net/sb1250: setup the pdevice within the soc code
[linux-2.6/libata-dev.git] / fs / libfs.c
blobea9a6cc9b35c6b08ef1517837d1c05a4d2da47e1
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/mutex.h>
12 #include <linux/exportfs.h>
13 #include <linux/writeback.h>
14 #include <linux/buffer_head.h>
16 #include <asm/uaccess.h>
18 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
19 struct kstat *stat)
21 struct inode *inode = dentry->d_inode;
22 generic_fillattr(inode, stat);
23 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
24 return 0;
27 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
29 buf->f_type = dentry->d_sb->s_magic;
30 buf->f_bsize = PAGE_CACHE_SIZE;
31 buf->f_namelen = NAME_MAX;
32 return 0;
36 * Retaining negative dentries for an in-memory filesystem just wastes
37 * memory and lookup time: arrange for them to be deleted immediately.
39 static int simple_delete_dentry(struct dentry *dentry)
41 return 1;
45 * Lookup the data. This is trivial - if the dentry didn't already
46 * exist, we know it is negative. Set d_op to delete negative dentries.
48 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
50 static const struct dentry_operations simple_dentry_operations = {
51 .d_delete = simple_delete_dentry,
54 if (dentry->d_name.len > NAME_MAX)
55 return ERR_PTR(-ENAMETOOLONG);
56 dentry->d_op = &simple_dentry_operations;
57 d_add(dentry, NULL);
58 return NULL;
61 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
63 return 0;
66 int dcache_dir_open(struct inode *inode, struct file *file)
68 static struct qstr cursor_name = {.len = 1, .name = "."};
70 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
72 return file->private_data ? 0 : -ENOMEM;
75 int dcache_dir_close(struct inode *inode, struct file *file)
77 dput(file->private_data);
78 return 0;
81 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
83 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
84 switch (origin) {
85 case 1:
86 offset += file->f_pos;
87 case 0:
88 if (offset >= 0)
89 break;
90 default:
91 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
92 return -EINVAL;
94 if (offset != file->f_pos) {
95 file->f_pos = offset;
96 if (file->f_pos >= 2) {
97 struct list_head *p;
98 struct dentry *cursor = file->private_data;
99 loff_t n = file->f_pos - 2;
101 spin_lock(&dcache_lock);
102 list_del(&cursor->d_u.d_child);
103 p = file->f_path.dentry->d_subdirs.next;
104 while (n && p != &file->f_path.dentry->d_subdirs) {
105 struct dentry *next;
106 next = list_entry(p, struct dentry, d_u.d_child);
107 if (!d_unhashed(next) && next->d_inode)
108 n--;
109 p = p->next;
111 list_add_tail(&cursor->d_u.d_child, p);
112 spin_unlock(&dcache_lock);
115 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
116 return offset;
119 /* Relationship between i_mode and the DT_xxx types */
120 static inline unsigned char dt_type(struct inode *inode)
122 return (inode->i_mode >> 12) & 15;
126 * Directory is locked and all positive dentries in it are safe, since
127 * for ramfs-type trees they can't go away without unlink() or rmdir(),
128 * both impossible due to the lock on directory.
