net/sb1250: setup the pdevice within the soc code
[linux-2.6/libata-dev.git] / fs / namei.c
bloba7dce91a7e4244c3dab9bbb10644fd31ec371bee
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
37 #include "internal.h"
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
117 static int do_getname(const char __user *filename, char *page)
119 int retval;
120 unsigned long len = PATH_MAX;
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
139 char * getname(const char __user * filename)
141 char *tmp, *result;
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
154 audit_getname(result);
155 return result;
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
166 EXPORT_SYMBOL(putname);
167 #endif
170 * This does basic POSIX ACL permission checking
172 static int acl_permission_check(struct inode *inode, int mask,
173 int (*check_acl)(struct inode *inode, int mask))
175 umode_t mode = inode->i_mode;
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask);
184 if (error != -EAGAIN)
185 return error;
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
193 * If the DACs are ok we don't need any capability check.
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
206 * Used to check for read/write/execute permissions on a file.
207 * We use "fsuid" for this, letting us set arbitrary permissions
208 * for filesystem access without changing the "normal" uids which
209 * are used for other things..
211 int generic_permission(struct inode *inode, int mask,
212 int (*check_acl)(struct inode *inode, int mask))
214 int ret;
217 * Do the basic POSIX ACL permission checks.
219 ret = acl_permission_check(inode, mask, check_acl);
220 if (ret != -EACCES)
221 return ret;
224 * Read/write DACs are always overridable.
225 * Executable DACs are overridable if at least one exec bit is set.
227 if (!(mask & MAY_EXEC) || execute_ok(inode))
228 if (capable(CAP_DAC_OVERRIDE))
229 return 0;
232 * Searching includes executable on directories, else just read.
234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
239 return -EACCES;
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
252 int inode_permission(struct inode *inode, int mask)
254 int retval;
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
260 * Nobody gets write access to a read-only fs.
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
267 * Nobody gets write access to an immutable file.
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
278 if (retval)
279 return retval;
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
285 return security_inode_permission(inode,
286 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
290 * file_permission - check for additional access rights to a given file
291 * @file: file to check access rights for
292 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
294 * Used to check for read/write/execute permissions on an already opened
295 * file.
297 * Note:
298 * Do not use this function in new code. All access checks should
299 * be done using inode_permission().
301 int file_permission(struct file *file, int mask)
303 return inode_permission(file->f_path.dentry->d_inode, mask);
307 * get_write_access() gets write permission for a file.
308 * put_write_access() releases this write permission.
309 * This is used for regular files.
310 * We cannot support write (and maybe mmap read-write shared) accesses and
311 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
312 * can have the following values:
313 * 0: no writers, no VM_DENYWRITE mappings
314 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
315 * > 0: (i_writecount) users are writing to the file.
317 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
318 * except for the cases where we don't hold i_writecount yet. Then we need to
319 * use {get,deny}_write_access() - these functions check the sign and refuse
320 * to do the change if sign is wrong. Exclusion between them is provided by
321 * the inode->i_lock spinlock.
324 int get_write_access(struct inode * inode)
326 spin_lock(&inode->i_lock);
327 if (atomic_read(&inode->i_writecount) < 0) {
328 spin_unlock(&inode->i_lock);
329 return -ETXTBSY;
331 atomic_inc(&inode->i_writecount);
332 spin_unlock(&inode->i_lock);
334 return 0;
337 int deny_write_access(struct file * file)
339 struct inode *inode = file->f_path.dentry->d_inode;
341 spin_lock(&inode->i_lock);
342 if (atomic_read(&inode->i_writecount) > 0) {
343 spin_unlock(&inode->i_lock);
344 return -ETXTBSY;
346 atomic_dec(&inode->i_writecount);
347 spin_unlock(&inode->i_lock);
349 return 0;
353 * path_get - get a reference to a path
354 * @path: path to get the reference to
356 * Given a path increment the reference count to the dentry and the vfsmount.
358 void path_get(struct path *path)
360 mntget(path->mnt);
361 dget(path->dentry);
363 EXPORT_SYMBOL(path_get);
366 * path_put - put a reference to a path
367 * @path: path to put the reference to
369 * Given a path decrement the reference count to the dentry and the vfsmount.
371 void path_put(struct path *path)
373 dput(path->dentry);
374 mntput(path->mnt);
376 EXPORT_SYMBOL(path_put);
379 * release_open_intent - free up open intent resources
380 * @nd: pointer to nameidata
382 void release_open_intent(struct nameidata *nd)
384 if (nd->intent.open.file->f_path.dentry == NULL)
385 put_filp(nd->intent.open.file);
386 else
387 fput(nd->intent.open.file);
390 static inline struct dentry *
391 do_revalidate(struct dentry *dentry, struct nameidata *nd)
393 int status = dentry->d_op->d_revalidate(dentry, nd);
394 if (unlikely(status <= 0)) {
396 * The dentry failed validation.
397 * If d_revalidate returned 0 attempt to invalidate
398 * the dentry otherwise d_revalidate is asking us
399 * to return a fail status.
401 if (!status) {
402 if (!d_invalidate(dentry)) {
403 dput(dentry);
404 dentry = NULL;
406 } else {
407 dput(dentry);
408 dentry = ERR_PTR(status);
411 return dentry;
415 * force_reval_path - force revalidation of a dentry
417 * In some situations the path walking code will trust dentries without
418 * revalidating them. This causes problems for filesystems that depend on
419 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
420 * (which indicates that it's possible for the dentry to go stale), force
421 * a d_revalidate call before proceeding.
423 * Returns 0 if the revalidation was successful. If the revalidation fails,
424 * either return the error returned by d_revalidate or -ESTALE if the
425 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
426 * invalidate the dentry. It's up to the caller to handle putting references
427 * to the path if necessary.
429 static int
430 force_reval_path(struct path *path, struct nameidata *nd)
432 int status;
433 struct dentry *dentry = path->dentry;
436 * only check on filesystems where it's possible for the dentry to
437 * become stale. It's assumed that if this flag is set then the
438 * d_revalidate op will also be defined.
440 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
441 return 0;
443 status = dentry->d_op->d_revalidate(dentry, nd);
444 if (status > 0)
445 return 0;
447 if (!status) {
448 d_invalidate(dentry);
449 status = -ESTALE;
451 return status;
455 * Short-cut version of permission(), for calling on directories
456 * during pathname resolution. Combines parts of permission()
457 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
459 * If appropriate, check DAC only. If not appropriate, or
460 * short-cut DAC fails, then call ->permission() to do more
461 * complete permission check.
463 static int exec_permission(struct inode *inode)
465 int ret;
467 if (inode->i_op->permission) {
468 ret = inode->i_op->permission(inode, MAY_EXEC);
469 if (!ret)
470 goto ok;
471 return ret;
473 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
474 if (!ret)
475 goto ok;
477 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
478 goto ok;
480 return ret;
482 return security_inode_permission(inode, MAY_EXEC);
485 static __always_inline void set_root(struct nameidata *nd)
487 if (!nd->root.mnt) {
488 struct fs_struct *fs = current->fs;
489 read_lock(&fs->lock);
490 nd->root = fs->root;
491 path_get(&nd->root);
492 read_unlock(&fs->lock);
496 static int link_path_walk(const char *, struct nameidata *);
498 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
500 if (IS_ERR(link))
501 goto fail;
503 if (*link == '/') {
504 set_root(nd);
505 path_put(&nd->path);
506 nd->path = nd->root;
507 path_get(&nd->root);
510 return link_path_walk(link, nd);
511 fail:
512 path_put(&nd->path);
513 return PTR_ERR(link);
516 static void path_put_conditional(struct path *path, struct nameidata *nd)
518 dput(path->dentry);
519 if (path->mnt != nd->path.mnt)
520 mntput(path->mnt);
523 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
525 dput(nd->path.dentry);
526 if (nd->path.mnt != path->mnt)
527 mntput(nd->path.mnt);
528 nd->path.mnt = path->mnt;
529 nd->path.dentry = path->dentry;
532 static __always_inline int
533 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
535 int error;
536 struct dentry *dentry = path->dentry;
538 touch_atime(path->mnt, dentry);
539 nd_set_link(nd, NULL);
541 if (path->mnt != nd->path.mnt) {
542 path_to_nameidata(path, nd);
543 dget(dentry);
545 mntget(path->mnt);
546 nd->last_type = LAST_BIND;
547 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
548 error = PTR_ERR(*p);
549 if (!IS_ERR(*p)) {
550 char *s = nd_get_link(nd);
551 error = 0;
552 if (s)
553 error = __vfs_follow_link(nd, s);
554 else if (nd->last_type == LAST_BIND) {
555 error = force_reval_path(&nd->path, nd);
556 if (error)
557 path_put(&nd->path);
560 return error;
564 * This limits recursive symlink follows to 8, while
565 * limiting consecutive symlinks to 40.
567 * Without that kind of total limit, nasty chains of consecutive
568 * symlinks can cause almost arbitrarily long lookups.
