2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
41 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
51 struct ext4_inode_info
*ei
)
53 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
58 csum_lo
= raw
->i_checksum_lo
;
59 raw
->i_checksum_lo
= 0;
60 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
61 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
62 csum_hi
= raw
->i_checksum_hi
;
63 raw
->i_checksum_hi
= 0;
66 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
67 EXT4_INODE_SIZE(inode
->i_sb
));
69 raw
->i_checksum_lo
= csum_lo
;
70 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
71 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
72 raw
->i_checksum_hi
= csum_hi
;
77 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
78 struct ext4_inode_info
*ei
)
80 __u32 provided
, calculated
;
82 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
83 cpu_to_le32(EXT4_OS_LINUX
) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
88 provided
= le16_to_cpu(raw
->i_checksum_lo
);
89 calculated
= ext4_inode_csum(inode
, raw
, ei
);
90 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
91 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
92 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
96 return provided
== calculated
;
99 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
100 struct ext4_inode_info
*ei
)
104 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
105 cpu_to_le32(EXT4_OS_LINUX
) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
110 csum
= ext4_inode_csum(inode
, raw
, ei
);
111 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
112 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
113 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
114 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
117 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
120 trace_ext4_begin_ordered_truncate(inode
, new_size
);
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
127 if (!EXT4_I(inode
)->jinode
)
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
130 EXT4_I(inode
)->jinode
,
134 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
135 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
136 struct buffer_head
*bh_result
, int create
);
137 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
138 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
139 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
140 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
142 struct inode
*inode
, struct page
*page
, loff_t from
,
143 loff_t length
, int flags
);
146 * Test whether an inode is a fast symlink.
148 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
150 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
151 (inode
->i_sb
->s_blocksize
>> 9) : 0;
153 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
161 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
172 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
173 jbd_debug(2, "restarting handle %p\n", handle
);
174 up_write(&EXT4_I(inode
)->i_data_sem
);
175 ret
= ext4_journal_restart(handle
, nblocks
);
176 down_write(&EXT4_I(inode
)->i_data_sem
);
177 ext4_discard_preallocations(inode
);
183 * Called at the last iput() if i_nlink is zero.
185 void ext4_evict_inode(struct inode
*inode
)
190 trace_ext4_evict_inode(inode
);
192 ext4_ioend_wait(inode
);
194 if (inode
->i_nlink
) {
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
210 * Note that directories do not have this problem because they
211 * don't use page cache.
213 if (ext4_should_journal_data(inode
) &&
214 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
215 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
216 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
218 jbd2_log_start_commit(journal
, commit_tid
);
219 jbd2_log_wait_commit(journal
, commit_tid
);
220 filemap_write_and_wait(&inode
->i_data
);
222 truncate_inode_pages(&inode
->i_data
, 0);
226 if (!is_bad_inode(inode
))
227 dquot_initialize(inode
);
229 if (ext4_should_order_data(inode
))
230 ext4_begin_ordered_truncate(inode
, 0);
231 truncate_inode_pages(&inode
->i_data
, 0);
233 if (is_bad_inode(inode
))
236 handle
= ext4_journal_start(inode
, ext4_blocks_for_truncate(inode
)+3);
237 if (IS_ERR(handle
)) {
238 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
244 ext4_orphan_del(NULL
, inode
);
249 ext4_handle_sync(handle
);
251 err
= ext4_mark_inode_dirty(handle
, inode
);
253 ext4_warning(inode
->i_sb
,
254 "couldn't mark inode dirty (err %d)", err
);
258 ext4_truncate(inode
);
261 * ext4_ext_truncate() doesn't reserve any slop when it
262 * restarts journal transactions; therefore there may not be
263 * enough credits left in the handle to remove the inode from
264 * the orphan list and set the dtime field.
266 if (!ext4_handle_has_enough_credits(handle
, 3)) {
267 err
= ext4_journal_extend(handle
, 3);
269 err
= ext4_journal_restart(handle
, 3);
271 ext4_warning(inode
->i_sb
,
272 "couldn't extend journal (err %d)", err
);
274 ext4_journal_stop(handle
);
275 ext4_orphan_del(NULL
, inode
);
281 * Kill off the orphan record which ext4_truncate created.
282 * AKPM: I think this can be inside the above `if'.
283 * Note that ext4_orphan_del() has to be able to cope with the
284 * deletion of a non-existent orphan - this is because we don't
285 * know if ext4_truncate() actually created an orphan record.
286 * (Well, we could do this if we need to, but heck - it works)
288 ext4_orphan_del(handle
, inode
);
289 EXT4_I(inode
)->i_dtime
= get_seconds();
292 * One subtle ordering requirement: if anything has gone wrong
293 * (transaction abort, IO errors, whatever), then we can still
294 * do these next steps (the fs will already have been marked as
295 * having errors), but we can't free the inode if the mark_dirty
298 if (ext4_mark_inode_dirty(handle
, inode
))
299 /* If that failed, just do the required in-core inode clear. */
300 ext4_clear_inode(inode
);
302 ext4_free_inode(handle
, inode
);
303 ext4_journal_stop(handle
);
306 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
310 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
312 return &EXT4_I(inode
)->i_reserved_quota
;
317 * Calculate the number of metadata blocks need to reserve
318 * to allocate a block located at @lblock
320 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
322 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
323 return ext4_ext_calc_metadata_amount(inode
, lblock
);
325 return ext4_ind_calc_metadata_amount(inode
, lblock
);
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
332 void ext4_da_update_reserve_space(struct inode
*inode
,
333 int used
, int quota_claim
)
335 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
336 struct ext4_inode_info
*ei
= EXT4_I(inode
);
338 spin_lock(&ei
->i_block_reservation_lock
);
339 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
340 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
341 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__
, inode
->i_ino
, used
,
344 ei
->i_reserved_data_blocks
);
346 used
= ei
->i_reserved_data_blocks
;
349 /* Update per-inode reservations */
350 ei
->i_reserved_data_blocks
-= used
;
351 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
352 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
353 used
+ ei
->i_allocated_meta_blocks
);
354 ei
->i_allocated_meta_blocks
= 0;
356 if (ei
->i_reserved_data_blocks
== 0) {
358 * We can release all of the reserved metadata blocks
359 * only when we have written all of the delayed
362 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
363 ei
->i_reserved_meta_blocks
);
364 ei
->i_reserved_meta_blocks
= 0;
365 ei
->i_da_metadata_calc_len
= 0;
367 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
369 /* Update quota subsystem for data blocks */
371 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
374 * We did fallocate with an offset that is already delayed
375 * allocated. So on delayed allocated writeback we should
376 * not re-claim the quota for fallocated blocks.
378 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
382 * If we have done all the pending block allocations and if
383 * there aren't any writers on the inode, we can discard the
384 * inode's preallocations.
386 if ((ei
->i_reserved_data_blocks
== 0) &&
387 (atomic_read(&inode
->i_writecount
) == 0))
388 ext4_discard_preallocations(inode
);
391 static int __check_block_validity(struct inode
*inode
, const char *func
,
393 struct ext4_map_blocks
*map
)
395 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
397 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
398 "lblock %lu mapped to illegal pblock "
399 "(length %d)", (unsigned long) map
->m_lblk
,
406 #define check_block_validity(inode, map) \
407 __check_block_validity((inode), __func__, __LINE__, (map))
410 * Return the number of contiguous dirty pages in a given inode
411 * starting at page frame idx.
413 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
414 unsigned int max_pages
)
416 struct address_space
*mapping
= inode
->i_mapping
;
420 int i
, nr_pages
, done
= 0;
424 pagevec_init(&pvec
, 0);
427 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
429 (pgoff_t
)PAGEVEC_SIZE
);
432 for (i
= 0; i
< nr_pages
; i
++) {
433 struct page
*page
= pvec
.pages
[i
];
434 struct buffer_head
*bh
, *head
;
437 if (unlikely(page
->mapping
!= mapping
) ||
439 PageWriteback(page
) ||
440 page
->index
!= idx
) {
445 if (page_has_buffers(page
)) {
446 bh
= head
= page_buffers(page
);
448 if (!buffer_delay(bh
) &&
449 !buffer_unwritten(bh
))
451 bh
= bh
->b_this_page
;
452 } while (!done
&& (bh
!= head
));
459 if (num
>= max_pages
) {
464 pagevec_release(&pvec
);
470 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
472 static void set_buffers_da_mapped(struct inode
*inode
,
473 struct ext4_map_blocks
*map
)
475 struct address_space
*mapping
= inode
->i_mapping
;
480 index
= map
->m_lblk
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
481 end
= (map
->m_lblk
+ map
->m_len
- 1) >>
482 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
484 pagevec_init(&pvec
, 0);
485 while (index
<= end
) {
486 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
,
488 (pgoff_t
)PAGEVEC_SIZE
));
491 for (i
= 0; i
< nr_pages
; i
++) {
492 struct page
*page
= pvec
.pages
[i
];
493 struct buffer_head
*bh
, *head
;
495 if (unlikely(page
->mapping
!= mapping
) ||
499 if (page_has_buffers(page
)) {
500 bh
= head
= page_buffers(page
);
502 set_buffer_da_mapped(bh
);
503 bh
= bh
->b_this_page
;
504 } while (bh
!= head
);
508 pagevec_release(&pvec
);
513 * The ext4_map_blocks() function tries to look up the requested blocks,
514 * and returns if the blocks are already mapped.
516 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
517 * and store the allocated blocks in the result buffer head and mark it
520 * If file type is extents based, it will call ext4_ext_map_blocks(),
521 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
524 * On success, it returns the number of blocks being mapped or allocate.
525 * if create==0 and the blocks are pre-allocated and uninitialized block,
526 * the result buffer head is unmapped. If the create ==1, it will make sure
527 * the buffer head is mapped.
529 * It returns 0 if plain look up failed (blocks have not been allocated), in
530 * that case, buffer head is unmapped
532 * It returns the error in case of allocation failure.
534 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
535 struct ext4_map_blocks
*map
, int flags
)
540 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
541 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
542 (unsigned long) map
->m_lblk
);
544 * Try to see if we can get the block without requesting a new
547 down_read((&EXT4_I(inode
)->i_data_sem
));
548 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
549 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
550 EXT4_GET_BLOCKS_KEEP_SIZE
);
552 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
553 EXT4_GET_BLOCKS_KEEP_SIZE
);
555 up_read((&EXT4_I(inode
)->i_data_sem
));
557 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
558 int ret
= check_block_validity(inode
, map
);
563 /* If it is only a block(s) look up */
564 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
568 * Returns if the blocks have already allocated
570 * Note that if blocks have been preallocated
571 * ext4_ext_get_block() returns the create = 0
572 * with buffer head unmapped.
574 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
578 * When we call get_blocks without the create flag, the
579 * BH_Unwritten flag could have gotten set if the blocks
580 * requested were part of a uninitialized extent. We need to
581 * clear this flag now that we are committed to convert all or
582 * part of the uninitialized extent to be an initialized
583 * extent. This is because we need to avoid the combination
584 * of BH_Unwritten and BH_Mapped flags being simultaneously
585 * set on the buffer_head.
587 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
590 * New blocks allocate and/or writing to uninitialized extent
591 * will possibly result in updating i_data, so we take
592 * the write lock of i_data_sem, and call get_blocks()
593 * with create == 1 flag.
595 down_write((&EXT4_I(inode
)->i_data_sem
));
598 * if the caller is from delayed allocation writeout path
599 * we have already reserved fs blocks for allocation
600 * let the underlying get_block() function know to
601 * avoid double accounting
603 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
604 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
606 * We need to check for EXT4 here because migrate
607 * could have changed the inode type in between
609 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
610 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
612 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
614 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
616 * We allocated new blocks which will result in
617 * i_data's format changing. Force the migrate
618 * to fail by clearing migrate flags
620 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
624 * Update reserved blocks/metadata blocks after successful
625 * block allocation which had been deferred till now. We don't
626 * support fallocate for non extent files. So we can update
627 * reserve space here.
630 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
631 ext4_da_update_reserve_space(inode
, retval
, 1);
633 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
634 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
636 /* If we have successfully mapped the delayed allocated blocks,
637 * set the BH_Da_Mapped bit on them. Its important to do this
638 * under the protection of i_data_sem.
640 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
641 set_buffers_da_mapped(inode
, map
);
644 up_write((&EXT4_I(inode
)->i_data_sem
));
645 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
646 int ret
= check_block_validity(inode
, map
);
653 /* Maximum number of blocks we map for direct IO at once. */
654 #define DIO_MAX_BLOCKS 4096
656 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
657 struct buffer_head
*bh
, int flags
)
659 handle_t
*handle
= ext4_journal_current_handle();
660 struct ext4_map_blocks map
;
661 int ret
= 0, started
= 0;
665 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
667 if (flags
&& !handle
) {
668 /* Direct IO write... */
669 if (map
.m_len
> DIO_MAX_BLOCKS
)
670 map
.m_len
= DIO_MAX_BLOCKS
;
671 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
672 handle
= ext4_journal_start(inode
, dio_credits
);
673 if (IS_ERR(handle
)) {
674 ret
= PTR_ERR(handle
);
680 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
682 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
683 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
684 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
688 ext4_journal_stop(handle
);
692 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
693 struct buffer_head
*bh
, int create
)
695 return _ext4_get_block(inode
, iblock
, bh
,
696 create
? EXT4_GET_BLOCKS_CREATE
: 0);
700 * `handle' can be NULL if create is zero
702 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
703 ext4_lblk_t block
, int create
, int *errp
)
705 struct ext4_map_blocks map
;
706 struct buffer_head
*bh
;
709 J_ASSERT(handle
!= NULL
|| create
== 0);
713 err
= ext4_map_blocks(handle
, inode
, &map
,
714 create
? EXT4_GET_BLOCKS_CREATE
: 0);
722 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
727 if (map
.m_flags
& EXT4_MAP_NEW
) {
728 J_ASSERT(create
!= 0);
729 J_ASSERT(handle
!= NULL
);
732 * Now that we do not always journal data, we should
733 * keep in mind whether this should always journal the
734 * new buffer as metadata. For now, regular file
735 * writes use ext4_get_block instead, so it's not a
739 BUFFER_TRACE(bh
, "call get_create_access");
740 fatal
= ext4_journal_get_create_access(handle
, bh
);
741 if (!fatal
&& !buffer_uptodate(bh
)) {
742 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
743 set_buffer_uptodate(bh
);
746 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
747 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
751 BUFFER_TRACE(bh
, "not a new buffer");
761 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
762 ext4_lblk_t block
, int create
, int *err
)
764 struct buffer_head
*bh
;
766 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
769 if (buffer_uptodate(bh
))
771 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
773 if (buffer_uptodate(bh
))
780 static int walk_page_buffers(handle_t
*handle
,
781 struct buffer_head
*head
,
785 int (*fn
)(handle_t
*handle
,
786 struct buffer_head
*bh
))
788 struct buffer_head
*bh
;
789 unsigned block_start
, block_end
;
790 unsigned blocksize
= head
->b_size
;
792 struct buffer_head
*next
;
794 for (bh
= head
, block_start
= 0;
795 ret
== 0 && (bh
!= head
|| !block_start
);
796 block_start
= block_end
, bh
= next
) {
797 next
= bh
->b_this_page
;
798 block_end
= block_start
+ blocksize
;
799 if (block_end
<= from
|| block_start
>= to
) {
800 if (partial
&& !buffer_uptodate(bh
))
804 err
= (*fn
)(handle
, bh
);
812 * To preserve ordering, it is essential that the hole instantiation and
813 * the data write be encapsulated in a single transaction. We cannot
814 * close off a transaction and start a new one between the ext4_get_block()
815 * and the commit_write(). So doing the jbd2_journal_start at the start of
816 * prepare_write() is the right place.