131 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
133 struct dentry *dentry = filp->f_path.dentry;
134 struct dentry *cursor = filp->private_data;
135 struct list_head *p, *q = &cursor->d_u.d_child;
136 ino_t ino;
137 int i = filp->f_pos;
139 switch (i) {
140 case 0:
141 ino = dentry->d_inode->i_ino;
142 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
143 break;
144 filp->f_pos++;
145 i++;
146 /* fallthrough */
147 case 1:
148 ino = parent_ino(dentry);
149 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
150 break;
151 filp->f_pos++;
152 i++;
153 /* fallthrough */
154 default:
155 spin_lock(&dcache_lock);
156 if (filp->f_pos == 2)
157 list_move(q, &dentry->d_subdirs);
159 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
160 struct dentry *next;
161 next = list_entry(p, struct dentry, d_u.d_child);
162 if (d_unhashed(next) || !next->d_inode)
163 continue;
165 spin_unlock(&dcache_lock);
166 if (filldir(dirent, next->d_name.name,
167 next->d_name.len, filp->f_pos,
168 next->d_inode->i_ino,
169 dt_type(next->d_inode)) < 0)
170 return 0;
171 spin_lock(&dcache_lock);
172 /* next is still alive */
173 list_move(q, p);
174 p = q;
175 filp->f_pos++;
177 spin_unlock(&dcache_lock);
179 return 0;
182 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
184 return -EISDIR;
187 const struct file_operations simple_dir_operations = {
188 .open = dcache_dir_open,
189 .release = dcache_dir_close,
190 .llseek = dcache_dir_lseek,
191 .read = generic_read_dir,
192 .readdir = dcache_readdir,
193 .fsync = simple_sync_file,
196 const struct inode_operations simple_dir_inode_operations = {
197 .lookup = simple_lookup,
200 static const struct super_operations simple_super_operations = {
201 .statfs = simple_statfs,
205 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
206 * will never be mountable)
208 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
209 const struct super_operations *ops, unsigned long magic,
210 struct vfsmount *mnt)
212 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
213 struct dentry *dentry;
214 struct inode *root;
215 struct qstr d_name = {.name = name, .len = strlen(name)};
217 if (IS_ERR(s))
218 return PTR_ERR(s);
220 s->s_flags = MS_NOUSER;
221 s->s_maxbytes = MAX_LFS_FILESIZE;
222 s->s_blocksize = PAGE_SIZE;
223 s->s_blocksize_bits = PAGE_SHIFT;
224 s->s_magic = magic;
225 s->s_op = ops ? ops : &simple_super_operations;
226 s->s_time_gran = 1;
227 root = new_inode(s);
228 if (!root)
229 goto Enomem;
231 * since this is the first inode, make it number 1. New inodes created
232 * after this must take care not to collide with it (by passing
233 * max_reserved of 1 to iunique).
235 root->i_ino = 1;
236 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
237 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
238 dentry = d_alloc(NULL, &d_name);
239 if (!dentry) {
240 iput(root);
241 goto Enomem;
243 dentry->d_sb = s;
244 dentry->d_parent = dentry;
245 d_instantiate(dentry, root);
246 s->s_root = dentry;
247 s->s_flags |= MS_ACTIVE;
248 simple_set_mnt(mnt, s);
249 return 0;
251 Enomem:
252 deactivate_locked_super(s);
253 return -ENOMEM;
256 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
258 struct inode *inode = old_dentry->d_inode;
260 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
261 inc_nlink(inode);
262 atomic_inc(&inode->i_count);
263 dget(dentry);
264 d_instantiate(dentry, inode);
265 return 0;
268 static inline int simple_positive(struct dentry *dentry)
270 return dentry->d_inode && !d_unhashed(dentry);
273 int simple_empty(struct dentry *dentry)
275 struct dentry *child;
276 int ret = 0;
278 spin_lock(&dcache_lock);
279 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
280 if (simple_positive(child))
281 goto out;
282 ret = 1;
283 out:
284 spin_unlock(&dcache_lock);
285 return ret;
288 int simple_unlink(struct inode *dir, struct dentry *dentry)
290 struct inode *inode = dentry->d_inode;
292 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
293 drop_nlink(inode);
294 dput(dentry);
295 return 0;