570 static inline int do_follow_link(struct path *path, struct nameidata *nd)
572 void *cookie;
573 int err = -ELOOP;
574 if (current->link_count >= MAX_NESTED_LINKS)
575 goto loop;
576 if (current->total_link_count >= 40)
577 goto loop;
578 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
579 cond_resched();
580 err = security_inode_follow_link(path->dentry, nd);
581 if (err)
582 goto loop;
583 current->link_count++;
584 current->total_link_count++;
585 nd->depth++;
586 err = __do_follow_link(path, nd, &cookie);
587 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
588 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
589 path_put(path);
590 current->link_count--;
591 nd->depth--;
592 return err;
593 loop:
594 path_put_conditional(path, nd);
595 path_put(&nd->path);
596 return err;
599 int follow_up(struct path *path)
601 struct vfsmount *parent;
602 struct dentry *mountpoint;
603 spin_lock(&vfsmount_lock);
604 parent = path->mnt->mnt_parent;
605 if (parent == path->mnt) {
606 spin_unlock(&vfsmount_lock);
607 return 0;
609 mntget(parent);
610 mountpoint = dget(path->mnt->mnt_mountpoint);
611 spin_unlock(&vfsmount_lock);
612 dput(path->dentry);
613 path->dentry = mountpoint;
614 mntput(path->mnt);
615 path->mnt = parent;
616 return 1;
619 /* no need for dcache_lock, as serialization is taken care in
620 * namespace.c
622 static int __follow_mount(struct path *path)
624 int res = 0;
625 while (d_mountpoint(path->dentry)) {
626 struct vfsmount *mounted = lookup_mnt(path);
627 if (!mounted)
628 break;
629 dput(path->dentry);
630 if (res)
631 mntput(path->mnt);
632 path->mnt = mounted;
633 path->dentry = dget(mounted->mnt_root);
634 res = 1;
636 return res;
639 static void follow_mount(struct path *path)
641 while (d_mountpoint(path->dentry)) {
642 struct vfsmount *mounted = lookup_mnt(path);
643 if (!mounted)
644 break;
645 dput(path->dentry);
646 mntput(path->mnt);
647 path->mnt = mounted;
648 path->dentry = dget(mounted->mnt_root);
652 /* no need for dcache_lock, as serialization is taken care in
653 * namespace.c
655 int follow_down(struct path *path)
657 struct vfsmount *mounted;
659 mounted = lookup_mnt(path);
660 if (mounted) {
661 dput(path->dentry);
662 mntput(path->mnt);
663 path->mnt = mounted;
664 path->dentry = dget(mounted->mnt_root);
665 return 1;
667 return 0;
670 static __always_inline void follow_dotdot(struct nameidata *nd)
672 set_root(nd);
674 while(1) {
675 struct dentry *old = nd->path.dentry;
677 if (nd->path.dentry == nd->root.dentry &&
678 nd->path.mnt == nd->root.mnt) {
679 break;
681 if (nd->path.dentry != nd->path.mnt->mnt_root) {
682 /* rare case of legitimate dget_parent()... */
683 nd->path.dentry = dget_parent(nd->path.dentry);
684 dput(old);
685 break;
687 if (!follow_up(&nd->path))
688 break;
690 follow_mount(&nd->path);
694 * It's more convoluted than I'd like it to be, but... it's still fairly
695 * small and for now I'd prefer to have fast path as straight as possible.
696 * It _is_ time-critical.
698 static int do_lookup(struct nameidata *nd, struct qstr *name,
699 struct path *path)
701 struct vfsmount *mnt = nd->path.mnt;
702 struct dentry *dentry, *parent;
703 struct inode *dir;
705 * See if the low-level filesystem might want
706 * to use its own hash..
708 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
709 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
710 if (err < 0)
711 return err;
714 dentry = __d_lookup(nd->path.dentry, name);
715 if (!dentry)
716 goto need_lookup;
717 if (dentry->d_op && dentry->d_op->d_revalidate)
718 goto need_revalidate;
719 done:
720 path->mnt = mnt;
721 path->dentry = dentry;
722 __follow_mount(path);
723 return 0;
725 need_lookup:
726 parent = nd->path.dentry;
727 dir = parent->d_inode;
729 mutex_lock(&dir->i_mutex);
731 * First re-do the cached lookup just in case it was created
732 * while we waited for the directory semaphore..
734 * FIXME! This could use version numbering or similar to
735 * avoid unnecessary cache lookups.
737 * The "dcache_lock" is purely to protect the RCU list walker
738 * from concurrent renames at this point (we mustn't get false
739 * negatives from the RCU list walk here, unlike the optimistic
740 * fast walk).
742 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
744 dentry = d_lookup(parent, name);
745 if (!dentry) {
746 struct dentry *new;
748 /* Don't create child dentry for a dead directory. */
749 dentry = ERR_PTR(-ENOENT);
750 if (IS_DEADDIR(dir))
751 goto out_unlock;
753 new = d_alloc(parent, name);
754 dentry = ERR_PTR(-ENOMEM);
755 if (new) {
756 dentry = dir->i_op->lookup(dir, new, nd);
757 if (dentry)
758 dput(new);
759 else
760 dentry = new;
762 out_unlock:
763 mutex_unlock(&dir->i_mutex);
764 if (IS_ERR(dentry))
765 goto fail;
766 goto done;
770 * Uhhuh! Nasty case: the cache was re-populated while
771 * we waited on the semaphore. Need to revalidate.
773 mutex_unlock(&dir->i_mutex);
774 if (dentry->d_op && dentry->d_op->d_revalidate) {
775 dentry = do_revalidate(dentry, nd);
776 if (!dentry)
777 dentry = ERR_PTR(-ENOENT);
779 if (IS_ERR(dentry))
780 goto fail;
781 goto done;
783 need_revalidate:
784 dentry = do_revalidate(dentry, nd);
785 if (!dentry)
786 goto need_lookup;
787 if (IS_ERR(dentry))
788 goto fail;
789 goto done;
791 fail:
792 return PTR_ERR(dentry);
796 * This is a temporary kludge to deal with "automount" symlinks; proper
797 * solution is to trigger them on follow_mount(), so that do_lookup()
798 * would DTRT. To be killed before 2.6.34-final.
800 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
802 return inode && unlikely(inode->i_op->follow_link) &&
803 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
807 * Name resolution.
808 * This is the basic name resolution function, turning a pathname into
809 * the final dentry. We expect 'base' to be positive and a directory.
811 * Returns 0 and nd will have valid dentry and mnt on success.
812 * Returns error and drops reference to input namei data on failure.
814 static int link_path_walk(const char *name, struct nameidata *nd)
816 struct path next;
817 struct inode *inode;
818 int err;
819 unsigned int lookup_flags = nd->flags;
821 while (*name=='/')
822 name++;
823 if (!*name)
824 goto return_reval;
826 inode = nd->path.dentry->d_inode;
827 if (nd->depth)
828 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
830 /* At this point we know we have a real path component. */
831 for(;;) {
832 unsigned long hash;
833 struct qstr this;
834 unsigned int c;
836 nd->flags |= LOOKUP_CONTINUE;
837 err = exec_permission(inode);
838 if (err)
839 break;
841 this.name = name;
842 c = *(const unsigned char *)name;
844 hash = init_name_hash();
845 do {
846 name++;
847 hash = partial_name_hash(c, hash);
848 c = *(const unsigned char *)name;
849 } while (c && (c != '/'));
850 this.len = name - (const char *) this.name;
851 this.hash = end_name_hash(hash);
853 /* remove trailing slashes? */
854 if (!c)
855 goto last_component;
856 while (*++name == '/');
857 if (!*name)
858 goto last_with_slashes;
861 * "." and ".." are special - ".." especially so because it has
862 * to be able to know about the current root directory and
863 * parent relationships.
865 if (this.name[0] == '.') switch (this.len) {
866 default:
867 break;
868 case 2:
869 if (this.name[1] != '.')
870 break;
871 follow_dotdot(nd);
872 inode = nd->path.dentry->d_inode;
873 /* fallthrough */
874 case 1:
875 continue;
877 /* This does the actual lookups.. */
878 err = do_lookup(nd, &this, &next);
879 if (err)
880 break;
882 err = -ENOENT;
883 inode = next.dentry->d_inode;
884 if (!inode)
885 goto out_dput;
887 if (inode->i_op->follow_link) {
888 err = do_follow_link(&next, nd);
889 if (err)
890 goto return_err;
891 err = -ENOENT;
892 inode = nd->path.dentry->d_inode;
893 if (!inode)
894 break;
895 } else
896 path_to_nameidata(&next, nd);
897 err = -ENOTDIR;
898 if (!inode->i_op->lookup)
899 break;
900 continue;
901 /* here ends the main loop */
903 last_with_slashes:
904 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
905 last_component:
906 /* Clear LOOKUP_CONTINUE iff it was previously unset */
907 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
908 if (lookup_flags & LOOKUP_PARENT)
909 goto lookup_parent;
910 if (this.name[0] == '.') switch (this.len) {
911 default:
912 break;
913 case 2:
914 if (this.name[1] != '.')
