wl18xx: implement fw status debugfs entries
[linux-2.6/libata-dev.git] / fs / ext4 / ialloc.c
blobd48e8b14928cf993c50c33fe9b18a90203c2c492
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 int i;
57 if (start_bit >= end_bit)
58 return;
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
63 if (i < end_bit)
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
73 J_ASSERT_BH(bh, buffer_locked(bh));
75 /* If checksum is bad mark all blocks and inodes use to prevent
76 * allocation, essentially implementing a per-group read-only flag. */
77 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
78 ext4_error(sb, "Checksum bad for group %u", block_group);
79 ext4_free_group_clusters_set(sb, gdp, 0);
80 ext4_free_inodes_set(sb, gdp, 0);
81 ext4_itable_unused_set(sb, gdp, 0);
82 memset(bh->b_data, 0xff, sb->s_blocksize);
83 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
84 EXT4_INODES_PER_GROUP(sb) / 8);
85 return 0;
88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 bh->b_data);
91 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
92 EXT4_INODES_PER_GROUP(sb) / 8);
93 ext4_group_desc_csum_set(sb, block_group, gdp);
95 return EXT4_INODES_PER_GROUP(sb);
98 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
100 if (uptodate) {
101 set_buffer_uptodate(bh);
102 set_bitmap_uptodate(bh);
104 unlock_buffer(bh);
105 put_bh(bh);
109 * Read the inode allocation bitmap for a given block_group, reading
110 * into the specified slot in the superblock's bitmap cache.
112 * Return buffer_head of bitmap on success or NULL.
114 static struct buffer_head *
115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
117 struct ext4_group_desc *desc;
118 struct buffer_head *bh = NULL;
119 ext4_fsblk_t bitmap_blk;
121 desc = ext4_get_group_desc(sb, block_group, NULL);
122 if (!desc)
123 return NULL;
125 bitmap_blk = ext4_inode_bitmap(sb, desc);
126 bh = sb_getblk(sb, bitmap_blk);
127 if (unlikely(!bh)) {
128 ext4_error(sb, "Cannot read inode bitmap - "
129 "block_group = %u, inode_bitmap = %llu",
130 block_group, bitmap_blk);
131 return NULL;
133 if (bitmap_uptodate(bh))
134 goto verify;
136 lock_buffer(bh);
137 if (bitmap_uptodate(bh)) {
138 unlock_buffer(bh);
139 goto verify;
142 ext4_lock_group(sb, block_group);
143 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
144 ext4_init_inode_bitmap(sb, bh, block_group, desc);
145 set_bitmap_uptodate(bh);
146 set_buffer_uptodate(bh);
147 set_buffer_verified(bh);
148 ext4_unlock_group(sb, block_group);
149 unlock_buffer(bh);
150 return bh;
152 ext4_unlock_group(sb, block_group);
154 if (buffer_uptodate(bh)) {
156 * if not uninit if bh is uptodate,
157 * bitmap is also uptodate
159 set_bitmap_uptodate(bh);
160 unlock_buffer(bh);
161 goto verify;
164 * submit the buffer_head for reading
166 trace_ext4_load_inode_bitmap(sb, block_group);
167 bh->b_end_io = ext4_end_bitmap_read;
168 get_bh(bh);
169 submit_bh(READ, bh);
170 wait_on_buffer(bh);
171 if (!buffer_uptodate(bh)) {
172 put_bh(bh);
173 ext4_error(sb, "Cannot read inode bitmap - "
174 "block_group = %u, inode_bitmap = %llu",
175 block_group, bitmap_blk);
176 return NULL;
179 verify:
180 ext4_lock_group(sb, block_group);
181 if (!buffer_verified(bh) &&
182 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
183 EXT4_INODES_PER_GROUP(sb) / 8)) {
184 ext4_unlock_group(sb, block_group);
185 put_bh(bh);
186 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
187 "inode_bitmap = %llu", block_group, bitmap_blk);
188 return NULL;
190 ext4_unlock_group(sb, block_group);
191 set_buffer_verified(bh);
192 return bh;
196 * NOTE! When we get the inode, we're the only people
197 * that have access to it, and as such there are no
198 * race conditions we have to worry about. The inode
199 * is not on the hash-lists, and it cannot be reached
200 * through the filesystem because the directory entry
201 * has been deleted earlier.