298 int simple_rmdir(struct inode *dir, struct dentry *dentry)
300 if (!simple_empty(dentry))
301 return -ENOTEMPTY;
303 drop_nlink(dentry->d_inode);
304 simple_unlink(dir, dentry);
305 drop_nlink(dir);
306 return 0;
309 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
310 struct inode *new_dir, struct dentry *new_dentry)
312 struct inode *inode = old_dentry->d_inode;
313 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
315 if (!simple_empty(new_dentry))
316 return -ENOTEMPTY;
318 if (new_dentry->d_inode) {
319 simple_unlink(new_dir, new_dentry);
320 if (they_are_dirs)
321 drop_nlink(old_dir);
322 } else if (they_are_dirs) {
323 drop_nlink(old_dir);
324 inc_nlink(new_dir);
327 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
328 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
330 return 0;
333 int simple_readpage(struct file *file, struct page *page)
335 clear_highpage(page);
336 flush_dcache_page(page);
337 SetPageUptodate(page);
338 unlock_page(page);
339 return 0;
342 int simple_write_begin(struct file *file, struct address_space *mapping,
343 loff_t pos, unsigned len, unsigned flags,
344 struct page **pagep, void **fsdata)
346 struct page *page;
347 pgoff_t index;
349 index = pos >> PAGE_CACHE_SHIFT;
351 page = grab_cache_page_write_begin(mapping, index, flags);
352 if (!page)
353 return -ENOMEM;
355 *pagep = page;
357 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
358 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
360 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
362 return 0;
366 * simple_write_end - .write_end helper for non-block-device FSes
367 * @available: See .write_end of address_space_operations
368 * @file: "
369 * @mapping: "
370 * @pos: "
371 * @len: "
372 * @copied: "
373 * @page: "
374 * @fsdata: "
376 * simple_write_end does the minimum needed for updating a page after writing is
377 * done. It has the same API signature as the .write_end of
378 * address_space_operations vector. So it can just be set onto .write_end for
379 * FSes that don't need any other processing. i_mutex is assumed to be held.
380 * Block based filesystems should use generic_write_end().
381 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
382 * is not called, so a filesystem that actually does store data in .write_inode
383 * should extend on what's done here with a call to mark_inode_dirty() in the
384 * case that i_size has changed.
386 int simple_write_end(struct file *file, struct address_space *mapping,
387 loff_t pos, unsigned len, unsigned copied,
388 struct page *page, void *fsdata)
390 struct inode *inode = page->mapping->host;
391 loff_t last_pos = pos + copied;
393 /* zero the stale part of the page if we did a short copy */
394 if (copied < len) {
395 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
397 zero_user(page, from + copied, len - copied);
400 if (!PageUptodate(page))
401 SetPageUptodate(page);
403 * No need to use i_size_read() here, the i_size
404 * cannot change under us because we hold the i_mutex.
406 if (last_pos > inode->i_size)
407 i_size_write(inode, last_pos);
409 set_page_dirty(page);
410 unlock_page(page);
411 page_cache_release(page);
413 return copied;
417 * the inodes created here are not hashed. If you use iunique to generate
418 * unique inode values later for this filesystem, then you must take care
419 * to pass it an appropriate max_reserved value to avoid collisions.
421 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
423 struct inode *inode;
424 struct dentry *root;
425 struct dentry *dentry;
426 int i;
428 s->s_blocksize = PAGE_CACHE_SIZE;
429 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
430 s->s_magic = magic;
431 s->s_op = &simple_super_operations;
432 s->s_time_gran = 1;
434 inode = new_inode(s);
435 if (!inode)
436 return -ENOMEM;
438 * because the root inode is 1, the files array must not contain an
439 * entry at index 1
441 inode->i_ino = 1;
442 inode->i_mode = S_IFDIR | 0755;
443 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
444 inode->i_op = &simple_dir_inode_operations;