915 break;
916 follow_dotdot(nd);
917 inode = nd->path.dentry->d_inode;
918 /* fallthrough */
919 case 1:
920 goto return_reval;
922 err = do_lookup(nd, &this, &next);
923 if (err)
924 break;
925 inode = next.dentry->d_inode;
926 if (follow_on_final(inode, lookup_flags)) {
927 err = do_follow_link(&next, nd);
928 if (err)
929 goto return_err;
930 inode = nd->path.dentry->d_inode;
931 } else
932 path_to_nameidata(&next, nd);
933 err = -ENOENT;
934 if (!inode)
935 break;
936 if (lookup_flags & LOOKUP_DIRECTORY) {
937 err = -ENOTDIR;
938 if (!inode->i_op->lookup)
939 break;
941 goto return_base;
942 lookup_parent:
943 nd->last = this;
944 nd->last_type = LAST_NORM;
945 if (this.name[0] != '.')
946 goto return_base;
947 if (this.len == 1)
948 nd->last_type = LAST_DOT;
949 else if (this.len == 2 && this.name[1] == '.')
950 nd->last_type = LAST_DOTDOT;
951 else
952 goto return_base;
953 return_reval:
955 * We bypassed the ordinary revalidation routines.
956 * We may need to check the cached dentry for staleness.
958 if (nd->path.dentry && nd->path.dentry->d_sb &&
959 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
960 err = -ESTALE;
961 /* Note: we do not d_invalidate() */
962 if (!nd->path.dentry->d_op->d_revalidate(
963 nd->path.dentry, nd))
964 break;
966 return_base:
967 return 0;
968 out_dput:
969 path_put_conditional(&next, nd);
970 break;
972 path_put(&nd->path);
973 return_err:
974 return err;
977 static int path_walk(const char *name, struct nameidata *nd)
979 struct path save = nd->path;
980 int result;
982 current->total_link_count = 0;
984 /* make sure the stuff we saved doesn't go away */
985 path_get(&save);
987 result = link_path_walk(name, nd);
988 if (result == -ESTALE) {
989 /* nd->path had been dropped */
990 current->total_link_count = 0;
991 nd->path = save;
992 path_get(&nd->path);
993 nd->flags |= LOOKUP_REVAL;
994 result = link_path_walk(name, nd);
997 path_put(&save);
999 return result;
1002 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1004 int retval = 0;
1005 int fput_needed;
1006 struct file *file;
1008 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1009 nd->flags = flags;
1010 nd->depth = 0;
1011 nd->root.mnt = NULL;
1013 if (*name=='/') {
1014 set_root(nd);
1015 nd->path = nd->root;
1016 path_get(&nd->root);
1017 } else if (dfd == AT_FDCWD) {
1018 struct fs_struct *fs = current->fs;
1019 read_lock(&fs->lock);
1020 nd->path = fs->pwd;
1021 path_get(&fs->pwd);
1022 read_unlock(&fs->lock);
1023 } else {
1024 struct dentry *dentry;
1026 file = fget_light(dfd, &fput_needed);
1027 retval = -EBADF;
1028 if (!file)
1029 goto out_fail;
1031 dentry = file->f_path.dentry;
1033 retval = -ENOTDIR;
1034 if (!S_ISDIR(dentry->d_inode->i_mode))
1035 goto fput_fail;
1037 retval = file_permission(file, MAY_EXEC);
1038 if (retval)
1039 goto fput_fail;
1041 nd->path = file->f_path;
1042 path_get(&file->f_path);
1044 fput_light(file, fput_needed);
1046 return 0;
1048 fput_fail:
1049 fput_light(file, fput_needed);
1050 out_fail:
1051 return retval;
1054 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1055 static int do_path_lookup(int dfd, const char *name,
1056 unsigned int flags, struct nameidata *nd)
1058 int retval = path_init(dfd, name, flags, nd);
1059 if (!retval)
1060 retval = path_walk(name, nd);
1061 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1062 nd->path.dentry->d_inode))
1063 audit_inode(name, nd->path.dentry);
1064 if (nd->root.mnt) {
1065 path_put(&nd->root);
1066 nd->root.mnt = NULL;
1068 return retval;
1071 int path_lookup(const char *name, unsigned int flags,
1072 struct nameidata *nd)
1074 return do_path_lookup(AT_FDCWD, name, flags, nd);
1077 int kern_path(const char *name, unsigned int flags, struct path *path)
1079 struct nameidata nd;
1080 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1081 if (!res)
1082 *path = nd.path;
1083 return res;
1087 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1088 * @dentry: pointer to dentry of the base directory
1089 * @mnt: pointer to vfs mount of the base directory
1090 * @name: pointer to file name
1091 * @flags: lookup flags
1092 * @nd: pointer to nameidata
1094 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1095 const char *name, unsigned int flags,
1096 struct nameidata *nd)
1098 int retval;
1100 /* same as do_path_lookup */
1101 nd->last_type = LAST_ROOT;
1102 nd->flags = flags;
1103 nd->depth = 0;
1105 nd->path.dentry = dentry;
1106 nd->path.mnt = mnt;
1107 path_get(&nd->path);
1108 nd->root = nd->path;
1109 path_get(&nd->root);
1111 retval = path_walk(name, nd);
1112 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1113 nd->path.dentry->d_inode))
1114 audit_inode(name, nd->path.dentry);
1116 path_put(&nd->root);
1117 nd->root.mnt = NULL;
1119 return retval;
1122 static struct dentry *__lookup_hash(struct qstr *name,
1123 struct dentry *base, struct nameidata *nd)
1125 struct dentry *dentry;
1126 struct inode *inode;
1127 int err;
1129 inode = base->d_inode;
1132 * See if the low-level filesystem might want
1133 * to use its own hash..
1135 if (base->d_op && base->d_op->d_hash) {
1136 err = base->d_op->d_hash(base, name);
1137 dentry = ERR_PTR(err);
1138 if (err < 0)
1139 goto out;
1142 dentry = __d_lookup(base, name);
1144 /* lockess __d_lookup may fail due to concurrent d_move()
1145 * in some unrelated directory, so try with d_lookup
1147 if (!dentry)
1148 dentry = d_lookup(base, name);
1150 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1151 dentry = do_revalidate(dentry, nd);
1153 if (!dentry) {
1154 struct dentry *new;
1156 /* Don't create child dentry for a dead directory. */
1157 dentry = ERR_PTR(-ENOENT);
1158 if (IS_DEADDIR(inode))
1159 goto out;
1161 new = d_alloc(base, name);
1162 dentry = ERR_PTR(-ENOMEM);
1163 if (!new)
1164 goto out;
1165 dentry = inode->i_op->lookup(inode, new, nd);
1166 if (!dentry)
1167 dentry = new;
1168 else
1169 dput(new);
1171 out:
1172 return dentry;
1176 * Restricted form of lookup. Doesn't follow links, single-component only,
1177 * needs parent already locked. Doesn't follow mounts.
1178 * SMP-safe.
1180 static struct dentry *lookup_hash(struct nameidata *nd)
1182 int err;
1184 err = exec_permission(nd->path.dentry->d_inode);
1185 if (err)
1186 return ERR_PTR(err);
1187 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1190 static int __lookup_one_len(const char *name, struct qstr *this,
1191 struct dentry *base, int len)
1193 unsigned long hash;
1194 unsigned int c;
1196 this->name = name;
1197 this->len = len;
1198 if (!len)
1199 return -EACCES;
1201 hash = init_name_hash();
1202 while (len--) {
1203 c = *(const unsigned char *)name++;
1204 if (c == '/' || c == '\0')
1205 return -EACCES;
1206 hash = partial_name_hash(c, hash);
1208 this->hash = end_name_hash(hash);
1209 return 0;
1213 * lookup_one_len - filesystem helper to lookup single pathname component
1214 * @name: pathname component to lookup
1215 * @base: base directory to lookup from
1216 * @len: maximum length @len should be interpreted to
1218 * Note that this routine is purely a helper for filesystem usage and should
1219 * not be called by generic code. Also note that by using this function the
1220 * nameidata argument is passed to the filesystem methods and a filesystem
1221 * using this helper needs to be prepared for that.
1223 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1225 int err;
1226 struct qstr this;
1228 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1230 err = __lookup_one_len(name, &this, base, len);
1231 if (err)
1232 return ERR_PTR(err);
1234 err = exec_permission(base->d_inode);
1235 if (err)
1236 return ERR_PTR(err);
1237 return __lookup_hash(&this, base, NULL);
1240 int user_path_at(int dfd, const char __user *name, unsigned flags,
1241 struct path *path)
1243 struct nameidata nd;
1244 char *tmp = getname(name);
1245 int err = PTR_ERR(tmp);
1246 if (!IS_ERR(tmp)) {
1248 BUG_ON(flags & LOOKUP_PARENT);
1250 err = do_path_lookup(dfd, tmp, flags, &nd);
1251 putname(tmp);
1252 if (!err)
1253 *path = nd.path;
1255 return err;
1258 static int user_path_parent(int dfd, const char __user *path,
1259 struct nameidata *nd, char **name)
1261 char *s = getname(path);
1262 int error;
1264 if (IS_ERR(s))
1265 return PTR_ERR(s);
1267 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1268 if (error)
1269 putname(s);
1270 else
1271 *name = s;
1273 return error;
1277 * It's inline, so penalty for filesystems that don't use sticky bit is
1278 * minimal.
