
2056 * Superblocks without xattr inode operations may get some security.* xattr
2057 * support from the LSM "for free". As soon as we have any other xattrs
2058 * like ACLs, we also need to implement the security.* handlers at
2059 * filesystem level, though.
2063 * Callback for security_inode_init_security() for acquiring xattrs.
2065 static int shmem_initxattrs(struct inode
*inode
,
2066 const struct xattr
*xattr_array
,
2069 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2070 const struct xattr
*xattr
;
2071 struct simple_xattr
*new_xattr
;
2074 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2075 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2079 len
= strlen(xattr
->name
) + 1;
2080 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2082 if (!new_xattr
->name
) {
2087 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2088 XATTR_SECURITY_PREFIX_LEN
);
2089 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2092 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2098 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2099 #ifdef CONFIG_TMPFS_POSIX_ACL
2100 &generic_acl_access_handler
,
2101 &generic_acl_default_handler
,
2106 static int shmem_xattr_validate(const char *name
)
2108 struct { const char *prefix
; size_t len
; } arr
[] = {
2109 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2110 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2114 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2115 size_t preflen
= arr
[i
].len
;
2116 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2125 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2126 void *buffer
, size_t size
)
2128 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2132 * If this is a request for a synthetic attribute in the system.*
2133 * namespace use the generic infrastructure to resolve a handler
2134 * for it via sb->s_xattr.
2136 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2137 return generic_getxattr(dentry
, name
, buffer
, size
);
2139 err
= shmem_xattr_validate(name
);
2143 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2146 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2147 const void *value
, size_t size
, int flags
)
2149 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2153 * If this is a request for a synthetic attribute in the system.*
2154 * namespace use the generic infrastructure to resolve a handler
2155 * for it via sb->s_xattr.
2157 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2158 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2160 err
= shmem_xattr_validate(name
);
2164 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2167 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2169 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2173 * If this is a request for a synthetic attribute in the system.*
2174 * namespace use the generic infrastructure to resolve a handler
2175 * for it via sb->s_xattr.
2177 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2178 return generic_removexattr(dentry
, name
);
2180 err
= shmem_xattr_validate(name
);
2184 return simple_xattr_remove(&info
->xattrs
, name
);
2187 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2189 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2190 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2192 #endif /* CONFIG_TMPFS_XATTR */
2194 static const struct inode_operations shmem_short_symlink_operations
= {
2195 .readlink
= generic_readlink
,
2196 .follow_link
= shmem_follow_short_symlink
,
2197 #ifdef CONFIG_TMPFS_XATTR
2198 .setxattr
= shmem_setxattr
,
2199 .getxattr
= shmem_getxattr
,
2200 .listxattr
= shmem_listxattr
,
2201 .removexattr
= shmem_removexattr
,
2205 static const struct inode_operations shmem_symlink_inode_operations
= {
2206 .readlink
= generic_readlink
,
2207 .follow_link
= shmem_follow_link
,
2208 .put_link
= shmem_put_link
,
2209 #ifdef CONFIG_TMPFS_XATTR
2210 .setxattr
= shmem_setxattr
,
2211 .getxattr
= shmem_getxattr
,
2212 .listxattr
= shmem_listxattr
,
2213 .removexattr
= shmem_removexattr
,
2217 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2219 return ERR_PTR(-ESTALE
);
2222 static int shmem_match(struct inode
*ino
, void *vfh
)
2226 inum
= (inum
<< 32) | fh
[1];
2227 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2230 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2231 struct fid
*fid
, int fh_len
, int fh_type
)
2233 struct inode
*inode
;
2234 struct dentry
*dentry
= NULL
;
2241 inum
= (inum
<< 32) | fid
->raw
[1];
2243 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2244 shmem_match
, fid
->raw
);
2246 dentry
= d_find_alias(inode
);
2253 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2254 struct inode
*parent
)
2261 if (inode_unhashed(inode
)) {
2262 /* Unfortunately insert_inode_hash is not idempotent,
2263 * so as we hash inodes here rather than at creation
2264 * time, we need a lock to ensure we only try
2267 static DEFINE_SPINLOCK(lock
);
2269 if (inode_unhashed(inode
))
2270 __insert_inode_hash(inode
,
2271 inode
->i_ino
+ inode
->i_generation
);
2275 fh
[0] = inode
->i_generation
;
2276 fh
[1] = inode
->i_ino
;
2277 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2283 static const struct export_operations shmem_export_ops
= {
2284 .get_parent
= shmem_get_parent
,
2285 .encode_fh
= shmem_encode_fh
,
2286 .fh_to_dentry
= shmem_fh_to_dentry
,
2289 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2292 char *this_char
, *value
, *rest
;
2296 while (options
!= NULL
) {
2297 this_char
= options
;
2300 * NUL-terminate this option: unfortunately,
2301 * mount options form a comma-separated list,
2302 * but mpol's nodelist may also contain commas.