203 * HOWEVER: we must make sure that we get no aliases,
204 * which means that we have to call "clear_inode()"
205 * _before_ we mark the inode not in use in the inode
206 * bitmaps. Otherwise a newly created file might use
207 * the same inode number (not actually the same pointer
208 * though), and then we'd have two inodes sharing the
209 * same inode number and space on the harddisk.
211 void ext4_free_inode(handle_t *handle, struct inode *inode)
213 struct super_block *sb = inode->i_sb;
214 int is_directory;
215 unsigned long ino;
216 struct buffer_head *bitmap_bh = NULL;
217 struct buffer_head *bh2;
218 ext4_group_t block_group;
219 unsigned long bit;
220 struct ext4_group_desc *gdp;
221 struct ext4_super_block *es;
222 struct ext4_sb_info *sbi;
223 int fatal = 0, err, count, cleared;
225 if (!sb) {
226 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
227 "nonexistent device\n", __func__, __LINE__);
228 return;
230 if (atomic_read(&inode->i_count) > 1) {
231 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
232 __func__, __LINE__, inode->i_ino,
233 atomic_read(&inode->i_count));
234 return;
236 if (inode->i_nlink) {
237 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
238 __func__, __LINE__, inode->i_ino, inode->i_nlink);
239 return;
241 sbi = EXT4_SB(sb);
243 ino = inode->i_ino;
244 ext4_debug("freeing inode %lu\n", ino);
245 trace_ext4_free_inode(inode);
248 * Note: we must free any quota before locking the superblock,
249 * as writing the quota to disk may need the lock as well.
251 dquot_initialize(inode);
252 ext4_xattr_delete_inode(handle, inode);
253 dquot_free_inode(inode);
254 dquot_drop(inode);
256 is_directory = S_ISDIR(inode->i_mode);
258 /* Do this BEFORE marking the inode not in use or returning an error */
259 ext4_clear_inode(inode);
261 es = EXT4_SB(sb)->s_es;
262 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
263 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
264 goto error_return;
266 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
267 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
268 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
269 if (!bitmap_bh)
270 goto error_return;
272 BUFFER_TRACE(bitmap_bh, "get_write_access");
273 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
274 if (fatal)
275 goto error_return;
277 fatal = -ESRCH;
278 gdp = ext4_get_group_desc(sb, block_group, &bh2);
279 if (gdp) {
280 BUFFER_TRACE(bh2, "get_write_access");
281 fatal = ext4_journal_get_write_access(handle, bh2);
283 ext4_lock_group(sb, block_group);
284 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
285 if (fatal || !cleared) {
286 ext4_unlock_group(sb, block_group);
287 goto out;
290 count = ext4_free_inodes_count(sb, gdp) + 1;
291 ext4_free_inodes_set(sb, gdp, count);
292 if (is_directory) {
293 count = ext4_used_dirs_count(sb, gdp) - 1;
294 ext4_used_dirs_set(sb, gdp, count);
295 percpu_counter_dec(&sbi->s_dirs_counter);
297 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
298 EXT4_INODES_PER_GROUP(sb) / 8);
299 ext4_group_desc_csum_set(sb, block_group, gdp);
300 ext4_unlock_group(sb, block_group);
302 percpu_counter_inc(&sbi->s_freeinodes_counter);
303 if (sbi->s_log_groups_per_flex) {
304 ext4_group_t f = ext4_flex_group(sbi, block_group);
306 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
307 if (is_directory)
308 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
310 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
311 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
312 out:
313 if (cleared) {
314 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
315 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
316 if (!fatal)
317 fatal = err;
318 ext4_mark_super_dirty(sb);
319 } else
320 ext4_error(sb, "bit already cleared for inode %lu", ino);
322 error_return:
323 brelse(bitmap_bh);
324 ext4_std_error(sb, fatal);
327 struct orlov_stats {
328 __u32 free_inodes;
329 __u32 free_clusters;
330 __u32 used_dirs;
334 * Helper function for Orlov's allocator; returns critical information
335 * for a particular block group or flex_bg. If flex_size is 1, then g
336 * is a block group number; otherwise it is flex_bg number.
