wl18xx: implement fw status debugfs entries
[linux-2.6/libata-dev.git] / fs / ext4 / inode.c
blob02bc8cbe7281b3d47c3449a1c4b8e4220685ba52
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
74 return csum;
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
80 __u32 provided, calculated;
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
96 return provided == calculated;
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
102 __u32 csum;
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
120 trace_ext4_begin_ordered_truncate(inode, new_size);
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
146 * Test whether an inode is a fast symlink.
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 (inode->i_sb->s_blocksize >> 9) : 0;
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 int nblocks)
164 int ret;
167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 jbd_debug(2, "restarting handle %p\n", handle);
174 up_write(&EXT4_I(inode)->i_data_sem);
175 ret = ext4_journal_restart(handle, nblocks);
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode);
179 return ret;
183 * Called at the last iput() if i_nlink is zero.
185 void ext4_evict_inode(struct inode *inode)
187 handle_t *handle;
188 int err;
190 trace_ext4_evict_inode(inode);
192 ext4_ioend_wait(inode);
194 if (inode->i_nlink) {
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
210 * Note that directories do not have this problem because they
211 * don't use page cache.
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
226 if (!is_bad_inode(inode))
227 dquot_initialize(inode);
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages(&inode->i_data, 0);
233 if (is_bad_inode(inode))
234 goto no_delete;
236 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237 if (IS_ERR(handle)) {
238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
244 ext4_orphan_del(NULL, inode);
245 goto no_delete;
248 if (IS_SYNC(inode))
249 ext4_handle_sync(handle);
250 inode->i_size = 0;
251 err = ext4_mark_inode_dirty(handle, inode);
252 if (err) {
253 ext4_warning(inode->i_sb,
254 "couldn't mark inode dirty (err %d)", err);
255 goto stop_handle;
257 if (inode->i_blocks)
258 ext4_truncate(inode);
261 * ext4_ext_truncate() doesn't reserve any slop when it
262 * restarts journal transactions; therefore there may not be
263 * enough credits left in the handle to remove the inode from
264 * the orphan list and set the dtime field.
266 if (!ext4_handle_has_enough_credits(handle, 3)) {
267 err = ext4_journal_extend(handle, 3);
268 if (err > 0)
269 err = ext4_journal_restart(handle, 3);
270 if (err != 0) {
271 ext4_warning(inode->i_sb,
272 "couldn't extend journal (err %d)", err);
273 stop_handle:
274 ext4_journal_stop(handle);
275 ext4_orphan_del(NULL, inode);
276 goto no_delete;
281 * Kill off the orphan record which ext4_truncate created.
282 * AKPM: I think this can be inside the above `if'.
283 * Note that ext4_orphan_del() has to be able to cope with the
284 * deletion of a non-existent orphan - this is because we don't
285 * know if ext4_truncate() actually created an orphan record.
286 * (Well, we could do this if we need to, but heck - it works)
288 ext4_orphan_del(handle, inode);
289 EXT4_I(inode)->i_dtime = get_seconds();
292 * One subtle ordering requirement: if anything has gone wrong
293 * (transaction abort, IO errors, whatever), then we can still
294 * do these next steps (the fs will already have been marked as
295 * having errors), but we can't free the inode if the mark_dirty
296 * fails.
298 if (ext4_mark_inode_dirty(handle, inode))
299 /* If that failed, just do the required in-core inode clear. */
300 ext4_clear_inode(inode);
301 else
302 ext4_free_inode(handle, inode);
303 ext4_journal_stop(handle);
304 return;
305 no_delete:
306 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
309 #ifdef CONFIG_QUOTA
310 qsize_t *ext4_get_reserved_space(struct inode *inode)
312 return &EXT4_I(inode)->i_reserved_quota;
314 #endif
317 * Calculate the number of metadata blocks need to reserve
318 * to allocate a block located at @lblock
320 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
322 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323 return ext4_ext_calc_metadata_amount(inode, lblock);
325 return ext4_ind_calc_metadata_amount(inode, lblock);
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
332 void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 struct ext4_inode_info *ei = EXT4_I(inode);
338 spin_lock(&ei->i_block_reservation_lock);
339 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
349 /* Update per-inode reservations */
350 ei->i_reserved_data_blocks -= used;
351 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
352 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
353 used + ei->i_allocated_meta_blocks);
354 ei->i_allocated_meta_blocks = 0;
356 if (ei->i_reserved_data_blocks == 0) {
358 * We can release all of the reserved metadata blocks
359 * only when we have written all of the delayed
360 * allocation blocks.
362 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
363 ei->i_reserved_meta_blocks);
364 ei->i_reserved_meta_blocks = 0;
365 ei->i_da_metadata_calc_len = 0;
367 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
369 /* Update quota subsystem for data blocks */
370 if (quota_claim)
371 dquot_claim_block(inode, EXT4_C2B(sbi, used));
372 else {
374 * We did fallocate with an offset that is already delayed
375 * allocated. So on delayed allocated writeback we should
376 * not re-claim the quota for fallocated blocks.
378 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
382 * If we have done all the pending block allocations and if
383 * there aren't any writers on the inode, we can discard the
384 * inode's preallocations.
386 if ((ei->i_reserved_data_blocks == 0) &&
387 (atomic_read(&inode->i_writecount) == 0))
388 ext4_discard_preallocations(inode);
391 static int __check_block_validity(struct inode *inode, const char *func,
392 unsigned int line,
393 struct ext4_map_blocks *map)
395 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
396 map->m_len)) {
397 ext4_error_inode(inode, func, line, map->m_pblk,
398 "lblock %lu mapped to illegal pblock "
399 "(length %d)", (unsigned long) map->m_lblk,
400 map->m_len);
401 return -EIO;
403 return 0;
406 #define check_block_validity(inode, map) \
407 __check_block_validity((inode), __func__, __LINE__, (map))
410 * Return the number of contiguous dirty pages in a given inode
411 * starting at page frame idx.
413 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
414 unsigned int max_pages)
416 struct address_space *mapping = inode->i_mapping;
417 pgoff_t index;
418 struct pagevec pvec;
419 pgoff_t num = 0;
420 int i, nr_pages, done = 0;
422 if (max_pages == 0)
423 return 0;
424 pagevec_init(&pvec, 0);
425 while (!done) {
426 index = idx;
427 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428 PAGECACHE_TAG_DIRTY,
429 (pgoff_t)PAGEVEC_SIZE);
430 if (nr_pages == 0)
431 break;
432 for (i = 0; i < nr_pages; i++) {
433 struct page *page = pvec.pages[i];
434 struct buffer_head *bh, *head;
436 lock_page(page);
437 if (unlikely(page->mapping != mapping) ||
438 !PageDirty(page) ||
439 PageWriteback(page) ||
440 page->index != idx) {
441 done = 1;
442 unlock_page(page);
443 break;
445 if (page_has_buffers(page)) {
446 bh = head = page_buffers(page);
447 do {
448 if (!buffer_delay(bh) &&
449 !buffer_unwritten(bh))
450 done = 1;
451 bh = bh->b_this_page;
452 } while (!done && (bh != head));
454 unlock_page(page);
455 if (done)
456 break;
457 idx++;
458 num++;
459 if (num >= max_pages) {
460 done = 1;
461 break;
464 pagevec_release(&pvec);
466 return num;
470 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
472 static void set_buffers_da_mapped(struct inode *inode,
473 struct ext4_map_blocks *map)
475 struct address_space *mapping = inode->i_mapping;
476 struct pagevec pvec;
477 int i, nr_pages;
478 pgoff_t index, end;
480 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
481 end = (map->m_lblk + map->m_len - 1) >>
482 (PAGE_CACHE_SHIFT - inode->i_blkbits);
484 pagevec_init(&pvec, 0);
485 while (index <= end) {
486 nr_pages = pagevec_lookup(&pvec, mapping, index,
487 min(end - index + 1,
488 (pgoff_t)PAGEVEC_SIZE));
489 if (nr_pages == 0)
490 break;
491 for (i = 0; i < nr_pages; i++) {
492 struct page *page = pvec.pages[i];
493 struct buffer_head *bh, *head;
495 if (unlikely(page->mapping != mapping) ||
496 !PageDirty(page))
497 break;
499 if (page_has_buffers(page)) {
500 bh = head = page_buffers(page);
501 do {
502 set_buffer_da_mapped(bh);
503 bh = bh->b_this_page;
504 } while (bh != head);
506 index++;
508 pagevec_release(&pvec);
513 * The ext4_map_blocks() function tries to look up the requested blocks,
514 * and returns if the blocks are already mapped.
516 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
517 * and store the allocated blocks in the result buffer head and mark it
518 * mapped.
520 * If file type is extents based, it will call ext4_ext_map_blocks(),
521 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
522 * based files
524 * On success, it returns the number of blocks being mapped or allocate.
525 * if create==0 and the blocks are pre-allocated and uninitialized block,
526 * the result buffer head is unmapped. If the create ==1, it will make sure
527 * the buffer head is mapped.
529 * It returns 0 if plain look up failed (blocks have not been allocated), in
530 * that case, buffer head is unmapped
532 * It returns the error in case of allocation failure.
534 int ext4_map_blocks(handle_t *handle, struct inode *inode,
535 struct ext4_map_blocks *map, int flags)
537 int retval;
539 map->m_flags = 0;
540 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
541 "logical block %lu\n", inode->i_ino, flags, map->m_len,
542 (unsigned long) map->m_lblk);
544 * Try to see if we can get the block without requesting a new
545 * file system block.
547 down_read((&EXT4_I(inode)->i_data_sem));
548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
551 } else {
552 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 EXT4_GET_BLOCKS_KEEP_SIZE);
555 up_read((&EXT4_I(inode)->i_data_sem));
557 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
558 int ret = check_block_validity(inode, map);
559 if (ret != 0)
560 return ret;
563 /* If it is only a block(s) look up */
564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
565 return retval;
568 * Returns if the blocks have already allocated
570 * Note that if blocks have been preallocated
571 * ext4_ext_get_block() returns the create = 0
572 * with buffer head unmapped.
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
575 return retval;
578 * When we call get_blocks without the create flag, the
579 * BH_Unwritten flag could have gotten set if the blocks
580 * requested were part of a uninitialized extent. We need to
581 * clear this flag now that we are committed to convert all or
582 * part of the uninitialized extent to be an initialized
583 * extent. This is because we need to avoid the combination
584 * of BH_Unwritten and BH_Mapped flags being simultaneously
585 * set on the buffer_head.
587 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
590 * New blocks allocate and/or writing to uninitialized extent
591 * will possibly result in updating i_data, so we take
592 * the write lock of i_data_sem, and call get_blocks()
593 * with create == 1 flag.
595 down_write((&EXT4_I(inode)->i_data_sem));
598 * if the caller is from delayed allocation writeout path
599 * we have already reserved fs blocks for allocation
600 * let the underlying get_block() function know to
601 * avoid double accounting
603 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
604 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
606 * We need to check for EXT4 here because migrate
607 * could have changed the inode type in between
609 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
610 retval = ext4_ext_map_blocks(handle, inode, map, flags);
611 } else {
612 retval = ext4_ind_map_blocks(handle, inode, map, flags);
614 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
616 * We allocated new blocks which will result in
617 * i_data's format changing. Force the migrate
618 * to fail by clearing migrate flags
620 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
624 * Update reserved blocks/metadata blocks after successful
625 * block allocation which had been deferred till now. We don't
626 * support fallocate for non extent files. So we can update
627 * reserve space here.
629 if ((retval > 0) &&
630 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
631 ext4_da_update_reserve_space(inode, retval, 1);
633 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
634 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
636 /* If we have successfully mapped the delayed allocated blocks,
637 * set the BH_Da_Mapped bit on them. Its important to do this
638 * under the protection of i_data_sem.
640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
641 set_buffers_da_mapped(inode, map);
644 up_write((&EXT4_I(inode)->i_data_sem));
645 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
646 int ret = check_block_validity(inode, map);
647 if (ret != 0)
648 return ret;
650 return retval;
653 /* Maximum number of blocks we map for direct IO at once. */
654 #define DIO_MAX_BLOCKS 4096
656 static int _ext4_get_block(struct inode *inode, sector_t iblock,
657 struct buffer_head *bh, int flags)
659 handle_t *handle = ext4_journal_current_handle();
660 struct ext4_map_blocks map;
661 int ret = 0, started = 0;
662 int dio_credits;
664 map.m_lblk = iblock;
665 map.m_len = bh->b_size >> inode->i_blkbits;
667 if (flags && !handle) {
668 /* Direct IO write... */
669 if (map.m_len > DIO_MAX_BLOCKS)
670 map.m_len = DIO_MAX_BLOCKS;
671 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
672 handle = ext4_journal_start(inode, dio_credits);
673 if (IS_ERR(handle)) {
674 ret = PTR_ERR(handle);
675 return ret;
677 started = 1;
680 ret = ext4_map_blocks(handle, inode, &map, flags);
681 if (ret > 0) {
682 map_bh(bh, inode->i_sb, map.m_pblk);
683 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
684 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
685 ret = 0;
687 if (started)
688 ext4_journal_stop(handle);
689 return ret;
692 int ext4_get_block(struct inode *inode, sector_t iblock,
693 struct buffer_head *bh, int create)
695 return _ext4_get_block(inode, iblock, bh,
696 create ? EXT4_GET_BLOCKS_CREATE : 0);
700 * `handle' can be NULL if create is zero
702 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
703 ext4_lblk_t block, int create, int *errp)
705 struct ext4_map_blocks map;
706 struct buffer_head *bh;
707 int fatal = 0, err;
709 J_ASSERT(handle != NULL || create == 0);
711 map.m_lblk = block;
712 map.m_len = 1;
713 err = ext4_map_blocks(handle, inode, &map,
714 create ? EXT4_GET_BLOCKS_CREATE : 0);
716 if (err < 0)
717 *errp = err;
718 if (err <= 0)
719 return NULL;
720 *errp = 0;
722 bh = sb_getblk(inode->i_sb, map.m_pblk);
723 if (!bh) {
724 *errp = -EIO;
725 return NULL;
727 if (map.m_flags & EXT4_MAP_NEW) {
728 J_ASSERT(create != 0);
729 J_ASSERT(handle != NULL);
732 * Now that we do not always journal data, we should
733 * keep in mind whether this should always journal the
734 * new buffer as metadata. For now, regular file
735 * writes use ext4_get_block instead, so it's not a
736 * problem.
738 lock_buffer(bh);
739 BUFFER_TRACE(bh, "call get_create_access");
740 fatal = ext4_journal_get_create_access(handle, bh);
741 if (!fatal && !buffer_uptodate(bh)) {
742 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
743 set_buffer_uptodate(bh);
745 unlock_buffer(bh);
746 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
747 err = ext4_handle_dirty_metadata(handle, inode, bh);
748 if (!fatal)
749 fatal = err;
750 } else {
751 BUFFER_TRACE(bh, "not a new buffer");
753 if (fatal) {
754 *errp = fatal;
755 brelse(bh);
756 bh = NULL;
758 return bh;
761 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
762 ext4_lblk_t block, int create, int *err)
764 struct buffer_head *bh;
766 bh = ext4_getblk(handle, inode, block, create, err);
767 if (!bh)
768 return bh;
769 if (buffer_uptodate(bh))
770 return bh;
771 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
772 wait_on_buffer(bh);
773 if (buffer_uptodate(bh))
774 return bh;
775 put_bh(bh);
776 *err = -EIO;
777 return NULL;
780 static int walk_page_buffers(handle_t *handle,
781 struct buffer_head *head,
782 unsigned from,
783 unsigned to,
784 int *partial,
785 int (*fn)(handle_t *handle,
786 struct buffer_head *bh))
788 struct buffer_head *bh;
789 unsigned block_start, block_end;
790 unsigned blocksize = head->b_size;
791 int err, ret = 0;
792 struct buffer_head *next;
794 for (bh = head, block_start = 0;
795 ret == 0 && (bh != head || !block_start);
796 block_start = block_end, bh = next) {
797 next = bh->b_this_page;
798 block_end = block_start + blocksize;
799 if (block_end <= from || block_start >= to) {
800 if (partial && !buffer_uptodate(bh))
801 *partial = 1;
802 continue;
804 err = (*fn)(handle, bh);
805 if (!ret)
806 ret = err;
808 return ret;
812 * To preserve ordering, it is essential that the hole instantiation and
813 * the data write be encapsulated in a single transaction. We cannot
814 * close off a transaction and start a new one between the ext4_get_block()
815 * and the commit_write(). So doing the jbd2_journal_start at the start of
816 * prepare_write() is the right place.