1280 static inline int check_sticky(struct inode *dir, struct inode *inode)
1282 uid_t fsuid = current_fsuid();
1284 if (!(dir->i_mode & S_ISVTX))
1285 return 0;
1286 if (inode->i_uid == fsuid)
1287 return 0;
1288 if (dir->i_uid == fsuid)
1289 return 0;
1290 return !capable(CAP_FOWNER);
1294 * Check whether we can remove a link victim from directory dir, check
1295 * whether the type of victim is right.
1296 * 1. We can't do it if dir is read-only (done in permission())
1297 * 2. We should have write and exec permissions on dir
1298 * 3. We can't remove anything from append-only dir
1299 * 4. We can't do anything with immutable dir (done in permission())
1300 * 5. If the sticky bit on dir is set we should either
1301 * a. be owner of dir, or
1302 * b. be owner of victim, or
1303 * c. have CAP_FOWNER capability
1304 * 6. If the victim is append-only or immutable we can't do antyhing with
1305 * links pointing to it.
1306 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1307 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1308 * 9. We can't remove a root or mountpoint.
1309 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1310 * nfs_async_unlink().
1312 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1314 int error;
1316 if (!victim->d_inode)
1317 return -ENOENT;
1319 BUG_ON(victim->d_parent->d_inode != dir);
1320 audit_inode_child(victim, dir);
1322 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1323 if (error)
1324 return error;
1325 if (IS_APPEND(dir))
1326 return -EPERM;
1327 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1328 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1329 return -EPERM;
1330 if (isdir) {
1331 if (!S_ISDIR(victim->d_inode->i_mode))
1332 return -ENOTDIR;
1333 if (IS_ROOT(victim))
1334 return -EBUSY;
1335 } else if (S_ISDIR(victim->d_inode->i_mode))
1336 return -EISDIR;
1337 if (IS_DEADDIR(dir))
1338 return -ENOENT;
1339 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1340 return -EBUSY;
1341 return 0;
1344 /* Check whether we can create an object with dentry child in directory
1345 * dir.
1346 * 1. We can't do it if child already exists (open has special treatment for
1347 * this case, but since we are inlined it's OK)
1348 * 2. We can't do it if dir is read-only (done in permission())
1349 * 3. We should have write and exec permissions on dir
1350 * 4. We can't do it if dir is immutable (done in permission())
1352 static inline int may_create(struct inode *dir, struct dentry *child)
1354 if (child->d_inode)
1355 return -EEXIST;
1356 if (IS_DEADDIR(dir))
1357 return -ENOENT;
1358 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1362 * p1 and p2 should be directories on the same fs.
1364 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1366 struct dentry *p;
1368 if (p1 == p2) {
1369 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1370 return NULL;
1373 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1375 p = d_ancestor(p2, p1);
1376 if (p) {
1377 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1378 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1379 return p;
1382 p = d_ancestor(p1, p2);
1383 if (p) {
1384 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1385 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1386 return p;
1389 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1390 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1391 return NULL;
1394 void unlock_rename(struct dentry *p1, struct dentry *p2)
1396 mutex_unlock(&p1->d_inode->i_mutex);
1397 if (p1 != p2) {
1398 mutex_unlock(&p2->d_inode->i_mutex);
1399 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1403 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1404 struct nameidata *nd)
1406 int error = may_create(dir, dentry);
1408 if (error)
1409 return error;
1411 if (!dir->i_op->create)
1412 return -EACCES; /* shouldn't it be ENOSYS? */
1413 mode &= S_IALLUGO;
1414 mode |= S_IFREG;
1415 error = security_inode_create(dir, dentry, mode);
1416 if (error)
1417 return error;
1418 error = dir->i_op->create(dir, dentry, mode, nd);
1419 if (!error)
1420 fsnotify_create(dir, dentry);
1421 return error;
1424 int may_open(struct path *path, int acc_mode, int flag)
1426 struct dentry *dentry = path->dentry;
1427 struct inode *inode = dentry->d_inode;
1428 int error;
1430 if (!inode)
1431 return -ENOENT;
1433 switch (inode->i_mode & S_IFMT) {
1434 case S_IFLNK:
1435 return -ELOOP;
1436 case S_IFDIR:
1437 if (acc_mode & MAY_WRITE)
1438 return -EISDIR;
1439 break;
1440 case S_IFBLK:
1441 case S_IFCHR:
1442 if (path->mnt->mnt_flags & MNT_NODEV)
1443 return -EACCES;
1444 /*FALLTHRU*/
1445 case S_IFIFO:
1446 case S_IFSOCK:
1447 flag &= ~O_TRUNC;
1448 break;
1451 error = inode_permission(inode, acc_mode);
1452 if (error)
1453 return error;
1456 * An append-only file must be opened in append mode for writing.
1458 if (IS_APPEND(inode)) {
1459 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1460 return -EPERM;
1461 if (flag & O_TRUNC)
1462 return -EPERM;
1465 /* O_NOATIME can only be set by the owner or superuser */
1466 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1467 return -EPERM;
1470 * Ensure there are no outstanding leases on the file.
1472 return break_lease(inode, flag);
1475 static int handle_truncate(struct path *path)
1477 struct inode *inode = path->dentry->d_inode;
1478 int error = get_write_access(inode);
1479 if (error)
1480 return error;
1482 * Refuse to truncate files with mandatory locks held on them.
1484 error = locks_verify_locked(inode);
1485 if (!error)
1486 error = security_path_truncate(path, 0,
1487 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1488 if (!error) {
1489 error = do_truncate(path->dentry, 0,
1490 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1491 NULL);
1493 put_write_access(inode);
1494 return error;
1498 * Be careful about ever adding any more callers of this
1499 * function. Its flags must be in the namei format, not
1500 * what get passed to sys_open().
1502 static int __open_namei_create(struct nameidata *nd, struct path *path,
1503 int open_flag, int mode)
1505 int error;
1506 struct dentry *dir = nd->path.dentry;
1508 if (!IS_POSIXACL(dir->d_inode))
1509 mode &= ~current_umask();
1510 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1511 if (error)
1512 goto out_unlock;
1513 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1514 out_unlock:
1515 mutex_unlock(&dir->d_inode->i_mutex);
1516 dput(nd->path.dentry);
1517 nd->path.dentry = path->dentry;
1518 if (error)
1519 return error;
1520 /* Don't check for write permission, don't truncate */
1521 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1525 * Note that while the flag value (low two bits) for sys_open means:
1526 * 00 - read-only
1527 * 01 - write-only
1528 * 10 - read-write
1529 * 11 - special
1530 * it is changed into
1531 * 00 - no permissions needed
1532 * 01 - read-permission
1533 * 10 - write-permission
1534 * 11 - read-write
1535 * for the internal routines (ie open_namei()/follow_link() etc)
1536 * This is more logical, and also allows the 00 "no perm needed"
1537 * to be used for symlinks (where the permissions are checked
1538 * later).
1541 static inline int open_to_namei_flags(int flag)
1543 if ((flag+1) & O_ACCMODE)
1544 flag++;
1545 return flag;
1548 static int open_will_truncate(int flag, struct inode *inode)
1551 * We'll never write to the fs underlying
1552 * a device file.
1554 if (special_file(inode->i_mode))
1555 return 0;
1556 return (flag & O_TRUNC);
1559 static struct file *finish_open(struct nameidata *nd,
1560 int open_flag, int acc_mode)
1562 struct file *filp;
1563 int will_truncate;
1564 int error;
1566 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1567 if (will_truncate) {
1568 error = mnt_want_write(nd->path.mnt);
1569 if (error)
1570 goto exit;
1572 error = may_open(&nd->path, acc_mode, open_flag);
1573 if (error) {
1574 if (will_truncate)
1575 mnt_drop_write(nd->path.mnt);
1576 goto exit;
1578 filp = nameidata_to_filp(nd);
1579 if (!IS_ERR(filp)) {
1580 error = ima_file_check(filp, acc_mode);
1581 if (error) {
1582 fput(filp);
1583 filp = ERR_PTR(error);
1586 if (!IS_ERR(filp)) {
1587 if (will_truncate) {
1588 error = handle_truncate(&nd->path);
1589 if (error) {
1590 fput(filp);
1591 filp = ERR_PTR(error);
1596 * It is now safe to drop the mnt write
1597 * because the filp has had a write taken
1598 * on its behalf.