818 * Also, this function can nest inside ext4_writepage() ->
819 * block_write_full_page(). In that case, we *know* that ext4_writepage()
820 * has generated enough buffer credits to do the whole page. So we won't
821 * block on the journal in that case, which is good, because the caller may
824 * By accident, ext4 can be reentered when a transaction is open via
825 * quota file writes. If we were to commit the transaction while thus
826 * reentered, there can be a deadlock - we would be holding a quota
827 * lock, and the commit would never complete if another thread had a
828 * transaction open and was blocking on the quota lock - a ranking
831 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
832 * will _not_ run commit under these circumstances because handle->h_ref
833 * is elevated. We'll still have enough credits for the tiny quotafile
836 static int do_journal_get_write_access(handle_t
*handle
,
837 struct buffer_head
*bh
)
839 int dirty
= buffer_dirty(bh
);
842 if (!buffer_mapped(bh
) || buffer_freed(bh
))
845 * __block_write_begin() could have dirtied some buffers. Clean
846 * the dirty bit as jbd2_journal_get_write_access() could complain
847 * otherwise about fs integrity issues. Setting of the dirty bit
848 * by __block_write_begin() isn't a real problem here as we clear
849 * the bit before releasing a page lock and thus writeback cannot
850 * ever write the buffer.
853 clear_buffer_dirty(bh
);
854 ret
= ext4_journal_get_write_access(handle
, bh
);
856 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
860 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
861 struct buffer_head
*bh_result
, int create
);
862 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
863 loff_t pos
, unsigned len
, unsigned flags
,
864 struct page
**pagep
, void **fsdata
)
866 struct inode
*inode
= mapping
->host
;
867 int ret
, needed_blocks
;
874 trace_ext4_write_begin(inode
, pos
, len
, flags
);
876 * Reserve one block more for addition to orphan list in case
877 * we allocate blocks but write fails for some reason
879 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
880 index
= pos
>> PAGE_CACHE_SHIFT
;
881 from
= pos
& (PAGE_CACHE_SIZE
- 1);
885 handle
= ext4_journal_start(inode
, needed_blocks
);
886 if (IS_ERR(handle
)) {
887 ret
= PTR_ERR(handle
);
891 /* We cannot recurse into the filesystem as the transaction is already
893 flags
|= AOP_FLAG_NOFS
;
895 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
897 ext4_journal_stop(handle
);
903 if (ext4_should_dioread_nolock(inode
))
904 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
906 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
908 if (!ret
&& ext4_should_journal_data(inode
)) {
909 ret
= walk_page_buffers(handle
, page_buffers(page
),
910 from
, to
, NULL
, do_journal_get_write_access
);
915 page_cache_release(page
);
917 * __block_write_begin may have instantiated a few blocks
918 * outside i_size. Trim these off again. Don't need
919 * i_size_read because we hold i_mutex.
921 * Add inode to orphan list in case we crash before
924 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
925 ext4_orphan_add(handle
, inode
);
927 ext4_journal_stop(handle
);
928 if (pos
+ len
> inode
->i_size
) {
929 ext4_truncate_failed_write(inode
);
931 * If truncate failed early the inode might
932 * still be on the orphan list; we need to
933 * make sure the inode is removed from the
934 * orphan list in that case.
937 ext4_orphan_del(NULL
, inode
);
941 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
947 /* For write_end() in data=journal mode */
948 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
950 if (!buffer_mapped(bh
) || buffer_freed(bh
))
952 set_buffer_uptodate(bh
);
953 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
956 static int ext4_generic_write_end(struct file
*file
,
957 struct address_space
*mapping
,
958 loff_t pos
, unsigned len
, unsigned copied
,
959 struct page
*page
, void *fsdata
)
961 int i_size_changed
= 0;
962 struct inode
*inode
= mapping
->host
;
963 handle_t
*handle
= ext4_journal_current_handle();
965 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
968 * No need to use i_size_read() here, the i_size
969 * cannot change under us because we hold i_mutex.
971 * But it's important to update i_size while still holding page lock:
972 * page writeout could otherwise come in and zero beyond i_size.
974 if (pos
+ copied
> inode
->i_size
) {
975 i_size_write(inode
, pos
+ copied
);
979 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
980 /* We need to mark inode dirty even if
981 * new_i_size is less that inode->i_size
982 * bu greater than i_disksize.(hint delalloc)
984 ext4_update_i_disksize(inode
, (pos
+ copied
));
988 page_cache_release(page
);
991 * Don't mark the inode dirty under page lock. First, it unnecessarily
992 * makes the holding time of page lock longer. Second, it forces lock
993 * ordering of page lock and transaction start for journaling
997 ext4_mark_inode_dirty(handle
, inode
);
1003 * We need to pick up the new inode size which generic_commit_write gave us
1004 * `file' can be NULL - eg, when called from page_symlink().
1006 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1007 * buffers are managed internally.
1009 static int ext4_ordered_write_end(struct file
*file
,
1010 struct address_space
*mapping
,
1011 loff_t pos
, unsigned len
, unsigned copied
,
1012 struct page
*page
, void *fsdata
)
1014 handle_t
*handle
= ext4_journal_current_handle();
1015 struct inode
*inode
= mapping
->host
;
1018 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1019 ret
= ext4_jbd2_file_inode(handle
, inode
);
1022 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1025 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1026 /* if we have allocated more blocks and copied
1027 * less. We will have blocks allocated outside
1028 * inode->i_size. So truncate them
1030 ext4_orphan_add(handle
, inode
);
1035 page_cache_release(page
);
1038 ret2
= ext4_journal_stop(handle
);
1042 if (pos
+ len
> inode
->i_size
) {
1043 ext4_truncate_failed_write(inode
);
1045 * If truncate failed early the inode might still be
1046 * on the orphan list; we need to make sure the inode
1047 * is removed from the orphan list in that case.
1050 ext4_orphan_del(NULL
, inode
);
1054 return ret
? ret
: copied
;
1057 static int ext4_writeback_write_end(struct file
*file
,
1058 struct address_space
*mapping
,
1059 loff_t pos
, unsigned len
, unsigned copied
,
1060 struct page
*page
, void *fsdata
)
1062 handle_t
*handle
= ext4_journal_current_handle();
1063 struct inode
*inode
= mapping
->host
;
1066 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1067 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1070 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1071 /* if we have allocated more blocks and copied
1072 * less. We will have blocks allocated outside
1073 * inode->i_size. So truncate them
1075 ext4_orphan_add(handle
, inode
);
1080 ret2
= ext4_journal_stop(handle
);
1084 if (pos
+ len
> inode
->i_size
) {
1085 ext4_truncate_failed_write(inode
);
1087 * If truncate failed early the inode might still be
1088 * on the orphan list; we need to make sure the inode
1089 * is removed from the orphan list in that case.
1092 ext4_orphan_del(NULL
, inode
);
1095 return ret
? ret
: copied
;
1098 static int ext4_journalled_write_end(struct file
*file
,
1099 struct address_space
*mapping
,
1100 loff_t pos
, unsigned len
, unsigned copied
,
1101 struct page
*page
, void *fsdata
)
1103 handle_t
*handle
= ext4_journal_current_handle();
1104 struct inode
*inode
= mapping
->host
;
1110 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1111 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1114 BUG_ON(!ext4_handle_valid(handle
));
1117 if (!PageUptodate(page
))
1119 page_zero_new_buffers(page
, from
+copied
, to
);
1122 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1123 to
, &partial
, write_end_fn
);
1125 SetPageUptodate(page
);
1126 new_i_size
= pos
+ copied
;
1127 if (new_i_size
> inode
->i_size
)
1128 i_size_write(inode
, pos
+copied
);
1129 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1130 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1131 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1132 ext4_update_i_disksize(inode
, new_i_size
);
1133 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1139 page_cache_release(page
);
1140 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1141 /* if we have allocated more blocks and copied
1142 * less. We will have blocks allocated outside
1143 * inode->i_size. So truncate them
1145 ext4_orphan_add(handle
, inode
);
1147 ret2
= ext4_journal_stop(handle
);
1150 if (pos
+ len
> inode
->i_size
) {
1151 ext4_truncate_failed_write(inode
);
1153 * If truncate failed early the inode might still be
1154 * on the orphan list; we need to make sure the inode
1155 * is removed from the orphan list in that case.
1158 ext4_orphan_del(NULL
, inode
);
1161 return ret
? ret
: copied
;
1165 * Reserve a single cluster located at lblock
1167 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1170 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1171 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1172 unsigned int md_needed
;
1176 * recalculate the amount of metadata blocks to reserve
1177 * in order to allocate nrblocks
1178 * worse case is one extent per block
1181 spin_lock(&ei
->i_block_reservation_lock
);
1182 md_needed
= EXT4_NUM_B2C(sbi
,
1183 ext4_calc_metadata_amount(inode
, lblock
));
1184 trace_ext4_da_reserve_space(inode
, md_needed
);
1185 spin_unlock(&ei
->i_block_reservation_lock
);
1188 * We will charge metadata quota at writeout time; this saves
1189 * us from metadata over-estimation, though we may go over by
1190 * a small amount in the end. Here we just reserve for data.
1192 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1196 * We do still charge estimated metadata to the sb though;
1197 * we cannot afford to run out of free blocks.
1199 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1200 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1201 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1207 spin_lock(&ei
->i_block_reservation_lock
);
1208 ei
->i_reserved_data_blocks
++;
1209 ei
->i_reserved_meta_blocks
+= md_needed
;
1210 spin_unlock(&ei
->i_block_reservation_lock
);
1212 return 0; /* success */
1215 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1217 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1218 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1221 return; /* Nothing to release, exit */
1223 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1225 trace_ext4_da_release_space(inode
, to_free
);
1226 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1228 * if there aren't enough reserved blocks, then the
1229 * counter is messed up somewhere. Since this
1230 * function is called from invalidate page, it's
1231 * harmless to return without any action.
1233 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1234 "ino %lu, to_free %d with only %d reserved "
1235 "data blocks", inode
->i_ino
, to_free
,
1236 ei
->i_reserved_data_blocks
);
1238 to_free
= ei
->i_reserved_data_blocks
;
1240 ei
->i_reserved_data_blocks
-= to_free
;
1242 if (ei
->i_reserved_data_blocks
== 0) {
1244 * We can release all of the reserved metadata blocks
1245 * only when we have written all of the delayed
1246 * allocation blocks.
1247 * Note that in case of bigalloc, i_reserved_meta_blocks,
1248 * i_reserved_data_blocks, etc. refer to number of clusters.
1250 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1251 ei
->i_reserved_meta_blocks
);
1252 ei
->i_reserved_meta_blocks
= 0;
1253 ei
->i_da_metadata_calc_len
= 0;
1256 /* update fs dirty data blocks counter */
1257 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1259 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1261 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1264 static void ext4_da_page_release_reservation(struct page
*page
,
1265 unsigned long offset
)
1268 struct buffer_head
*head
, *bh
;
1269 unsigned int curr_off
= 0;
1270 struct inode
*inode
= page
->mapping
->host
;
1271 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1274 head
= page_buffers(page
);
1277 unsigned int next_off
= curr_off
+ bh
->b_size
;
1279 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1281 clear_buffer_delay(bh
);
1282 clear_buffer_da_mapped(bh
);
1284 curr_off
= next_off
;
1285 } while ((bh
= bh
->b_this_page
) != head
);
1287 /* If we have released all the blocks belonging to a cluster, then we
1288 * need to release the reserved space for that cluster. */
1289 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1290 while (num_clusters
> 0) {
1292 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1293 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1294 if (sbi
->s_cluster_ratio
== 1 ||
1295 !ext4_find_delalloc_cluster(inode
, lblk
, 1))
1296 ext4_da_release_space(inode
, 1);
1303 * Delayed allocation stuff
1307 * mpage_da_submit_io - walks through extent of pages and try to write
1308 * them with writepage() call back
1310 * @mpd->inode: inode
1311 * @mpd->first_page: first page of the extent
1312 * @mpd->next_page: page after the last page of the extent
1314 * By the time mpage_da_submit_io() is called we expect all blocks
1315 * to be allocated. this may be wrong if allocation failed.
1317 * As pages are already locked by write_cache_pages(), we can't use it
1319 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1320 struct ext4_map_blocks
*map
)
1322 struct pagevec pvec
;
1323 unsigned long index
, end
;
1324 int ret
= 0, err
, nr_pages
, i
;
1325 struct inode
*inode
= mpd
->inode
;
1326 struct address_space
*mapping
= inode
->i_mapping
;
1327 loff_t size
= i_size_read(inode
);
1328 unsigned int len
, block_start
;
1329 struct buffer_head
*bh
, *page_bufs
= NULL
;
1330 int journal_data
= ext4_should_journal_data(inode
);
1331 sector_t pblock
= 0, cur_logical
= 0;
1332 struct ext4_io_submit io_submit
;
1334 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1335 memset(&io_submit
, 0, sizeof(io_submit
));
1337 * We need to start from the first_page to the next_page - 1
1338 * to make sure we also write the mapped dirty buffer_heads.