818 * Also, this function can nest inside ext4_writepage() ->
819 * block_write_full_page(). In that case, we *know* that ext4_writepage()
820 * has generated enough buffer credits to do the whole page. So we won't
821 * block on the journal in that case, which is good, because the caller may
822 * be PF_MEMALLOC.
824 * By accident, ext4 can be reentered when a transaction is open via
825 * quota file writes. If we were to commit the transaction while thus
826 * reentered, there can be a deadlock - we would be holding a quota
827 * lock, and the commit would never complete if another thread had a
828 * transaction open and was blocking on the quota lock - a ranking
829 * violation.
831 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
832 * will _not_ run commit under these circumstances because handle->h_ref
833 * is elevated. We'll still have enough credits for the tiny quotafile
834 * write.
836 static int do_journal_get_write_access(handle_t *handle,
837 struct buffer_head *bh)
839 int dirty = buffer_dirty(bh);
840 int ret;
842 if (!buffer_mapped(bh) || buffer_freed(bh))
843 return 0;
845 * __block_write_begin() could have dirtied some buffers. Clean
846 * the dirty bit as jbd2_journal_get_write_access() could complain
847 * otherwise about fs integrity issues. Setting of the dirty bit
848 * by __block_write_begin() isn't a real problem here as we clear
849 * the bit before releasing a page lock and thus writeback cannot
850 * ever write the buffer.
852 if (dirty)
853 clear_buffer_dirty(bh);
854 ret = ext4_journal_get_write_access(handle, bh);
855 if (!ret && dirty)
856 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
857 return ret;
860 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
861 struct buffer_head *bh_result, int create);
862 static int ext4_write_begin(struct file *file, struct address_space *mapping,
863 loff_t pos, unsigned len, unsigned flags,
864 struct page **pagep, void **fsdata)
866 struct inode *inode = mapping->host;
867 int ret, needed_blocks;
868 handle_t *handle;
869 int retries = 0;
870 struct page *page;
871 pgoff_t index;
872 unsigned from, to;
874 trace_ext4_write_begin(inode, pos, len, flags);
876 * Reserve one block more for addition to orphan list in case
877 * we allocate blocks but write fails for some reason
879 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
880 index = pos >> PAGE_CACHE_SHIFT;
881 from = pos & (PAGE_CACHE_SIZE - 1);
882 to = from + len;
884 retry:
885 handle = ext4_journal_start(inode, needed_blocks);
886 if (IS_ERR(handle)) {
887 ret = PTR_ERR(handle);
888 goto out;
891 /* We cannot recurse into the filesystem as the transaction is already
892 * started */
893 flags |= AOP_FLAG_NOFS;
895 page = grab_cache_page_write_begin(mapping, index, flags);
896 if (!page) {
897 ext4_journal_stop(handle);
898 ret = -ENOMEM;
899 goto out;
901 *pagep = page;
903 if (ext4_should_dioread_nolock(inode))
904 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
905 else
906 ret = __block_write_begin(page, pos, len, ext4_get_block);
908 if (!ret && ext4_should_journal_data(inode)) {
909 ret = walk_page_buffers(handle, page_buffers(page),
910 from, to, NULL, do_journal_get_write_access);
913 if (ret) {
914 unlock_page(page);
915 page_cache_release(page);
917 * __block_write_begin may have instantiated a few blocks
918 * outside i_size. Trim these off again. Don't need
919 * i_size_read because we hold i_mutex.
921 * Add inode to orphan list in case we crash before
922 * truncate finishes
924 if (pos + len > inode->i_size && ext4_can_truncate(inode))
925 ext4_orphan_add(handle, inode);
927 ext4_journal_stop(handle);
928 if (pos + len > inode->i_size) {
929 ext4_truncate_failed_write(inode);
931 * If truncate failed early the inode might
932 * still be on the orphan list; we need to
933 * make sure the inode is removed from the
934 * orphan list in that case.
936 if (inode->i_nlink)
937 ext4_orphan_del(NULL, inode);
941 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
942 goto retry;
943 out:
944 return ret;
947 /* For write_end() in data=journal mode */
948 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
950 if (!buffer_mapped(bh) || buffer_freed(bh))
951 return 0;
952 set_buffer_uptodate(bh);
953 return ext4_handle_dirty_metadata(handle, NULL, bh);
956 static int ext4_generic_write_end(struct file *file,
957 struct address_space *mapping,
958 loff_t pos, unsigned len, unsigned copied,
959 struct page *page, void *fsdata)
961 int i_size_changed = 0;
962 struct inode *inode = mapping->host;
963 handle_t *handle = ext4_journal_current_handle();
965 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
968 * No need to use i_size_read() here, the i_size
969 * cannot change under us because we hold i_mutex.
971 * But it's important to update i_size while still holding page lock:
972 * page writeout could otherwise come in and zero beyond i_size.
974 if (pos + copied > inode->i_size) {
975 i_size_write(inode, pos + copied);
976 i_size_changed = 1;
979 if (pos + copied > EXT4_I(inode)->i_disksize) {
980 /* We need to mark inode dirty even if
981 * new_i_size is less that inode->i_size
982 * bu greater than i_disksize.(hint delalloc)
984 ext4_update_i_disksize(inode, (pos + copied));
985 i_size_changed = 1;
987 unlock_page(page);
988 page_cache_release(page);
991 * Don't mark the inode dirty under page lock. First, it unnecessarily
992 * makes the holding time of page lock longer. Second, it forces lock
993 * ordering of page lock and transaction start for journaling
994 * filesystems.
996 if (i_size_changed)
997 ext4_mark_inode_dirty(handle, inode);
999 return copied;
1003 * We need to pick up the new inode size which generic_commit_write gave us
1004 * `file' can be NULL - eg, when called from page_symlink().
1006 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1007 * buffers are managed internally.
1009 static int ext4_ordered_write_end(struct file *file,
1010 struct address_space *mapping,
1011 loff_t pos, unsigned len, unsigned copied,
1012 struct page *page, void *fsdata)
1014 handle_t *handle = ext4_journal_current_handle();
1015 struct inode *inode = mapping->host;
1016 int ret = 0, ret2;
1018 trace_ext4_ordered_write_end(inode, pos, len, copied);
1019 ret = ext4_jbd2_file_inode(handle, inode);
1021 if (ret == 0) {
1022 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1023 page, fsdata);
1024 copied = ret2;
1025 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1026 /* if we have allocated more blocks and copied
1027 * less. We will have blocks allocated outside
1028 * inode->i_size. So truncate them
1030 ext4_orphan_add(handle, inode);
1031 if (ret2 < 0)
1032 ret = ret2;
1033 } else {
1034 unlock_page(page);
1035 page_cache_release(page);
1038 ret2 = ext4_journal_stop(handle);
1039 if (!ret)
1040 ret = ret2;
1042 if (pos + len > inode->i_size) {
1043 ext4_truncate_failed_write(inode);
1045 * If truncate failed early the inode might still be
1046 * on the orphan list; we need to make sure the inode
1047 * is removed from the orphan list in that case.
1049 if (inode->i_nlink)
1050 ext4_orphan_del(NULL, inode);
1054 return ret ? ret : copied;
1057 static int ext4_writeback_write_end(struct file *file,
1058 struct address_space *mapping,
1059 loff_t pos, unsigned len, unsigned copied,
1060 struct page *page, void *fsdata)
1062 handle_t *handle = ext4_journal_current_handle();
1063 struct inode *inode = mapping->host;
1064 int ret = 0, ret2;
1066 trace_ext4_writeback_write_end(inode, pos, len, copied);
1067 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1068 page, fsdata);
1069 copied = ret2;
1070 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071 /* if we have allocated more blocks and copied
1072 * less. We will have blocks allocated outside
1073 * inode->i_size. So truncate them
1075 ext4_orphan_add(handle, inode);
1077 if (ret2 < 0)
1078 ret = ret2;
1080 ret2 = ext4_journal_stop(handle);
1081 if (!ret)
1082 ret = ret2;
1084 if (pos + len > inode->i_size) {
1085 ext4_truncate_failed_write(inode);
1087 * If truncate failed early the inode might still be
1088 * on the orphan list; we need to make sure the inode
1089 * is removed from the orphan list in that case.
1091 if (inode->i_nlink)
1092 ext4_orphan_del(NULL, inode);
1095 return ret ? ret : copied;
1098 static int ext4_journalled_write_end(struct file *file,
1099 struct address_space *mapping,
1100 loff_t pos, unsigned len, unsigned copied,
1101 struct page *page, void *fsdata)
1103 handle_t *handle = ext4_journal_current_handle();
1104 struct inode *inode = mapping->host;
1105 int ret = 0, ret2;
1106 int partial = 0;
1107 unsigned from, to;
1108 loff_t new_i_size;
1110 trace_ext4_journalled_write_end(inode, pos, len, copied);
1111 from = pos & (PAGE_CACHE_SIZE - 1);
1112 to = from + len;
1114 BUG_ON(!ext4_handle_valid(handle));
1116 if (copied < len) {
1117 if (!PageUptodate(page))
1118 copied = 0;
1119 page_zero_new_buffers(page, from+copied, to);
1122 ret = walk_page_buffers(handle, page_buffers(page), from,
1123 to, &partial, write_end_fn);
1124 if (!partial)
1125 SetPageUptodate(page);
1126 new_i_size = pos + copied;
1127 if (new_i_size > inode->i_size)
1128 i_size_write(inode, pos+copied);
1129 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1130 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1131 if (new_i_size > EXT4_I(inode)->i_disksize) {
1132 ext4_update_i_disksize(inode, new_i_size);
1133 ret2 = ext4_mark_inode_dirty(handle, inode);
1134 if (!ret)
1135 ret = ret2;
1138 unlock_page(page);
1139 page_cache_release(page);
1140 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1141 /* if we have allocated more blocks and copied
1142 * less. We will have blocks allocated outside
1143 * inode->i_size. So truncate them
1145 ext4_orphan_add(handle, inode);
1147 ret2 = ext4_journal_stop(handle);
1148 if (!ret)
1149 ret = ret2;
1150 if (pos + len > inode->i_size) {
1151 ext4_truncate_failed_write(inode);
1153 * If truncate failed early the inode might still be
1154 * on the orphan list; we need to make sure the inode
1155 * is removed from the orphan list in that case.
1157 if (inode->i_nlink)
1158 ext4_orphan_del(NULL, inode);
1161 return ret ? ret : copied;
1165 * Reserve a single cluster located at lblock
1167 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1169 int retries = 0;
1170 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1171 struct ext4_inode_info *ei = EXT4_I(inode);
1172 unsigned int md_needed;
1173 int ret;
1176 * recalculate the amount of metadata blocks to reserve
1177 * in order to allocate nrblocks
1178 * worse case is one extent per block
1180 repeat:
1181 spin_lock(&ei->i_block_reservation_lock);
1182 md_needed = EXT4_NUM_B2C(sbi,
1183 ext4_calc_metadata_amount(inode, lblock));
1184 trace_ext4_da_reserve_space(inode, md_needed);
1185 spin_unlock(&ei->i_block_reservation_lock);
1188 * We will charge metadata quota at writeout time; this saves
1189 * us from metadata over-estimation, though we may go over by
1190 * a small amount in the end. Here we just reserve for data.
1192 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1193 if (ret)
1194 return ret;
1196 * We do still charge estimated metadata to the sb though;
1197 * we cannot afford to run out of free blocks.
1199 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1200 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1201 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1202 yield();
1203 goto repeat;
1205 return -ENOSPC;
1207 spin_lock(&ei->i_block_reservation_lock);
1208 ei->i_reserved_data_blocks++;
1209 ei->i_reserved_meta_blocks += md_needed;
1210 spin_unlock(&ei->i_block_reservation_lock);
1212 return 0; /* success */
1215 static void ext4_da_release_space(struct inode *inode, int to_free)
1217 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1218 struct ext4_inode_info *ei = EXT4_I(inode);
1220 if (!to_free)
1221 return; /* Nothing to release, exit */
1223 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1225 trace_ext4_da_release_space(inode, to_free);
1226 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1228 * if there aren't enough reserved blocks, then the
1229 * counter is messed up somewhere. Since this
1230 * function is called from invalidate page, it's
1231 * harmless to return without any action.
1233 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1234 "ino %lu, to_free %d with only %d reserved "
1235 "data blocks", inode->i_ino, to_free,
1236 ei->i_reserved_data_blocks);
1237 WARN_ON(1);
1238 to_free = ei->i_reserved_data_blocks;
1240 ei->i_reserved_data_blocks -= to_free;
1242 if (ei->i_reserved_data_blocks == 0) {
1244 * We can release all of the reserved metadata blocks
1245 * only when we have written all of the delayed
1246 * allocation blocks.
1247 * Note that in case of bigalloc, i_reserved_meta_blocks,
1248 * i_reserved_data_blocks, etc. refer to number of clusters.
1250 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1251 ei->i_reserved_meta_blocks);
1252 ei->i_reserved_meta_blocks = 0;
1253 ei->i_da_metadata_calc_len = 0;
1256 /* update fs dirty data blocks counter */
1257 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1259 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1261 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1264 static void ext4_da_page_release_reservation(struct page *page,
1265 unsigned long offset)
1267 int to_release = 0;
1268 struct buffer_head *head, *bh;
1269 unsigned int curr_off = 0;
1270 struct inode *inode = page->mapping->host;
1271 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1272 int num_clusters;
1274 head = page_buffers(page);
1275 bh = head;
1276 do {
1277 unsigned int next_off = curr_off + bh->b_size;
1279 if ((offset <= curr_off) && (buffer_delay(bh))) {
1280 to_release++;
1281 clear_buffer_delay(bh);
1282 clear_buffer_da_mapped(bh);
1284 curr_off = next_off;
1285 } while ((bh = bh->b_this_page) != head);
1287 /* If we have released all the blocks belonging to a cluster, then we
1288 * need to release the reserved space for that cluster. */
1289 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1290 while (num_clusters > 0) {
1291 ext4_fsblk_t lblk;
1292 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1293 ((num_clusters - 1) << sbi->s_cluster_bits);
1294 if (sbi->s_cluster_ratio == 1 ||
1295 !ext4_find_delalloc_cluster(inode, lblk, 1))
1296 ext4_da_release_space(inode, 1);
1298 num_clusters--;
1303 * Delayed allocation stuff
1307 * mpage_da_submit_io - walks through extent of pages and try to write
1308 * them with writepage() call back
1310 * @mpd->inode: inode
1311 * @mpd->first_page: first page of the extent
1312 * @mpd->next_page: page after the last page of the extent
1314 * By the time mpage_da_submit_io() is called we expect all blocks
1315 * to be allocated. this may be wrong if allocation failed.
1317 * As pages are already locked by write_cache_pages(), we can't use it
1319 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1320 struct ext4_map_blocks *map)
1322 struct pagevec pvec;
1323 unsigned long index, end;
1324 int ret = 0, err, nr_pages, i;
1325 struct inode *inode = mpd->inode;
1326 struct address_space *mapping = inode->i_mapping;
1327 loff_t size = i_size_read(inode);
1328 unsigned int len, block_start;
1329 struct buffer_head *bh, *page_bufs = NULL;
1330 int journal_data = ext4_should_journal_data(inode);
1331 sector_t pblock = 0, cur_logical = 0;
1332 struct ext4_io_submit io_submit;
1334 BUG_ON(mpd->next_page <= mpd->first_page);
1335 memset(&io_submit, 0, sizeof(io_submit));
1337 * We need to start from the first_page to the next_page - 1
1338 * to make sure we also write the mapped dirty buffer_heads.
1339 * If we look at mpd->b_blocknr we would only be looking
1340 * at the currently mapped buffer_heads.
1342 index = mpd->first_page;
1343 end = mpd->next_page - 1;
1345 pagevec_init(&pvec, 0);
1346 while (index <= end) {
1347 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1348 if (nr_pages == 0)
1349 break;
1350 for (i = 0; i < nr_pages; i++) {
1351 int commit_write = 0, skip_page = 0;
1352 struct page *page = pvec.pages[i];
1354 index = page->index;
1355 if (index > end)
1356 break;
1358 if (index == size >> PAGE_CACHE_SHIFT)
1359 len = size & ~PAGE_CACHE_MASK;
1360 else
1361 len = PAGE_CACHE_SIZE;
1362 if (map) {
1363 cur_logical = index << (PAGE_CACHE_SHIFT -
1364 inode->i_blkbits);
1365 pblock = map->m_pblk + (cur_logical -
1366 map->m_lblk);
1368 index++;
1370 BUG_ON(!PageLocked(page));
1371 BUG_ON(PageWriteback(page));
1374 * If the page does not have buffers (for
1375 * whatever reason), try to create them using
1376 * __block_write_begin. If this fails,
1377 * skip the page and move on.