1600 if (will_truncate)
1601 mnt_drop_write(nd->path.mnt);
1602 return filp;
1604 exit:
1605 if (!IS_ERR(nd->intent.open.file))
1606 release_open_intent(nd);
1607 path_put(&nd->path);
1608 return ERR_PTR(error);
1611 static struct file *do_last(struct nameidata *nd, struct path *path,
1612 int open_flag, int acc_mode,
1613 int mode, const char *pathname)
1615 struct dentry *dir = nd->path.dentry;
1616 struct file *filp;
1617 int error = -EISDIR;
1619 switch (nd->last_type) {
1620 case LAST_DOTDOT:
1621 follow_dotdot(nd);
1622 dir = nd->path.dentry;
1623 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1624 if (!dir->d_op->d_revalidate(dir, nd)) {
1625 error = -ESTALE;
1626 goto exit;
1629 /* fallthrough */
1630 case LAST_DOT:
1631 case LAST_ROOT:
1632 if (open_flag & O_CREAT)
1633 goto exit;
1634 /* fallthrough */
1635 case LAST_BIND:
1636 audit_inode(pathname, dir);
1637 goto ok;
1640 /* trailing slashes? */
1641 if (nd->last.name[nd->last.len]) {
1642 if (open_flag & O_CREAT)
1643 goto exit;
1644 nd->flags |= LOOKUP_DIRECTORY;
1647 /* just plain open? */
1648 if (!(open_flag & O_CREAT)) {
1649 error = do_lookup(nd, &nd->last, path);
1650 if (error)
1651 goto exit;
1652 error = -ENOENT;
1653 if (!path->dentry->d_inode)
1654 goto exit_dput;
1655 if (path->dentry->d_inode->i_op->follow_link)
1656 return NULL;
1657 error = -ENOTDIR;
1658 if (nd->flags & LOOKUP_DIRECTORY) {
1659 if (!path->dentry->d_inode->i_op->lookup)
1660 goto exit_dput;
1662 path_to_nameidata(path, nd);
1663 audit_inode(pathname, nd->path.dentry);
1664 goto ok;
1667 /* OK, it's O_CREAT */
1668 mutex_lock(&dir->d_inode->i_mutex);
1670 path->dentry = lookup_hash(nd);
1671 path->mnt = nd->path.mnt;
1673 error = PTR_ERR(path->dentry);
1674 if (IS_ERR(path->dentry)) {
1675 mutex_unlock(&dir->d_inode->i_mutex);
1676 goto exit;
1679 if (IS_ERR(nd->intent.open.file)) {
1680 error = PTR_ERR(nd->intent.open.file);
1681 goto exit_mutex_unlock;
1684 /* Negative dentry, just create the file */
1685 if (!path->dentry->d_inode) {
1687 * This write is needed to ensure that a
1688 * ro->rw transition does not occur between
1689 * the time when the file is created and when
1690 * a permanent write count is taken through
1691 * the 'struct file' in nameidata_to_filp().
1693 error = mnt_want_write(nd->path.mnt);
1694 if (error)
1695 goto exit_mutex_unlock;
1696 error = __open_namei_create(nd, path, open_flag, mode);
1697 if (error) {
1698 mnt_drop_write(nd->path.mnt);
1699 goto exit;
1701 filp = nameidata_to_filp(nd);
1702 mnt_drop_write(nd->path.mnt);
1703 if (!IS_ERR(filp)) {
1704 error = ima_file_check(filp, acc_mode);
1705 if (error) {
1706 fput(filp);
1707 filp = ERR_PTR(error);
1710 return filp;
1714 * It already exists.
1716 mutex_unlock(&dir->d_inode->i_mutex);
1717 audit_inode(pathname, path->dentry);
1719 error = -EEXIST;
1720 if (open_flag & O_EXCL)
1721 goto exit_dput;
1723 if (__follow_mount(path)) {
1724 error = -ELOOP;
1725 if (open_flag & O_NOFOLLOW)
1726 goto exit_dput;
1729 error = -ENOENT;
1730 if (!path->dentry->d_inode)
1731 goto exit_dput;
1733 if (path->dentry->d_inode->i_op->follow_link)
1734 return NULL;
1736 path_to_nameidata(path, nd);
1737 error = -EISDIR;
1738 if (S_ISDIR(path->dentry->d_inode->i_mode))
1739 goto exit;
1741 filp = finish_open(nd, open_flag, acc_mode);
1742 return filp;
1744 exit_mutex_unlock:
1745 mutex_unlock(&dir->d_inode->i_mutex);
1746 exit_dput:
1747 path_put_conditional(path, nd);
1748 exit:
1749 if (!IS_ERR(nd->intent.open.file))
1750 release_open_intent(nd);
1751 path_put(&nd->path);
1752 return ERR_PTR(error);
1756 * Note that the low bits of the passed in "open_flag"
1757 * are not the same as in the local variable "flag". See
1758 * open_to_namei_flags() for more details.
1760 struct file *do_filp_open(int dfd, const char *pathname,
1761 int open_flag, int mode, int acc_mode)
1763 struct file *filp;
1764 struct nameidata nd;
1765 int error;
1766 struct path path;
1767 int count = 0;
1768 int flag = open_to_namei_flags(open_flag);
1769 int force_reval = 0;
1771 if (!(open_flag & O_CREAT))
1772 mode = 0;
1775 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1776 * check for O_DSYNC if the need any syncing at all we enforce it's
1777 * always set instead of having to deal with possibly weird behaviour
1778 * for malicious applications setting only __O_SYNC.
1780 if (open_flag & __O_SYNC)
1781 open_flag |= O_DSYNC;
1783 if (!acc_mode)
1784 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1786 /* O_TRUNC implies we need access checks for write permissions */
1787 if (open_flag & O_TRUNC)
1788 acc_mode |= MAY_WRITE;
1790 /* Allow the LSM permission hook to distinguish append
1791 access from general write access. */
1792 if (open_flag & O_APPEND)
1793 acc_mode |= MAY_APPEND;
1795 /* find the parent */
1796 reval:
1797 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1798 if (error)
1799 return ERR_PTR(error);
1800 if (force_reval)
1801 nd.flags |= LOOKUP_REVAL;
1803 current->total_link_count = 0;
1804 error = link_path_walk(pathname, &nd);
1805 if (error) {
1806 filp = ERR_PTR(error);
1807 goto out;
1809 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1810 audit_inode(pathname, nd.path.dentry);
1813 * We have the parent and last component.
1816 error = -ENFILE;
1817 filp = get_empty_filp();
1818 if (filp == NULL)
1819 goto exit_parent;
1820 nd.intent.open.file = filp;
1821 filp->f_flags = open_flag;
1822 nd.intent.open.flags = flag;
1823 nd.intent.open.create_mode = mode;
1824 nd.flags &= ~LOOKUP_PARENT;
1825 nd.flags |= LOOKUP_OPEN;
1826 if (open_flag & O_CREAT) {
1827 nd.flags |= LOOKUP_CREATE;
1828 if (open_flag & O_EXCL)
1829 nd.flags |= LOOKUP_EXCL;
1831 if (open_flag & O_DIRECTORY)
1832 nd.flags |= LOOKUP_DIRECTORY;
1833 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1834 while (unlikely(!filp)) { /* trailing symlink */
1835 struct path holder;
1836 struct inode *inode = path.dentry->d_inode;
1837 void *cookie;
1838 error = -ELOOP;
1839 /* S_ISDIR part is a temporary automount kludge */
1840 if ((open_flag & O_NOFOLLOW) && !S_ISDIR(inode->i_mode))
1841 goto exit_dput;
1842 if (count++ == 32)
1843 goto exit_dput;
1845 * This is subtle. Instead of calling do_follow_link() we do
1846 * the thing by hands. The reason is that this way we have zero
1847 * link_count and path_walk() (called from ->follow_link)
1848 * honoring LOOKUP_PARENT. After that we have the parent and
1849 * last component, i.e. we are in the same situation as after
1850 * the first path_walk(). Well, almost - if the last component
1851 * is normal we get its copy stored in nd->last.name and we will
1852 * have to putname() it when we are done. Procfs-like symlinks
1853 * just set LAST_BIND.
1855 nd.flags |= LOOKUP_PARENT;
1856 error = security_inode_follow_link(path.dentry, &nd);
1857 if (error)
1858 goto exit_dput;
1859 error = __do_follow_link(&path, &nd, &cookie);
1860 if (unlikely(error)) {
1861 /* nd.path had been dropped */
1862 if (!IS_ERR(cookie) && inode->i_op->put_link)
1863 inode->i_op->put_link(path.dentry, &nd, cookie);
1864 path_put(&path);
1865 release_open_intent(&nd);
1866 filp = ERR_PTR(error);
1867 goto out;
1869 holder = path;
1870 nd.flags &= ~LOOKUP_PARENT;
1871 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1872 if (inode->i_op->put_link)
1873 inode->i_op->put_link(holder.dentry, &nd, cookie);
1874 path_put(&holder);
1876 out:
1877 if (nd.root.mnt)
1878 path_put(&nd.root);
1879 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1880 force_reval = 1;
1881 goto reval;
1883 return filp;
1885 exit_dput:
1886 path_put_conditional(&path, &nd);
1887 if (!IS_ERR(nd.intent.open.file))
1888 release_open_intent(&nd);
1889 exit_parent:
1890 path_put(&nd.path);
1891 filp = ERR_PTR(error);
1892 goto out;
1896 * filp_open - open file and return file pointer
1898 * @filename: path to open
1899 * @flags: open flags as per the open(2) second argument
1900 * @mode: mode for the new file if O_CREAT is set, else ignored
1902 * This is the helper to open a file from kernelspace if you really
1903 * have to. But in generally you should not do this, so please move
1904 * along, nothing to see here..