1339 * If we look at mpd->b_blocknr we would only be looking
1340 * at the currently mapped buffer_heads.
1342 index
= mpd
->first_page
;
1343 end
= mpd
->next_page
- 1;
1345 pagevec_init(&pvec
, 0);
1346 while (index
<= end
) {
1347 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1350 for (i
= 0; i
< nr_pages
; i
++) {
1351 int commit_write
= 0, skip_page
= 0;
1352 struct page
*page
= pvec
.pages
[i
];
1354 index
= page
->index
;
1358 if (index
== size
>> PAGE_CACHE_SHIFT
)
1359 len
= size
& ~PAGE_CACHE_MASK
;
1361 len
= PAGE_CACHE_SIZE
;
1363 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1365 pblock
= map
->m_pblk
+ (cur_logical
-
1370 BUG_ON(!PageLocked(page
));
1371 BUG_ON(PageWriteback(page
));
1374 * If the page does not have buffers (for
1375 * whatever reason), try to create them using
1376 * __block_write_begin. If this fails,
1377 * skip the page and move on.
1379 if (!page_has_buffers(page
)) {
1380 if (__block_write_begin(page
, 0, len
,
1381 noalloc_get_block_write
)) {
1389 bh
= page_bufs
= page_buffers(page
);
1394 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1395 (cur_logical
<= (map
->m_lblk
+
1396 (map
->m_len
- 1)))) {
1397 if (buffer_delay(bh
)) {
1398 clear_buffer_delay(bh
);
1399 bh
->b_blocknr
= pblock
;
1401 if (buffer_da_mapped(bh
))
1402 clear_buffer_da_mapped(bh
);
1403 if (buffer_unwritten(bh
) ||
1405 BUG_ON(bh
->b_blocknr
!= pblock
);
1406 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1407 set_buffer_uninit(bh
);
1408 clear_buffer_unwritten(bh
);
1412 * skip page if block allocation undone and
1415 if (ext4_bh_delay_or_unwritten(NULL
, bh
))
1417 bh
= bh
->b_this_page
;
1418 block_start
+= bh
->b_size
;
1421 } while (bh
!= page_bufs
);
1427 /* mark the buffer_heads as dirty & uptodate */
1428 block_commit_write(page
, 0, len
);
1430 clear_page_dirty_for_io(page
);
1432 * Delalloc doesn't support data journalling,
1433 * but eventually maybe we'll lift this
1436 if (unlikely(journal_data
&& PageChecked(page
)))
1437 err
= __ext4_journalled_writepage(page
, len
);
1438 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
1439 err
= ext4_bio_write_page(&io_submit
, page
,
1441 else if (buffer_uninit(page_bufs
)) {
1442 ext4_set_bh_endio(page_bufs
, inode
);
1443 err
= block_write_full_page_endio(page
,
1444 noalloc_get_block_write
,
1445 mpd
->wbc
, ext4_end_io_buffer_write
);
1447 err
= block_write_full_page(page
,
1448 noalloc_get_block_write
, mpd
->wbc
);
1451 mpd
->pages_written
++;
1453 * In error case, we have to continue because
1454 * remaining pages are still locked
1459 pagevec_release(&pvec
);
1461 ext4_io_submit(&io_submit
);
1465 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1469 struct pagevec pvec
;
1470 struct inode
*inode
= mpd
->inode
;
1471 struct address_space
*mapping
= inode
->i_mapping
;
1473 index
= mpd
->first_page
;
1474 end
= mpd
->next_page
- 1;
1475 while (index
<= end
) {
1476 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1479 for (i
= 0; i
< nr_pages
; i
++) {
1480 struct page
*page
= pvec
.pages
[i
];
1481 if (page
->index
> end
)
1483 BUG_ON(!PageLocked(page
));
1484 BUG_ON(PageWriteback(page
));
1485 block_invalidatepage(page
, 0);
1486 ClearPageUptodate(page
);
1489 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1490 pagevec_release(&pvec
);
1495 static void ext4_print_free_blocks(struct inode
*inode
)
1497 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1498 struct super_block
*sb
= inode
->i_sb
;
1500 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1501 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1502 ext4_count_free_clusters(inode
->i_sb
)));
1503 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1504 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1505 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1506 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1507 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1508 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1509 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1510 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1511 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1512 EXT4_I(inode
)->i_reserved_data_blocks
);
1513 ext4_msg(sb
, KERN_CRIT
, "i_reserved_meta_blocks=%u",
1514 EXT4_I(inode
)->i_reserved_meta_blocks
);
1519 * mpage_da_map_and_submit - go through given space, map them
1520 * if necessary, and then submit them for I/O
1522 * @mpd - bh describing space
1524 * The function skips space we know is already mapped to disk blocks.
1527 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1529 int err
, blks
, get_blocks_flags
;
1530 struct ext4_map_blocks map
, *mapp
= NULL
;
1531 sector_t next
= mpd
->b_blocknr
;
1532 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1533 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1534 handle_t
*handle
= NULL
;
1537 * If the blocks are mapped already, or we couldn't accumulate
1538 * any blocks, then proceed immediately to the submission stage.
1540 if ((mpd
->b_size
== 0) ||
1541 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1542 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1543 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1546 handle
= ext4_journal_current_handle();
1550 * Call ext4_map_blocks() to allocate any delayed allocation
1551 * blocks, or to convert an uninitialized extent to be
1552 * initialized (in the case where we have written into
1553 * one or more preallocated blocks).
1555 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1556 * indicate that we are on the delayed allocation path. This
1557 * affects functions in many different parts of the allocation
1558 * call path. This flag exists primarily because we don't
1559 * want to change *many* call functions, so ext4_map_blocks()
1560 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1561 * inode's allocation semaphore is taken.
1563 * If the blocks in questions were delalloc blocks, set
1564 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1565 * variables are updated after the blocks have been allocated.
1568 map
.m_len
= max_blocks
;
1569 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
1570 if (ext4_should_dioread_nolock(mpd
->inode
))
1571 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1572 if (mpd
->b_state
& (1 << BH_Delay
))
1573 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1575 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1577 struct super_block
*sb
= mpd
->inode
->i_sb
;
1581 * If get block returns EAGAIN or ENOSPC and there
1582 * appears to be free blocks we will just let
1583 * mpage_da_submit_io() unlock all of the pages.
1588 if (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)) {
1594 * get block failure will cause us to loop in
1595 * writepages, because a_ops->writepage won't be able
1596 * to make progress. The page will be redirtied by
1597 * writepage and writepages will again try to write
1600 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1601 ext4_msg(sb
, KERN_CRIT
,
1602 "delayed block allocation failed for inode %lu "
1603 "at logical offset %llu with max blocks %zd "
1604 "with error %d", mpd
->inode
->i_ino
,
1605 (unsigned long long) next
,
1606 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1607 ext4_msg(sb
, KERN_CRIT
,
1608 "This should not happen!! Data will be lost\n");
1610 ext4_print_free_blocks(mpd
->inode
);
1612 /* invalidate all the pages */
1613 ext4_da_block_invalidatepages(mpd
);
1615 /* Mark this page range as having been completed */
1622 if (map
.m_flags
& EXT4_MAP_NEW
) {
1623 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1626 for (i
= 0; i
< map
.m_len
; i
++)
1627 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1629 if (ext4_should_order_data(mpd
->inode
)) {
1630 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
1632 /* Only if the journal is aborted */
1640 * Update on-disk size along with block allocation.
1642 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1643 if (disksize
> i_size_read(mpd
->inode
))
1644 disksize
= i_size_read(mpd
->inode
);
1645 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1646 ext4_update_i_disksize(mpd
->inode
, disksize
);
1647 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1649 ext4_error(mpd
->inode
->i_sb
,
1650 "Failed to mark inode %lu dirty",
1655 mpage_da_submit_io(mpd
, mapp
);
1659 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1660 (1 << BH_Delay) | (1 << BH_Unwritten))
1663 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1665 * @mpd->lbh - extent of blocks
1666 * @logical - logical number of the block in the file
1667 * @bh - bh of the block (used to access block's state)
1669 * the function is used to collect contig. blocks in same state
1671 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
1672 sector_t logical
, size_t b_size
,
1673 unsigned long b_state
)
1676 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1679 * XXX Don't go larger than mballoc is willing to allocate
1680 * This is a stopgap solution. We eventually need to fold
1681 * mpage_da_submit_io() into this function and then call
1682 * ext4_map_blocks() multiple times in a loop
1684 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
1687 /* check if thereserved journal credits might overflow */
1688 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
1689 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1691 * With non-extent format we are limited by the journal
1692 * credit available. Total credit needed to insert
1693 * nrblocks contiguous blocks is dependent on the
1694 * nrblocks. So limit nrblocks.
1697 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
1698 EXT4_MAX_TRANS_DATA
) {
1700 * Adding the new buffer_head would make it cross the
1701 * allowed limit for which we have journal credit
1702 * reserved. So limit the new bh->b_size
1704 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
1705 mpd
->inode
->i_blkbits
;
1706 /* we will do mpage_da_submit_io in the next loop */
1710 * First block in the extent
1712 if (mpd
->b_size
== 0) {
1713 mpd
->b_blocknr
= logical
;
1714 mpd
->b_size
= b_size
;
1715 mpd
->b_state
= b_state
& BH_FLAGS
;
1719 next
= mpd
->b_blocknr
+ nrblocks
;
1721 * Can we merge the block to our big extent?
1723 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1724 mpd
->b_size
+= b_size
;
1730 * We couldn't merge the block to our extent, so we
1731 * need to flush current extent and start new one
1733 mpage_da_map_and_submit(mpd
);
1737 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1739 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1743 * This function is grabs code from the very beginning of
1744 * ext4_map_blocks, but assumes that the caller is from delayed write
1745 * time. This function looks up the requested blocks and sets the
1746 * buffer delay bit under the protection of i_data_sem.
1748 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1749 struct ext4_map_blocks
*map
,
1750 struct buffer_head
*bh
)
1753 sector_t invalid_block
= ~((sector_t
) 0xffff);
1755 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1759 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1760 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1761 (unsigned long) map
->m_lblk
);
1763 * Try to see if we can get the block without requesting a new
1764 * file system block.
1766 down_read((&EXT4_I(inode
)->i_data_sem
));
1767 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1768 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1770 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1774 * XXX: __block_prepare_write() unmaps passed block,
1777 /* If the block was allocated from previously allocated cluster,
1778 * then we dont need to reserve it again. */
1779 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1780 retval
= ext4_da_reserve_space(inode
, iblock
);
1782 /* not enough space to reserve */
1786 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1787 * and it should not appear on the bh->b_state.
1789 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1791 map_bh(bh
, inode
->i_sb
, invalid_block
);
1793 set_buffer_delay(bh
);
1797 up_read((&EXT4_I(inode
)->i_data_sem
));
1803 * This is a special get_blocks_t callback which is used by
1804 * ext4_da_write_begin(). It will either return mapped block or
1805 * reserve space for a single block.
1807 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1808 * We also have b_blocknr = -1 and b_bdev initialized properly
1810 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1811 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1812 * initialized properly.
1814 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1815 struct buffer_head
*bh
, int create
)
1817 struct ext4_map_blocks map
;
1820 BUG_ON(create
== 0);
1821 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1823 map
.m_lblk
= iblock
;
1827 * first, we need to know whether the block is allocated already
1828 * preallocated blocks are unmapped but should treated
1829 * the same as allocated blocks.
1831 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1835 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1836 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1838 if (buffer_unwritten(bh
)) {
1839 /* A delayed write to unwritten bh should be marked
1840 * new and mapped. Mapped ensures that we don't do
1841 * get_block multiple times when we write to the same
1842 * offset and new ensures that we do proper zero out
1843 * for partial write.
1846 set_buffer_mapped(bh
);
1852 * This function is used as a standard get_block_t calback function
1853 * when there is no desire to allocate any blocks. It is used as a
1854 * callback function for block_write_begin() and block_write_full_page().
1855 * These functions should only try to map a single block at a time.
1857 * Since this function doesn't do block allocations even if the caller
1858 * requests it by passing in create=1, it is critically important that
1859 * any caller checks to make sure that any buffer heads are returned
1860 * by this function are either all already mapped or marked for
1861 * delayed allocation before calling block_write_full_page(). Otherwise,
1862 * b_blocknr could be left unitialized, and the page write functions will
1863 * be taken by surprise.
1865 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
1866 struct buffer_head
*bh_result
, int create
)
1868 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
1869 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
1872 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1878 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1884 static int __ext4_journalled_writepage(struct page
*page
,
1887 struct address_space
*mapping
= page
->mapping
;
1888 struct inode
*inode
= mapping
->host
;
1889 struct buffer_head
*page_bufs
;
1890 handle_t
*handle
= NULL
;
1894 ClearPageChecked(page
);
1895 page_bufs
= page_buffers(page
);
1897 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
1898 /* As soon as we unlock the page, it can go away, but we have
1899 * references to buffers so we are safe */
1902 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1903 if (IS_ERR(handle
)) {
1904 ret
= PTR_ERR(handle
);
1908 BUG_ON(!ext4_handle_valid(handle
));
1910 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1911 do_journal_get_write_access
);
1913 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1917 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1918 err
= ext4_journal_stop(handle
);
1922 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
1923 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1928 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
1929 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
1932 * Note that we don't need to start a transaction unless we're journaling data
1933 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934 * need to file the inode to the transaction's list in ordered mode because if
1935 * we are writing back data added by write(), the inode is already there and if
1936 * we are writing back data modified via mmap(), no one guarantees in which
1937 * transaction the data will hit the disk. In case we are journaling data, we
1938 * cannot start transaction directly because transaction start ranks above page
1939 * lock so we have to do some magic.
1941 * This function can get called via...
1942 * - ext4_da_writepages after taking page lock (have journal handle)
1943 * - journal_submit_inode_data_buffers (no journal handle)
1944 * - shrink_page_list via pdflush (no journal handle)
1945 * - grab_page_cache when doing write_begin (have journal handle)
1947 * We don't do any block allocation in this function. If we have page with
1948 * multiple blocks we need to write those buffer_heads that are mapped. This
1949 * is important for mmaped based write. So if we do with blocksize 1K
1950 * truncate(f, 1024);
1951 * a = mmap(f, 0, 4096);
1953 * truncate(f, 4096);
1954 * we have in the page first buffer_head mapped via page_mkwrite call back
1955 * but other buffer_heads would be unmapped but dirty (dirty done via the
1956 * do_wp_page). So writepage should write the first block. If we modify
1957 * the mmap area beyond 1024 we will again get a page_fault and the
1958 * page_mkwrite callback will do the block allocation and mark the
1959 * buffer_heads mapped.