2304 options
= strchr(options
, ',');
2305 if (options
== NULL
)
2308 if (!isdigit(*options
)) {
2315 if ((value
= strchr(this_char
,'=')) != NULL
) {
2319 "tmpfs: No value for mount option '%s'\n",
2324 if (!strcmp(this_char
,"size")) {
2325 unsigned long long size
;
2326 size
= memparse(value
,&rest
);
2328 size
<<= PAGE_SHIFT
;
2329 size
*= totalram_pages
;
2335 sbinfo
->max_blocks
=
2336 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2337 } else if (!strcmp(this_char
,"nr_blocks")) {
2338 sbinfo
->max_blocks
= memparse(value
, &rest
);
2341 } else if (!strcmp(this_char
,"nr_inodes")) {
2342 sbinfo
->max_inodes
= memparse(value
, &rest
);
2345 } else if (!strcmp(this_char
,"mode")) {
2348 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2351 } else if (!strcmp(this_char
,"uid")) {
2354 uid
= simple_strtoul(value
, &rest
, 0);
2357 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2358 if (!uid_valid(sbinfo
->uid
))
2360 } else if (!strcmp(this_char
,"gid")) {
2363 gid
= simple_strtoul(value
, &rest
, 0);
2366 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2367 if (!gid_valid(sbinfo
->gid
))
2369 } else if (!strcmp(this_char
,"mpol")) {
2370 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2373 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2381 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2387 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2389 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2390 struct shmem_sb_info config
= *sbinfo
;
2391 unsigned long inodes
;
2392 int error
= -EINVAL
;
2394 if (shmem_parse_options(data
, &config
, true))
2397 spin_lock(&sbinfo
->stat_lock
);
2398 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2399 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2401 if (config
.max_inodes
< inodes
)
2404 * Those tests disallow limited->unlimited while any are in use;
2405 * but we must separately disallow unlimited->limited, because
2406 * in that case we have no record of how much is already in use.
2408 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2410 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2414 sbinfo
->max_blocks
= config
.max_blocks
;
2415 sbinfo
->max_inodes
= config
.max_inodes
;
2416 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2418 mpol_put(sbinfo
->mpol
);
2419 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2421 spin_unlock(&sbinfo
->stat_lock
);
2425 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2427 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2429 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2430 seq_printf(seq
, ",size=%luk",
2431 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2432 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2433 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2434 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2435 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2436 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2437 seq_printf(seq
, ",uid=%u",
2438 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2439 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2440 seq_printf(seq
, ",gid=%u",
2441 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2442 shmem_show_mpol(seq
, sbinfo
->mpol
);
2445 #endif /* CONFIG_TMPFS */
2447 static void shmem_put_super(struct super_block
*sb
)
2449 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2451 percpu_counter_destroy(&sbinfo
->used_blocks
);
2453 sb
->s_fs_info
= NULL
;
2456 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2458 struct inode
*inode
;
2459 struct shmem_sb_info
*sbinfo
;
2462 /* Round up to L1_CACHE_BYTES to resist false sharing */
2463 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2464 L1_CACHE_BYTES
), GFP_KERNEL
);
2468 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2469 sbinfo
->uid
= current_fsuid();
2470 sbinfo
->gid
= current_fsgid();
2471 sb
->s_fs_info
= sbinfo
;
2475 * Per default we only allow half of the physical ram per
2476 * tmpfs instance, limiting inodes to one per page of lowmem;
2477 * but the internal instance is left unlimited.