445 inode->i_fop = &simple_dir_operations;
446 inode->i_nlink = 2;
447 root = d_alloc_root(inode);
448 if (!root) {
449 iput(inode);
450 return -ENOMEM;
452 for (i = 0; !files->name || files->name[0]; i++, files++) {
453 if (!files->name)
454 continue;
456 /* warn if it tries to conflict with the root inode */
457 if (unlikely(i == 1))
458 printk(KERN_WARNING "%s: %s passed in a files array"
459 "with an index of 1!\n", __func__,
460 s->s_type->name);
462 dentry = d_alloc_name(root, files->name);
463 if (!dentry)
464 goto out;
465 inode = new_inode(s);
466 if (!inode)
467 goto out;
468 inode->i_mode = S_IFREG | files->mode;
469 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
470 inode->i_fop = files->ops;
471 inode->i_ino = i;
472 d_add(dentry, inode);
474 s->s_root = root;
475 return 0;
476 out:
477 d_genocide(root);
478 dput(root);
479 return -ENOMEM;
482 static DEFINE_SPINLOCK(pin_fs_lock);
484 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
486 struct vfsmount *mnt = NULL;
487 spin_lock(&pin_fs_lock);
488 if (unlikely(!*mount)) {
489 spin_unlock(&pin_fs_lock);
490 mnt = vfs_kern_mount(type, 0, type->name, NULL);
491 if (IS_ERR(mnt))
492 return PTR_ERR(mnt);
493 spin_lock(&pin_fs_lock);
494 if (!*mount)
495 *mount = mnt;
497 mntget(*mount);
498 ++*count;
499 spin_unlock(&pin_fs_lock);
500 mntput(mnt);
501 return 0;
504 void simple_release_fs(struct vfsmount **mount, int *count)
506 struct vfsmount *mnt;
507 spin_lock(&pin_fs_lock);
508 mnt = *mount;
509 if (!--*count)
510 *mount = NULL;
511 spin_unlock(&pin_fs_lock);
512 mntput(mnt);
516 * simple_read_from_buffer - copy data from the buffer to user space
517 * @to: the user space buffer to read to
518 * @count: the maximum number of bytes to read
519 * @ppos: the current position in the buffer
520 * @from: the buffer to read from
521 * @available: the size of the buffer
523 * The simple_read_from_buffer() function reads up to @count bytes from the
524 * buffer @from at offset @ppos into the user space address starting at @to.
526 * On success, the number of bytes read is returned and the offset @ppos is
527 * advanced by this number, or negative value is returned on error.
529 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
530 const void *from, size_t available)
532 loff_t pos = *ppos;
533 size_t ret;
535 if (pos < 0)
536 return -EINVAL;
537 if (pos >= available || !count)
538 return 0;
539 if (count > available - pos)
540 count = available - pos;
541 ret = copy_to_user(to, from + pos, count);
542 if (ret == count)
543 return -EFAULT;
544 count -= ret;
545 *ppos = pos + count;
546 return count;
550 * memory_read_from_buffer - copy data from the buffer
551 * @to: the kernel space buffer to read to
552 * @count: the maximum number of bytes to read
553 * @ppos: the current position in the buffer
554 * @from: the buffer to read from
555 * @available: the size of the buffer
557 * The memory_read_from_buffer() function reads up to @count bytes from the
558 * buffer @from at offset @ppos into the kernel space address starting at @to.
560 * On success, the number of bytes read is returned and the offset @ppos is
561 * advanced by this number, or negative value is returned on error.
563 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
564 const void *from, size_t available)
566 loff_t pos = *ppos;
568 if (pos < 0)
569 return -EINVAL;
570 if (pos >= available)
571 return 0;
572 if (count > available - pos)
573 count = available - pos;
574 memcpy(to, from + pos, count);
575 *ppos = pos + count;
577 return count;
581 * Transaction based IO.
582 * The file expects a single write which triggers the transaction, and then
583 * possibly a read which collects the result - which is stored in a
584 * file-local buffer.
587 void simple_transaction_set(struct file *file, size_t n)
589 struct simple_transaction_argresp *ar = file->private_data;
591 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
594 * The barrier ensures that ar->size will really remain zero until
595 * ar->data is ready for reading.