1961 * We redirty the page if we have any buffer_heads that is either delay or
1962 * unwritten in the page.
1964 * We can get recursively called as show below.
1966 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1969 * But since we don't do any block allocation we should not deadlock.
1970 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1972 static int ext4_writepage(struct page
*page
,
1973 struct writeback_control
*wbc
)
1975 int ret
= 0, commit_write
= 0;
1978 struct buffer_head
*page_bufs
= NULL
;
1979 struct inode
*inode
= page
->mapping
->host
;
1981 trace_ext4_writepage(page
);
1982 size
= i_size_read(inode
);
1983 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1984 len
= size
& ~PAGE_CACHE_MASK
;
1986 len
= PAGE_CACHE_SIZE
;
1989 * If the page does not have buffers (for whatever reason),
1990 * try to create them using __block_write_begin. If this
1991 * fails, redirty the page and move on.
1993 if (!page_has_buffers(page
)) {
1994 if (__block_write_begin(page
, 0, len
,
1995 noalloc_get_block_write
)) {
1997 redirty_page_for_writepage(wbc
, page
);
2003 page_bufs
= page_buffers(page
);
2004 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2005 ext4_bh_delay_or_unwritten
)) {
2007 * We don't want to do block allocation, so redirty
2008 * the page and return. We may reach here when we do
2009 * a journal commit via journal_submit_inode_data_buffers.
2010 * We can also reach here via shrink_page_list but it
2011 * should never be for direct reclaim so warn if that
2014 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
2019 /* now mark the buffer_heads as dirty and uptodate */
2020 block_commit_write(page
, 0, len
);
2022 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2024 * It's mmapped pagecache. Add buffers and journal it. There
2025 * doesn't seem much point in redirtying the page here.
2027 return __ext4_journalled_writepage(page
, len
);
2029 if (buffer_uninit(page_bufs
)) {
2030 ext4_set_bh_endio(page_bufs
, inode
);
2031 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
2032 wbc
, ext4_end_io_buffer_write
);
2034 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2041 * This is called via ext4_da_writepages() to
2042 * calculate the total number of credits to reserve to fit
2043 * a single extent allocation into a single transaction,
2044 * ext4_da_writpeages() will loop calling this before
2045 * the block allocation.
2048 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2050 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2053 * With non-extent format the journal credit needed to
2054 * insert nrblocks contiguous block is dependent on
2055 * number of contiguous block. So we will limit
2056 * number of contiguous block to a sane value
2058 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2059 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2060 max_blocks
= EXT4_MAX_TRANS_DATA
;
2062 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2066 * write_cache_pages_da - walk the list of dirty pages of the given
2067 * address space and accumulate pages that need writing, and call
2068 * mpage_da_map_and_submit to map a single contiguous memory region
2069 * and then write them.
2071 static int write_cache_pages_da(struct address_space
*mapping
,
2072 struct writeback_control
*wbc
,
2073 struct mpage_da_data
*mpd
,
2074 pgoff_t
*done_index
)
2076 struct buffer_head
*bh
, *head
;
2077 struct inode
*inode
= mapping
->host
;
2078 struct pagevec pvec
;
2079 unsigned int nr_pages
;
2082 long nr_to_write
= wbc
->nr_to_write
;
2083 int i
, tag
, ret
= 0;
2085 memset(mpd
, 0, sizeof(struct mpage_da_data
));
2088 pagevec_init(&pvec
, 0);
2089 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2090 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2092 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2093 tag
= PAGECACHE_TAG_TOWRITE
;
2095 tag
= PAGECACHE_TAG_DIRTY
;
2097 *done_index
= index
;
2098 while (index
<= end
) {
2099 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2100 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2104 for (i
= 0; i
< nr_pages
; i
++) {
2105 struct page
*page
= pvec
.pages
[i
];
2108 * At this point, the page may be truncated or
2109 * invalidated (changing page->mapping to NULL), or
2110 * even swizzled back from swapper_space to tmpfs file
2111 * mapping. However, page->index will not change
2112 * because we have a reference on the page.
2114 if (page
->index
> end
)
2117 *done_index
= page
->index
+ 1;
2120 * If we can't merge this page, and we have
2121 * accumulated an contiguous region, write it
2123 if ((mpd
->next_page
!= page
->index
) &&
2124 (mpd
->next_page
!= mpd
->first_page
)) {
2125 mpage_da_map_and_submit(mpd
);
2126 goto ret_extent_tail
;
2132 * If the page is no longer dirty, or its
2133 * mapping no longer corresponds to inode we
2134 * are writing (which means it has been
2135 * truncated or invalidated), or the page is
2136 * already under writeback and we are not
2137 * doing a data integrity writeback, skip the page
2139 if (!PageDirty(page
) ||
2140 (PageWriteback(page
) &&
2141 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2142 unlikely(page
->mapping
!= mapping
)) {
2147 wait_on_page_writeback(page
);
2148 BUG_ON(PageWriteback(page
));
2150 if (mpd
->next_page
!= page
->index
)
2151 mpd
->first_page
= page
->index
;
2152 mpd
->next_page
= page
->index
+ 1;
2153 logical
= (sector_t
) page
->index
<<
2154 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2156 if (!page_has_buffers(page
)) {
2157 mpage_add_bh_to_extent(mpd
, logical
,
2159 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2161 goto ret_extent_tail
;
2164 * Page with regular buffer heads,
2165 * just add all dirty ones
2167 head
= page_buffers(page
);
2170 BUG_ON(buffer_locked(bh
));
2172 * We need to try to allocate
2173 * unmapped blocks in the same page.
2174 * Otherwise we won't make progress
2175 * with the page in ext4_writepage
2177 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2178 mpage_add_bh_to_extent(mpd
, logical
,
2182 goto ret_extent_tail
;
2183 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2185 * mapped dirty buffer. We need
2186 * to update the b_state
2187 * because we look at b_state
2188 * in mpage_da_map_blocks. We
2189 * don't update b_size because
2190 * if we find an unmapped
2191 * buffer_head later we need to
2192 * use the b_state flag of that
2195 if (mpd
->b_size
== 0)
2196 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2199 } while ((bh
= bh
->b_this_page
) != head
);
2202 if (nr_to_write
> 0) {
2204 if (nr_to_write
== 0 &&
2205 wbc
->sync_mode
== WB_SYNC_NONE
)
2207 * We stop writing back only if we are
2208 * not doing integrity sync. In case of
2209 * integrity sync we have to keep going
2210 * because someone may be concurrently
2211 * dirtying pages, and we might have
2212 * synced a lot of newly appeared dirty
2213 * pages, but have not synced all of the
2219 pagevec_release(&pvec
);
2224 ret
= MPAGE_DA_EXTENT_TAIL
;
2226 pagevec_release(&pvec
);
2232 static int ext4_da_writepages(struct address_space
*mapping
,
2233 struct writeback_control
*wbc
)
2236 int range_whole
= 0;
2237 handle_t
*handle
= NULL
;
2238 struct mpage_da_data mpd
;
2239 struct inode
*inode
= mapping
->host
;
2240 int pages_written
= 0;
2241 unsigned int max_pages
;
2242 int range_cyclic
, cycled
= 1, io_done
= 0;
2243 int needed_blocks
, ret
= 0;
2244 long desired_nr_to_write
, nr_to_writebump
= 0;
2245 loff_t range_start
= wbc
->range_start
;
2246 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2247 pgoff_t done_index
= 0;
2249 struct blk_plug plug
;
2251 trace_ext4_da_writepages(inode
, wbc
);
2254 * No pages to write? This is mainly a kludge to avoid starting
2255 * a transaction for special inodes like journal inode on last iput()
2256 * because that could violate lock ordering on umount
2258 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2262 * If the filesystem has aborted, it is read-only, so return
2263 * right away instead of dumping stack traces later on that
2264 * will obscure the real source of the problem. We test
2265 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2266 * the latter could be true if the filesystem is mounted
2267 * read-only, and in that case, ext4_da_writepages should
2268 * *never* be called, so if that ever happens, we would want
2271 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2274 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2277 range_cyclic
= wbc
->range_cyclic
;
2278 if (wbc
->range_cyclic
) {
2279 index
= mapping
->writeback_index
;
2282 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2283 wbc
->range_end
= LLONG_MAX
;
2284 wbc
->range_cyclic
= 0;
2287 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2288 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2292 * This works around two forms of stupidity. The first is in
2293 * the writeback code, which caps the maximum number of pages
2294 * written to be 1024 pages. This is wrong on multiple
2295 * levels; different architectues have a different page size,
2296 * which changes the maximum amount of data which gets
2297 * written. Secondly, 4 megabytes is way too small. XFS
2298 * forces this value to be 16 megabytes by multiplying
2299 * nr_to_write parameter by four, and then relies on its
2300 * allocator to allocate larger extents to make them
2301 * contiguous. Unfortunately this brings us to the second
2302 * stupidity, which is that ext4's mballoc code only allocates
2303 * at most 2048 blocks. So we force contiguous writes up to
2304 * the number of dirty blocks in the inode, or
2305 * sbi->max_writeback_mb_bump whichever is smaller.
2307 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2308 if (!range_cyclic
&& range_whole
) {
2309 if (wbc
->nr_to_write
== LONG_MAX
)
2310 desired_nr_to_write
= wbc
->nr_to_write
;
2312 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2314 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2316 if (desired_nr_to_write
> max_pages
)
2317 desired_nr_to_write
= max_pages
;
2319 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2320 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2321 wbc
->nr_to_write
= desired_nr_to_write
;
2325 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2326 tag_pages_for_writeback(mapping
, index
, end
);
2328 blk_start_plug(&plug
);
2329 while (!ret
&& wbc
->nr_to_write
> 0) {
2332 * we insert one extent at a time. So we need
2333 * credit needed for single extent allocation.
2334 * journalled mode is currently not supported
2337 BUG_ON(ext4_should_journal_data(inode
));
2338 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2340 /* start a new transaction*/
2341 handle
= ext4_journal_start(inode
, needed_blocks
);
2342 if (IS_ERR(handle
)) {
2343 ret
= PTR_ERR(handle
);
2344 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2345 "%ld pages, ino %lu; err %d", __func__
,
2346 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2347 blk_finish_plug(&plug
);
2348 goto out_writepages
;
2352 * Now call write_cache_pages_da() to find the next
2353 * contiguous region of logical blocks that need
2354 * blocks to be allocated by ext4 and submit them.
2356 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
2358 * If we have a contiguous extent of pages and we
2359 * haven't done the I/O yet, map the blocks and submit
2362 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2363 mpage_da_map_and_submit(&mpd
);
2364 ret
= MPAGE_DA_EXTENT_TAIL
;
2366 trace_ext4_da_write_pages(inode
, &mpd
);
2367 wbc
->nr_to_write
-= mpd
.pages_written
;
2369 ext4_journal_stop(handle
);
2371 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2372 /* commit the transaction which would
2373 * free blocks released in the transaction
2376 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2378 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2380 * Got one extent now try with rest of the pages.
2381 * If mpd.retval is set -EIO, journal is aborted.
2382 * So we don't need to write any more.
2384 pages_written
+= mpd
.pages_written
;
2387 } else if (wbc
->nr_to_write
)
2389 * There is no more writeout needed
2390 * or we requested for a noblocking writeout
2391 * and we found the device congested
2395 blk_finish_plug(&plug
);
2396 if (!io_done
&& !cycled
) {
2399 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2400 wbc
->range_end
= mapping
->writeback_index
- 1;
2405 wbc
->range_cyclic
= range_cyclic
;
2406 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2408 * set the writeback_index so that range_cyclic
2409 * mode will write it back later
2411 mapping
->writeback_index
= done_index
;
2414 wbc
->nr_to_write
-= nr_to_writebump
;
2415 wbc
->range_start
= range_start
;
2416 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2420 #define FALL_BACK_TO_NONDELALLOC 1
2421 static int ext4_nonda_switch(struct super_block
*sb
)
2423 s64 free_blocks
, dirty_blocks
;
2424 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2427 * switch to non delalloc mode if we are running low
2428 * on free block. The free block accounting via percpu
2429 * counters can get slightly wrong with percpu_counter_batch getting
2430 * accumulated on each CPU without updating global counters
2431 * Delalloc need an accurate free block accounting. So switch
2432 * to non delalloc when we are near to error range.
2434 free_blocks
= EXT4_C2B(sbi
,
2435 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
2436 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2437 if (2 * free_blocks
< 3 * dirty_blocks
||
2438 free_blocks
< (dirty_blocks
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2440 * free block count is less than 150% of dirty blocks
2441 * or free blocks is less than watermark
2446 * Even if we don't switch but are nearing capacity,
2447 * start pushing delalloc when 1/2 of free blocks are dirty.
2449 if (free_blocks
< 2 * dirty_blocks
)
2450 writeback_inodes_sb_if_idle(sb
, WB_REASON_FS_FREE_SPACE
);
2455 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2456 loff_t pos
, unsigned len
, unsigned flags
,
2457 struct page
**pagep
, void **fsdata
)
2459 int ret
, retries
= 0;
2462 struct inode
*inode
= mapping
->host
;
2465 index
= pos
>> PAGE_CACHE_SHIFT
;
2467 if (ext4_nonda_switch(inode
->i_sb
)) {
2468 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2469 return ext4_write_begin(file
, mapping
, pos
,
2470 len
, flags
, pagep
, fsdata
);
2472 *fsdata
= (void *)0;
2473 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2476 * With delayed allocation, we don't log the i_disksize update
2477 * if there is delayed block allocation. But we still need
2478 * to journalling the i_disksize update if writes to the end
2479 * of file which has an already mapped buffer.