1379 if (!page_has_buffers(page)) {
1380 if (__block_write_begin(page, 0, len,
1381 noalloc_get_block_write)) {
1382 skip_page:
1383 unlock_page(page);
1384 continue;
1386 commit_write = 1;
1389 bh = page_bufs = page_buffers(page);
1390 block_start = 0;
1391 do {
1392 if (!bh)
1393 goto skip_page;
1394 if (map && (cur_logical >= map->m_lblk) &&
1395 (cur_logical <= (map->m_lblk +
1396 (map->m_len - 1)))) {
1397 if (buffer_delay(bh)) {
1398 clear_buffer_delay(bh);
1399 bh->b_blocknr = pblock;
1401 if (buffer_da_mapped(bh))
1402 clear_buffer_da_mapped(bh);
1403 if (buffer_unwritten(bh) ||
1404 buffer_mapped(bh))
1405 BUG_ON(bh->b_blocknr != pblock);
1406 if (map->m_flags & EXT4_MAP_UNINIT)
1407 set_buffer_uninit(bh);
1408 clear_buffer_unwritten(bh);
1412 * skip page if block allocation undone and
1413 * block is dirty
1415 if (ext4_bh_delay_or_unwritten(NULL, bh))
1416 skip_page = 1;
1417 bh = bh->b_this_page;
1418 block_start += bh->b_size;
1419 cur_logical++;
1420 pblock++;
1421 } while (bh != page_bufs);
1423 if (skip_page)
1424 goto skip_page;
1426 if (commit_write)
1427 /* mark the buffer_heads as dirty & uptodate */
1428 block_commit_write(page, 0, len);
1430 clear_page_dirty_for_io(page);
1432 * Delalloc doesn't support data journalling,
1433 * but eventually maybe we'll lift this
1434 * restriction.
1436 if (unlikely(journal_data && PageChecked(page)))
1437 err = __ext4_journalled_writepage(page, len);
1438 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1439 err = ext4_bio_write_page(&io_submit, page,
1440 len, mpd->wbc);
1441 else if (buffer_uninit(page_bufs)) {
1442 ext4_set_bh_endio(page_bufs, inode);
1443 err = block_write_full_page_endio(page,
1444 noalloc_get_block_write,
1445 mpd->wbc, ext4_end_io_buffer_write);
1446 } else
1447 err = block_write_full_page(page,
1448 noalloc_get_block_write, mpd->wbc);
1450 if (!err)
1451 mpd->pages_written++;
1453 * In error case, we have to continue because
1454 * remaining pages are still locked
1456 if (ret == 0)
1457 ret = err;
1459 pagevec_release(&pvec);
1461 ext4_io_submit(&io_submit);
1462 return ret;
1465 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1467 int nr_pages, i;
1468 pgoff_t index, end;
1469 struct pagevec pvec;
1470 struct inode *inode = mpd->inode;
1471 struct address_space *mapping = inode->i_mapping;
1473 index = mpd->first_page;
1474 end = mpd->next_page - 1;
1475 while (index <= end) {
1476 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1477 if (nr_pages == 0)
1478 break;
1479 for (i = 0; i < nr_pages; i++) {
1480 struct page *page = pvec.pages[i];
1481 if (page->index > end)
1482 break;
1483 BUG_ON(!PageLocked(page));
1484 BUG_ON(PageWriteback(page));
1485 block_invalidatepage(page, 0);
1486 ClearPageUptodate(page);
1487 unlock_page(page);
1489 index = pvec.pages[nr_pages - 1]->index + 1;
1490 pagevec_release(&pvec);
1492 return;
1495 static void ext4_print_free_blocks(struct inode *inode)
1497 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1498 struct super_block *sb = inode->i_sb;
1500 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1501 EXT4_C2B(EXT4_SB(inode->i_sb),
1502 ext4_count_free_clusters(inode->i_sb)));
1503 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1504 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1505 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1506 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1507 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1508 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1509 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1510 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1511 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1512 EXT4_I(inode)->i_reserved_data_blocks);
1513 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1514 EXT4_I(inode)->i_reserved_meta_blocks);
1515 return;
1519 * mpage_da_map_and_submit - go through given space, map them
1520 * if necessary, and then submit them for I/O
1522 * @mpd - bh describing space
1524 * The function skips space we know is already mapped to disk blocks.
1527 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1529 int err, blks, get_blocks_flags;
1530 struct ext4_map_blocks map, *mapp = NULL;
1531 sector_t next = mpd->b_blocknr;
1532 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1533 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1534 handle_t *handle = NULL;
1537 * If the blocks are mapped already, or we couldn't accumulate
1538 * any blocks, then proceed immediately to the submission stage.
1540 if ((mpd->b_size == 0) ||
1541 ((mpd->b_state & (1 << BH_Mapped)) &&
1542 !(mpd->b_state & (1 << BH_Delay)) &&
1543 !(mpd->b_state & (1 << BH_Unwritten))))
1544 goto submit_io;
1546 handle = ext4_journal_current_handle();
1547 BUG_ON(!handle);
1550 * Call ext4_map_blocks() to allocate any delayed allocation
1551 * blocks, or to convert an uninitialized extent to be
1552 * initialized (in the case where we have written into
1553 * one or more preallocated blocks).
1555 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1556 * indicate that we are on the delayed allocation path. This
1557 * affects functions in many different parts of the allocation
1558 * call path. This flag exists primarily because we don't
1559 * want to change *many* call functions, so ext4_map_blocks()
1560 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1561 * inode's allocation semaphore is taken.
1563 * If the blocks in questions were delalloc blocks, set
1564 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1565 * variables are updated after the blocks have been allocated.
1567 map.m_lblk = next;
1568 map.m_len = max_blocks;
1569 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1570 if (ext4_should_dioread_nolock(mpd->inode))
1571 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1572 if (mpd->b_state & (1 << BH_Delay))
1573 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1575 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1576 if (blks < 0) {
1577 struct super_block *sb = mpd->inode->i_sb;
1579 err = blks;
1581 * If get block returns EAGAIN or ENOSPC and there
1582 * appears to be free blocks we will just let
1583 * mpage_da_submit_io() unlock all of the pages.
1585 if (err == -EAGAIN)
1586 goto submit_io;
1588 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1589 mpd->retval = err;
1590 goto submit_io;
1594 * get block failure will cause us to loop in
1595 * writepages, because a_ops->writepage won't be able
1596 * to make progress. The page will be redirtied by
1597 * writepage and writepages will again try to write
1598 * the same.
1600 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1601 ext4_msg(sb, KERN_CRIT,
1602 "delayed block allocation failed for inode %lu "
1603 "at logical offset %llu with max blocks %zd "
1604 "with error %d", mpd->inode->i_ino,
1605 (unsigned long long) next,
1606 mpd->b_size >> mpd->inode->i_blkbits, err);
1607 ext4_msg(sb, KERN_CRIT,
1608 "This should not happen!! Data will be lost\n");
1609 if (err == -ENOSPC)
1610 ext4_print_free_blocks(mpd->inode);
1612 /* invalidate all the pages */
1613 ext4_da_block_invalidatepages(mpd);
1615 /* Mark this page range as having been completed */
1616 mpd->io_done = 1;
1617 return;
1619 BUG_ON(blks == 0);
1621 mapp = &map;
1622 if (map.m_flags & EXT4_MAP_NEW) {
1623 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1624 int i;
1626 for (i = 0; i < map.m_len; i++)
1627 unmap_underlying_metadata(bdev, map.m_pblk + i);
1629 if (ext4_should_order_data(mpd->inode)) {
1630 err = ext4_jbd2_file_inode(handle, mpd->inode);
1631 if (err) {
1632 /* Only if the journal is aborted */
1633 mpd->retval = err;
1634 goto submit_io;
1640 * Update on-disk size along with block allocation.
1642 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1643 if (disksize > i_size_read(mpd->inode))
1644 disksize = i_size_read(mpd->inode);
1645 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1646 ext4_update_i_disksize(mpd->inode, disksize);
1647 err = ext4_mark_inode_dirty(handle, mpd->inode);
1648 if (err)
1649 ext4_error(mpd->inode->i_sb,
1650 "Failed to mark inode %lu dirty",
1651 mpd->inode->i_ino);
1654 submit_io:
1655 mpage_da_submit_io(mpd, mapp);
1656 mpd->io_done = 1;
1659 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1660 (1 << BH_Delay) | (1 << BH_Unwritten))
1663 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1665 * @mpd->lbh - extent of blocks
1666 * @logical - logical number of the block in the file
1667 * @bh - bh of the block (used to access block's state)
1669 * the function is used to collect contig. blocks in same state
1671 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1672 sector_t logical, size_t b_size,
1673 unsigned long b_state)
1675 sector_t next;
1676 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1679 * XXX Don't go larger than mballoc is willing to allocate
1680 * This is a stopgap solution. We eventually need to fold
1681 * mpage_da_submit_io() into this function and then call
1682 * ext4_map_blocks() multiple times in a loop
1684 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1685 goto flush_it;
1687 /* check if thereserved journal credits might overflow */
1688 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1689 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1691 * With non-extent format we are limited by the journal
1692 * credit available. Total credit needed to insert
1693 * nrblocks contiguous blocks is dependent on the
1694 * nrblocks. So limit nrblocks.
1696 goto flush_it;
1697 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1698 EXT4_MAX_TRANS_DATA) {
1700 * Adding the new buffer_head would make it cross the
1701 * allowed limit for which we have journal credit
1702 * reserved. So limit the new bh->b_size
1704 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1705 mpd->inode->i_blkbits;
1706 /* we will do mpage_da_submit_io in the next loop */
1710 * First block in the extent
1712 if (mpd->b_size == 0) {
1713 mpd->b_blocknr = logical;
1714 mpd->b_size = b_size;
1715 mpd->b_state = b_state & BH_FLAGS;
1716 return;
1719 next = mpd->b_blocknr + nrblocks;
1721 * Can we merge the block to our big extent?
1723 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1724 mpd->b_size += b_size;
1725 return;
1728 flush_it:
1730 * We couldn't merge the block to our extent, so we
1731 * need to flush current extent and start new one
1733 mpage_da_map_and_submit(mpd);
1734 return;
1737 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1739 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1743 * This function is grabs code from the very beginning of
1744 * ext4_map_blocks, but assumes that the caller is from delayed write
1745 * time. This function looks up the requested blocks and sets the
1746 * buffer delay bit under the protection of i_data_sem.
1748 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1749 struct ext4_map_blocks *map,
1750 struct buffer_head *bh)
1752 int retval;
1753 sector_t invalid_block = ~((sector_t) 0xffff);
1755 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1756 invalid_block = ~0;
1758 map->m_flags = 0;
1759 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1760 "logical block %lu\n", inode->i_ino, map->m_len,
1761 (unsigned long) map->m_lblk);
1763 * Try to see if we can get the block without requesting a new
1764 * file system block.
1766 down_read((&EXT4_I(inode)->i_data_sem));
1767 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1768 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1769 else
1770 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1772 if (retval == 0) {
1774 * XXX: __block_prepare_write() unmaps passed block,
1775 * is it OK?
1777 /* If the block was allocated from previously allocated cluster,
1778 * then we dont need to reserve it again. */
1779 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1780 retval = ext4_da_reserve_space(inode, iblock);
1781 if (retval)
1782 /* not enough space to reserve */
1783 goto out_unlock;
1786 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1787 * and it should not appear on the bh->b_state.
1789 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1791 map_bh(bh, inode->i_sb, invalid_block);
1792 set_buffer_new(bh);
1793 set_buffer_delay(bh);
1796 out_unlock:
1797 up_read((&EXT4_I(inode)->i_data_sem));
1799 return retval;
1803 * This is a special get_blocks_t callback which is used by
1804 * ext4_da_write_begin(). It will either return mapped block or
1805 * reserve space for a single block.
1807 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1808 * We also have b_blocknr = -1 and b_bdev initialized properly
1810 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1811 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1812 * initialized properly.
1814 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1815 struct buffer_head *bh, int create)
1817 struct ext4_map_blocks map;
1818 int ret = 0;
1820 BUG_ON(create == 0);
1821 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1823 map.m_lblk = iblock;
1824 map.m_len = 1;
1827 * first, we need to know whether the block is allocated already
1828 * preallocated blocks are unmapped but should treated
1829 * the same as allocated blocks.
1831 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1832 if (ret <= 0)
1833 return ret;
1835 map_bh(bh, inode->i_sb, map.m_pblk);
1836 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1838 if (buffer_unwritten(bh)) {
1839 /* A delayed write to unwritten bh should be marked
1840 * new and mapped. Mapped ensures that we don't do
1841 * get_block multiple times when we write to the same
1842 * offset and new ensures that we do proper zero out
1843 * for partial write.
1845 set_buffer_new(bh);
1846 set_buffer_mapped(bh);
1848 return 0;
1852 * This function is used as a standard get_block_t calback function
1853 * when there is no desire to allocate any blocks. It is used as a
1854 * callback function for block_write_begin() and block_write_full_page().
1855 * These functions should only try to map a single block at a time.
1857 * Since this function doesn't do block allocations even if the caller
1858 * requests it by passing in create=1, it is critically important that
1859 * any caller checks to make sure that any buffer heads are returned
1860 * by this function are either all already mapped or marked for
1861 * delayed allocation before calling block_write_full_page(). Otherwise,
1862 * b_blocknr could be left unitialized, and the page write functions will
1863 * be taken by surprise.
1865 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1866 struct buffer_head *bh_result, int create)
1868 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1869 return _ext4_get_block(inode, iblock, bh_result, 0);
1872 static int bget_one(handle_t *handle, struct buffer_head *bh)
1874 get_bh(bh);
1875 return 0;
1878 static int bput_one(handle_t *handle, struct buffer_head *bh)
1880 put_bh(bh);
1881 return 0;
1884 static int __ext4_journalled_writepage(struct page *page,
1885 unsigned int len)
1887 struct address_space *mapping = page->mapping;
1888 struct inode *inode = mapping->host;
1889 struct buffer_head *page_bufs;
1890 handle_t *handle = NULL;
1891 int ret = 0;
1892 int err;
1894 ClearPageChecked(page);
1895 page_bufs = page_buffers(page);
1896 BUG_ON(!page_bufs);
1897 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1898 /* As soon as we unlock the page, it can go away, but we have
1899 * references to buffers so we are safe */
1900 unlock_page(page);
1902 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1903 if (IS_ERR(handle)) {
1904 ret = PTR_ERR(handle);
1905 goto out;
1908 BUG_ON(!ext4_handle_valid(handle));
1910 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911 do_journal_get_write_access);
1913 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914 write_end_fn);
1915 if (ret == 0)
1916 ret = err;
1917 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918 err = ext4_journal_stop(handle);
1919 if (!ret)
1920 ret = err;
1922 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1923 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1924 out:
1925 return ret;
1928 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1929 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1932 * Note that we don't need to start a transaction unless we're journaling data
1933 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934 * need to file the inode to the transaction's list in ordered mode because if
1935 * we are writing back data added by write(), the inode is already there and if
1936 * we are writing back data modified via mmap(), no one guarantees in which
1937 * transaction the data will hit the disk. In case we are journaling data, we
1938 * cannot start transaction directly because transaction start ranks above page
1939 * lock so we have to do some magic.
1941 * This function can get called via...
1942 * - ext4_da_writepages after taking page lock (have journal handle)
1943 * - journal_submit_inode_data_buffers (no journal handle)
1944 * - shrink_page_list via pdflush (no journal handle)
1945 * - grab_page_cache when doing write_begin (have journal handle)
1947 * We don't do any block allocation in this function. If we have page with
1948 * multiple blocks we need to write those buffer_heads that are mapped. This
1949 * is important for mmaped based write. So if we do with blocksize 1K
1950 * truncate(f, 1024);
1951 * a = mmap(f, 0, 4096);
1952 * a[0] = 'a';
1953 * truncate(f, 4096);
1954 * we have in the page first buffer_head mapped via page_mkwrite call back
1955 * but other buffer_heads would be unmapped but dirty (dirty done via the
1956 * do_wp_page). So writepage should write the first block. If we modify
1957 * the mmap area beyond 1024 we will again get a page_fault and the
1958 * page_mkwrite callback will do the block allocation and mark the
1959 * buffer_heads mapped.
1961 * We redirty the page if we have any buffer_heads that is either delay or
1962 * unwritten in the page.