597 smp_mb();
598 ar->size = n;
601 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
603 struct simple_transaction_argresp *ar;
604 static DEFINE_SPINLOCK(simple_transaction_lock);
606 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
607 return ERR_PTR(-EFBIG);
609 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
610 if (!ar)
611 return ERR_PTR(-ENOMEM);
613 spin_lock(&simple_transaction_lock);
615 /* only one write allowed per open */
616 if (file->private_data) {
617 spin_unlock(&simple_transaction_lock);
618 free_page((unsigned long)ar);
619 return ERR_PTR(-EBUSY);
622 file->private_data = ar;
624 spin_unlock(&simple_transaction_lock);
626 if (copy_from_user(ar->data, buf, size))
627 return ERR_PTR(-EFAULT);
629 return ar->data;
632 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
634 struct simple_transaction_argresp *ar = file->private_data;
636 if (!ar)
637 return 0;
638 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
641 int simple_transaction_release(struct inode *inode, struct file *file)
643 free_page((unsigned long)file->private_data);
644 return 0;
647 /* Simple attribute files */
649 struct simple_attr {
650 int (*get)(void *, u64 *);
651 int (*set)(void *, u64);
652 char get_buf[24]; /* enough to store a u64 and "\n\0" */
653 char set_buf[24];
654 void *data;
655 const char *fmt; /* format for read operation */
656 struct mutex mutex; /* protects access to these buffers */
659 /* simple_attr_open is called by an actual attribute open file operation
660 * to set the attribute specific access operations. */
661 int simple_attr_open(struct inode *inode, struct file *file,
662 int (*get)(void *, u64 *), int (*set)(void *, u64),
663 const char *fmt)
665 struct simple_attr *attr;
667 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
668 if (!attr)
669 return -ENOMEM;
671 attr->get = get;
672 attr->set = set;
673 attr->data = inode->i_private;
674 attr->fmt = fmt;
675 mutex_init(&attr->mutex);
677 file->private_data = attr;
679 return nonseekable_open(inode, file);
682 int simple_attr_release(struct inode *inode, struct file *file)
684 kfree(file->private_data);
685 return 0;
688 /* read from the buffer that is filled with the get function */
689 ssize_t simple_attr_read(struct file *file, char __user *buf,
690 size_t len, loff_t *ppos)
692 struct simple_attr *attr;
693 size_t size;
694 ssize_t ret;
696 attr = file->private_data;
698 if (!attr->get)
699 return -EACCES;
701 ret = mutex_lock_interruptible(&attr->mutex);
702 if (ret)
703 return ret;
705 if (*ppos) { /* continued read */
706 size = strlen(attr->get_buf);
707 } else { /* first read */
708 u64 val;
709 ret = attr->get(attr->data, &val);
710 if (ret)
711 goto out;
713 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
714 attr->fmt, (unsigned long long)val);
717 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
718 out:
719 mutex_unlock(&attr->mutex);
720 return ret;
723 /* interpret the buffer as a number to call the set function with */
724 ssize_t simple_attr_write(struct file *file, const char __user *buf,
725 size_t len, loff_t *ppos)
727 struct simple_attr *attr;
728 u64 val;
729 size_t size;
730 ssize_t ret;
732 attr = file->private_data;
733 if (!attr->set)
734 return -EACCES;
736 ret = mutex_lock_interruptible(&attr->mutex);
737 if (ret)
738 return ret;
740 ret = -EFAULT;
741 size = min(sizeof(attr->set_buf) - 1, len);
742 if (copy_from_user(attr->set_buf, buf, size))
743 goto out;
745 attr->set_buf[size] = '\0';
746 val = simple_strtol(attr->set_buf, NULL, 0);
747 ret = attr->set(attr->data, val);
748 if (ret == 0)
749 ret = len; /* on success, claim we got the whole input */
750 out:
751 mutex_unlock(&attr->mutex);
752 return ret;
756 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
757 * @sb: filesystem to do the file handle conversion on
758 * @fid: file handle to convert
759 * @fh_len: length of the file handle in bytes
760 * @fh_type: type of file handle
761 * @get_inode: filesystem callback to retrieve inode
763 * This function decodes @fid as long as it has one of the well-known
764 * Linux filehandle types and calls @get_inode on it to retrieve the
765 * inode for the object specified in the file handle.