2481 handle
= ext4_journal_start(inode
, 1);
2482 if (IS_ERR(handle
)) {
2483 ret
= PTR_ERR(handle
);
2486 /* We cannot recurse into the filesystem as the transaction is already
2488 flags
|= AOP_FLAG_NOFS
;
2490 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2492 ext4_journal_stop(handle
);
2498 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2501 ext4_journal_stop(handle
);
2502 page_cache_release(page
);
2504 * block_write_begin may have instantiated a few blocks
2505 * outside i_size. Trim these off again. Don't need
2506 * i_size_read because we hold i_mutex.
2508 if (pos
+ len
> inode
->i_size
)
2509 ext4_truncate_failed_write(inode
);
2512 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2519 * Check if we should update i_disksize
2520 * when write to the end of file but not require block allocation
2522 static int ext4_da_should_update_i_disksize(struct page
*page
,
2523 unsigned long offset
)
2525 struct buffer_head
*bh
;
2526 struct inode
*inode
= page
->mapping
->host
;
2530 bh
= page_buffers(page
);
2531 idx
= offset
>> inode
->i_blkbits
;
2533 for (i
= 0; i
< idx
; i
++)
2534 bh
= bh
->b_this_page
;
2536 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2541 static int ext4_da_write_end(struct file
*file
,
2542 struct address_space
*mapping
,
2543 loff_t pos
, unsigned len
, unsigned copied
,
2544 struct page
*page
, void *fsdata
)
2546 struct inode
*inode
= mapping
->host
;
2548 handle_t
*handle
= ext4_journal_current_handle();
2550 unsigned long start
, end
;
2551 int write_mode
= (int)(unsigned long)fsdata
;
2553 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
2554 switch (ext4_inode_journal_mode(inode
)) {
2555 case EXT4_INODE_ORDERED_DATA_MODE
:
2556 return ext4_ordered_write_end(file
, mapping
, pos
,
2557 len
, copied
, page
, fsdata
);
2558 case EXT4_INODE_WRITEBACK_DATA_MODE
:
2559 return ext4_writeback_write_end(file
, mapping
, pos
,
2560 len
, copied
, page
, fsdata
);
2566 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2567 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2568 end
= start
+ copied
- 1;
2571 * generic_write_end() will run mark_inode_dirty() if i_size
2572 * changes. So let's piggyback the i_disksize mark_inode_dirty
2576 new_i_size
= pos
+ copied
;
2577 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2578 if (ext4_da_should_update_i_disksize(page
, end
)) {
2579 down_write(&EXT4_I(inode
)->i_data_sem
);
2580 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2582 * Updating i_disksize when extending file
2583 * without needing block allocation
2585 if (ext4_should_order_data(inode
))
2586 ret
= ext4_jbd2_file_inode(handle
,
2589 EXT4_I(inode
)->i_disksize
= new_i_size
;
2591 up_write(&EXT4_I(inode
)->i_data_sem
);
2592 /* We need to mark inode dirty even if
2593 * new_i_size is less that inode->i_size
2594 * bu greater than i_disksize.(hint delalloc)
2596 ext4_mark_inode_dirty(handle
, inode
);
2599 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2604 ret2
= ext4_journal_stop(handle
);
2608 return ret
? ret
: copied
;
2611 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2614 * Drop reserved blocks
2616 BUG_ON(!PageLocked(page
));
2617 if (!page_has_buffers(page
))
2620 ext4_da_page_release_reservation(page
, offset
);
2623 ext4_invalidatepage(page
, offset
);
2629 * Force all delayed allocation blocks to be allocated for a given inode.
2631 int ext4_alloc_da_blocks(struct inode
*inode
)
2633 trace_ext4_alloc_da_blocks(inode
);
2635 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2636 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2640 * We do something simple for now. The filemap_flush() will
2641 * also start triggering a write of the data blocks, which is
2642 * not strictly speaking necessary (and for users of
2643 * laptop_mode, not even desirable). However, to do otherwise
2644 * would require replicating code paths in:
2646 * ext4_da_writepages() ->
2647 * write_cache_pages() ---> (via passed in callback function)
2648 * __mpage_da_writepage() -->
2649 * mpage_add_bh_to_extent()
2650 * mpage_da_map_blocks()
2652 * The problem is that write_cache_pages(), located in
2653 * mm/page-writeback.c, marks pages clean in preparation for
2654 * doing I/O, which is not desirable if we're not planning on
2657 * We could call write_cache_pages(), and then redirty all of
2658 * the pages by calling redirty_page_for_writepage() but that
2659 * would be ugly in the extreme. So instead we would need to
2660 * replicate parts of the code in the above functions,
2661 * simplifying them because we wouldn't actually intend to
2662 * write out the pages, but rather only collect contiguous
2663 * logical block extents, call the multi-block allocator, and
2664 * then update the buffer heads with the block allocations.
2666 * For now, though, we'll cheat by calling filemap_flush(),
2667 * which will map the blocks, and start the I/O, but not
2668 * actually wait for the I/O to complete.
2670 return filemap_flush(inode
->i_mapping
);
2674 * bmap() is special. It gets used by applications such as lilo and by
2675 * the swapper to find the on-disk block of a specific piece of data.
2677 * Naturally, this is dangerous if the block concerned is still in the
2678 * journal. If somebody makes a swapfile on an ext4 data-journaling
2679 * filesystem and enables swap, then they may get a nasty shock when the
2680 * data getting swapped to that swapfile suddenly gets overwritten by
2681 * the original zero's written out previously to the journal and
2682 * awaiting writeback in the kernel's buffer cache.
2684 * So, if we see any bmap calls here on a modified, data-journaled file,
2685 * take extra steps to flush any blocks which might be in the cache.
2687 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2689 struct inode
*inode
= mapping
->host
;
2693 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2694 test_opt(inode
->i_sb
, DELALLOC
)) {
2696 * With delalloc we want to sync the file
2697 * so that we can make sure we allocate
2700 filemap_write_and_wait(mapping
);
2703 if (EXT4_JOURNAL(inode
) &&
2704 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2706 * This is a REALLY heavyweight approach, but the use of
2707 * bmap on dirty files is expected to be extremely rare:
2708 * only if we run lilo or swapon on a freshly made file
2709 * do we expect this to happen.
2711 * (bmap requires CAP_SYS_RAWIO so this does not
2712 * represent an unprivileged user DOS attack --- we'd be
2713 * in trouble if mortal users could trigger this path at
2716 * NB. EXT4_STATE_JDATA is not set on files other than
2717 * regular files. If somebody wants to bmap a directory
2718 * or symlink and gets confused because the buffer
2719 * hasn't yet been flushed to disk, they deserve
2720 * everything they get.
2723 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2724 journal
= EXT4_JOURNAL(inode
);
2725 jbd2_journal_lock_updates(journal
);
2726 err
= jbd2_journal_flush(journal
);
2727 jbd2_journal_unlock_updates(journal
);
2733 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2736 static int ext4_readpage(struct file
*file
, struct page
*page
)
2738 trace_ext4_readpage(page
);
2739 return mpage_readpage(page
, ext4_get_block
);
2743 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2744 struct list_head
*pages
, unsigned nr_pages
)
2746 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2749 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
2751 struct buffer_head
*head
, *bh
;
2752 unsigned int curr_off
= 0;
2754 if (!page_has_buffers(page
))
2756 head
= bh
= page_buffers(page
);
2758 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
2760 ext4_free_io_end(bh
->b_private
);
2761 bh
->b_private
= NULL
;
2762 bh
->b_end_io
= NULL
;
2764 curr_off
= curr_off
+ bh
->b_size
;
2765 bh
= bh
->b_this_page
;
2766 } while (bh
!= head
);
2769 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
2771 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2773 trace_ext4_invalidatepage(page
, offset
);
2776 * free any io_end structure allocated for buffers to be discarded
2778 if (ext4_should_dioread_nolock(page
->mapping
->host
))
2779 ext4_invalidatepage_free_endio(page
, offset
);
2781 * If it's a full truncate we just forget about the pending dirtying
2784 ClearPageChecked(page
);
2787 jbd2_journal_invalidatepage(journal
, page
, offset
);
2789 block_invalidatepage(page
, offset
);
2792 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2794 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2796 trace_ext4_releasepage(page
);
2798 WARN_ON(PageChecked(page
));
2799 if (!page_has_buffers(page
))
2802 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2804 return try_to_free_buffers(page
);
2808 * ext4_get_block used when preparing for a DIO write or buffer write.
2809 * We allocate an uinitialized extent if blocks haven't been allocated.
2810 * The extent will be converted to initialized after the IO is complete.
2812 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
2813 struct buffer_head
*bh_result
, int create
)
2815 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2816 inode
->i_ino
, create
);
2817 return _ext4_get_block(inode
, iblock
, bh_result
,
2818 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
2821 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
2822 ssize_t size
, void *private, int ret
,
2825 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2826 ext4_io_end_t
*io_end
= iocb
->private;
2827 struct workqueue_struct
*wq
;
2828 unsigned long flags
;
2829 struct ext4_inode_info
*ei
;
2831 /* if not async direct IO or dio with 0 bytes write, just return */
2832 if (!io_end
|| !size
)
2835 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2836 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2837 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
2840 iocb
->private = NULL
;
2842 /* if not aio dio with unwritten extents, just free io and return */
2843 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2844 ext4_free_io_end(io_end
);
2847 aio_complete(iocb
, ret
, 0);
2848 inode_dio_done(inode
);
2852 io_end
->offset
= offset
;
2853 io_end
->size
= size
;
2855 io_end
->iocb
= iocb
;
2856 io_end
->result
= ret
;
2858 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
2860 /* Add the io_end to per-inode completed aio dio list*/
2861 ei
= EXT4_I(io_end
->inode
);
2862 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
2863 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
2864 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
2866 /* queue the work to convert unwritten extents to written */
2867 queue_work(wq
, &io_end
->work
);
2870 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
2872 ext4_io_end_t
*io_end
= bh
->b_private
;
2873 struct workqueue_struct
*wq
;
2874 struct inode
*inode
;
2875 unsigned long flags
;
2877 if (!test_clear_buffer_uninit(bh
) || !io_end
)
2880 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
2881 ext4_msg(io_end
->inode
->i_sb
, KERN_INFO
,
2882 "sb umounted, discard end_io request for inode %lu",
2883 io_end
->inode
->i_ino
);
2884 ext4_free_io_end(io_end
);
2889 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2890 * but being more careful is always safe for the future change.
2892 inode
= io_end
->inode
;
2893 ext4_set_io_unwritten_flag(inode
, io_end
);
2895 /* Add the io_end to per-inode completed io list*/
2896 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2897 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
2898 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2900 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
2901 /* queue the work to convert unwritten extents to written */
2902 queue_work(wq
, &io_end
->work
);
2904 bh
->b_private
= NULL
;
2905 bh
->b_end_io
= NULL
;
2906 clear_buffer_uninit(bh
);
2907 end_buffer_async_write(bh
, uptodate
);
2910 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
2912 ext4_io_end_t
*io_end
;
2913 struct page
*page
= bh
->b_page
;
2914 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2915 size_t size
= bh
->b_size
;
2918 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
2920 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
2924 io_end
->offset
= offset
;
2925 io_end
->size
= size
;
2927 * We need to hold a reference to the page to make sure it
2928 * doesn't get evicted before ext4_end_io_work() has a chance
2929 * to convert the extent from written to unwritten.
2931 io_end
->page
= page
;
2932 get_page(io_end
->page
);
2934 bh
->b_private
= io_end
;
2935 bh
->b_end_io
= ext4_end_io_buffer_write
;
2940 * For ext4 extent files, ext4 will do direct-io write to holes,
2941 * preallocated extents, and those write extend the file, no need to
2942 * fall back to buffered IO.
2944 * For holes, we fallocate those blocks, mark them as uninitialized
2945 * If those blocks were preallocated, we mark sure they are splited, but
2946 * still keep the range to write as uninitialized.
2948 * The unwrritten extents will be converted to written when DIO is completed.
2949 * For async direct IO, since the IO may still pending when return, we
2950 * set up an end_io call back function, which will do the conversion
2951 * when async direct IO completed.
2953 * If the O_DIRECT write will extend the file then add this inode to the
2954 * orphan list. So recovery will truncate it back to the original size
2955 * if the machine crashes during the write.
2958 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
2959 const struct iovec
*iov
, loff_t offset
,
2960 unsigned long nr_segs
)
2962 struct file
*file
= iocb
->ki_filp
;
2963 struct inode
*inode
= file
->f_mapping
->host
;
2965 size_t count
= iov_length(iov
, nr_segs
);
2967 loff_t final_size
= offset
+ count
;
2968 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
2970 * We could direct write to holes and fallocate.
2972 * Allocated blocks to fill the hole are marked as uninitialized
2973 * to prevent parallel buffered read to expose the stale data
2974 * before DIO complete the data IO.
2976 * As to previously fallocated extents, ext4 get_block
2977 * will just simply mark the buffer mapped but still
2978 * keep the extents uninitialized.
2980 * for non AIO case, we will convert those unwritten extents
2981 * to written after return back from blockdev_direct_IO.
2983 * for async DIO, the conversion needs to be defered when
2984 * the IO is completed. The ext4 end_io callback function
2985 * will be called to take care of the conversion work.
2986 * Here for async case, we allocate an io_end structure to
2989 iocb
->private = NULL
;
2990 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2991 if (!is_sync_kiocb(iocb
)) {
2992 ext4_io_end_t
*io_end
=
2993 ext4_init_io_end(inode
, GFP_NOFS
);
2996 io_end
->flag
|= EXT4_IO_END_DIRECT
;
2997 iocb
->private = io_end
;
2999 * we save the io structure for current async
3000 * direct IO, so that later ext4_map_blocks()
3001 * could flag the io structure whether there
3002 * is a unwritten extents needs to be converted
3003 * when IO is completed.
3005 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3008 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3009 inode
->i_sb
->s_bdev
, iov
,
3011 ext4_get_block_write
,
3016 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3018 * The io_end structure takes a reference to the inode,
3019 * that structure needs to be destroyed and the
3020 * reference to the inode need to be dropped, when IO is
3021 * complete, even with 0 byte write, or failed.
3023 * In the successful AIO DIO case, the io_end structure will be
3024 * desctroyed and the reference to the inode will be dropped
3025 * after the end_io call back function is called.
3027 * In the case there is 0 byte write, or error case, since
3028 * VFS direct IO won't invoke the end_io call back function,
3029 * we need to free the end_io structure here.