1964 * We can get recursively called as show below.
1966 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967 * ext4_writepage()
1969 * But since we don't do any block allocation we should not deadlock.
1970 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1972 static int ext4_writepage(struct page *page,
1973 struct writeback_control *wbc)
1975 int ret = 0, commit_write = 0;
1976 loff_t size;
1977 unsigned int len;
1978 struct buffer_head *page_bufs = NULL;
1979 struct inode *inode = page->mapping->host;
1981 trace_ext4_writepage(page);
1982 size = i_size_read(inode);
1983 if (page->index == size >> PAGE_CACHE_SHIFT)
1984 len = size & ~PAGE_CACHE_MASK;
1985 else
1986 len = PAGE_CACHE_SIZE;
1989 * If the page does not have buffers (for whatever reason),
1990 * try to create them using __block_write_begin. If this
1991 * fails, redirty the page and move on.
1993 if (!page_has_buffers(page)) {
1994 if (__block_write_begin(page, 0, len,
1995 noalloc_get_block_write)) {
1996 redirty_page:
1997 redirty_page_for_writepage(wbc, page);
1998 unlock_page(page);
1999 return 0;
2001 commit_write = 1;
2003 page_bufs = page_buffers(page);
2004 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2005 ext4_bh_delay_or_unwritten)) {
2007 * We don't want to do block allocation, so redirty
2008 * the page and return. We may reach here when we do
2009 * a journal commit via journal_submit_inode_data_buffers.
2010 * We can also reach here via shrink_page_list but it
2011 * should never be for direct reclaim so warn if that
2012 * happens
2014 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2015 PF_MEMALLOC);
2016 goto redirty_page;
2018 if (commit_write)
2019 /* now mark the buffer_heads as dirty and uptodate */
2020 block_commit_write(page, 0, len);
2022 if (PageChecked(page) && ext4_should_journal_data(inode))
2024 * It's mmapped pagecache. Add buffers and journal it. There
2025 * doesn't seem much point in redirtying the page here.
2027 return __ext4_journalled_writepage(page, len);
2029 if (buffer_uninit(page_bufs)) {
2030 ext4_set_bh_endio(page_bufs, inode);
2031 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2032 wbc, ext4_end_io_buffer_write);
2033 } else
2034 ret = block_write_full_page(page, noalloc_get_block_write,
2035 wbc);
2037 return ret;
2041 * This is called via ext4_da_writepages() to
2042 * calculate the total number of credits to reserve to fit
2043 * a single extent allocation into a single transaction,
2044 * ext4_da_writpeages() will loop calling this before
2045 * the block allocation.
2048 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2050 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2053 * With non-extent format the journal credit needed to
2054 * insert nrblocks contiguous block is dependent on
2055 * number of contiguous block. So we will limit
2056 * number of contiguous block to a sane value
2058 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2059 (max_blocks > EXT4_MAX_TRANS_DATA))
2060 max_blocks = EXT4_MAX_TRANS_DATA;
2062 return ext4_chunk_trans_blocks(inode, max_blocks);
2066 * write_cache_pages_da - walk the list of dirty pages of the given
2067 * address space and accumulate pages that need writing, and call
2068 * mpage_da_map_and_submit to map a single contiguous memory region
2069 * and then write them.
2071 static int write_cache_pages_da(struct address_space *mapping,
2072 struct writeback_control *wbc,
2073 struct mpage_da_data *mpd,
2074 pgoff_t *done_index)
2076 struct buffer_head *bh, *head;
2077 struct inode *inode = mapping->host;
2078 struct pagevec pvec;
2079 unsigned int nr_pages;
2080 sector_t logical;
2081 pgoff_t index, end;
2082 long nr_to_write = wbc->nr_to_write;
2083 int i, tag, ret = 0;
2085 memset(mpd, 0, sizeof(struct mpage_da_data));
2086 mpd->wbc = wbc;
2087 mpd->inode = inode;
2088 pagevec_init(&pvec, 0);
2089 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2090 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2092 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2093 tag = PAGECACHE_TAG_TOWRITE;
2094 else
2095 tag = PAGECACHE_TAG_DIRTY;
2097 *done_index = index;
2098 while (index <= end) {
2099 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2100 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2101 if (nr_pages == 0)
2102 return 0;
2104 for (i = 0; i < nr_pages; i++) {
2105 struct page *page = pvec.pages[i];
2108 * At this point, the page may be truncated or
2109 * invalidated (changing page->mapping to NULL), or
2110 * even swizzled back from swapper_space to tmpfs file
2111 * mapping. However, page->index will not change
2112 * because we have a reference on the page.
2114 if (page->index > end)
2115 goto out;
2117 *done_index = page->index + 1;
2120 * If we can't merge this page, and we have
2121 * accumulated an contiguous region, write it
2123 if ((mpd->next_page != page->index) &&
2124 (mpd->next_page != mpd->first_page)) {
2125 mpage_da_map_and_submit(mpd);
2126 goto ret_extent_tail;
2129 lock_page(page);
2132 * If the page is no longer dirty, or its
2133 * mapping no longer corresponds to inode we
2134 * are writing (which means it has been
2135 * truncated or invalidated), or the page is
2136 * already under writeback and we are not
2137 * doing a data integrity writeback, skip the page
2139 if (!PageDirty(page) ||
2140 (PageWriteback(page) &&
2141 (wbc->sync_mode == WB_SYNC_NONE)) ||
2142 unlikely(page->mapping != mapping)) {
2143 unlock_page(page);
2144 continue;
2147 wait_on_page_writeback(page);
2148 BUG_ON(PageWriteback(page));
2150 if (mpd->next_page != page->index)
2151 mpd->first_page = page->index;
2152 mpd->next_page = page->index + 1;
2153 logical = (sector_t) page->index <<
2154 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2156 if (!page_has_buffers(page)) {
2157 mpage_add_bh_to_extent(mpd, logical,
2158 PAGE_CACHE_SIZE,
2159 (1 << BH_Dirty) | (1 << BH_Uptodate));
2160 if (mpd->io_done)
2161 goto ret_extent_tail;
2162 } else {
2164 * Page with regular buffer heads,
2165 * just add all dirty ones
2167 head = page_buffers(page);
2168 bh = head;
2169 do {
2170 BUG_ON(buffer_locked(bh));
2172 * We need to try to allocate
2173 * unmapped blocks in the same page.
2174 * Otherwise we won't make progress
2175 * with the page in ext4_writepage
2177 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2178 mpage_add_bh_to_extent(mpd, logical,
2179 bh->b_size,
2180 bh->b_state);
2181 if (mpd->io_done)
2182 goto ret_extent_tail;
2183 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2185 * mapped dirty buffer. We need
2186 * to update the b_state
2187 * because we look at b_state
2188 * in mpage_da_map_blocks. We
2189 * don't update b_size because
2190 * if we find an unmapped
2191 * buffer_head later we need to
2192 * use the b_state flag of that
2193 * buffer_head.
2195 if (mpd->b_size == 0)
2196 mpd->b_state = bh->b_state & BH_FLAGS;
2198 logical++;
2199 } while ((bh = bh->b_this_page) != head);
2202 if (nr_to_write > 0) {
2203 nr_to_write--;
2204 if (nr_to_write == 0 &&
2205 wbc->sync_mode == WB_SYNC_NONE)
2207 * We stop writing back only if we are
2208 * not doing integrity sync. In case of
2209 * integrity sync we have to keep going
2210 * because someone may be concurrently
2211 * dirtying pages, and we might have
2212 * synced a lot of newly appeared dirty
2213 * pages, but have not synced all of the
2214 * old dirty pages.
2216 goto out;
2219 pagevec_release(&pvec);
2220 cond_resched();
2222 return 0;
2223 ret_extent_tail:
2224 ret = MPAGE_DA_EXTENT_TAIL;
2225 out:
2226 pagevec_release(&pvec);
2227 cond_resched();
2228 return ret;
2232 static int ext4_da_writepages(struct address_space *mapping,
2233 struct writeback_control *wbc)
2235 pgoff_t index;
2236 int range_whole = 0;
2237 handle_t *handle = NULL;
2238 struct mpage_da_data mpd;
2239 struct inode *inode = mapping->host;
2240 int pages_written = 0;
2241 unsigned int max_pages;
2242 int range_cyclic, cycled = 1, io_done = 0;
2243 int needed_blocks, ret = 0;
2244 long desired_nr_to_write, nr_to_writebump = 0;
2245 loff_t range_start = wbc->range_start;
2246 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2247 pgoff_t done_index = 0;
2248 pgoff_t end;
2249 struct blk_plug plug;
2251 trace_ext4_da_writepages(inode, wbc);
2254 * No pages to write? This is mainly a kludge to avoid starting
2255 * a transaction for special inodes like journal inode on last iput()
2256 * because that could violate lock ordering on umount
2258 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2259 return 0;
2262 * If the filesystem has aborted, it is read-only, so return
2263 * right away instead of dumping stack traces later on that
2264 * will obscure the real source of the problem. We test
2265 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2266 * the latter could be true if the filesystem is mounted
2267 * read-only, and in that case, ext4_da_writepages should
2268 * *never* be called, so if that ever happens, we would want
2269 * the stack trace.
2271 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2272 return -EROFS;
2274 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2275 range_whole = 1;
2277 range_cyclic = wbc->range_cyclic;
2278 if (wbc->range_cyclic) {
2279 index = mapping->writeback_index;
2280 if (index)
2281 cycled = 0;
2282 wbc->range_start = index << PAGE_CACHE_SHIFT;
2283 wbc->range_end = LLONG_MAX;
2284 wbc->range_cyclic = 0;
2285 end = -1;
2286 } else {
2287 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2288 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2292 * This works around two forms of stupidity. The first is in
2293 * the writeback code, which caps the maximum number of pages
2294 * written to be 1024 pages. This is wrong on multiple
2295 * levels; different architectues have a different page size,
2296 * which changes the maximum amount of data which gets
2297 * written. Secondly, 4 megabytes is way too small. XFS
2298 * forces this value to be 16 megabytes by multiplying
2299 * nr_to_write parameter by four, and then relies on its
2300 * allocator to allocate larger extents to make them
2301 * contiguous. Unfortunately this brings us to the second
2302 * stupidity, which is that ext4's mballoc code only allocates
2303 * at most 2048 blocks. So we force contiguous writes up to
2304 * the number of dirty blocks in the inode, or
2305 * sbi->max_writeback_mb_bump whichever is smaller.
2307 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2308 if (!range_cyclic && range_whole) {
2309 if (wbc->nr_to_write == LONG_MAX)
2310 desired_nr_to_write = wbc->nr_to_write;
2311 else
2312 desired_nr_to_write = wbc->nr_to_write * 8;
2313 } else
2314 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2315 max_pages);
2316 if (desired_nr_to_write > max_pages)
2317 desired_nr_to_write = max_pages;
2319 if (wbc->nr_to_write < desired_nr_to_write) {
2320 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2321 wbc->nr_to_write = desired_nr_to_write;
2324 retry:
2325 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2326 tag_pages_for_writeback(mapping, index, end);
2328 blk_start_plug(&plug);
2329 while (!ret && wbc->nr_to_write > 0) {
2332 * we insert one extent at a time. So we need
2333 * credit needed for single extent allocation.
2334 * journalled mode is currently not supported
2335 * by delalloc
2337 BUG_ON(ext4_should_journal_data(inode));
2338 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2340 /* start a new transaction*/
2341 handle = ext4_journal_start(inode, needed_blocks);
2342 if (IS_ERR(handle)) {
2343 ret = PTR_ERR(handle);
2344 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2345 "%ld pages, ino %lu; err %d", __func__,
2346 wbc->nr_to_write, inode->i_ino, ret);
2347 blk_finish_plug(&plug);
2348 goto out_writepages;
2352 * Now call write_cache_pages_da() to find the next
2353 * contiguous region of logical blocks that need
2354 * blocks to be allocated by ext4 and submit them.
2356 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2358 * If we have a contiguous extent of pages and we
2359 * haven't done the I/O yet, map the blocks and submit
2360 * them for I/O.
2362 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2363 mpage_da_map_and_submit(&mpd);
2364 ret = MPAGE_DA_EXTENT_TAIL;
2366 trace_ext4_da_write_pages(inode, &mpd);
2367 wbc->nr_to_write -= mpd.pages_written;
2369 ext4_journal_stop(handle);
2371 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2372 /* commit the transaction which would
2373 * free blocks released in the transaction
2374 * and try again
2376 jbd2_journal_force_commit_nested(sbi->s_journal);
2377 ret = 0;
2378 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2380 * Got one extent now try with rest of the pages.
2381 * If mpd.retval is set -EIO, journal is aborted.
2382 * So we don't need to write any more.
2384 pages_written += mpd.pages_written;
2385 ret = mpd.retval;
2386 io_done = 1;
2387 } else if (wbc->nr_to_write)
2389 * There is no more writeout needed
2390 * or we requested for a noblocking writeout
2391 * and we found the device congested
2393 break;
2395 blk_finish_plug(&plug);
2396 if (!io_done && !cycled) {
2397 cycled = 1;
2398 index = 0;
2399 wbc->range_start = index << PAGE_CACHE_SHIFT;
2400 wbc->range_end = mapping->writeback_index - 1;
2401 goto retry;
2404 /* Update index */
2405 wbc->range_cyclic = range_cyclic;
2406 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2408 * set the writeback_index so that range_cyclic
2409 * mode will write it back later
2411 mapping->writeback_index = done_index;
2413 out_writepages:
2414 wbc->nr_to_write -= nr_to_writebump;
2415 wbc->range_start = range_start;
2416 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2417 return ret;
2420 #define FALL_BACK_TO_NONDELALLOC 1
2421 static int ext4_nonda_switch(struct super_block *sb)
2423 s64 free_blocks, dirty_blocks;
2424 struct ext4_sb_info *sbi = EXT4_SB(sb);
2427 * switch to non delalloc mode if we are running low
2428 * on free block. The free block accounting via percpu
2429 * counters can get slightly wrong with percpu_counter_batch getting
2430 * accumulated on each CPU without updating global counters
2431 * Delalloc need an accurate free block accounting. So switch
2432 * to non delalloc when we are near to error range.
2434 free_blocks = EXT4_C2B(sbi,
2435 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2436 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2437 if (2 * free_blocks < 3 * dirty_blocks ||
2438 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2440 * free block count is less than 150% of dirty blocks
2441 * or free blocks is less than watermark
2443 return 1;
2446 * Even if we don't switch but are nearing capacity,
2447 * start pushing delalloc when 1/2 of free blocks are dirty.
2449 if (free_blocks < 2 * dirty_blocks)
2450 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2452 return 0;
2455 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2456 loff_t pos, unsigned len, unsigned flags,
2457 struct page **pagep, void **fsdata)
2459 int ret, retries = 0;
2460 struct page *page;
2461 pgoff_t index;
2462 struct inode *inode = mapping->host;
2463 handle_t *handle;
2465 index = pos >> PAGE_CACHE_SHIFT;
2467 if (ext4_nonda_switch(inode->i_sb)) {
2468 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2469 return ext4_write_begin(file, mapping, pos,
2470 len, flags, pagep, fsdata);
2472 *fsdata = (void *)0;
2473 trace_ext4_da_write_begin(inode, pos, len, flags);
2474 retry:
2476 * With delayed allocation, we don't log the i_disksize update
2477 * if there is delayed block allocation. But we still need
2478 * to journalling the i_disksize update if writes to the end
2479 * of file which has an already mapped buffer.
2481 handle = ext4_journal_start(inode, 1);
2482 if (IS_ERR(handle)) {
2483 ret = PTR_ERR(handle);
2484 goto out;
2486 /* We cannot recurse into the filesystem as the transaction is already
2487 * started */
2488 flags |= AOP_FLAG_NOFS;
2490 page = grab_cache_page_write_begin(mapping, index, flags);
2491 if (!page) {
2492 ext4_journal_stop(handle);
2493 ret = -ENOMEM;
2494 goto out;
2496 *pagep = page;
2498 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2499 if (ret < 0) {
2500 unlock_page(page);
2501 ext4_journal_stop(handle);
2502 page_cache_release(page);
2504 * block_write_begin may have instantiated a few blocks
2505 * outside i_size. Trim these off again. Don't need
2506 * i_size_read because we hold i_mutex.