1906 struct file *filp_open(const char *filename, int flags, int mode)
1908 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1910 EXPORT_SYMBOL(filp_open);
1913 * lookup_create - lookup a dentry, creating it if it doesn't exist
1914 * @nd: nameidata info
1915 * @is_dir: directory flag
1917 * Simple function to lookup and return a dentry and create it
1918 * if it doesn't exist. Is SMP-safe.
1920 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1922 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1924 struct dentry *dentry = ERR_PTR(-EEXIST);
1926 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1928 * Yucky last component or no last component at all?
1929 * (foo/., foo/.., /////)
1931 if (nd->last_type != LAST_NORM)
1932 goto fail;
1933 nd->flags &= ~LOOKUP_PARENT;
1934 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1935 nd->intent.open.flags = O_EXCL;
1938 * Do the final lookup.
1940 dentry = lookup_hash(nd);
1941 if (IS_ERR(dentry))
1942 goto fail;
1944 if (dentry->d_inode)
1945 goto eexist;
1947 * Special case - lookup gave negative, but... we had foo/bar/
1948 * From the vfs_mknod() POV we just have a negative dentry -
1949 * all is fine. Let's be bastards - you had / on the end, you've
1950 * been asking for (non-existent) directory. -ENOENT for you.
1952 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1953 dput(dentry);
1954 dentry = ERR_PTR(-ENOENT);
1956 return dentry;
1957 eexist:
1958 dput(dentry);
1959 dentry = ERR_PTR(-EEXIST);
1960 fail:
1961 return dentry;
1963 EXPORT_SYMBOL_GPL(lookup_create);
1965 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1967 int error = may_create(dir, dentry);
1969 if (error)
1970 return error;
1972 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1973 return -EPERM;
1975 if (!dir->i_op->mknod)
1976 return -EPERM;
1978 error = devcgroup_inode_mknod(mode, dev);
1979 if (error)
1980 return error;
1982 error = security_inode_mknod(dir, dentry, mode, dev);
1983 if (error)
1984 return error;
1986 error = dir->i_op->mknod(dir, dentry, mode, dev);
1987 if (!error)
1988 fsnotify_create(dir, dentry);
1989 return error;
1992 static int may_mknod(mode_t mode)
1994 switch (mode & S_IFMT) {
1995 case S_IFREG:
1996 case S_IFCHR:
1997 case S_IFBLK:
1998 case S_IFIFO:
1999 case S_IFSOCK:
2000 case 0: /* zero mode translates to S_IFREG */
2001 return 0;
2002 case S_IFDIR:
2003 return -EPERM;
2004 default:
2005 return -EINVAL;
2009 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2010 unsigned, dev)
2012 int error;
2013 char *tmp;
2014 struct dentry *dentry;
2015 struct nameidata nd;
2017 if (S_ISDIR(mode))
2018 return -EPERM;
2020 error = user_path_parent(dfd, filename, &nd, &tmp);
2021 if (error)
2022 return error;
2024 dentry = lookup_create(&nd, 0);
2025 if (IS_ERR(dentry)) {
2026 error = PTR_ERR(dentry);
2027 goto out_unlock;
2029 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2030 mode &= ~current_umask();
2031 error = may_mknod(mode);
2032 if (error)
2033 goto out_dput;
2034 error = mnt_want_write(nd.path.mnt);
2035 if (error)
2036 goto out_dput;
2037 error = security_path_mknod(&nd.path, dentry, mode, dev);
2038 if (error)
2039 goto out_drop_write;
2040 switch (mode & S_IFMT) {
2041 case 0: case S_IFREG:
2042 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2043 break;
2044 case S_IFCHR: case S_IFBLK:
2045 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2046 new_decode_dev(dev));
2047 break;
2048 case S_IFIFO: case S_IFSOCK:
2049 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2050 break;
2052 out_drop_write:
2053 mnt_drop_write(nd.path.mnt);
2054 out_dput:
2055 dput(dentry);
2056 out_unlock:
2057 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2058 path_put(&nd.path);
2059 putname(tmp);
2061 return error;
2064 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2066 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2069 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2071 int error = may_create(dir, dentry);
2073 if (error)
2074 return error;
2076 if (!dir->i_op->mkdir)
2077 return -EPERM;
2079 mode &= (S_IRWXUGO|S_ISVTX);
2080 error = security_inode_mkdir(dir, dentry, mode);
2081 if (error)
2082 return error;
2084 error = dir->i_op->mkdir(dir, dentry, mode);
2085 if (!error)
2086 fsnotify_mkdir(dir, dentry);
2087 return error;
2090 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2092 int error = 0;
2093 char * tmp;
2094 struct dentry *dentry;
2095 struct nameidata nd;
2097 error = user_path_parent(dfd, pathname, &nd, &tmp);
2098 if (error)
2099 goto out_err;
2101 dentry = lookup_create(&nd, 1);
2102 error = PTR_ERR(dentry);
2103 if (IS_ERR(dentry))
2104 goto out_unlock;
2106 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2107 mode &= ~current_umask();
2108 error = mnt_want_write(nd.path.mnt);
2109 if (error)
2110 goto out_dput;
2111 error = security_path_mkdir(&nd.path, dentry, mode);
2112 if (error)
2113 goto out_drop_write;
2114 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2115 out_drop_write:
2116 mnt_drop_write(nd.path.mnt);
2117 out_dput:
2118 dput(dentry);
2119 out_unlock:
2120 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2121 path_put(&nd.path);
2122 putname(tmp);
2123 out_err:
2124 return error;
2127 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2129 return sys_mkdirat(AT_FDCWD, pathname, mode);
2133 * We try to drop the dentry early: we should have
2134 * a usage count of 2 if we're the only user of this
2135 * dentry, and if that is true (possibly after pruning
2136 * the dcache), then we drop the dentry now.
2138 * A low-level filesystem can, if it choses, legally
2139 * do a
2141 * if (!d_unhashed(dentry))
2142 * return -EBUSY;
2144 * if it cannot handle the case of removing a directory
2145 * that is still in use by something else..
2147 void dentry_unhash(struct dentry *dentry)
2149 dget(dentry);
2150 shrink_dcache_parent(dentry);
2151 spin_lock(&dcache_lock);
2152 spin_lock(&dentry->d_lock);
2153 if (atomic_read(&dentry->d_count) == 2)
2154 __d_drop(dentry);
2155 spin_unlock(&dentry->d_lock);
2156 spin_unlock(&dcache_lock);
2159 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2161 int error = may_delete(dir, dentry, 1);
2163 if (error)
2164 return error;
2166 if (!dir->i_op->rmdir)
2167 return -EPERM;
2169 mutex_lock(&dentry->d_inode->i_mutex);
2170 dentry_unhash(dentry);
2171 if (d_mountpoint(dentry))
2172 error = -EBUSY;
2173 else {
2174 error = security_inode_rmdir(dir, dentry);
2175 if (!error) {
2176 error = dir->i_op->rmdir(dir, dentry);
2177 if (!error)
2178 dentry->d_inode->i_flags |= S_DEAD;
2181 mutex_unlock(&dentry->d_inode->i_mutex);
2182 if (!error) {
2183 d_delete(dentry);
2185 dput(dentry);
2187 return error;
2190 static long do_rmdir(int dfd, const char __user *pathname)
2192 int error = 0;
2193 char * name;
2194 struct dentry *dentry;
2195 struct nameidata nd;
2197 error = user_path_parent(dfd, pathname, &nd, &name);
2198 if (error)
2199 return error;
2201 switch(nd.last_type) {
2202 case LAST_DOTDOT:
2203 error = -ENOTEMPTY;
2204 goto exit1;
2205 case LAST_DOT:
2206 error = -EINVAL;
2207 goto exit1;
2208 case LAST_ROOT:
2209 error = -EBUSY;
2210 goto exit1;
2213 nd.flags &= ~LOOKUP_PARENT;
2215 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2216 dentry = lookup_hash(&nd);
2217 error = PTR_ERR(dentry);
2218 if (IS_ERR(dentry))
2219 goto exit2;
2220 error = mnt_want_write(nd.path.mnt);
2221 if (error)
2222 goto exit3;
2223 error = security_path_rmdir(&nd.path, dentry);
2224 if (error)
2225 goto exit4;
2226 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2227 exit4:
2228 mnt_drop_write(nd.path.mnt);
2229 exit3:
2230 dput(dentry);
2231 exit2:
2232 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2233 exit1:
2234 path_put(&nd.path);
2235 putname(name);
2236 return error;
2239 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2241 return do_rmdir(AT_FDCWD, pathname);
2244 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2246 int error = may_delete(dir, dentry, 0);
2248 if (error)
2249 return error;
2251 if (!dir->i_op->unlink)
2252 return -EPERM;
2254 mutex_lock(&dentry->d_inode->i_mutex);
2255 if (d_mountpoint(dentry))
2256 error = -EBUSY;
2257 else {
2258 error = security_inode_unlink(dir, dentry);
2259 if (!error) {
2260 error = dir->i_op->unlink(dir, dentry);
2261 if (!error)
2262 dentry->d_inode->i_flags |= S_DEAD;
2265 mutex_unlock(&dentry->d_inode->i_mutex);
2267 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2268 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2269 fsnotify_link_count(dentry->d_inode);
2270 d_delete(dentry);
2273 return error;
2277 * Make sure that the actual truncation of the file will occur outside its
2278 * directory's i_mutex. Truncate can take a long time if there is a lot of
2279 * writeout happening, and we don't want to prevent access to the directory
2280 * while waiting on the I/O.