2479 if (!(sb
->s_flags
& MS_NOUSER
)) {
2480 sbinfo
->max_blocks
= shmem_default_max_blocks();
2481 sbinfo
->max_inodes
= shmem_default_max_inodes();
2482 if (shmem_parse_options(data
, sbinfo
, false)) {
2487 sb
->s_export_op
= &shmem_export_ops
;
2488 sb
->s_flags
|= MS_NOSEC
;
2490 sb
->s_flags
|= MS_NOUSER
;
2493 spin_lock_init(&sbinfo
->stat_lock
);
2494 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2496 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2498 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2499 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2500 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2501 sb
->s_magic
= TMPFS_MAGIC
;
2502 sb
->s_op
= &shmem_ops
;
2503 sb
->s_time_gran
= 1;
2504 #ifdef CONFIG_TMPFS_XATTR
2505 sb
->s_xattr
= shmem_xattr_handlers
;
2507 #ifdef CONFIG_TMPFS_POSIX_ACL
2508 sb
->s_flags
|= MS_POSIXACL
;
2511 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2514 inode
->i_uid
= sbinfo
->uid
;
2515 inode
->i_gid
= sbinfo
->gid
;
2516 sb
->s_root
= d_make_root(inode
);
2522 shmem_put_super(sb
);
2526 static struct kmem_cache
*shmem_inode_cachep
;
2528 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2530 struct shmem_inode_info
*info
;
2531 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2534 return &info
->vfs_inode
;
2537 static void shmem_destroy_callback(struct rcu_head
*head
)
2539 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2540 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2543 static void shmem_destroy_inode(struct inode
*inode
)
2545 if (S_ISREG(inode
->i_mode
))
2546 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2547 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2550 static void shmem_init_inode(void *foo
)
2552 struct shmem_inode_info
*info
= foo
;
2553 inode_init_once(&info
->vfs_inode
);
2556 static int shmem_init_inodecache(void)
2558 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2559 sizeof(struct shmem_inode_info
),
2560 0, SLAB_PANIC
, shmem_init_inode
);
2564 static void shmem_destroy_inodecache(void)
2566 kmem_cache_destroy(shmem_inode_cachep
);
2569 static const struct address_space_operations shmem_aops
= {
2570 .writepage
= shmem_writepage
,
2571 .set_page_dirty
= __set_page_dirty_no_writeback
,
2573 .write_begin
= shmem_write_begin
,
2574 .write_end
= shmem_write_end
,
2576 .migratepage
= migrate_page
,
2577 .error_remove_page
= generic_error_remove_page
,
2580 static const struct file_operations shmem_file_operations
= {
2583 .llseek
= generic_file_llseek
,
2584 .read
= do_sync_read
,
2585 .write
= do_sync_write
,
2586 .aio_read
= shmem_file_aio_read
,
2587 .aio_write
= generic_file_aio_write
,
2588 .fsync
= noop_fsync
,
2589 .splice_read
= shmem_file_splice_read
,
2590 .splice_write
= generic_file_splice_write
,
2591 .fallocate
= shmem_fallocate
,
2595 static const struct inode_operations shmem_inode_operations
= {
2596 .setattr
= shmem_setattr
,
2597 #ifdef CONFIG_TMPFS_XATTR
2598 .setxattr
= shmem_setxattr
,
2599 .getxattr
= shmem_getxattr
,
2600 .listxattr
= shmem_listxattr
,
2601 .removexattr
= shmem_removexattr
,
2605 static const struct inode_operations shmem_dir_inode_operations
= {
2607 .create
= shmem_create
,
2608 .lookup
= simple_lookup
,
2610 .unlink
= shmem_unlink
,
2611 .symlink
= shmem_symlink
,
2612 .mkdir
= shmem_mkdir
,
2613 .rmdir
= shmem_rmdir
,
2614 .mknod
= shmem_mknod
,
2615 .rename
= shmem_rename
,
2617 #ifdef CONFIG_TMPFS_XATTR
2618 .setxattr
= shmem_setxattr
,
2619 .getxattr
= shmem_getxattr
,
2620 .listxattr
= shmem_listxattr
,
2621 .removexattr
= shmem_removexattr
,
2623 #ifdef CONFIG_TMPFS_POSIX_ACL
2624 .setattr
= shmem_setattr
,
2628 static const struct inode_operations shmem_special_inode_operations
= {
2629 #ifdef CONFIG_TMPFS_XATTR
2630 .setxattr
= shmem_setxattr
,
2631 .getxattr
= shmem_getxattr
,
2632 .listxattr
= shmem_listxattr
,
2633 .removexattr
= shmem_removexattr
,
2635 #ifdef CONFIG_TMPFS_POSIX_ACL
2636 .setattr
= shmem_setattr
,
2640 static const struct super_operations shmem_ops
= {
2641 .alloc_inode
= shmem_alloc_inode
,
2642 .destroy_inode
= shmem_destroy_inode
,
2644 .statfs
= shmem_statfs
,
2645 .remount_fs
= shmem_remount_fs
,
2646 .show_options
= shmem_show_options
,
2648 .evict_inode
= shmem_evict_inode
,
2649 .drop_inode
= generic_delete_inode
,
2650 .put_super
= shmem_put_super
,
2653 static const struct vm_operations_struct shmem_vm_ops
= {
2654 .fault
= shmem_fault
,
2656 .set_policy
= shmem_set_policy
,
2657 .get_policy
= shmem_get_policy
,
2659 .remap_pages
= generic_file_remap_pages
,
2662 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2663 int flags
, const char *dev_name
, void *data
)