2508 if (pos + len > inode->i_size)
2509 ext4_truncate_failed_write(inode);
2512 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2513 goto retry;
2514 out:
2515 return ret;
2519 * Check if we should update i_disksize
2520 * when write to the end of file but not require block allocation
2522 static int ext4_da_should_update_i_disksize(struct page *page,
2523 unsigned long offset)
2525 struct buffer_head *bh;
2526 struct inode *inode = page->mapping->host;
2527 unsigned int idx;
2528 int i;
2530 bh = page_buffers(page);
2531 idx = offset >> inode->i_blkbits;
2533 for (i = 0; i < idx; i++)
2534 bh = bh->b_this_page;
2536 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2537 return 0;
2538 return 1;
2541 static int ext4_da_write_end(struct file *file,
2542 struct address_space *mapping,
2543 loff_t pos, unsigned len, unsigned copied,
2544 struct page *page, void *fsdata)
2546 struct inode *inode = mapping->host;
2547 int ret = 0, ret2;
2548 handle_t *handle = ext4_journal_current_handle();
2549 loff_t new_i_size;
2550 unsigned long start, end;
2551 int write_mode = (int)(unsigned long)fsdata;
2553 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2554 switch (ext4_inode_journal_mode(inode)) {
2555 case EXT4_INODE_ORDERED_DATA_MODE:
2556 return ext4_ordered_write_end(file, mapping, pos,
2557 len, copied, page, fsdata);
2558 case EXT4_INODE_WRITEBACK_DATA_MODE:
2559 return ext4_writeback_write_end(file, mapping, pos,
2560 len, copied, page, fsdata);
2561 default:
2562 BUG();
2566 trace_ext4_da_write_end(inode, pos, len, copied);
2567 start = pos & (PAGE_CACHE_SIZE - 1);
2568 end = start + copied - 1;
2571 * generic_write_end() will run mark_inode_dirty() if i_size
2572 * changes. So let's piggyback the i_disksize mark_inode_dirty
2573 * into that.
2576 new_i_size = pos + copied;
2577 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2578 if (ext4_da_should_update_i_disksize(page, end)) {
2579 down_write(&EXT4_I(inode)->i_data_sem);
2580 if (new_i_size > EXT4_I(inode)->i_disksize) {
2582 * Updating i_disksize when extending file
2583 * without needing block allocation
2585 if (ext4_should_order_data(inode))
2586 ret = ext4_jbd2_file_inode(handle,
2587 inode);
2589 EXT4_I(inode)->i_disksize = new_i_size;
2591 up_write(&EXT4_I(inode)->i_data_sem);
2592 /* We need to mark inode dirty even if
2593 * new_i_size is less that inode->i_size
2594 * bu greater than i_disksize.(hint delalloc)
2596 ext4_mark_inode_dirty(handle, inode);
2599 ret2 = generic_write_end(file, mapping, pos, len, copied,
2600 page, fsdata);
2601 copied = ret2;
2602 if (ret2 < 0)
2603 ret = ret2;
2604 ret2 = ext4_journal_stop(handle);
2605 if (!ret)
2606 ret = ret2;
2608 return ret ? ret : copied;
2611 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2614 * Drop reserved blocks
2616 BUG_ON(!PageLocked(page));
2617 if (!page_has_buffers(page))
2618 goto out;
2620 ext4_da_page_release_reservation(page, offset);
2622 out:
2623 ext4_invalidatepage(page, offset);
2625 return;
2629 * Force all delayed allocation blocks to be allocated for a given inode.
2631 int ext4_alloc_da_blocks(struct inode *inode)
2633 trace_ext4_alloc_da_blocks(inode);
2635 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2636 !EXT4_I(inode)->i_reserved_meta_blocks)
2637 return 0;
2640 * We do something simple for now. The filemap_flush() will
2641 * also start triggering a write of the data blocks, which is
2642 * not strictly speaking necessary (and for users of
2643 * laptop_mode, not even desirable). However, to do otherwise
2644 * would require replicating code paths in:
2646 * ext4_da_writepages() ->
2647 * write_cache_pages() ---> (via passed in callback function)
2648 * __mpage_da_writepage() -->
2649 * mpage_add_bh_to_extent()
2650 * mpage_da_map_blocks()
2652 * The problem is that write_cache_pages(), located in
2653 * mm/page-writeback.c, marks pages clean in preparation for
2654 * doing I/O, which is not desirable if we're not planning on
2655 * doing I/O at all.
2657 * We could call write_cache_pages(), and then redirty all of
2658 * the pages by calling redirty_page_for_writepage() but that
2659 * would be ugly in the extreme. So instead we would need to
2660 * replicate parts of the code in the above functions,
2661 * simplifying them because we wouldn't actually intend to
2662 * write out the pages, but rather only collect contiguous
2663 * logical block extents, call the multi-block allocator, and
2664 * then update the buffer heads with the block allocations.
2666 * For now, though, we'll cheat by calling filemap_flush(),
2667 * which will map the blocks, and start the I/O, but not
2668 * actually wait for the I/O to complete.
2670 return filemap_flush(inode->i_mapping);
2674 * bmap() is special. It gets used by applications such as lilo and by
2675 * the swapper to find the on-disk block of a specific piece of data.
2677 * Naturally, this is dangerous if the block concerned is still in the
2678 * journal. If somebody makes a swapfile on an ext4 data-journaling
2679 * filesystem and enables swap, then they may get a nasty shock when the
2680 * data getting swapped to that swapfile suddenly gets overwritten by
2681 * the original zero's written out previously to the journal and
2682 * awaiting writeback in the kernel's buffer cache.
2684 * So, if we see any bmap calls here on a modified, data-journaled file,
2685 * take extra steps to flush any blocks which might be in the cache.
2687 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2689 struct inode *inode = mapping->host;
2690 journal_t *journal;
2691 int err;
2693 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2694 test_opt(inode->i_sb, DELALLOC)) {
2696 * With delalloc we want to sync the file
2697 * so that we can make sure we allocate
2698 * blocks for file
2700 filemap_write_and_wait(mapping);
2703 if (EXT4_JOURNAL(inode) &&
2704 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2706 * This is a REALLY heavyweight approach, but the use of
2707 * bmap on dirty files is expected to be extremely rare:
2708 * only if we run lilo or swapon on a freshly made file
2709 * do we expect this to happen.
2711 * (bmap requires CAP_SYS_RAWIO so this does not
2712 * represent an unprivileged user DOS attack --- we'd be
2713 * in trouble if mortal users could trigger this path at
2714 * will.)
2716 * NB. EXT4_STATE_JDATA is not set on files other than
2717 * regular files. If somebody wants to bmap a directory
2718 * or symlink and gets confused because the buffer
2719 * hasn't yet been flushed to disk, they deserve
2720 * everything they get.
2723 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2724 journal = EXT4_JOURNAL(inode);
2725 jbd2_journal_lock_updates(journal);
2726 err = jbd2_journal_flush(journal);
2727 jbd2_journal_unlock_updates(journal);
2729 if (err)
2730 return 0;
2733 return generic_block_bmap(mapping, block, ext4_get_block);
2736 static int ext4_readpage(struct file *file, struct page *page)
2738 trace_ext4_readpage(page);
2739 return mpage_readpage(page, ext4_get_block);
2742 static int
2743 ext4_readpages(struct file *file, struct address_space *mapping,
2744 struct list_head *pages, unsigned nr_pages)
2746 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2749 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2751 struct buffer_head *head, *bh;
2752 unsigned int curr_off = 0;
2754 if (!page_has_buffers(page))
2755 return;
2756 head = bh = page_buffers(page);
2757 do {
2758 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2759 && bh->b_private) {
2760 ext4_free_io_end(bh->b_private);
2761 bh->b_private = NULL;
2762 bh->b_end_io = NULL;
2764 curr_off = curr_off + bh->b_size;
2765 bh = bh->b_this_page;
2766 } while (bh != head);
2769 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2771 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2773 trace_ext4_invalidatepage(page, offset);
2776 * free any io_end structure allocated for buffers to be discarded
2778 if (ext4_should_dioread_nolock(page->mapping->host))
2779 ext4_invalidatepage_free_endio(page, offset);
2781 * If it's a full truncate we just forget about the pending dirtying
2783 if (offset == 0)
2784 ClearPageChecked(page);
2786 if (journal)
2787 jbd2_journal_invalidatepage(journal, page, offset);
2788 else
2789 block_invalidatepage(page, offset);
2792 static int ext4_releasepage(struct page *page, gfp_t wait)
2794 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2796 trace_ext4_releasepage(page);
2798 WARN_ON(PageChecked(page));
2799 if (!page_has_buffers(page))
2800 return 0;
2801 if (journal)
2802 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2803 else
2804 return try_to_free_buffers(page);
2808 * ext4_get_block used when preparing for a DIO write or buffer write.
2809 * We allocate an uinitialized extent if blocks haven't been allocated.
2810 * The extent will be converted to initialized after the IO is complete.
2812 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2813 struct buffer_head *bh_result, int create)
2815 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2816 inode->i_ino, create);
2817 return _ext4_get_block(inode, iblock, bh_result,
2818 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2821 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2822 ssize_t size, void *private, int ret,
2823 bool is_async)
2825 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2826 ext4_io_end_t *io_end = iocb->private;
2827 struct workqueue_struct *wq;
2828 unsigned long flags;
2829 struct ext4_inode_info *ei;
2831 /* if not async direct IO or dio with 0 bytes write, just return */
2832 if (!io_end || !size)
2833 goto out;
2835 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2836 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2837 iocb->private, io_end->inode->i_ino, iocb, offset,
2838 size);
2840 iocb->private = NULL;
2842 /* if not aio dio with unwritten extents, just free io and return */
2843 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2844 ext4_free_io_end(io_end);
2845 out:
2846 if (is_async)
2847 aio_complete(iocb, ret, 0);
2848 inode_dio_done(inode);
2849 return;
2852 io_end->offset = offset;
2853 io_end->size = size;
2854 if (is_async) {
2855 io_end->iocb = iocb;
2856 io_end->result = ret;
2858 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2860 /* Add the io_end to per-inode completed aio dio list*/
2861 ei = EXT4_I(io_end->inode);
2862 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2863 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2864 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2866 /* queue the work to convert unwritten extents to written */
2867 queue_work(wq, &io_end->work);
2870 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2872 ext4_io_end_t *io_end = bh->b_private;
2873 struct workqueue_struct *wq;
2874 struct inode *inode;
2875 unsigned long flags;
2877 if (!test_clear_buffer_uninit(bh) || !io_end)
2878 goto out;
2880 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2881 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2882 "sb umounted, discard end_io request for inode %lu",
2883 io_end->inode->i_ino);
2884 ext4_free_io_end(io_end);
2885 goto out;
2889 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2890 * but being more careful is always safe for the future change.
2892 inode = io_end->inode;
2893 ext4_set_io_unwritten_flag(inode, io_end);
2895 /* Add the io_end to per-inode completed io list*/
2896 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2897 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2898 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2900 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2901 /* queue the work to convert unwritten extents to written */
2902 queue_work(wq, &io_end->work);
2903 out:
2904 bh->b_private = NULL;
2905 bh->b_end_io = NULL;
2906 clear_buffer_uninit(bh);
2907 end_buffer_async_write(bh, uptodate);
2910 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2912 ext4_io_end_t *io_end;
2913 struct page *page = bh->b_page;
2914 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2915 size_t size = bh->b_size;
2917 retry:
2918 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2919 if (!io_end) {
2920 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2921 schedule();
2922 goto retry;
2924 io_end->offset = offset;
2925 io_end->size = size;
2927 * We need to hold a reference to the page to make sure it
2928 * doesn't get evicted before ext4_end_io_work() has a chance
2929 * to convert the extent from written to unwritten.
2931 io_end->page = page;
2932 get_page(io_end->page);
2934 bh->b_private = io_end;
2935 bh->b_end_io = ext4_end_io_buffer_write;
2936 return 0;
2940 * For ext4 extent files, ext4 will do direct-io write to holes,
2941 * preallocated extents, and those write extend the file, no need to
2942 * fall back to buffered IO.
2944 * For holes, we fallocate those blocks, mark them as uninitialized
2945 * If those blocks were preallocated, we mark sure they are splited, but
2946 * still keep the range to write as uninitialized.
2948 * The unwrritten extents will be converted to written when DIO is completed.
2949 * For async direct IO, since the IO may still pending when return, we
2950 * set up an end_io call back function, which will do the conversion
2951 * when async direct IO completed.
2953 * If the O_DIRECT write will extend the file then add this inode to the
2954 * orphan list. So recovery will truncate it back to the original size
2955 * if the machine crashes during the write.
2958 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2959 const struct iovec *iov, loff_t offset,
2960 unsigned long nr_segs)
2962 struct file *file = iocb->ki_filp;
2963 struct inode *inode = file->f_mapping->host;
2964 ssize_t ret;
2965 size_t count = iov_length(iov, nr_segs);
2967 loff_t final_size = offset + count;
2968 if (rw == WRITE && final_size <= inode->i_size) {
2970 * We could direct write to holes and fallocate.
2972 * Allocated blocks to fill the hole are marked as uninitialized
2973 * to prevent parallel buffered read to expose the stale data
2974 * before DIO complete the data IO.
2976 * As to previously fallocated extents, ext4 get_block
2977 * will just simply mark the buffer mapped but still
2978 * keep the extents uninitialized.
2980 * for non AIO case, we will convert those unwritten extents
2981 * to written after return back from blockdev_direct_IO.
2983 * for async DIO, the conversion needs to be defered when
2984 * the IO is completed. The ext4 end_io callback function
2985 * will be called to take care of the conversion work.
2986 * Here for async case, we allocate an io_end structure to
2987 * hook to the iocb.
2989 iocb->private = NULL;
2990 EXT4_I(inode)->cur_aio_dio = NULL;
2991 if (!is_sync_kiocb(iocb)) {
2992 ext4_io_end_t *io_end =
2993 ext4_init_io_end(inode, GFP_NOFS);
2994 if (!io_end)
2995 return -ENOMEM;
2996 io_end->flag |= EXT4_IO_END_DIRECT;
2997 iocb->private = io_end;
2999 * we save the io structure for current async
3000 * direct IO, so that later ext4_map_blocks()
3001 * could flag the io structure whether there
3002 * is a unwritten extents needs to be converted
3003 * when IO is completed.
3005 EXT4_I(inode)->cur_aio_dio = iocb->private;
3008 ret = __blockdev_direct_IO(rw, iocb, inode,
3009 inode->i_sb->s_bdev, iov,
3010 offset, nr_segs,
3011 ext4_get_block_write,
3012 ext4_end_io_dio,
3013 NULL,
3014 DIO_LOCKING);
3015 if (iocb->private)
3016 EXT4_I(inode)->cur_aio_dio = NULL;
3018 * The io_end structure takes a reference to the inode,
3019 * that structure needs to be destroyed and the
3020 * reference to the inode need to be dropped, when IO is
3021 * complete, even with 0 byte write, or failed.
3023 * In the successful AIO DIO case, the io_end structure will be
3024 * desctroyed and the reference to the inode will be dropped
3025 * after the end_io call back function is called.
3027 * In the case there is 0 byte write, or error case, since
3028 * VFS direct IO won't invoke the end_io call back function,
3029 * we need to free the end_io structure here.
3031 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3032 ext4_free_io_end(iocb->private);
3033 iocb->private = NULL;
3034 } else if (ret > 0 && ext4_test_inode_state(inode,
3035 EXT4_STATE_DIO_UNWRITTEN)) {
3036 int err;
3038 * for non AIO case, since the IO is already
3039 * completed, we could do the conversion right here
3041 err = ext4_convert_unwritten_extents(inode,
3042 offset, ret);
3043 if (err < 0)
3044 ret = err;
3045 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3047 return ret;
3050 /* for write the the end of file case, we fall back to old way */
3051 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3054 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3055 const struct iovec *iov, loff_t offset,
3056 unsigned long nr_segs)
3058 struct file *file = iocb->ki_filp;
3059 struct inode *inode = file->f_mapping->host;
3060 ssize_t ret;
3063 * If we are doing data journalling we don't support O_DIRECT
3065 if (ext4_should_journal_data(inode))
3066 return 0;
3068 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3069 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3070 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3071 else
3072 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3073 trace_ext4_direct_IO_exit(inode, offset,
3074 iov_length(iov, nr_segs), rw, ret);
3075 return ret;
3079 * Pages can be marked dirty completely asynchronously from ext4's journalling
3080 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3081 * much here because ->set_page_dirty is called under VFS locks. The page is
3082 * not necessarily locked.
3084 * We cannot just dirty the page and leave attached buffers clean, because the
3085 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3086 * or jbddirty because all the journalling code will explode.
3088 * So what we do is to mark the page "pending dirty" and next time writepage
3089 * is called, propagate that into the buffers appropriately.