2282 static long do_unlinkat(int dfd, const char __user *pathname)
2284 int error;
2285 char *name;
2286 struct dentry *dentry;
2287 struct nameidata nd;
2288 struct inode *inode = NULL;
2290 error = user_path_parent(dfd, pathname, &nd, &name);
2291 if (error)
2292 return error;
2294 error = -EISDIR;
2295 if (nd.last_type != LAST_NORM)
2296 goto exit1;
2298 nd.flags &= ~LOOKUP_PARENT;
2300 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2301 dentry = lookup_hash(&nd);
2302 error = PTR_ERR(dentry);
2303 if (!IS_ERR(dentry)) {
2304 /* Why not before? Because we want correct error value */
2305 if (nd.last.name[nd.last.len])
2306 goto slashes;
2307 inode = dentry->d_inode;
2308 if (inode)
2309 atomic_inc(&inode->i_count);
2310 error = mnt_want_write(nd.path.mnt);
2311 if (error)
2312 goto exit2;
2313 error = security_path_unlink(&nd.path, dentry);
2314 if (error)
2315 goto exit3;
2316 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2317 exit3:
2318 mnt_drop_write(nd.path.mnt);
2319 exit2:
2320 dput(dentry);
2322 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2323 if (inode)
2324 iput(inode); /* truncate the inode here */
2325 exit1:
2326 path_put(&nd.path);
2327 putname(name);
2328 return error;
2330 slashes:
2331 error = !dentry->d_inode ? -ENOENT :
2332 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2333 goto exit2;
2336 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2338 if ((flag & ~AT_REMOVEDIR) != 0)
2339 return -EINVAL;
2341 if (flag & AT_REMOVEDIR)
2342 return do_rmdir(dfd, pathname);
2344 return do_unlinkat(dfd, pathname);
2347 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2349 return do_unlinkat(AT_FDCWD, pathname);
2352 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2354 int error = may_create(dir, dentry);
2356 if (error)
2357 return error;
2359 if (!dir->i_op->symlink)
2360 return -EPERM;
2362 error = security_inode_symlink(dir, dentry, oldname);
2363 if (error)
2364 return error;
2366 error = dir->i_op->symlink(dir, dentry, oldname);
2367 if (!error)
2368 fsnotify_create(dir, dentry);
2369 return error;
2372 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2373 int, newdfd, const char __user *, newname)
2375 int error;
2376 char *from;
2377 char *to;
2378 struct dentry *dentry;
2379 struct nameidata nd;
2381 from = getname(oldname);
2382 if (IS_ERR(from))
2383 return PTR_ERR(from);
2385 error = user_path_parent(newdfd, newname, &nd, &to);
2386 if (error)
2387 goto out_putname;
2389 dentry = lookup_create(&nd, 0);
2390 error = PTR_ERR(dentry);
2391 if (IS_ERR(dentry))
2392 goto out_unlock;
2394 error = mnt_want_write(nd.path.mnt);
2395 if (error)
2396 goto out_dput;
2397 error = security_path_symlink(&nd.path, dentry, from);
2398 if (error)
2399 goto out_drop_write;
2400 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2401 out_drop_write:
2402 mnt_drop_write(nd.path.mnt);
2403 out_dput:
2404 dput(dentry);
2405 out_unlock:
2406 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2407 path_put(&nd.path);
2408 putname(to);
2409 out_putname:
2410 putname(from);
2411 return error;
2414 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2416 return sys_symlinkat(oldname, AT_FDCWD, newname);
2419 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2421 struct inode *inode = old_dentry->d_inode;
2422 int error;
2424 if (!inode)
2425 return -ENOENT;
2427 error = may_create(dir, new_dentry);
2428 if (error)
2429 return error;
2431 if (dir->i_sb != inode->i_sb)
2432 return -EXDEV;
2435 * A link to an append-only or immutable file cannot be created.
2437 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2438 return -EPERM;
2439 if (!dir->i_op->link)
2440 return -EPERM;
2441 if (S_ISDIR(inode->i_mode))
2442 return -EPERM;
2444 error = security_inode_link(old_dentry, dir, new_dentry);
2445 if (error)
2446 return error;
2448 mutex_lock(&inode->i_mutex);
2449 error = dir->i_op->link(old_dentry, dir, new_dentry);
2450 mutex_unlock(&inode->i_mutex);
2451 if (!error)
2452 fsnotify_link(dir, inode, new_dentry);
2453 return error;
2457 * Hardlinks are often used in delicate situations. We avoid
2458 * security-related surprises by not following symlinks on the
2459 * newname. --KAB
2461 * We don't follow them on the oldname either to be compatible
2462 * with linux 2.0, and to avoid hard-linking to directories
2463 * and other special files. --ADM
2465 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2466 int, newdfd, const char __user *, newname, int, flags)
2468 struct dentry *new_dentry;
2469 struct nameidata nd;
2470 struct path old_path;
2471 int error;
2472 char *to;
2474 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2475 return -EINVAL;
2477 error = user_path_at(olddfd, oldname,
2478 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2479 &old_path);
2480 if (error)
2481 return error;
2483 error = user_path_parent(newdfd, newname, &nd, &to);
2484 if (error)
2485 goto out;
2486 error = -EXDEV;
2487 if (old_path.mnt != nd.path.mnt)
2488 goto out_release;
2489 new_dentry = lookup_create(&nd, 0);
2490 error = PTR_ERR(new_dentry);
2491 if (IS_ERR(new_dentry))
2492 goto out_unlock;
2493 error = mnt_want_write(nd.path.mnt);
2494 if (error)
2495 goto out_dput;
2496 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2497 if (error)
2498 goto out_drop_write;
2499 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2500 out_drop_write:
2501 mnt_drop_write(nd.path.mnt);
2502 out_dput:
2503 dput(new_dentry);
2504 out_unlock:
2505 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2506 out_release:
2507 path_put(&nd.path);
2508 putname(to);
2509 out:
2510 path_put(&old_path);
2512 return error;
2515 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2517 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2521 * The worst of all namespace operations - renaming directory. "Perverted"
2522 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2523 * Problems:
2524 * a) we can get into loop creation. Check is done in is_subdir().
2525 * b) race potential - two innocent renames can create a loop together.
2526 * That's where 4.4 screws up. Current fix: serialization on
2527 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2528 * story.
2529 * c) we have to lock _three_ objects - parents and victim (if it exists).
2530 * And that - after we got ->i_mutex on parents (until then we don't know
2531 * whether the target exists). Solution: try to be smart with locking
2532 * order for inodes. We rely on the fact that tree topology may change
2533 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2534 * move will be locked. Thus we can rank directories by the tree
2535 * (ancestors first) and rank all non-directories after them.
2536 * That works since everybody except rename does "lock parent, lookup,
2537 * lock child" and rename is under ->s_vfs_rename_mutex.
2538 * HOWEVER, it relies on the assumption that any object with ->lookup()
2539 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2540 * we'd better make sure that there's no link(2) for them.
2541 * d) some filesystems don't support opened-but-unlinked directories,
2542 * either because of layout or because they are not ready to deal with
2543 * all cases correctly. The latter will be fixed (taking this sort of
2544 * stuff into VFS), but the former is not going away. Solution: the same
2545 * trick as in rmdir().
2546 * e) conversion from fhandle to dentry may come in the wrong moment - when
2547 * we are removing the target. Solution: we will have to grab ->i_mutex
2548 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2549 * ->i_mutex on parents, which works but leads to some truly excessive
2550 * locking].
2552 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2553 struct inode *new_dir, struct dentry *new_dentry)
2555 int error = 0;
2556 struct inode *target;
2559 * If we are going to change the parent - check write permissions,
2560 * we'll need to flip '..'.