2665 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2668 static struct file_system_type shmem_fs_type
= {
2669 .owner
= THIS_MODULE
,
2671 .mount
= shmem_mount
,
2672 .kill_sb
= kill_litter_super
,
2675 int __init
shmem_init(void)
2679 error
= bdi_init(&shmem_backing_dev_info
);
2683 error
= shmem_init_inodecache();
2687 error
= register_filesystem(&shmem_fs_type
);
2689 printk(KERN_ERR
"Could not register tmpfs\n");
2693 shm_mnt
= vfs_kern_mount(&shmem_fs_type
, MS_NOUSER
,
2694 shmem_fs_type
.name
, NULL
);
2695 if (IS_ERR(shm_mnt
)) {
2696 error
= PTR_ERR(shm_mnt
);
2697 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2703 unregister_filesystem(&shmem_fs_type
);
2705 shmem_destroy_inodecache();
2707 bdi_destroy(&shmem_backing_dev_info
);
2709 shm_mnt
= ERR_PTR(error
);
2713 #else /* !CONFIG_SHMEM */
2716 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2718 * This is intended for small system where the benefits of the full
2719 * shmem code (swap-backed and resource-limited) are outweighed by
2720 * their complexity. On systems without swap this code should be
2721 * effectively equivalent, but much lighter weight.
2724 #include <linux/ramfs.h>
2726 static struct file_system_type shmem_fs_type
= {
2728 .mount
= ramfs_mount
,
2729 .kill_sb
= kill_litter_super
,
2732 int __init
shmem_init(void)
2734 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2736 shm_mnt
= kern_mount(&shmem_fs_type
);
2737 BUG_ON(IS_ERR(shm_mnt
));
2742 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2747 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2752 void shmem_unlock_mapping(struct address_space
*mapping
)
2756 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2758 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2760 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2762 #define shmem_vm_ops generic_file_vm_ops
2763 #define shmem_file_operations ramfs_file_operations
2764 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2765 #define shmem_acct_size(flags, size) 0
2766 #define shmem_unacct_size(flags, size) do {} while (0)
2768 #endif /* CONFIG_SHMEM */
2773 * shmem_file_setup - get an unlinked file living in tmpfs
2774 * @name: name for dentry (to be seen in /proc/<pid>/maps
2775 * @size: size to be set for the file
2776 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2778 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2782 struct inode
*inode
;
2784 struct dentry
*root
;
2787 if (IS_ERR(shm_mnt
))
2788 return (void *)shm_mnt
;
2790 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
2791 return ERR_PTR(-EINVAL
);
2793 if (shmem_acct_size(flags
, size
))
2794 return ERR_PTR(-ENOMEM
);
2798 this.len
= strlen(name
);
2799 this.hash
= 0; /* will go */
2800 root
= shm_mnt
->mnt_root
;
2801 path
.dentry
= d_alloc(root
, &this);
2804 path
.mnt
= mntget(shm_mnt
);
2807 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2811 d_instantiate(path
.dentry
, inode
);
2812 inode
->i_size
= size
;
2813 clear_nlink(inode
); /* It is unlinked */
2815 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2821 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2822 &shmem_file_operations
);
2831 shmem_unacct_size(flags
, size
);
2832 return ERR_PTR(error
);
2834 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2837 * shmem_zero_setup - setup a shared anonymous mapping
2838 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2840 int shmem_zero_setup(struct vm_area_struct
*vma
)
2843 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2845 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2847 return PTR_ERR(file
);
2851 vma
->vm_file
= file
;
2852 vma
->vm_ops
= &shmem_vm_ops
;
2857 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2858 * @mapping: the page's address_space
2859 * @index: the page index
2860 * @gfp: the page allocator flags to use if allocating
2862 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2863 * with any new page allocations done using the specified allocation flags.
2864 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2865 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2866 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2868 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2869 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2871 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
2872 pgoff_t index
, gfp_t gfp
)
2875 struct inode
*inode
= mapping
->host
;
2879 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
2880 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
2882 page
= ERR_PTR(error
);
2888 * The tiny !SHMEM case uses ramfs without swap
2890 return read_cache_page_gfp(mapping
, index
, gfp
);
2893 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);