3031 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3032 ext4_free_io_end(iocb
->private);
3033 iocb
->private = NULL
;
3034 } else if (ret
> 0 && ext4_test_inode_state(inode
,
3035 EXT4_STATE_DIO_UNWRITTEN
)) {
3038 * for non AIO case, since the IO is already
3039 * completed, we could do the conversion right here
3041 err
= ext4_convert_unwritten_extents(inode
,
3045 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3050 /* for write the the end of file case, we fall back to old way */
3051 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3054 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3055 const struct iovec
*iov
, loff_t offset
,
3056 unsigned long nr_segs
)
3058 struct file
*file
= iocb
->ki_filp
;
3059 struct inode
*inode
= file
->f_mapping
->host
;
3063 * If we are doing data journalling we don't support O_DIRECT
3065 if (ext4_should_journal_data(inode
))
3068 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3069 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3070 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3072 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3073 trace_ext4_direct_IO_exit(inode
, offset
,
3074 iov_length(iov
, nr_segs
), rw
, ret
);
3079 * Pages can be marked dirty completely asynchronously from ext4's journalling
3080 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3081 * much here because ->set_page_dirty is called under VFS locks. The page is
3082 * not necessarily locked.
3084 * We cannot just dirty the page and leave attached buffers clean, because the
3085 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3086 * or jbddirty because all the journalling code will explode.
3088 * So what we do is to mark the page "pending dirty" and next time writepage
3089 * is called, propagate that into the buffers appropriately.
3091 static int ext4_journalled_set_page_dirty(struct page
*page
)
3093 SetPageChecked(page
);
3094 return __set_page_dirty_nobuffers(page
);
3097 static const struct address_space_operations ext4_ordered_aops
= {
3098 .readpage
= ext4_readpage
,
3099 .readpages
= ext4_readpages
,
3100 .writepage
= ext4_writepage
,
3101 .write_begin
= ext4_write_begin
,
3102 .write_end
= ext4_ordered_write_end
,
3104 .invalidatepage
= ext4_invalidatepage
,
3105 .releasepage
= ext4_releasepage
,
3106 .direct_IO
= ext4_direct_IO
,
3107 .migratepage
= buffer_migrate_page
,
3108 .is_partially_uptodate
= block_is_partially_uptodate
,
3109 .error_remove_page
= generic_error_remove_page
,
3112 static const struct address_space_operations ext4_writeback_aops
= {
3113 .readpage
= ext4_readpage
,
3114 .readpages
= ext4_readpages
,
3115 .writepage
= ext4_writepage
,
3116 .write_begin
= ext4_write_begin
,
3117 .write_end
= ext4_writeback_write_end
,
3119 .invalidatepage
= ext4_invalidatepage
,
3120 .releasepage
= ext4_releasepage
,
3121 .direct_IO
= ext4_direct_IO
,
3122 .migratepage
= buffer_migrate_page
,
3123 .is_partially_uptodate
= block_is_partially_uptodate
,
3124 .error_remove_page
= generic_error_remove_page
,
3127 static const struct address_space_operations ext4_journalled_aops
= {
3128 .readpage
= ext4_readpage
,
3129 .readpages
= ext4_readpages
,
3130 .writepage
= ext4_writepage
,
3131 .write_begin
= ext4_write_begin
,
3132 .write_end
= ext4_journalled_write_end
,
3133 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3135 .invalidatepage
= ext4_invalidatepage
,
3136 .releasepage
= ext4_releasepage
,
3137 .direct_IO
= ext4_direct_IO
,
3138 .is_partially_uptodate
= block_is_partially_uptodate
,
3139 .error_remove_page
= generic_error_remove_page
,
3142 static const struct address_space_operations ext4_da_aops
= {
3143 .readpage
= ext4_readpage
,
3144 .readpages
= ext4_readpages
,
3145 .writepage
= ext4_writepage
,
3146 .writepages
= ext4_da_writepages
,
3147 .write_begin
= ext4_da_write_begin
,
3148 .write_end
= ext4_da_write_end
,
3150 .invalidatepage
= ext4_da_invalidatepage
,
3151 .releasepage
= ext4_releasepage
,
3152 .direct_IO
= ext4_direct_IO
,
3153 .migratepage
= buffer_migrate_page
,
3154 .is_partially_uptodate
= block_is_partially_uptodate
,
3155 .error_remove_page
= generic_error_remove_page
,
3158 void ext4_set_aops(struct inode
*inode
)
3160 switch (ext4_inode_journal_mode(inode
)) {
3161 case EXT4_INODE_ORDERED_DATA_MODE
:
3162 if (test_opt(inode
->i_sb
, DELALLOC
))
3163 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3165 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3167 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3168 if (test_opt(inode
->i_sb
, DELALLOC
))
3169 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3171 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3173 case EXT4_INODE_JOURNAL_DATA_MODE
:
3174 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3183 * ext4_discard_partial_page_buffers()
3184 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3185 * This function finds and locks the page containing the offset
3186 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3187 * Calling functions that already have the page locked should call
3188 * ext4_discard_partial_page_buffers_no_lock directly.
3190 int ext4_discard_partial_page_buffers(handle_t
*handle
,
3191 struct address_space
*mapping
, loff_t from
,
3192 loff_t length
, int flags
)
3194 struct inode
*inode
= mapping
->host
;
3198 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3199 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3203 err
= ext4_discard_partial_page_buffers_no_lock(handle
, inode
, page
,
3204 from
, length
, flags
);
3207 page_cache_release(page
);
3212 * ext4_discard_partial_page_buffers_no_lock()
3213 * Zeros a page range of length 'length' starting from offset 'from'.
3214 * Buffer heads that correspond to the block aligned regions of the
3215 * zeroed range will be unmapped. Unblock aligned regions
3216 * will have the corresponding buffer head mapped if needed so that
3217 * that region of the page can be updated with the partial zero out.
3219 * This function assumes that the page has already been locked. The
3220 * The range to be discarded must be contained with in the given page.
3221 * If the specified range exceeds the end of the page it will be shortened
3222 * to the end of the page that corresponds to 'from'. This function is
3223 * appropriate for updating a page and it buffer heads to be unmapped and
3224 * zeroed for blocks that have been either released, or are going to be
3227 * handle: The journal handle
3228 * inode: The files inode
3229 * page: A locked page that contains the offset "from"
3230 * from: The starting byte offset (from the begining of the file)
3231 * to begin discarding
3232 * len: The length of bytes to discard
3233 * flags: Optional flags that may be used:
3235 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3236 * Only zero the regions of the page whose buffer heads
3237 * have already been unmapped. This flag is appropriate
3238 * for updateing the contents of a page whose blocks may
3239 * have already been released, and we only want to zero
3240 * out the regions that correspond to those released blocks.
3242 * Returns zero on sucess or negative on failure.
3244 static int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
3245 struct inode
*inode
, struct page
*page
, loff_t from
,
3246 loff_t length
, int flags
)
3248 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3249 unsigned int offset
= from
& (PAGE_CACHE_SIZE
-1);
3250 unsigned int blocksize
, max
, pos
;
3252 struct buffer_head
*bh
;
3255 blocksize
= inode
->i_sb
->s_blocksize
;
3256 max
= PAGE_CACHE_SIZE
- offset
;
3258 if (index
!= page
->index
)
3262 * correct length if it does not fall between
3263 * 'from' and the end of the page
3265 if (length
> max
|| length
< 0)
3268 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3270 if (!page_has_buffers(page
))
3271 create_empty_buffers(page
, blocksize
, 0);
3273 /* Find the buffer that contains "offset" */
3274 bh
= page_buffers(page
);
3276 while (offset
>= pos
) {
3277 bh
= bh
->b_this_page
;
3283 while (pos
< offset
+ length
) {
3284 unsigned int end_of_block
, range_to_discard
;
3288 /* The length of space left to zero and unmap */
3289 range_to_discard
= offset
+ length
- pos
;
3291 /* The length of space until the end of the block */
3292 end_of_block
= blocksize
- (pos
& (blocksize
-1));
3295 * Do not unmap or zero past end of block
3296 * for this buffer head
3298 if (range_to_discard
> end_of_block
)
3299 range_to_discard
= end_of_block
;
3303 * Skip this buffer head if we are only zeroing unampped
3304 * regions of the page
3306 if (flags
& EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
&&
3310 /* If the range is block aligned, unmap */
3311 if (range_to_discard
== blocksize
) {
3312 clear_buffer_dirty(bh
);
3314 clear_buffer_mapped(bh
);
3315 clear_buffer_req(bh
);
3316 clear_buffer_new(bh
);
3317 clear_buffer_delay(bh
);
3318 clear_buffer_unwritten(bh
);
3319 clear_buffer_uptodate(bh
);
3320 zero_user(page
, pos
, range_to_discard
);
3321 BUFFER_TRACE(bh
, "Buffer discarded");
3326 * If this block is not completely contained in the range
3327 * to be discarded, then it is not going to be released. Because
3328 * we need to keep this block, we need to make sure this part
3329 * of the page is uptodate before we modify it by writeing
3330 * partial zeros on it.
3332 if (!buffer_mapped(bh
)) {
3334 * Buffer head must be mapped before we can read
3337 BUFFER_TRACE(bh
, "unmapped");
3338 ext4_get_block(inode
, iblock
, bh
, 0);
3339 /* unmapped? It's a hole - nothing to do */
3340 if (!buffer_mapped(bh
)) {
3341 BUFFER_TRACE(bh
, "still unmapped");
3346 /* Ok, it's mapped. Make sure it's up-to-date */
3347 if (PageUptodate(page
))
3348 set_buffer_uptodate(bh
);
3350 if (!buffer_uptodate(bh
)) {
3352 ll_rw_block(READ
, 1, &bh
);
3354 /* Uhhuh. Read error. Complain and punt.*/
3355 if (!buffer_uptodate(bh
))
3359 if (ext4_should_journal_data(inode
)) {
3360 BUFFER_TRACE(bh
, "get write access");
3361 err
= ext4_journal_get_write_access(handle
, bh
);
3366 zero_user(page
, pos
, range_to_discard
);
3369 if (ext4_should_journal_data(inode
)) {
3370 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3372 mark_buffer_dirty(bh
);
3374 BUFFER_TRACE(bh
, "Partial buffer zeroed");
3376 bh
= bh
->b_this_page
;
3378 pos
+= range_to_discard
;
3384 int ext4_can_truncate(struct inode
*inode
)
3386 if (S_ISREG(inode
->i_mode
))
3388 if (S_ISDIR(inode
->i_mode
))
3390 if (S_ISLNK(inode
->i_mode
))
3391 return !ext4_inode_is_fast_symlink(inode
);
3396 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3397 * associated with the given offset and length
3399 * @inode: File inode
3400 * @offset: The offset where the hole will begin
3401 * @len: The length of the hole
3403 * Returns: 0 on sucess or negative on failure
3406 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3408 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
3409 if (!S_ISREG(inode
->i_mode
))
3412 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3413 /* TODO: Add support for non extent hole punching */
3417 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) {
3418 /* TODO: Add support for bigalloc file systems */
3422 return ext4_ext_punch_hole(file
, offset
, length
);
3428 * We block out ext4_get_block() block instantiations across the entire
3429 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3430 * simultaneously on behalf of the same inode.
3432 * As we work through the truncate and commit bits of it to the journal there
3433 * is one core, guiding principle: the file's tree must always be consistent on
3434 * disk. We must be able to restart the truncate after a crash.
3436 * The file's tree may be transiently inconsistent in memory (although it
3437 * probably isn't), but whenever we close off and commit a journal transaction,
3438 * the contents of (the filesystem + the journal) must be consistent and
3439 * restartable. It's pretty simple, really: bottom up, right to left (although
3440 * left-to-right works OK too).
3442 * Note that at recovery time, journal replay occurs *before* the restart of
3443 * truncate against the orphan inode list.
3445 * The committed inode has the new, desired i_size (which is the same as
3446 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3447 * that this inode's truncate did not complete and it will again call
3448 * ext4_truncate() to have another go. So there will be instantiated blocks
3449 * to the right of the truncation point in a crashed ext4 filesystem. But
3450 * that's fine - as long as they are linked from the inode, the post-crash
3451 * ext4_truncate() run will find them and release them.
3453 void ext4_truncate(struct inode
*inode
)
3455 trace_ext4_truncate_enter(inode
);
3457 if (!ext4_can_truncate(inode
))
3460 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3462 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3463 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3465 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3466 ext4_ext_truncate(inode
);
3468 ext4_ind_truncate(inode
);
3470 trace_ext4_truncate_exit(inode
);
3474 * ext4_get_inode_loc returns with an extra refcount against the inode's
3475 * underlying buffer_head on success. If 'in_mem' is true, we have all
3476 * data in memory that is needed to recreate the on-disk version of this
3479 static int __ext4_get_inode_loc(struct inode
*inode
,
3480 struct ext4_iloc
*iloc
, int in_mem
)
3482 struct ext4_group_desc
*gdp
;
3483 struct buffer_head
*bh
;
3484 struct super_block
*sb
= inode
->i_sb
;
3486 int inodes_per_block
, inode_offset
;
3489 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3492 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3493 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3498 * Figure out the offset within the block group inode table
3500 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3501 inode_offset
= ((inode
->i_ino
- 1) %
3502 EXT4_INODES_PER_GROUP(sb
));
3503 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3504 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3506 bh
= sb_getblk(sb
, block
);
3508 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3509 "unable to read itable block");
3512 if (!buffer_uptodate(bh
)) {
3516 * If the buffer has the write error flag, we have failed
3517 * to write out another inode in the same block. In this
3518 * case, we don't have to read the block because we may
3519 * read the old inode data successfully.
3521 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3522 set_buffer_uptodate(bh
);
3524 if (buffer_uptodate(bh
)) {
3525 /* someone brought it uptodate while we waited */
3531 * If we have all information of the inode in memory and this
3532 * is the only valid inode in the block, we need not read the
3536 struct buffer_head
*bitmap_bh
;
3539 start
= inode_offset
& ~(inodes_per_block
- 1);
3541 /* Is the inode bitmap in cache? */
3542 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3547 * If the inode bitmap isn't in cache then the
3548 * optimisation may end up performing two reads instead
3549 * of one, so skip it.
3551 if (!buffer_uptodate(bitmap_bh
)) {
3555 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3556 if (i
== inode_offset
)
3558 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3562 if (i
== start
+ inodes_per_block
) {
3563 /* all other inodes are free, so skip I/O */
3564 memset(bh
->b_data
, 0, bh
->b_size
);
3565 set_buffer_uptodate(bh
);
3573 * If we need to do any I/O, try to pre-readahead extra
3574 * blocks from the inode table.