2562 if (new_dir != old_dir) {
2563 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2564 if (error)
2565 return error;
2568 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2569 if (error)
2570 return error;
2572 target = new_dentry->d_inode;
2573 if (target) {
2574 mutex_lock(&target->i_mutex);
2575 dentry_unhash(new_dentry);
2577 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2578 error = -EBUSY;
2579 else
2580 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2581 if (target) {
2582 if (!error)
2583 target->i_flags |= S_DEAD;
2584 mutex_unlock(&target->i_mutex);
2585 if (d_unhashed(new_dentry))
2586 d_rehash(new_dentry);
2587 dput(new_dentry);
2589 if (!error)
2590 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2591 d_move(old_dentry,new_dentry);
2592 return error;
2595 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2596 struct inode *new_dir, struct dentry *new_dentry)
2598 struct inode *target;
2599 int error;
2601 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2602 if (error)
2603 return error;
2605 dget(new_dentry);
2606 target = new_dentry->d_inode;
2607 if (target)
2608 mutex_lock(&target->i_mutex);
2609 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2610 error = -EBUSY;
2611 else
2612 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2613 if (!error) {
2614 if (target)
2615 target->i_flags |= S_DEAD;
2616 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2617 d_move(old_dentry, new_dentry);
2619 if (target)
2620 mutex_unlock(&target->i_mutex);
2621 dput(new_dentry);
2622 return error;
2625 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2626 struct inode *new_dir, struct dentry *new_dentry)
2628 int error;
2629 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2630 const char *old_name;
2632 if (old_dentry->d_inode == new_dentry->d_inode)
2633 return 0;
2635 error = may_delete(old_dir, old_dentry, is_dir);
2636 if (error)
2637 return error;
2639 if (!new_dentry->d_inode)
2640 error = may_create(new_dir, new_dentry);
2641 else
2642 error = may_delete(new_dir, new_dentry, is_dir);
2643 if (error)
2644 return error;
2646 if (!old_dir->i_op->rename)
2647 return -EPERM;
2649 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2651 if (is_dir)
2652 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2653 else
2654 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2655 if (!error)
2656 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2657 new_dentry->d_inode, old_dentry);
2658 fsnotify_oldname_free(old_name);
2660 return error;
2663 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2664 int, newdfd, const char __user *, newname)
2666 struct dentry *old_dir, *new_dir;
2667 struct dentry *old_dentry, *new_dentry;
2668 struct dentry *trap;
2669 struct nameidata oldnd, newnd;
2670 char *from;
2671 char *to;
2672 int error;
2674 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2675 if (error)
2676 goto exit;
2678 error = user_path_parent(newdfd, newname, &newnd, &to);
2679 if (error)
2680 goto exit1;
2682 error = -EXDEV;
2683 if (oldnd.path.mnt != newnd.path.mnt)
2684 goto exit2;
2686 old_dir = oldnd.path.dentry;
2687 error = -EBUSY;
2688 if (oldnd.last_type != LAST_NORM)
2689 goto exit2;
2691 new_dir = newnd.path.dentry;
2692 if (newnd.last_type != LAST_NORM)
2693 goto exit2;
2695 oldnd.flags &= ~LOOKUP_PARENT;
2696 newnd.flags &= ~LOOKUP_PARENT;
2697 newnd.flags |= LOOKUP_RENAME_TARGET;
2699 trap = lock_rename(new_dir, old_dir);
2701 old_dentry = lookup_hash(&oldnd);
2702 error = PTR_ERR(old_dentry);
2703 if (IS_ERR(old_dentry))
2704 goto exit3;
2705 /* source must exist */
2706 error = -ENOENT;
2707 if (!old_dentry->d_inode)
2708 goto exit4;
2709 /* unless the source is a directory trailing slashes give -ENOTDIR */
2710 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2711 error = -ENOTDIR;
2712 if (oldnd.last.name[oldnd.last.len])
2713 goto exit4;
2714 if (newnd.last.name[newnd.last.len])
2715 goto exit4;
2717 /* source should not be ancestor of target */
2718 error = -EINVAL;
2719 if (old_dentry == trap)
2720 goto exit4;
2721 new_dentry = lookup_hash(&newnd);
2722 error = PTR_ERR(new_dentry);
2723 if (IS_ERR(new_dentry))
2724 goto exit4;
2725 /* target should not be an ancestor of source */
2726 error = -ENOTEMPTY;
2727 if (new_dentry == trap)
2728 goto exit5;
2730 error = mnt_want_write(oldnd.path.mnt);
2731 if (error)
2732 goto exit5;
2733 error = security_path_rename(&oldnd.path, old_dentry,
2734 &newnd.path, new_dentry);
2735 if (error)
2736 goto exit6;
2737 error = vfs_rename(old_dir->d_inode, old_dentry,
2738 new_dir->d_inode, new_dentry);
2739 exit6:
2740 mnt_drop_write(oldnd.path.mnt);
2741 exit5:
2742 dput(new_dentry);
2743 exit4:
2744 dput(old_dentry);
2745 exit3:
2746 unlock_rename(new_dir, old_dir);
2747 exit2:
2748 path_put(&newnd.path);
2749 putname(to);
2750 exit1:
2751 path_put(&oldnd.path);
2752 putname(from);
2753 exit:
2754 return error;
2757 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2759 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2762 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2764 int len;
2766 len = PTR_ERR(link);
2767 if (IS_ERR(link))
2768 goto out;
2770 len = strlen(link);
2771 if (len > (unsigned) buflen)
2772 len = buflen;
2773 if (copy_to_user(buffer, link, len))
2774 len = -EFAULT;
2775 out:
2776 return len;
2780 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2781 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2782 * using) it for any given inode is up to filesystem.
2784 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2786 struct nameidata nd;
2787 void *cookie;
2788 int res;
2790 nd.depth = 0;
2791 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2792 if (IS_ERR(cookie))
2793 return PTR_ERR(cookie);
2795 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2796 if (dentry->d_inode->i_op->put_link)
2797 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2798 return res;
2801 int vfs_follow_link(struct nameidata *nd, const char *link)
2803 return __vfs_follow_link(nd, link);
2806 /* get the link contents into pagecache */
2807 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2809 char *kaddr;
2810 struct page *page;
2811 struct address_space *mapping = dentry->d_inode->i_mapping;
2812 page = read_mapping_page(mapping, 0, NULL);
2813 if (IS_ERR(page))
2814 return (char*)page;
2815 *ppage = page;
2816 kaddr = kmap(page);
2817 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2818 return kaddr;
2821 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2823 struct page *page = NULL;
2824 char *s = page_getlink(dentry, &page);
2825 int res = vfs_readlink(dentry,buffer,buflen,s);
2826 if (page) {
2827 kunmap(page);
2828 page_cache_release(page);
2830 return res;
2833 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2835 struct page *page = NULL;
2836 nd_set_link(nd, page_getlink(dentry, &page));
2837 return page;
2840 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2842 struct page *page = cookie;
2844 if (page) {
2845 kunmap(page);
2846 page_cache_release(page);
2851 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2853 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2855 struct address_space *mapping = inode->i_mapping;
2856 struct page *page;
2857 void *fsdata;
2858 int err;
2859 char *kaddr;
2860 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2861 if (nofs)
2862 flags |= AOP_FLAG_NOFS;
2864 retry:
2865 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2866 flags, &page, &fsdata);
2867 if (err)
2868 goto fail;
2870 kaddr = kmap_atomic(page, KM_USER0);
2871 memcpy(kaddr, symname, len-1);
2872 kunmap_atomic(kaddr, KM_USER0);
2874 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2875 page, fsdata);
2876 if (err < 0)
2877 goto fail;
2878 if (err < len-1)
2879 goto retry;
2881 mark_inode_dirty(inode);
2882 return 0;
2883 fail:
2884 return err;
2887 int page_symlink(struct inode *inode, const char *symname, int len)
2889 return __page_symlink(inode, symname, len,
2890 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2893 const struct inode_operations page_symlink_inode_operations = {
2894 .readlink = generic_readlink,
2895 .follow_link = page_follow_link_light,
2896 .put_link = page_put_link,
2899 EXPORT_SYMBOL(user_path_at);
2900 EXPORT_SYMBOL(follow_down);
2901 EXPORT_SYMBOL(follow_up);
2902 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2903 EXPORT_SYMBOL(getname);
2904 EXPORT_SYMBOL(lock_rename);
2905 EXPORT_SYMBOL(lookup_one_len);
2906 EXPORT_SYMBOL(page_follow_link_light);
2907 EXPORT_SYMBOL(page_put_link);
2908 EXPORT_SYMBOL(page_readlink);
2909 EXPORT_SYMBOL(__page_symlink);
2910 EXPORT_SYMBOL(page_symlink);
2911 EXPORT_SYMBOL(page_symlink_inode_operations);
2912 EXPORT_SYMBOL(path_lookup);
2913 EXPORT_SYMBOL(kern_path);
2914 EXPORT_SYMBOL(vfs_path_lookup);
2915 EXPORT_SYMBOL(inode_permission);
2916 EXPORT_SYMBOL(file_permission);
2917 EXPORT_SYMBOL(unlock_rename);
2918 EXPORT_SYMBOL(vfs_create);
2919 EXPORT_SYMBOL(vfs_follow_link);
2920 EXPORT_SYMBOL(vfs_link);
2921 EXPORT_SYMBOL(vfs_mkdir);
2922 EXPORT_SYMBOL(vfs_mknod);
2923 EXPORT_SYMBOL(generic_permission);
2924 EXPORT_SYMBOL(vfs_readlink);
2925 EXPORT_SYMBOL(vfs_rename);
2926 EXPORT_SYMBOL(vfs_rmdir);
2927 EXPORT_SYMBOL(vfs_symlink);
2928 EXPORT_SYMBOL(vfs_unlink);
2929 EXPORT_SYMBOL(dentry_unhash);
2930 EXPORT_SYMBOL(generic_readlink);