3091 static int ext4_journalled_set_page_dirty(struct page *page)
3093 SetPageChecked(page);
3094 return __set_page_dirty_nobuffers(page);
3097 static const struct address_space_operations ext4_ordered_aops = {
3098 .readpage = ext4_readpage,
3099 .readpages = ext4_readpages,
3100 .writepage = ext4_writepage,
3101 .write_begin = ext4_write_begin,
3102 .write_end = ext4_ordered_write_end,
3103 .bmap = ext4_bmap,
3104 .invalidatepage = ext4_invalidatepage,
3105 .releasepage = ext4_releasepage,
3106 .direct_IO = ext4_direct_IO,
3107 .migratepage = buffer_migrate_page,
3108 .is_partially_uptodate = block_is_partially_uptodate,
3109 .error_remove_page = generic_error_remove_page,
3112 static const struct address_space_operations ext4_writeback_aops = {
3113 .readpage = ext4_readpage,
3114 .readpages = ext4_readpages,
3115 .writepage = ext4_writepage,
3116 .write_begin = ext4_write_begin,
3117 .write_end = ext4_writeback_write_end,
3118 .bmap = ext4_bmap,
3119 .invalidatepage = ext4_invalidatepage,
3120 .releasepage = ext4_releasepage,
3121 .direct_IO = ext4_direct_IO,
3122 .migratepage = buffer_migrate_page,
3123 .is_partially_uptodate = block_is_partially_uptodate,
3124 .error_remove_page = generic_error_remove_page,
3127 static const struct address_space_operations ext4_journalled_aops = {
3128 .readpage = ext4_readpage,
3129 .readpages = ext4_readpages,
3130 .writepage = ext4_writepage,
3131 .write_begin = ext4_write_begin,
3132 .write_end = ext4_journalled_write_end,
3133 .set_page_dirty = ext4_journalled_set_page_dirty,
3134 .bmap = ext4_bmap,
3135 .invalidatepage = ext4_invalidatepage,
3136 .releasepage = ext4_releasepage,
3137 .direct_IO = ext4_direct_IO,
3138 .is_partially_uptodate = block_is_partially_uptodate,
3139 .error_remove_page = generic_error_remove_page,
3142 static const struct address_space_operations ext4_da_aops = {
3143 .readpage = ext4_readpage,
3144 .readpages = ext4_readpages,
3145 .writepage = ext4_writepage,
3146 .writepages = ext4_da_writepages,
3147 .write_begin = ext4_da_write_begin,
3148 .write_end = ext4_da_write_end,
3149 .bmap = ext4_bmap,
3150 .invalidatepage = ext4_da_invalidatepage,
3151 .releasepage = ext4_releasepage,
3152 .direct_IO = ext4_direct_IO,
3153 .migratepage = buffer_migrate_page,
3154 .is_partially_uptodate = block_is_partially_uptodate,
3155 .error_remove_page = generic_error_remove_page,
3158 void ext4_set_aops(struct inode *inode)
3160 switch (ext4_inode_journal_mode(inode)) {
3161 case EXT4_INODE_ORDERED_DATA_MODE:
3162 if (test_opt(inode->i_sb, DELALLOC))
3163 inode->i_mapping->a_ops = &ext4_da_aops;
3164 else
3165 inode->i_mapping->a_ops = &ext4_ordered_aops;
3166 break;
3167 case EXT4_INODE_WRITEBACK_DATA_MODE:
3168 if (test_opt(inode->i_sb, DELALLOC))
3169 inode->i_mapping->a_ops = &ext4_da_aops;
3170 else
3171 inode->i_mapping->a_ops = &ext4_writeback_aops;
3172 break;
3173 case EXT4_INODE_JOURNAL_DATA_MODE:
3174 inode->i_mapping->a_ops = &ext4_journalled_aops;
3175 break;
3176 default:
3177 BUG();
3183 * ext4_discard_partial_page_buffers()
3184 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3185 * This function finds and locks the page containing the offset
3186 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3187 * Calling functions that already have the page locked should call
3188 * ext4_discard_partial_page_buffers_no_lock directly.
3190 int ext4_discard_partial_page_buffers(handle_t *handle,
3191 struct address_space *mapping, loff_t from,
3192 loff_t length, int flags)
3194 struct inode *inode = mapping->host;
3195 struct page *page;
3196 int err = 0;
3198 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3199 mapping_gfp_mask(mapping) & ~__GFP_FS);
3200 if (!page)
3201 return -ENOMEM;
3203 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3204 from, length, flags);
3206 unlock_page(page);
3207 page_cache_release(page);
3208 return err;
3212 * ext4_discard_partial_page_buffers_no_lock()
3213 * Zeros a page range of length 'length' starting from offset 'from'.
3214 * Buffer heads that correspond to the block aligned regions of the
3215 * zeroed range will be unmapped. Unblock aligned regions
3216 * will have the corresponding buffer head mapped if needed so that
3217 * that region of the page can be updated with the partial zero out.
3219 * This function assumes that the page has already been locked. The
3220 * The range to be discarded must be contained with in the given page.
3221 * If the specified range exceeds the end of the page it will be shortened
3222 * to the end of the page that corresponds to 'from'. This function is
3223 * appropriate for updating a page and it buffer heads to be unmapped and
3224 * zeroed for blocks that have been either released, or are going to be
3225 * released.
3227 * handle: The journal handle
3228 * inode: The files inode
3229 * page: A locked page that contains the offset "from"
3230 * from: The starting byte offset (from the begining of the file)
3231 * to begin discarding
3232 * len: The length of bytes to discard
3233 * flags: Optional flags that may be used:
3235 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3236 * Only zero the regions of the page whose buffer heads
3237 * have already been unmapped. This flag is appropriate
3238 * for updateing the contents of a page whose blocks may
3239 * have already been released, and we only want to zero
3240 * out the regions that correspond to those released blocks.
3242 * Returns zero on sucess or negative on failure.
3244 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3245 struct inode *inode, struct page *page, loff_t from,
3246 loff_t length, int flags)
3248 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3249 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3250 unsigned int blocksize, max, pos;
3251 ext4_lblk_t iblock;
3252 struct buffer_head *bh;
3253 int err = 0;
3255 blocksize = inode->i_sb->s_blocksize;
3256 max = PAGE_CACHE_SIZE - offset;
3258 if (index != page->index)
3259 return -EINVAL;
3262 * correct length if it does not fall between
3263 * 'from' and the end of the page
3265 if (length > max || length < 0)
3266 length = max;
3268 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3270 if (!page_has_buffers(page))
3271 create_empty_buffers(page, blocksize, 0);
3273 /* Find the buffer that contains "offset" */
3274 bh = page_buffers(page);
3275 pos = blocksize;
3276 while (offset >= pos) {
3277 bh = bh->b_this_page;
3278 iblock++;
3279 pos += blocksize;
3282 pos = offset;
3283 while (pos < offset + length) {
3284 unsigned int end_of_block, range_to_discard;
3286 err = 0;
3288 /* The length of space left to zero and unmap */
3289 range_to_discard = offset + length - pos;
3291 /* The length of space until the end of the block */
3292 end_of_block = blocksize - (pos & (blocksize-1));
3295 * Do not unmap or zero past end of block
3296 * for this buffer head
3298 if (range_to_discard > end_of_block)
3299 range_to_discard = end_of_block;
3303 * Skip this buffer head if we are only zeroing unampped
3304 * regions of the page
3306 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3307 buffer_mapped(bh))
3308 goto next;
3310 /* If the range is block aligned, unmap */
3311 if (range_to_discard == blocksize) {
3312 clear_buffer_dirty(bh);
3313 bh->b_bdev = NULL;
3314 clear_buffer_mapped(bh);
3315 clear_buffer_req(bh);
3316 clear_buffer_new(bh);
3317 clear_buffer_delay(bh);
3318 clear_buffer_unwritten(bh);
3319 clear_buffer_uptodate(bh);
3320 zero_user(page, pos, range_to_discard);
3321 BUFFER_TRACE(bh, "Buffer discarded");
3322 goto next;
3326 * If this block is not completely contained in the range
3327 * to be discarded, then it is not going to be released. Because
3328 * we need to keep this block, we need to make sure this part
3329 * of the page is uptodate before we modify it by writeing
3330 * partial zeros on it.
3332 if (!buffer_mapped(bh)) {
3334 * Buffer head must be mapped before we can read
3335 * from the block
3337 BUFFER_TRACE(bh, "unmapped");
3338 ext4_get_block(inode, iblock, bh, 0);
3339 /* unmapped? It's a hole - nothing to do */
3340 if (!buffer_mapped(bh)) {
3341 BUFFER_TRACE(bh, "still unmapped");
3342 goto next;
3346 /* Ok, it's mapped. Make sure it's up-to-date */
3347 if (PageUptodate(page))
3348 set_buffer_uptodate(bh);
3350 if (!buffer_uptodate(bh)) {
3351 err = -EIO;
3352 ll_rw_block(READ, 1, &bh);
3353 wait_on_buffer(bh);
3354 /* Uhhuh. Read error. Complain and punt.*/
3355 if (!buffer_uptodate(bh))
3356 goto next;
3359 if (ext4_should_journal_data(inode)) {
3360 BUFFER_TRACE(bh, "get write access");
3361 err = ext4_journal_get_write_access(handle, bh);
3362 if (err)
3363 goto next;
3366 zero_user(page, pos, range_to_discard);
3368 err = 0;
3369 if (ext4_should_journal_data(inode)) {
3370 err = ext4_handle_dirty_metadata(handle, inode, bh);
3371 } else
3372 mark_buffer_dirty(bh);
3374 BUFFER_TRACE(bh, "Partial buffer zeroed");
3375 next:
3376 bh = bh->b_this_page;
3377 iblock++;
3378 pos += range_to_discard;
3381 return err;
3384 int ext4_can_truncate(struct inode *inode)
3386 if (S_ISREG(inode->i_mode))
3387 return 1;
3388 if (S_ISDIR(inode->i_mode))
3389 return 1;
3390 if (S_ISLNK(inode->i_mode))
3391 return !ext4_inode_is_fast_symlink(inode);
3392 return 0;
3396 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3397 * associated with the given offset and length
3399 * @inode: File inode
3400 * @offset: The offset where the hole will begin
3401 * @len: The length of the hole
3403 * Returns: 0 on sucess or negative on failure
3406 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3408 struct inode *inode = file->f_path.dentry->d_inode;
3409 if (!S_ISREG(inode->i_mode))
3410 return -EOPNOTSUPP;
3412 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3413 /* TODO: Add support for non extent hole punching */
3414 return -EOPNOTSUPP;
3417 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3418 /* TODO: Add support for bigalloc file systems */
3419 return -EOPNOTSUPP;
3422 return ext4_ext_punch_hole(file, offset, length);
3426 * ext4_truncate()
3428 * We block out ext4_get_block() block instantiations across the entire
3429 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3430 * simultaneously on behalf of the same inode.
3432 * As we work through the truncate and commit bits of it to the journal there
3433 * is one core, guiding principle: the file's tree must always be consistent on
3434 * disk. We must be able to restart the truncate after a crash.
3436 * The file's tree may be transiently inconsistent in memory (although it
3437 * probably isn't), but whenever we close off and commit a journal transaction,
3438 * the contents of (the filesystem + the journal) must be consistent and
3439 * restartable. It's pretty simple, really: bottom up, right to left (although
3440 * left-to-right works OK too).
3442 * Note that at recovery time, journal replay occurs *before* the restart of
3443 * truncate against the orphan inode list.
3445 * The committed inode has the new, desired i_size (which is the same as
3446 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3447 * that this inode's truncate did not complete and it will again call
3448 * ext4_truncate() to have another go. So there will be instantiated blocks
3449 * to the right of the truncation point in a crashed ext4 filesystem. But
3450 * that's fine - as long as they are linked from the inode, the post-crash
3451 * ext4_truncate() run will find them and release them.
3453 void ext4_truncate(struct inode *inode)
3455 trace_ext4_truncate_enter(inode);
3457 if (!ext4_can_truncate(inode))
3458 return;
3460 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3462 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3463 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3465 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3466 ext4_ext_truncate(inode);
3467 else
3468 ext4_ind_truncate(inode);
3470 trace_ext4_truncate_exit(inode);
3474 * ext4_get_inode_loc returns with an extra refcount against the inode's
3475 * underlying buffer_head on success. If 'in_mem' is true, we have all
3476 * data in memory that is needed to recreate the on-disk version of this
3477 * inode.
3479 static int __ext4_get_inode_loc(struct inode *inode,
3480 struct ext4_iloc *iloc, int in_mem)
3482 struct ext4_group_desc *gdp;
3483 struct buffer_head *bh;
3484 struct super_block *sb = inode->i_sb;
3485 ext4_fsblk_t block;
3486 int inodes_per_block, inode_offset;
3488 iloc->bh = NULL;
3489 if (!ext4_valid_inum(sb, inode->i_ino))
3490 return -EIO;
3492 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3493 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3494 if (!gdp)
3495 return -EIO;
3498 * Figure out the offset within the block group inode table
3500 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3501 inode_offset = ((inode->i_ino - 1) %
3502 EXT4_INODES_PER_GROUP(sb));
3503 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3504 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3506 bh = sb_getblk(sb, block);
3507 if (!bh) {
3508 EXT4_ERROR_INODE_BLOCK(inode, block,
3509 "unable to read itable block");
3510 return -EIO;
3512 if (!buffer_uptodate(bh)) {
3513 lock_buffer(bh);
3516 * If the buffer has the write error flag, we have failed
3517 * to write out another inode in the same block. In this
3518 * case, we don't have to read the block because we may
3519 * read the old inode data successfully.
3521 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3522 set_buffer_uptodate(bh);
3524 if (buffer_uptodate(bh)) {
3525 /* someone brought it uptodate while we waited */
3526 unlock_buffer(bh);
3527 goto has_buffer;
3531 * If we have all information of the inode in memory and this
3532 * is the only valid inode in the block, we need not read the
3533 * block.
3535 if (in_mem) {
3536 struct buffer_head *bitmap_bh;
3537 int i, start;
3539 start = inode_offset & ~(inodes_per_block - 1);
3541 /* Is the inode bitmap in cache? */
3542 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3543 if (!bitmap_bh)
3544 goto make_io;
3547 * If the inode bitmap isn't in cache then the
3548 * optimisation may end up performing two reads instead
3549 * of one, so skip it.
3551 if (!buffer_uptodate(bitmap_bh)) {
3552 brelse(bitmap_bh);
3553 goto make_io;
3555 for (i = start; i < start + inodes_per_block; i++) {
3556 if (i == inode_offset)
3557 continue;
3558 if (ext4_test_bit(i, bitmap_bh->b_data))
3559 break;
3561 brelse(bitmap_bh);
3562 if (i == start + inodes_per_block) {
3563 /* all other inodes are free, so skip I/O */
3564 memset(bh->b_data, 0, bh->b_size);
3565 set_buffer_uptodate(bh);
3566 unlock_buffer(bh);
3567 goto has_buffer;
3571 make_io:
3573 * If we need to do any I/O, try to pre-readahead extra
3574 * blocks from the inode table.
3576 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3577 ext4_fsblk_t b, end, table;
3578 unsigned num;
3580 table = ext4_inode_table(sb, gdp);
3581 /* s_inode_readahead_blks is always a power of 2 */
3582 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3583 if (table > b)
3584 b = table;
3585 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3586 num = EXT4_INODES_PER_GROUP(sb);
3587 if (ext4_has_group_desc_csum(sb))
3588 num -= ext4_itable_unused_count(sb, gdp);
3589 table += num / inodes_per_block;
3590 if (end > table)
3591 end = table;
3592 while (b <= end)
3593 sb_breadahead(sb, b++);
3597 * There are other valid inodes in the buffer, this inode
3598 * has in-inode xattrs, or we don't have this inode in memory.
3599 * Read the block from disk.