767 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
768 int fh_len, int fh_type, struct inode *(*get_inode)
769 (struct super_block *sb, u64 ino, u32 gen))
771 struct inode *inode = NULL;
773 if (fh_len < 2)
774 return NULL;
776 switch (fh_type) {
777 case FILEID_INO32_GEN:
778 case FILEID_INO32_GEN_PARENT:
779 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
780 break;
783 return d_obtain_alias(inode);
785 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
788 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
789 * @sb: filesystem to do the file handle conversion on
790 * @fid: file handle to convert
791 * @fh_len: length of the file handle in bytes
792 * @fh_type: type of file handle
793 * @get_inode: filesystem callback to retrieve inode
795 * This function decodes @fid as long as it has one of the well-known
796 * Linux filehandle types and calls @get_inode on it to retrieve the
797 * inode for the _parent_ object specified in the file handle if it
798 * is specified in the file handle, or NULL otherwise.
800 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
801 int fh_len, int fh_type, struct inode *(*get_inode)
802 (struct super_block *sb, u64 ino, u32 gen))
804 struct inode *inode = NULL;
806 if (fh_len <= 2)
807 return NULL;
809 switch (fh_type) {
810 case FILEID_INO32_GEN_PARENT:
811 inode = get_inode(sb, fid->i32.parent_ino,
812 (fh_len > 3 ? fid->i32.parent_gen : 0));
813 break;
816 return d_obtain_alias(inode);
818 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
820 int simple_fsync(struct file *file, struct dentry *dentry, int datasync)
822 struct writeback_control wbc = {
823 .sync_mode = WB_SYNC_ALL,
824 .nr_to_write = 0, /* metadata-only; caller takes care of data */
826 struct inode *inode = dentry->d_inode;
827 int err;
828 int ret;
830 ret = sync_mapping_buffers(inode->i_mapping);
831 if (!(inode->i_state & I_DIRTY))
832 return ret;
833 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
834 return ret;
836 err = sync_inode(inode, &wbc);
837 if (ret == 0)
838 ret = err;
839 return ret;
841 EXPORT_SYMBOL(simple_fsync);
843 EXPORT_SYMBOL(dcache_dir_close);
844 EXPORT_SYMBOL(dcache_dir_lseek);
845 EXPORT_SYMBOL(dcache_dir_open);
846 EXPORT_SYMBOL(dcache_readdir);
847 EXPORT_SYMBOL(generic_read_dir);
848 EXPORT_SYMBOL(get_sb_pseudo);
849 EXPORT_SYMBOL(simple_write_begin);
850 EXPORT_SYMBOL(simple_write_end);
851 EXPORT_SYMBOL(simple_dir_inode_operations);
852 EXPORT_SYMBOL(simple_dir_operations);
853 EXPORT_SYMBOL(simple_empty);
854 EXPORT_SYMBOL(simple_fill_super);
855 EXPORT_SYMBOL(simple_getattr);
856 EXPORT_SYMBOL(simple_link);
857 EXPORT_SYMBOL(simple_lookup);
858 EXPORT_SYMBOL(simple_pin_fs);
859 EXPORT_SYMBOL(simple_readpage);
860 EXPORT_SYMBOL(simple_release_fs);
861 EXPORT_SYMBOL(simple_rename);
862 EXPORT_SYMBOL(simple_rmdir);
863 EXPORT_SYMBOL(simple_statfs);
864 EXPORT_SYMBOL(simple_sync_file);
865 EXPORT_SYMBOL(simple_unlink);
866 EXPORT_SYMBOL(simple_read_from_buffer);
867 EXPORT_SYMBOL(memory_read_from_buffer);
868 EXPORT_SYMBOL(simple_transaction_set);
869 EXPORT_SYMBOL(simple_transaction_get);
870 EXPORT_SYMBOL(simple_transaction_read);
871 EXPORT_SYMBOL(simple_transaction_release);
872 EXPORT_SYMBOL_GPL(simple_attr_open);
873 EXPORT_SYMBOL_GPL(simple_attr_release);
874 EXPORT_SYMBOL_GPL(simple_attr_read);
875 EXPORT_SYMBOL_GPL(simple_attr_write);