3576 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3577 ext4_fsblk_t b
, end
, table
;
3580 table
= ext4_inode_table(sb
, gdp
);
3581 /* s_inode_readahead_blks is always a power of 2 */
3582 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
3585 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
3586 num
= EXT4_INODES_PER_GROUP(sb
);
3587 if (ext4_has_group_desc_csum(sb
))
3588 num
-= ext4_itable_unused_count(sb
, gdp
);
3589 table
+= num
/ inodes_per_block
;
3593 sb_breadahead(sb
, b
++);
3597 * There are other valid inodes in the buffer, this inode
3598 * has in-inode xattrs, or we don't have this inode in memory.
3599 * Read the block from disk.
3601 trace_ext4_load_inode(inode
);
3603 bh
->b_end_io
= end_buffer_read_sync
;
3604 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3606 if (!buffer_uptodate(bh
)) {
3607 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3608 "unable to read itable block");
3618 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3620 /* We have all inode data except xattrs in memory here. */
3621 return __ext4_get_inode_loc(inode
, iloc
,
3622 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3625 void ext4_set_inode_flags(struct inode
*inode
)
3627 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3629 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3630 if (flags
& EXT4_SYNC_FL
)
3631 inode
->i_flags
|= S_SYNC
;
3632 if (flags
& EXT4_APPEND_FL
)
3633 inode
->i_flags
|= S_APPEND
;
3634 if (flags
& EXT4_IMMUTABLE_FL
)
3635 inode
->i_flags
|= S_IMMUTABLE
;
3636 if (flags
& EXT4_NOATIME_FL
)
3637 inode
->i_flags
|= S_NOATIME
;
3638 if (flags
& EXT4_DIRSYNC_FL
)
3639 inode
->i_flags
|= S_DIRSYNC
;
3642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3643 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3645 unsigned int vfs_fl
;
3646 unsigned long old_fl
, new_fl
;
3649 vfs_fl
= ei
->vfs_inode
.i_flags
;
3650 old_fl
= ei
->i_flags
;
3651 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3652 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3654 if (vfs_fl
& S_SYNC
)
3655 new_fl
|= EXT4_SYNC_FL
;
3656 if (vfs_fl
& S_APPEND
)
3657 new_fl
|= EXT4_APPEND_FL
;
3658 if (vfs_fl
& S_IMMUTABLE
)
3659 new_fl
|= EXT4_IMMUTABLE_FL
;
3660 if (vfs_fl
& S_NOATIME
)
3661 new_fl
|= EXT4_NOATIME_FL
;
3662 if (vfs_fl
& S_DIRSYNC
)
3663 new_fl
|= EXT4_DIRSYNC_FL
;
3664 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3667 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3668 struct ext4_inode_info
*ei
)
3671 struct inode
*inode
= &(ei
->vfs_inode
);
3672 struct super_block
*sb
= inode
->i_sb
;
3674 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3675 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3676 /* we are using combined 48 bit field */
3677 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3678 le32_to_cpu(raw_inode
->i_blocks_lo
);
3679 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3680 /* i_blocks represent file system block size */
3681 return i_blocks
<< (inode
->i_blkbits
- 9);
3686 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3690 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3692 struct ext4_iloc iloc
;
3693 struct ext4_inode
*raw_inode
;
3694 struct ext4_inode_info
*ei
;
3695 struct inode
*inode
;
3696 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
3702 inode
= iget_locked(sb
, ino
);
3704 return ERR_PTR(-ENOMEM
);
3705 if (!(inode
->i_state
& I_NEW
))
3711 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3714 raw_inode
= ext4_raw_inode(&iloc
);
3716 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3717 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3718 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3719 EXT4_INODE_SIZE(inode
->i_sb
)) {
3720 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
3721 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
3722 EXT4_INODE_SIZE(inode
->i_sb
));
3727 ei
->i_extra_isize
= 0;
3729 /* Precompute checksum seed for inode metadata */
3730 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3731 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
)) {
3732 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3734 __le32 inum
= cpu_to_le32(inode
->i_ino
);
3735 __le32 gen
= raw_inode
->i_generation
;
3736 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
3738 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
3742 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
3743 EXT4_ERROR_INODE(inode
, "checksum invalid");
3748 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3749 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3750 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3751 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3752 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3753 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3755 i_uid_write(inode
, i_uid
);
3756 i_gid_write(inode
, i_gid
);
3757 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
3759 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
3760 ei
->i_dir_start_lookup
= 0;
3761 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3762 /* We now have enough fields to check if the inode was active or not.
3763 * This is needed because nfsd might try to access dead inodes
3764 * the test is that same one that e2fsck uses
3765 * NeilBrown 1999oct15
3767 if (inode
->i_nlink
== 0) {
3768 if (inode
->i_mode
== 0 ||
3769 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
3770 /* this inode is deleted */
3774 /* The only unlinked inodes we let through here have
3775 * valid i_mode and are being read by the orphan
3776 * recovery code: that's fine, we're about to complete
3777 * the process of deleting those. */
3779 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3780 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3781 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3782 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
3784 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3785 inode
->i_size
= ext4_isize(raw_inode
);
3786 ei
->i_disksize
= inode
->i_size
;
3788 ei
->i_reserved_quota
= 0;
3790 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3791 ei
->i_block_group
= iloc
.block_group
;
3792 ei
->i_last_alloc_group
= ~0;
3794 * NOTE! The in-memory inode i_data array is in little-endian order
3795 * even on big-endian machines: we do NOT byteswap the block numbers!
3797 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3798 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
3799 INIT_LIST_HEAD(&ei
->i_orphan
);
3802 * Set transaction id's of transactions that have to be committed
3803 * to finish f[data]sync. We set them to currently running transaction
3804 * as we cannot be sure that the inode or some of its metadata isn't
3805 * part of the transaction - the inode could have been reclaimed and
3806 * now it is reread from disk.
3809 transaction_t
*transaction
;
3812 read_lock(&journal
->j_state_lock
);
3813 if (journal
->j_running_transaction
)
3814 transaction
= journal
->j_running_transaction
;
3816 transaction
= journal
->j_committing_transaction
;
3818 tid
= transaction
->t_tid
;
3820 tid
= journal
->j_commit_sequence
;
3821 read_unlock(&journal
->j_state_lock
);
3822 ei
->i_sync_tid
= tid
;
3823 ei
->i_datasync_tid
= tid
;
3826 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3827 if (ei
->i_extra_isize
== 0) {
3828 /* The extra space is currently unused. Use it. */
3829 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
3830 EXT4_GOOD_OLD_INODE_SIZE
;
3832 __le32
*magic
= (void *)raw_inode
+
3833 EXT4_GOOD_OLD_INODE_SIZE
+
3835 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
3836 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
3840 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
3841 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
3842 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
3843 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
3845 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
3846 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3847 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3849 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
3853 if (ei
->i_file_acl
&&
3854 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
3855 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
3859 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3860 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3861 (S_ISLNK(inode
->i_mode
) &&
3862 !ext4_inode_is_fast_symlink(inode
)))
3863 /* Validate extent which is part of inode */
3864 ret
= ext4_ext_check_inode(inode
);
3865 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3866 (S_ISLNK(inode
->i_mode
) &&
3867 !ext4_inode_is_fast_symlink(inode
))) {
3868 /* Validate block references which are part of inode */
3869 ret
= ext4_ind_check_inode(inode
);
3874 if (S_ISREG(inode
->i_mode
)) {
3875 inode
->i_op
= &ext4_file_inode_operations
;
3876 inode
->i_fop
= &ext4_file_operations
;
3877 ext4_set_aops(inode
);
3878 } else if (S_ISDIR(inode
->i_mode
)) {
3879 inode
->i_op
= &ext4_dir_inode_operations
;
3880 inode
->i_fop
= &ext4_dir_operations
;
3881 } else if (S_ISLNK(inode
->i_mode
)) {
3882 if (ext4_inode_is_fast_symlink(inode
)) {
3883 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
3884 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3885 sizeof(ei
->i_data
) - 1);
3887 inode
->i_op
= &ext4_symlink_inode_operations
;
3888 ext4_set_aops(inode
);
3890 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
3891 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
3892 inode
->i_op
= &ext4_special_inode_operations
;
3893 if (raw_inode
->i_block
[0])
3894 init_special_inode(inode
, inode
->i_mode
,
3895 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3897 init_special_inode(inode
, inode
->i_mode
,
3898 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3901 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
3905 ext4_set_inode_flags(inode
);
3906 unlock_new_inode(inode
);
3912 return ERR_PTR(ret
);
3915 static int ext4_inode_blocks_set(handle_t
*handle
,
3916 struct ext4_inode
*raw_inode
,
3917 struct ext4_inode_info
*ei
)
3919 struct inode
*inode
= &(ei
->vfs_inode
);
3920 u64 i_blocks
= inode
->i_blocks
;
3921 struct super_block
*sb
= inode
->i_sb
;
3923 if (i_blocks
<= ~0U) {
3925 * i_blocks can be represnted in a 32 bit variable
3926 * as multiple of 512 bytes
3928 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3929 raw_inode
->i_blocks_high
= 0;
3930 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3933 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
3936 if (i_blocks
<= 0xffffffffffffULL
) {
3938 * i_blocks can be represented in a 48 bit variable
3939 * as multiple of 512 bytes
3941 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3942 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3943 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3945 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3946 /* i_block is stored in file system block size */
3947 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
3948 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3949 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3955 * Post the struct inode info into an on-disk inode location in the
3956 * buffer-cache. This gobbles the caller's reference to the
3957 * buffer_head in the inode location struct.
3959 * The caller must have write access to iloc->bh.
3961 static int ext4_do_update_inode(handle_t
*handle
,
3962 struct inode
*inode
,
3963 struct ext4_iloc
*iloc
)
3965 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
3966 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3967 struct buffer_head
*bh
= iloc
->bh
;
3968 int err
= 0, rc
, block
;
3972 /* For fields not not tracking in the in-memory inode,
3973 * initialise them to zero for new inodes. */
3974 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
3975 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
3977 ext4_get_inode_flags(ei
);
3978 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3979 i_uid
= i_uid_read(inode
);
3980 i_gid
= i_gid_read(inode
);
3981 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3982 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
3983 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
3985 * Fix up interoperability with old kernels. Otherwise, old inodes get
3986 * re-used with the upper 16 bits of the uid/gid intact
3989 raw_inode
->i_uid_high
=
3990 cpu_to_le16(high_16_bits(i_uid
));
3991 raw_inode
->i_gid_high
=
3992 cpu_to_le16(high_16_bits(i_gid
));
3994 raw_inode
->i_uid_high
= 0;
3995 raw_inode
->i_gid_high
= 0;
3998 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
3999 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4000 raw_inode
->i_uid_high
= 0;
4001 raw_inode
->i_gid_high
= 0;
4003 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4005 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4006 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4007 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4008 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4010 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4012 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4013 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4014 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4015 cpu_to_le32(EXT4_OS_HURD
))
4016 raw_inode
->i_file_acl_high
=
4017 cpu_to_le16(ei
->i_file_acl
>> 32);
4018 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4019 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4020 if (ei
->i_disksize
> 0x7fffffffULL
) {
4021 struct super_block
*sb
= inode
->i_sb
;
4022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4023 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4024 EXT4_SB(sb
)->s_es
->s_rev_level
==
4025 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4026 /* If this is the first large file
4027 * created, add a flag to the superblock.
4029 err
= ext4_journal_get_write_access(handle
,
4030 EXT4_SB(sb
)->s_sbh
);
4033 ext4_update_dynamic_rev(sb
);
4034 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4035 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4036 ext4_handle_sync(handle
);
4037 err
= ext4_handle_dirty_super_now(handle
, sb
);
4040 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4041 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4042 if (old_valid_dev(inode
->i_rdev
)) {
4043 raw_inode
->i_block
[0] =
4044 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4045 raw_inode
->i_block
[1] = 0;
4047 raw_inode
->i_block
[0] = 0;
4048 raw_inode
->i_block
[1] =
4049 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4050 raw_inode
->i_block
[2] = 0;
4053 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4054 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4056 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4057 if (ei
->i_extra_isize
) {
4058 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4059 raw_inode
->i_version_hi
=
4060 cpu_to_le32(inode
->i_version
>> 32);
4061 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4064 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4066 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4067 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4070 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4072 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4075 ext4_std_error(inode
->i_sb
, err
);
4080 * ext4_write_inode()
4082 * We are called from a few places:
4084 * - Within generic_file_write() for O_SYNC files.
4085 * Here, there will be no transaction running. We wait for any running
4086 * trasnaction to commit.
4088 * - Within sys_sync(), kupdate and such.
4089 * We wait on commit, if tol to.
4091 * - Within prune_icache() (PF_MEMALLOC == true)
4092 * Here we simply return. We can't afford to block kswapd on the
4095 * In all cases it is actually safe for us to return without doing anything,
4096 * because the inode has been copied into a raw inode buffer in
4097 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4100 * Note that we are absolutely dependent upon all inode dirtiers doing the
4101 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4102 * which we are interested.
4104 * It would be a bug for them to not do this. The code:
4106 * mark_inode_dirty(inode)
4108 * inode->i_size = expr;
4110 * is in error because a kswapd-driven write_inode() could occur while
4111 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4112 * will no longer be on the superblock's dirty inode list.
4114 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4118 if (current
->flags
& PF_MEMALLOC
)
4121 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4122 if (ext4_journal_current_handle()) {
4123 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4128 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
4131 err
= ext4_force_commit(inode
->i_sb
);
4133 struct ext4_iloc iloc
;
4135 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4138 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4139 sync_dirty_buffer(iloc
.bh
);
4140 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4141 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4142 "IO error syncing inode");
4153 * Called from notify_change.
4155 * We want to trap VFS attempts to truncate the file as soon as
4156 * possible. In particular, we want to make sure that when the VFS
4157 * shrinks i_size, we put the inode on the orphan list and modify
4158 * i_disksize immediately, so that during the subsequent flushing of
4159 * dirty pages and freeing of disk blocks, we can guarantee that any
4160 * commit will leave the blocks being flushed in an unused state on
4161 * disk. (On recovery, the inode will get truncated and the blocks will
4162 * be freed, so we have a strong guarantee that no future commit will
4163 * leave these blocks visible to the user.)