3601 trace_ext4_load_inode(inode);
3602 get_bh(bh);
3603 bh->b_end_io = end_buffer_read_sync;
3604 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3605 wait_on_buffer(bh);
3606 if (!buffer_uptodate(bh)) {
3607 EXT4_ERROR_INODE_BLOCK(inode, block,
3608 "unable to read itable block");
3609 brelse(bh);
3610 return -EIO;
3613 has_buffer:
3614 iloc->bh = bh;
3615 return 0;
3618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3620 /* We have all inode data except xattrs in memory here. */
3621 return __ext4_get_inode_loc(inode, iloc,
3622 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3625 void ext4_set_inode_flags(struct inode *inode)
3627 unsigned int flags = EXT4_I(inode)->i_flags;
3629 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3630 if (flags & EXT4_SYNC_FL)
3631 inode->i_flags |= S_SYNC;
3632 if (flags & EXT4_APPEND_FL)
3633 inode->i_flags |= S_APPEND;
3634 if (flags & EXT4_IMMUTABLE_FL)
3635 inode->i_flags |= S_IMMUTABLE;
3636 if (flags & EXT4_NOATIME_FL)
3637 inode->i_flags |= S_NOATIME;
3638 if (flags & EXT4_DIRSYNC_FL)
3639 inode->i_flags |= S_DIRSYNC;
3642 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3643 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3645 unsigned int vfs_fl;
3646 unsigned long old_fl, new_fl;
3648 do {
3649 vfs_fl = ei->vfs_inode.i_flags;
3650 old_fl = ei->i_flags;
3651 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3652 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3653 EXT4_DIRSYNC_FL);
3654 if (vfs_fl & S_SYNC)
3655 new_fl |= EXT4_SYNC_FL;
3656 if (vfs_fl & S_APPEND)
3657 new_fl |= EXT4_APPEND_FL;
3658 if (vfs_fl & S_IMMUTABLE)
3659 new_fl |= EXT4_IMMUTABLE_FL;
3660 if (vfs_fl & S_NOATIME)
3661 new_fl |= EXT4_NOATIME_FL;
3662 if (vfs_fl & S_DIRSYNC)
3663 new_fl |= EXT4_DIRSYNC_FL;
3664 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3667 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3668 struct ext4_inode_info *ei)
3670 blkcnt_t i_blocks ;
3671 struct inode *inode = &(ei->vfs_inode);
3672 struct super_block *sb = inode->i_sb;
3674 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3675 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3676 /* we are using combined 48 bit field */
3677 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3678 le32_to_cpu(raw_inode->i_blocks_lo);
3679 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3680 /* i_blocks represent file system block size */
3681 return i_blocks << (inode->i_blkbits - 9);
3682 } else {
3683 return i_blocks;
3685 } else {
3686 return le32_to_cpu(raw_inode->i_blocks_lo);
3690 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3692 struct ext4_iloc iloc;
3693 struct ext4_inode *raw_inode;
3694 struct ext4_inode_info *ei;
3695 struct inode *inode;
3696 journal_t *journal = EXT4_SB(sb)->s_journal;
3697 long ret;
3698 int block;
3699 uid_t i_uid;
3700 gid_t i_gid;
3702 inode = iget_locked(sb, ino);
3703 if (!inode)
3704 return ERR_PTR(-ENOMEM);
3705 if (!(inode->i_state & I_NEW))
3706 return inode;
3708 ei = EXT4_I(inode);
3709 iloc.bh = NULL;
3711 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3712 if (ret < 0)
3713 goto bad_inode;
3714 raw_inode = ext4_raw_inode(&iloc);
3716 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3717 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3718 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3719 EXT4_INODE_SIZE(inode->i_sb)) {
3720 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3721 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3722 EXT4_INODE_SIZE(inode->i_sb));
3723 ret = -EIO;
3724 goto bad_inode;
3726 } else
3727 ei->i_extra_isize = 0;
3729 /* Precompute checksum seed for inode metadata */
3730 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3731 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3732 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3733 __u32 csum;
3734 __le32 inum = cpu_to_le32(inode->i_ino);
3735 __le32 gen = raw_inode->i_generation;
3736 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3737 sizeof(inum));
3738 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3739 sizeof(gen));
3742 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3743 EXT4_ERROR_INODE(inode, "checksum invalid");
3744 ret = -EIO;
3745 goto bad_inode;
3748 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3749 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3750 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3751 if (!(test_opt(inode->i_sb, NO_UID32))) {
3752 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3753 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3755 i_uid_write(inode, i_uid);
3756 i_gid_write(inode, i_gid);
3757 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3759 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3760 ei->i_dir_start_lookup = 0;
3761 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3762 /* We now have enough fields to check if the inode was active or not.
3763 * This is needed because nfsd might try to access dead inodes
3764 * the test is that same one that e2fsck uses
3765 * NeilBrown 1999oct15
3767 if (inode->i_nlink == 0) {
3768 if (inode->i_mode == 0 ||
3769 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3770 /* this inode is deleted */
3771 ret = -ESTALE;
3772 goto bad_inode;
3774 /* The only unlinked inodes we let through here have
3775 * valid i_mode and are being read by the orphan
3776 * recovery code: that's fine, we're about to complete
3777 * the process of deleting those. */
3779 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3780 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3781 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3782 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3783 ei->i_file_acl |=
3784 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3785 inode->i_size = ext4_isize(raw_inode);
3786 ei->i_disksize = inode->i_size;
3787 #ifdef CONFIG_QUOTA
3788 ei->i_reserved_quota = 0;
3789 #endif
3790 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3791 ei->i_block_group = iloc.block_group;
3792 ei->i_last_alloc_group = ~0;
3794 * NOTE! The in-memory inode i_data array is in little-endian order
3795 * even on big-endian machines: we do NOT byteswap the block numbers!
3797 for (block = 0; block < EXT4_N_BLOCKS; block++)
3798 ei->i_data[block] = raw_inode->i_block[block];
3799 INIT_LIST_HEAD(&ei->i_orphan);
3802 * Set transaction id's of transactions that have to be committed
3803 * to finish f[data]sync. We set them to currently running transaction
3804 * as we cannot be sure that the inode or some of its metadata isn't
3805 * part of the transaction - the inode could have been reclaimed and
3806 * now it is reread from disk.
3808 if (journal) {
3809 transaction_t *transaction;
3810 tid_t tid;
3812 read_lock(&journal->j_state_lock);
3813 if (journal->j_running_transaction)
3814 transaction = journal->j_running_transaction;
3815 else
3816 transaction = journal->j_committing_transaction;
3817 if (transaction)
3818 tid = transaction->t_tid;
3819 else
3820 tid = journal->j_commit_sequence;
3821 read_unlock(&journal->j_state_lock);
3822 ei->i_sync_tid = tid;
3823 ei->i_datasync_tid = tid;
3826 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3827 if (ei->i_extra_isize == 0) {
3828 /* The extra space is currently unused. Use it. */
3829 ei->i_extra_isize = sizeof(struct ext4_inode) -
3830 EXT4_GOOD_OLD_INODE_SIZE;
3831 } else {
3832 __le32 *magic = (void *)raw_inode +
3833 EXT4_GOOD_OLD_INODE_SIZE +
3834 ei->i_extra_isize;
3835 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3836 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3840 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3841 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3842 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3843 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3845 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3846 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3847 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3848 inode->i_version |=
3849 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3852 ret = 0;
3853 if (ei->i_file_acl &&
3854 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3855 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3856 ei->i_file_acl);
3857 ret = -EIO;
3858 goto bad_inode;
3859 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3860 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3861 (S_ISLNK(inode->i_mode) &&
3862 !ext4_inode_is_fast_symlink(inode)))
3863 /* Validate extent which is part of inode */
3864 ret = ext4_ext_check_inode(inode);
3865 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3866 (S_ISLNK(inode->i_mode) &&
3867 !ext4_inode_is_fast_symlink(inode))) {
3868 /* Validate block references which are part of inode */
3869 ret = ext4_ind_check_inode(inode);
3871 if (ret)
3872 goto bad_inode;
3874 if (S_ISREG(inode->i_mode)) {
3875 inode->i_op = &ext4_file_inode_operations;
3876 inode->i_fop = &ext4_file_operations;
3877 ext4_set_aops(inode);
3878 } else if (S_ISDIR(inode->i_mode)) {
3879 inode->i_op = &ext4_dir_inode_operations;
3880 inode->i_fop = &ext4_dir_operations;
3881 } else if (S_ISLNK(inode->i_mode)) {
3882 if (ext4_inode_is_fast_symlink(inode)) {
3883 inode->i_op = &ext4_fast_symlink_inode_operations;
3884 nd_terminate_link(ei->i_data, inode->i_size,
3885 sizeof(ei->i_data) - 1);
3886 } else {
3887 inode->i_op = &ext4_symlink_inode_operations;
3888 ext4_set_aops(inode);
3890 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3891 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3892 inode->i_op = &ext4_special_inode_operations;
3893 if (raw_inode->i_block[0])
3894 init_special_inode(inode, inode->i_mode,
3895 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3896 else
3897 init_special_inode(inode, inode->i_mode,
3898 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3899 } else {
3900 ret = -EIO;
3901 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3902 goto bad_inode;
3904 brelse(iloc.bh);
3905 ext4_set_inode_flags(inode);
3906 unlock_new_inode(inode);
3907 return inode;
3909 bad_inode:
3910 brelse(iloc.bh);
3911 iget_failed(inode);
3912 return ERR_PTR(ret);
3915 static int ext4_inode_blocks_set(handle_t *handle,
3916 struct ext4_inode *raw_inode,
3917 struct ext4_inode_info *ei)
3919 struct inode *inode = &(ei->vfs_inode);
3920 u64 i_blocks = inode->i_blocks;
3921 struct super_block *sb = inode->i_sb;
3923 if (i_blocks <= ~0U) {
3925 * i_blocks can be represnted in a 32 bit variable
3926 * as multiple of 512 bytes
3928 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3929 raw_inode->i_blocks_high = 0;
3930 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3931 return 0;
3933 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3934 return -EFBIG;
3936 if (i_blocks <= 0xffffffffffffULL) {
3938 * i_blocks can be represented in a 48 bit variable
3939 * as multiple of 512 bytes
3941 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3942 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3943 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3944 } else {
3945 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3946 /* i_block is stored in file system block size */
3947 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3948 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3949 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3951 return 0;
3955 * Post the struct inode info into an on-disk inode location in the
3956 * buffer-cache. This gobbles the caller's reference to the
3957 * buffer_head in the inode location struct.
3959 * The caller must have write access to iloc->bh.
3961 static int ext4_do_update_inode(handle_t *handle,
3962 struct inode *inode,
3963 struct ext4_iloc *iloc)
3965 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3966 struct ext4_inode_info *ei = EXT4_I(inode);
3967 struct buffer_head *bh = iloc->bh;
3968 int err = 0, rc, block;
3969 uid_t i_uid;
3970 gid_t i_gid;
3972 /* For fields not not tracking in the in-memory inode,
3973 * initialise them to zero for new inodes. */
3974 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3975 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3977 ext4_get_inode_flags(ei);
3978 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3979 i_uid = i_uid_read(inode);
3980 i_gid = i_gid_read(inode);
3981 if (!(test_opt(inode->i_sb, NO_UID32))) {
3982 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3983 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3985 * Fix up interoperability with old kernels. Otherwise, old inodes get
3986 * re-used with the upper 16 bits of the uid/gid intact
3988 if (!ei->i_dtime) {
3989 raw_inode->i_uid_high =
3990 cpu_to_le16(high_16_bits(i_uid));
3991 raw_inode->i_gid_high =
3992 cpu_to_le16(high_16_bits(i_gid));
3993 } else {
3994 raw_inode->i_uid_high = 0;
3995 raw_inode->i_gid_high = 0;
3997 } else {
3998 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
3999 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4000 raw_inode->i_uid_high = 0;
4001 raw_inode->i_gid_high = 0;
4003 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4005 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4006 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4007 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4008 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4010 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4011 goto out_brelse;
4012 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4013 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4014 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4015 cpu_to_le32(EXT4_OS_HURD))
4016 raw_inode->i_file_acl_high =
4017 cpu_to_le16(ei->i_file_acl >> 32);
4018 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4019 ext4_isize_set(raw_inode, ei->i_disksize);
4020 if (ei->i_disksize > 0x7fffffffULL) {
4021 struct super_block *sb = inode->i_sb;
4022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4023 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4024 EXT4_SB(sb)->s_es->s_rev_level ==
4025 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4026 /* If this is the first large file
4027 * created, add a flag to the superblock.
4029 err = ext4_journal_get_write_access(handle,
4030 EXT4_SB(sb)->s_sbh);
4031 if (err)
4032 goto out_brelse;
4033 ext4_update_dynamic_rev(sb);
4034 EXT4_SET_RO_COMPAT_FEATURE(sb,
4035 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4036 ext4_handle_sync(handle);
4037 err = ext4_handle_dirty_super_now(handle, sb);
4040 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4041 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4042 if (old_valid_dev(inode->i_rdev)) {
4043 raw_inode->i_block[0] =
4044 cpu_to_le32(old_encode_dev(inode->i_rdev));
4045 raw_inode->i_block[1] = 0;
4046 } else {
4047 raw_inode->i_block[0] = 0;
4048 raw_inode->i_block[1] =
4049 cpu_to_le32(new_encode_dev(inode->i_rdev));
4050 raw_inode->i_block[2] = 0;
4052 } else
4053 for (block = 0; block < EXT4_N_BLOCKS; block++)
4054 raw_inode->i_block[block] = ei->i_data[block];
4056 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4057 if (ei->i_extra_isize) {
4058 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4059 raw_inode->i_version_hi =
4060 cpu_to_le32(inode->i_version >> 32);
4061 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4064 ext4_inode_csum_set(inode, raw_inode, ei);
4066 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4067 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4068 if (!err)
4069 err = rc;
4070 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4072 ext4_update_inode_fsync_trans(handle, inode, 0);
4073 out_brelse:
4074 brelse(bh);
4075 ext4_std_error(inode->i_sb, err);
4076 return err;
4080 * ext4_write_inode()
4082 * We are called from a few places:
4084 * - Within generic_file_write() for O_SYNC files.
4085 * Here, there will be no transaction running. We wait for any running
4086 * trasnaction to commit.
4088 * - Within sys_sync(), kupdate and such.
4089 * We wait on commit, if tol to.
4091 * - Within prune_icache() (PF_MEMALLOC == true)
4092 * Here we simply return. We can't afford to block kswapd on the
4093 * journal commit.
4095 * In all cases it is actually safe for us to return without doing anything,
4096 * because the inode has been copied into a raw inode buffer in
4097 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4098 * knfsd.
4100 * Note that we are absolutely dependent upon all inode dirtiers doing the
4101 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4102 * which we are interested.
4104 * It would be a bug for them to not do this. The code:
4106 * mark_inode_dirty(inode)
4107 * stuff();
4108 * inode->i_size = expr;
4110 * is in error because a kswapd-driven write_inode() could occur while
4111 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4112 * will no longer be on the superblock's dirty inode list.
4114 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4116 int err;
4118 if (current->flags & PF_MEMALLOC)
4119 return 0;
4121 if (EXT4_SB(inode->i_sb)->s_journal) {
4122 if (ext4_journal_current_handle()) {
4123 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4124 dump_stack();
4125 return -EIO;
4128 if (wbc->sync_mode != WB_SYNC_ALL)
4129 return 0;
4131 err = ext4_force_commit(inode->i_sb);
4132 } else {
4133 struct ext4_iloc iloc;
4135 err = __ext4_get_inode_loc(inode, &iloc, 0);
4136 if (err)
4137 return err;
4138 if (wbc->sync_mode == WB_SYNC_ALL)
4139 sync_dirty_buffer(iloc.bh);
4140 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4141 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4142 "IO error syncing inode");
4143 err = -EIO;
4145 brelse(iloc.bh);
4147 return err;
4151 * ext4_setattr()
4153 * Called from notify_change.
4155 * We want to trap VFS attempts to truncate the file as soon as
4156 * possible. In particular, we want to make sure that when the VFS
4157 * shrinks i_size, we put the inode on the orphan list and modify
4158 * i_disksize immediately, so that during the subsequent flushing of
4159 * dirty pages and freeing of disk blocks, we can guarantee that any
4160 * commit will leave the blocks being flushed in an unused state on
4161 * disk. (On recovery, the inode will get truncated and the blocks will
4162 * be freed, so we have a strong guarantee that no future commit will
4163 * leave these blocks visible to the user.)
4165 * Another thing we have to assure is that if we are in ordered mode
4166 * and inode is still attached to the committing transaction, we must
4167 * we start writeout of all the dirty pages which are being truncated.
4168 * This way we are sure that all the data written in the previous
4169 * transaction are already on disk (truncate waits for pages under
4170 * writeback).
4172 * Called with inode->i_mutex down.
4174 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4176 struct inode *inode = dentry->d_inode;
4177 int error, rc = 0;
4178 int orphan = 0;
4179 const unsigned int ia_valid = attr->ia_valid;
4181 error = inode_change_ok(inode, attr);
4182 if (error)
4183 return error;
4185 if (is_quota_modification(inode, attr))
4186 dquot_initialize(inode);
4187 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4188 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4189 handle_t *handle;
4191 /* (user+group)*(old+new) structure, inode write (sb,
4192 * inode block, ? - but truncate inode update has it) */
4193 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4194 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4195 if (IS_ERR(handle)) {
4196 error = PTR_ERR(handle);
4197 goto err_out;
4199 error = dquot_transfer(inode, attr);
4200 if (error) {
4201 ext4_journal_stop(handle);
4202 return error;
4204 /* Update corresponding info in inode so that everything is in
4205 * one transaction */
4206 if (attr->ia_valid & ATTR_UID)
4207 inode->i_uid = attr->ia_uid;
4208 if (attr->ia_valid & ATTR_GID)
4209 inode->i_gid = attr->ia_gid;
4210 error = ext4_mark_inode_dirty(handle, inode);
4211 ext4_journal_stop(handle);
4214 if (attr->ia_valid & ATTR_SIZE) {
4215 inode_dio_wait(inode);
4217 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4218 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4220 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4221 return -EFBIG;
4225 if (S_ISREG(inode->i_mode) &&
4226 attr->ia_valid & ATTR_SIZE &&
4227 (attr->ia_size < inode->i_size)) {
4228 handle_t *handle;
4230 handle = ext4_journal_start(inode, 3);
4231 if (IS_ERR(handle)) {
4232 error = PTR_ERR(handle);
4233 goto err_out;
4235 if (ext4_handle_valid(handle)) {
4236 error = ext4_orphan_add(handle, inode);
4237 orphan = 1;
4239 EXT4_I(inode)->i_disksize = attr->ia_size;
4240 rc = ext4_mark_inode_dirty(handle, inode);
4241 if (!error)
4242 error = rc;
4243 ext4_journal_stop(handle);
4245 if (ext4_should_order_data(inode)) {
4246 error = ext4_begin_ordered_truncate(inode,
4247 attr->ia_size);
4248 if (error) {
4249 /* Do as much error cleanup as possible */
4250 handle = ext4_journal_start(inode, 3);
4251 if (IS_ERR(handle)) {
4252 ext4_orphan_del(NULL, inode);
4253 goto err_out;
4255 ext4_orphan_del(handle, inode);
4256 orphan = 0;
4257 ext4_journal_stop(handle);
4258 goto err_out;
4263 if (attr->ia_valid & ATTR_SIZE) {
4264 if (attr->ia_size != i_size_read(inode))
4265 truncate_setsize(inode, attr->ia_size);
4266 ext4_truncate(inode);
4269 if (!rc) {
4270 setattr_copy(inode, attr);
4271 mark_inode_dirty(inode);
4275 * If the call to ext4_truncate failed to get a transaction handle at
4276 * all, we need to clean up the in-core orphan list manually.
4278 if (orphan && inode->i_nlink)
4279 ext4_orphan_del(NULL, inode);
4281 if (!rc && (ia_valid & ATTR_MODE))
4282 rc = ext4_acl_chmod(inode);
4284 err_out:
4285 ext4_std_error(inode->i_sb, error);
4286 if (!error)
4287 error = rc;
4288 return error;
4291 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4292 struct kstat *stat)
4294 struct inode *inode;
4295 unsigned long delalloc_blocks;
4297 inode = dentry->d_inode;
4298 generic_fillattr(inode, stat);
4301 * We can't update i_blocks if the block allocation is delayed
4302 * otherwise in the case of system crash before the real block
4303 * allocation is done, we will have i_blocks inconsistent with
4304 * on-disk file blocks.
4305 * We always keep i_blocks updated together with real
4306 * allocation. But to not confuse with user, stat
4307 * will return the blocks that include the delayed allocation
4308 * blocks for this file.
4310 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4311 EXT4_I(inode)->i_reserved_data_blocks);
4313 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4314 return 0;
4317 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4319 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4320 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4321 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4325 * Account for index blocks, block groups bitmaps and block group
4326 * descriptor blocks if modify datablocks and index blocks
4327 * worse case, the indexs blocks spread over different block groups
4329 * If datablocks are discontiguous, they are possible to spread over
4330 * different block groups too. If they are contiuguous, with flexbg,
4331 * they could still across block group boundary.
4333 * Also account for superblock, inode, quota and xattr blocks
4335 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4337 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4338 int gdpblocks;
4339 int idxblocks;
4340 int ret = 0;
4343 * How many index blocks need to touch to modify nrblocks?
4344 * The "Chunk" flag indicating whether the nrblocks is
4345 * physically contiguous on disk
4347 * For Direct IO and fallocate, they calls get_block to allocate
4348 * one single extent at a time, so they could set the "Chunk" flag
4350 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4352 ret = idxblocks;
4355 * Now let's see how many group bitmaps and group descriptors need
4356 * to account
4358 groups = idxblocks;
4359 if (chunk)
4360 groups += 1;
4361 else
4362 groups += nrblocks;
4364 gdpblocks = groups;
4365 if (groups > ngroups)
4366 groups = ngroups;
4367 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4368 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4370 /* bitmaps and block group descriptor blocks */
4371 ret += groups + gdpblocks;
4373 /* Blocks for super block, inode, quota and xattr blocks */
4374 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4376 return ret;
4380 * Calculate the total number of credits to reserve to fit
4381 * the modification of a single pages into a single transaction,
4382 * which may include multiple chunks of block allocations.
4384 * This could be called via ext4_write_begin()
4386 * We need to consider the worse case, when
4387 * one new block per extent.
4389 int ext4_writepage_trans_blocks(struct inode *inode)
4391 int bpp = ext4_journal_blocks_per_page(inode);
4392 int ret;
4394 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4396 /* Account for data blocks for journalled mode */
4397 if (ext4_should_journal_data(inode))
4398 ret += bpp;
4399 return ret;
4403 * Calculate the journal credits for a chunk of data modification.
4405 * This is called from DIO, fallocate or whoever calling
4406 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4408 * journal buffers for data blocks are not included here, as DIO
4409 * and fallocate do no need to journal data buffers.
4411 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4413 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4417 * The caller must have previously called ext4_reserve_inode_write().
4418 * Give this, we know that the caller already has write access to iloc->bh.
4420 int ext4_mark_iloc_dirty(handle_t *handle,
4421 struct inode *inode, struct ext4_iloc *iloc)
4423 int err = 0;
4425 if (IS_I_VERSION(inode))
4426 inode_inc_iversion(inode);
4428 /* the do_update_inode consumes one bh->b_count */
4429 get_bh(iloc->bh);
4431 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4432 err = ext4_do_update_inode(handle, inode, iloc);
4433 put_bh(iloc->bh);
4434 return err;
4438 * On success, We end up with an outstanding reference count against
4439 * iloc->bh. This _must_ be cleaned up later.
4443 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4444 struct ext4_iloc *iloc)
4446 int err;
4448 err = ext4_get_inode_loc(inode, iloc);
4449 if (!err) {
4450 BUFFER_TRACE(iloc->bh, "get_write_access");
4451 err = ext4_journal_get_write_access(handle, iloc->bh);
4452 if (err) {
4453 brelse(iloc->bh);
4454 iloc->bh = NULL;
4457 ext4_std_error(inode->i_sb, err);
4458 return err;
4462 * Expand an inode by new_extra_isize bytes.
4463 * Returns 0 on success or negative error number on failure.
4465 static int ext4_expand_extra_isize(struct inode *inode,
4466 unsigned int new_extra_isize,
4467 struct ext4_iloc iloc,
4468 handle_t *handle)
4470 struct ext4_inode *raw_inode;
4471 struct ext4_xattr_ibody_header *header;
4473 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4474 return 0;
4476 raw_inode = ext4_raw_inode(&iloc);
4478 header = IHDR(inode, raw_inode);
4480 /* No extended attributes present */
4481 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4482 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4483 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4484 new_extra_isize);
4485 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4486 return 0;
4489 /* try to expand with EAs present */
4490 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4491 raw_inode, handle);
4495 * What we do here is to mark the in-core inode as clean with respect to inode
4496 * dirtiness (it may still be data-dirty).
4497 * This means that the in-core inode may be reaped by prune_icache
4498 * without having to perform any I/O. This is a very good thing,
4499 * because *any* task may call prune_icache - even ones which
4500 * have a transaction open against a different journal.
4502 * Is this cheating? Not really. Sure, we haven't written the
4503 * inode out, but prune_icache isn't a user-visible syncing function.
4504 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4505 * we start and wait on commits.
4507 * Is this efficient/effective? Well, we're being nice to the system
4508 * by cleaning up our inodes proactively so they can be reaped
4509 * without I/O. But we are potentially leaving up to five seconds'
4510 * worth of inodes floating about which prune_icache wants us to
4511 * write out. One way to fix that would be to get prune_icache()
4512 * to do a write_super() to free up some memory. It has the desired
4513 * effect.
4515 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4517 struct ext4_iloc iloc;
4518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4519 static unsigned int mnt_count;
4520 int err, ret;
4522 might_sleep();
4523 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4524 err = ext4_reserve_inode_write(handle, inode, &iloc);
4525 if (ext4_handle_valid(handle) &&
4526 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4527 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4529 * We need extra buffer credits since we may write into EA block
4530 * with this same handle. If journal_extend fails, then it will
4531 * only result in a minor loss of functionality for that inode.
4532 * If this is felt to be critical, then e2fsck should be run to
4533 * force a large enough s_min_extra_isize.
4535 if ((jbd2_journal_extend(handle,
4536 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4537 ret = ext4_expand_extra_isize(inode,
4538 sbi->s_want_extra_isize,
4539 iloc, handle);
4540 if (ret) {
4541 ext4_set_inode_state(inode,
4542 EXT4_STATE_NO_EXPAND);
4543 if (mnt_count !=
4544 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4545 ext4_warning(inode->i_sb,
4546 "Unable to expand inode %lu. Delete"
4547 " some EAs or run e2fsck.",
4548 inode->i_ino);
4549 mnt_count =
4550 le16_to_cpu(sbi->s_es->s_mnt_count);
4555 if (!err)
4556 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4557 return err;
4561 * ext4_dirty_inode() is called from __mark_inode_dirty()
4563 * We're really interested in the case where a file is being extended.
4564 * i_size has been changed by generic_commit_write() and we thus need
4565 * to include the updated inode in the current transaction.
4567 * Also, dquot_alloc_block() will always dirty the inode when blocks
4568 * are allocated to the file.
4570 * If the inode is marked synchronous, we don't honour that here - doing
4571 * so would cause a commit on atime updates, which we don't bother doing.
4572 * We handle synchronous inodes at the highest possible level.
4574 void ext4_dirty_inode(struct inode *inode, int flags)
4576 handle_t *handle;
4578 handle = ext4_journal_start(inode, 2);
4579 if (IS_ERR(handle))
4580 goto out;
4582 ext4_mark_inode_dirty(handle, inode);
4584 ext4_journal_stop(handle);
4585 out:
4586 return;
4589 #if 0
4591 * Bind an inode's backing buffer_head into this transaction, to prevent
4592 * it from being flushed to disk early. Unlike
4593 * ext4_reserve_inode_write, this leaves behind no bh reference and
4594 * returns no iloc structure, so the caller needs to repeat the iloc
4595 * lookup to mark the inode dirty later.
4597 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4599 struct ext4_iloc iloc;
4601 int err = 0;
4602 if (handle) {
4603 err = ext4_get_inode_loc(inode, &iloc);
4604 if (!err) {
4605 BUFFER_TRACE(iloc.bh, "get_write_access");
4606 err = jbd2_journal_get_write_access(handle, iloc.bh);
4607 if (!err)
4608 err = ext4_handle_dirty_metadata(handle,
4609 NULL,
4610 iloc.bh);
4611 brelse(iloc.bh);
4614 ext4_std_error(inode->i_sb, err);
4615 return err;
4617 #endif
4619 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4621 journal_t *journal;
4622 handle_t *handle;
4623 int err;
4626 * We have to be very careful here: changing a data block's
4627 * journaling status dynamically is dangerous. If we write a
4628 * data block to the journal, change the status and then delete
4629 * that block, we risk forgetting to revoke the old log record
4630 * from the journal and so a subsequent replay can corrupt data.
4631 * So, first we make sure that the journal is empty and that
4632 * nobody is changing anything.
4635 journal = EXT4_JOURNAL(inode);
4636 if (!journal)
4637 return 0;
4638 if (is_journal_aborted(journal))
4639 return -EROFS;
4640 /* We have to allocate physical blocks for delalloc blocks
4641 * before flushing journal. otherwise delalloc blocks can not
4642 * be allocated any more. even more truncate on delalloc blocks
4643 * could trigger BUG by flushing delalloc blocks in journal.
4644 * There is no delalloc block in non-journal data mode.
4646 if (val && test_opt(inode->i_sb, DELALLOC)) {
4647 err = ext4_alloc_da_blocks(inode);
4648 if (err < 0)
4649 return err;
4652 jbd2_journal_lock_updates(journal);
4655 * OK, there are no updates running now, and all cached data is
4656 * synced to disk. We are now in a completely consistent state
4657 * which doesn't have anything in the journal, and we know that
4658 * no filesystem updates are running, so it is safe to modify
4659 * the inode's in-core data-journaling state flag now.
4662 if (val)
4663 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4664 else {
4665 jbd2_journal_flush(journal);
4666 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4668 ext4_set_aops(inode);
4670 jbd2_journal_unlock_updates(journal);
4672 /* Finally we can mark the inode as dirty. */
4674 handle = ext4_journal_start(inode, 1);
4675 if (IS_ERR(handle))
4676 return PTR_ERR(handle);
4678 err = ext4_mark_inode_dirty(handle, inode);
4679 ext4_handle_sync(handle);
4680 ext4_journal_stop(handle);
4681 ext4_std_error(inode->i_sb, err);
4683 return err;
4686 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4688 return !buffer_mapped(bh);
4691 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4693 struct page *page = vmf->page;
4694 loff_t size;
4695 unsigned long len;
4696 int ret;
4697 struct file *file = vma->vm_file;
4698 struct inode *inode = file->f_path.dentry->d_inode;
4699 struct address_space *mapping = inode->i_mapping;
4700 handle_t *handle;
4701 get_block_t *get_block;
4702 int retries = 0;
4705 * This check is racy but catches the common case. We rely on
4706 * __block_page_mkwrite() to do a reliable check.
4708 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4709 /* Delalloc case is easy... */
4710 if (test_opt(inode->i_sb, DELALLOC) &&
4711 !ext4_should_journal_data(inode) &&
4712 !ext4_nonda_switch(inode->i_sb)) {
4713 do {
4714 ret = __block_page_mkwrite(vma, vmf,
4715 ext4_da_get_block_prep);
4716 } while (ret == -ENOSPC &&
4717 ext4_should_retry_alloc(inode->i_sb, &retries));
4718 goto out_ret;
4721 lock_page(page);
4722 size = i_size_read(inode);
4723 /* Page got truncated from under us? */
4724 if (page->mapping != mapping || page_offset(page) > size) {
4725 unlock_page(page);
4726 ret = VM_FAULT_NOPAGE;
4727 goto out;
4730 if (page->index == size >> PAGE_CACHE_SHIFT)
4731 len = size & ~PAGE_CACHE_MASK;
4732 else
4733 len = PAGE_CACHE_SIZE;
4735 * Return if we have all the buffers mapped. This avoids the need to do
4736 * journal_start/journal_stop which can block and take a long time
4738 if (page_has_buffers(page)) {
4739 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4740 ext4_bh_unmapped)) {
4741 /* Wait so that we don't change page under IO */
4742 wait_on_page_writeback(page);
4743 ret = VM_FAULT_LOCKED;
4744 goto out;
4747 unlock_page(page);
4748 /* OK, we need to fill the hole... */
4749 if (ext4_should_dioread_nolock(inode))
4750 get_block = ext4_get_block_write;
4751 else
4752 get_block = ext4_get_block;
4753 retry_alloc:
4754 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4755 if (IS_ERR(handle)) {
4756 ret = VM_FAULT_SIGBUS;
4757 goto out;
4759 ret = __block_page_mkwrite(vma, vmf, get_block);
4760 if (!ret && ext4_should_journal_data(inode)) {
4761 if (walk_page_buffers(handle, page_buffers(page), 0,
4762 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4763 unlock_page(page);
4764 ret = VM_FAULT_SIGBUS;
4765 ext4_journal_stop(handle);
4766 goto out;
4768 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4770 ext4_journal_stop(handle);
4771 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4772 goto retry_alloc;
4773 out_ret:
4774 ret = block_page_mkwrite_return(ret);
4775 out:
4776 return ret;