4165 * Another thing we have to assure is that if we are in ordered mode
4166 * and inode is still attached to the committing transaction, we must
4167 * we start writeout of all the dirty pages which are being truncated.
4168 * This way we are sure that all the data written in the previous
4169 * transaction are already on disk (truncate waits for pages under
4172 * Called with inode->i_mutex down.
4174 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4176 struct inode
*inode
= dentry
->d_inode
;
4179 const unsigned int ia_valid
= attr
->ia_valid
;
4181 error
= inode_change_ok(inode
, attr
);
4185 if (is_quota_modification(inode
, attr
))
4186 dquot_initialize(inode
);
4187 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4188 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4191 /* (user+group)*(old+new) structure, inode write (sb,
4192 * inode block, ? - but truncate inode update has it) */
4193 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
4194 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
4195 if (IS_ERR(handle
)) {
4196 error
= PTR_ERR(handle
);
4199 error
= dquot_transfer(inode
, attr
);
4201 ext4_journal_stop(handle
);
4204 /* Update corresponding info in inode so that everything is in
4205 * one transaction */
4206 if (attr
->ia_valid
& ATTR_UID
)
4207 inode
->i_uid
= attr
->ia_uid
;
4208 if (attr
->ia_valid
& ATTR_GID
)
4209 inode
->i_gid
= attr
->ia_gid
;
4210 error
= ext4_mark_inode_dirty(handle
, inode
);
4211 ext4_journal_stop(handle
);
4214 if (attr
->ia_valid
& ATTR_SIZE
) {
4215 inode_dio_wait(inode
);
4217 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4218 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4220 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4225 if (S_ISREG(inode
->i_mode
) &&
4226 attr
->ia_valid
& ATTR_SIZE
&&
4227 (attr
->ia_size
< inode
->i_size
)) {
4230 handle
= ext4_journal_start(inode
, 3);
4231 if (IS_ERR(handle
)) {
4232 error
= PTR_ERR(handle
);
4235 if (ext4_handle_valid(handle
)) {
4236 error
= ext4_orphan_add(handle
, inode
);
4239 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4240 rc
= ext4_mark_inode_dirty(handle
, inode
);
4243 ext4_journal_stop(handle
);
4245 if (ext4_should_order_data(inode
)) {
4246 error
= ext4_begin_ordered_truncate(inode
,
4249 /* Do as much error cleanup as possible */
4250 handle
= ext4_journal_start(inode
, 3);
4251 if (IS_ERR(handle
)) {
4252 ext4_orphan_del(NULL
, inode
);
4255 ext4_orphan_del(handle
, inode
);
4257 ext4_journal_stop(handle
);
4263 if (attr
->ia_valid
& ATTR_SIZE
) {
4264 if (attr
->ia_size
!= i_size_read(inode
))
4265 truncate_setsize(inode
, attr
->ia_size
);
4266 ext4_truncate(inode
);
4270 setattr_copy(inode
, attr
);
4271 mark_inode_dirty(inode
);
4275 * If the call to ext4_truncate failed to get a transaction handle at
4276 * all, we need to clean up the in-core orphan list manually.
4278 if (orphan
&& inode
->i_nlink
)
4279 ext4_orphan_del(NULL
, inode
);
4281 if (!rc
&& (ia_valid
& ATTR_MODE
))
4282 rc
= ext4_acl_chmod(inode
);
4285 ext4_std_error(inode
->i_sb
, error
);
4291 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4294 struct inode
*inode
;
4295 unsigned long delalloc_blocks
;
4297 inode
= dentry
->d_inode
;
4298 generic_fillattr(inode
, stat
);
4301 * We can't update i_blocks if the block allocation is delayed
4302 * otherwise in the case of system crash before the real block
4303 * allocation is done, we will have i_blocks inconsistent with
4304 * on-disk file blocks.
4305 * We always keep i_blocks updated together with real
4306 * allocation. But to not confuse with user, stat
4307 * will return the blocks that include the delayed allocation
4308 * blocks for this file.
4310 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4311 EXT4_I(inode
)->i_reserved_data_blocks
);
4313 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4317 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4319 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4320 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
4321 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4325 * Account for index blocks, block groups bitmaps and block group
4326 * descriptor blocks if modify datablocks and index blocks
4327 * worse case, the indexs blocks spread over different block groups
4329 * If datablocks are discontiguous, they are possible to spread over
4330 * different block groups too. If they are contiuguous, with flexbg,
4331 * they could still across block group boundary.
4333 * Also account for superblock, inode, quota and xattr blocks
4335 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4337 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4343 * How many index blocks need to touch to modify nrblocks?
4344 * The "Chunk" flag indicating whether the nrblocks is
4345 * physically contiguous on disk
4347 * For Direct IO and fallocate, they calls get_block to allocate
4348 * one single extent at a time, so they could set the "Chunk" flag
4350 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4355 * Now let's see how many group bitmaps and group descriptors need
4365 if (groups
> ngroups
)
4367 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4368 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4370 /* bitmaps and block group descriptor blocks */
4371 ret
+= groups
+ gdpblocks
;
4373 /* Blocks for super block, inode, quota and xattr blocks */
4374 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4380 * Calculate the total number of credits to reserve to fit
4381 * the modification of a single pages into a single transaction,
4382 * which may include multiple chunks of block allocations.
4384 * This could be called via ext4_write_begin()
4386 * We need to consider the worse case, when
4387 * one new block per extent.
4389 int ext4_writepage_trans_blocks(struct inode
*inode
)
4391 int bpp
= ext4_journal_blocks_per_page(inode
);
4394 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4396 /* Account for data blocks for journalled mode */
4397 if (ext4_should_journal_data(inode
))
4403 * Calculate the journal credits for a chunk of data modification.
4405 * This is called from DIO, fallocate or whoever calling
4406 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4408 * journal buffers for data blocks are not included here, as DIO
4409 * and fallocate do no need to journal data buffers.
4411 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4413 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4417 * The caller must have previously called ext4_reserve_inode_write().
4418 * Give this, we know that the caller already has write access to iloc->bh.
4420 int ext4_mark_iloc_dirty(handle_t
*handle
,
4421 struct inode
*inode
, struct ext4_iloc
*iloc
)
4425 if (IS_I_VERSION(inode
))
4426 inode_inc_iversion(inode
);
4428 /* the do_update_inode consumes one bh->b_count */
4431 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4432 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4438 * On success, We end up with an outstanding reference count against
4439 * iloc->bh. This _must_ be cleaned up later.
4443 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4444 struct ext4_iloc
*iloc
)
4448 err
= ext4_get_inode_loc(inode
, iloc
);
4450 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4451 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4457 ext4_std_error(inode
->i_sb
, err
);
4462 * Expand an inode by new_extra_isize bytes.
4463 * Returns 0 on success or negative error number on failure.
4465 static int ext4_expand_extra_isize(struct inode
*inode
,
4466 unsigned int new_extra_isize
,
4467 struct ext4_iloc iloc
,
4470 struct ext4_inode
*raw_inode
;
4471 struct ext4_xattr_ibody_header
*header
;
4473 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4476 raw_inode
= ext4_raw_inode(&iloc
);
4478 header
= IHDR(inode
, raw_inode
);
4480 /* No extended attributes present */
4481 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4482 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4483 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4485 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4489 /* try to expand with EAs present */
4490 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4495 * What we do here is to mark the in-core inode as clean with respect to inode
4496 * dirtiness (it may still be data-dirty).
4497 * This means that the in-core inode may be reaped by prune_icache
4498 * without having to perform any I/O. This is a very good thing,
4499 * because *any* task may call prune_icache - even ones which
4500 * have a transaction open against a different journal.
4502 * Is this cheating? Not really. Sure, we haven't written the
4503 * inode out, but prune_icache isn't a user-visible syncing function.
4504 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4505 * we start and wait on commits.
4507 * Is this efficient/effective? Well, we're being nice to the system
4508 * by cleaning up our inodes proactively so they can be reaped
4509 * without I/O. But we are potentially leaving up to five seconds'
4510 * worth of inodes floating about which prune_icache wants us to
4511 * write out. One way to fix that would be to get prune_icache()
4512 * to do a write_super() to free up some memory. It has the desired
4515 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4517 struct ext4_iloc iloc
;
4518 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4519 static unsigned int mnt_count
;
4523 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4524 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4525 if (ext4_handle_valid(handle
) &&
4526 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4527 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4529 * We need extra buffer credits since we may write into EA block
4530 * with this same handle. If journal_extend fails, then it will
4531 * only result in a minor loss of functionality for that inode.
4532 * If this is felt to be critical, then e2fsck should be run to
4533 * force a large enough s_min_extra_isize.
4535 if ((jbd2_journal_extend(handle
,
4536 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4537 ret
= ext4_expand_extra_isize(inode
,
4538 sbi
->s_want_extra_isize
,
4541 ext4_set_inode_state(inode
,
4542 EXT4_STATE_NO_EXPAND
);
4544 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4545 ext4_warning(inode
->i_sb
,
4546 "Unable to expand inode %lu. Delete"
4547 " some EAs or run e2fsck.",
4550 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4556 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4561 * ext4_dirty_inode() is called from __mark_inode_dirty()
4563 * We're really interested in the case where a file is being extended.
4564 * i_size has been changed by generic_commit_write() and we thus need
4565 * to include the updated inode in the current transaction.
4567 * Also, dquot_alloc_block() will always dirty the inode when blocks
4568 * are allocated to the file.
4570 * If the inode is marked synchronous, we don't honour that here - doing
4571 * so would cause a commit on atime updates, which we don't bother doing.
4572 * We handle synchronous inodes at the highest possible level.
4574 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4578 handle
= ext4_journal_start(inode
, 2);
4582 ext4_mark_inode_dirty(handle
, inode
);
4584 ext4_journal_stop(handle
);
4591 * Bind an inode's backing buffer_head into this transaction, to prevent
4592 * it from being flushed to disk early. Unlike
4593 * ext4_reserve_inode_write, this leaves behind no bh reference and
4594 * returns no iloc structure, so the caller needs to repeat the iloc
4595 * lookup to mark the inode dirty later.
4597 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4599 struct ext4_iloc iloc
;
4603 err
= ext4_get_inode_loc(inode
, &iloc
);
4605 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4606 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4608 err
= ext4_handle_dirty_metadata(handle
,
4614 ext4_std_error(inode
->i_sb
, err
);
4619 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4626 * We have to be very careful here: changing a data block's
4627 * journaling status dynamically is dangerous. If we write a
4628 * data block to the journal, change the status and then delete
4629 * that block, we risk forgetting to revoke the old log record
4630 * from the journal and so a subsequent replay can corrupt data.
4631 * So, first we make sure that the journal is empty and that
4632 * nobody is changing anything.
4635 journal
= EXT4_JOURNAL(inode
);
4638 if (is_journal_aborted(journal
))
4640 /* We have to allocate physical blocks for delalloc blocks
4641 * before flushing journal. otherwise delalloc blocks can not
4642 * be allocated any more. even more truncate on delalloc blocks
4643 * could trigger BUG by flushing delalloc blocks in journal.
4644 * There is no delalloc block in non-journal data mode.
4646 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
4647 err
= ext4_alloc_da_blocks(inode
);
4652 jbd2_journal_lock_updates(journal
);
4655 * OK, there are no updates running now, and all cached data is
4656 * synced to disk. We are now in a completely consistent state
4657 * which doesn't have anything in the journal, and we know that
4658 * no filesystem updates are running, so it is safe to modify
4659 * the inode's in-core data-journaling state flag now.
4663 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4665 jbd2_journal_flush(journal
);
4666 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4668 ext4_set_aops(inode
);
4670 jbd2_journal_unlock_updates(journal
);
4672 /* Finally we can mark the inode as dirty. */
4674 handle
= ext4_journal_start(inode
, 1);
4676 return PTR_ERR(handle
);
4678 err
= ext4_mark_inode_dirty(handle
, inode
);
4679 ext4_handle_sync(handle
);
4680 ext4_journal_stop(handle
);
4681 ext4_std_error(inode
->i_sb
, err
);
4686 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4688 return !buffer_mapped(bh
);
4691 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4693 struct page
*page
= vmf
->page
;
4697 struct file
*file
= vma
->vm_file
;
4698 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4699 struct address_space
*mapping
= inode
->i_mapping
;
4701 get_block_t
*get_block
;
4705 * This check is racy but catches the common case. We rely on
4706 * __block_page_mkwrite() to do a reliable check.
4708 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
4709 /* Delalloc case is easy... */
4710 if (test_opt(inode
->i_sb
, DELALLOC
) &&
4711 !ext4_should_journal_data(inode
) &&
4712 !ext4_nonda_switch(inode
->i_sb
)) {
4714 ret
= __block_page_mkwrite(vma
, vmf
,
4715 ext4_da_get_block_prep
);
4716 } while (ret
== -ENOSPC
&&
4717 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
4722 size
= i_size_read(inode
);
4723 /* Page got truncated from under us? */
4724 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
4726 ret
= VM_FAULT_NOPAGE
;
4730 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
4731 len
= size
& ~PAGE_CACHE_MASK
;
4733 len
= PAGE_CACHE_SIZE
;
4735 * Return if we have all the buffers mapped. This avoids the need to do
4736 * journal_start/journal_stop which can block and take a long time
4738 if (page_has_buffers(page
)) {
4739 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
4740 ext4_bh_unmapped
)) {
4741 /* Wait so that we don't change page under IO */
4742 wait_on_page_writeback(page
);
4743 ret
= VM_FAULT_LOCKED
;
4748 /* OK, we need to fill the hole... */
4749 if (ext4_should_dioread_nolock(inode
))
4750 get_block
= ext4_get_block_write
;
4752 get_block
= ext4_get_block
;
4754 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
4755 if (IS_ERR(handle
)) {
4756 ret
= VM_FAULT_SIGBUS
;
4759 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
4760 if (!ret
&& ext4_should_journal_data(inode
)) {
4761 if (walk_page_buffers(handle
, page_buffers(page
), 0,
4762 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
4764 ret
= VM_FAULT_SIGBUS
;
4765 ext4_journal_stop(handle
);
4768 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
4770 ext4_journal_stop(handle
);
4771 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
4774 ret
= block_page_mkwrite_return(ret
);