338 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
339 int flex_size, struct orlov_stats *stats)
341 struct ext4_group_desc *desc;
342 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
344 if (flex_size > 1) {
345 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
346 stats->free_clusters = atomic_read(&flex_group[g].free_clusters);
347 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
348 return;
351 desc = ext4_get_group_desc(sb, g, NULL);
352 if (desc) {
353 stats->free_inodes = ext4_free_inodes_count(sb, desc);
354 stats->free_clusters = ext4_free_group_clusters(sb, desc);
355 stats->used_dirs = ext4_used_dirs_count(sb, desc);
356 } else {
357 stats->free_inodes = 0;
358 stats->free_clusters = 0;
359 stats->used_dirs = 0;
364 * Orlov's allocator for directories.
366 * We always try to spread first-level directories.
368 * If there are blockgroups with both free inodes and free blocks counts
369 * not worse than average we return one with smallest directory count.
370 * Otherwise we simply return a random group.
372 * For the rest rules look so:
374 * It's OK to put directory into a group unless
375 * it has too many directories already (max_dirs) or
376 * it has too few free inodes left (min_inodes) or
377 * it has too few free blocks left (min_blocks) or
378 * Parent's group is preferred, if it doesn't satisfy these
379 * conditions we search cyclically through the rest. If none
380 * of the groups look good we just look for a group with more
381 * free inodes than average (starting at parent's group).
384 static int find_group_orlov(struct super_block *sb, struct inode *parent,
385 ext4_group_t *group, umode_t mode,
386 const struct qstr *qstr)
388 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
389 struct ext4_sb_info *sbi = EXT4_SB(sb);
390 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
391 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
392 unsigned int freei, avefreei, grp_free;
393 ext4_fsblk_t freeb, avefreec;
394 unsigned int ndirs;
395 int max_dirs, min_inodes;
396 ext4_grpblk_t min_clusters;
397 ext4_group_t i, grp, g, ngroups;
398 struct ext4_group_desc *desc;
399 struct orlov_stats stats;
400 int flex_size = ext4_flex_bg_size(sbi);
401 struct dx_hash_info hinfo;
403 ngroups = real_ngroups;
404 if (flex_size > 1) {
405 ngroups = (real_ngroups + flex_size - 1) >>
406 sbi->s_log_groups_per_flex;
407 parent_group >>= sbi->s_log_groups_per_flex;
410 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
411 avefreei = freei / ngroups;
412 freeb = EXT4_C2B(sbi,
413 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
414 avefreec = freeb;
415 do_div(avefreec, ngroups);
416 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
418 if (S_ISDIR(mode) &&
419 ((parent == sb->s_root->d_inode) ||
420 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
421 int best_ndir = inodes_per_group;
422 int ret = -1;
424 if (qstr) {
425 hinfo.hash_version = DX_HASH_HALF_MD4;
426 hinfo.seed = sbi->s_hash_seed;
427 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
428 grp = hinfo.hash;
429 } else
430 get_random_bytes(&grp, sizeof(grp));
431 parent_group = (unsigned)grp % ngroups;
432 for (i = 0; i < ngroups; i++) {
433 g = (parent_group + i) % ngroups;
434 get_orlov_stats(sb, g, flex_size, &stats);
435 if (!stats.free_inodes)
436 continue;
437 if (stats.used_dirs >= best_ndir)
438 continue;
439 if (stats.free_inodes < avefreei)
440 continue;
441 if (stats.free_clusters < avefreec)
442 continue;
443 grp = g;
444 ret = 0;
445 best_ndir = stats.used_dirs;
447 if (ret)
448 goto fallback;
449 found_flex_bg:
450 if (flex_size == 1) {
451 *group = grp;
452 return 0;
456 * We pack inodes at the beginning of the flexgroup's
457 * inode tables. Block allocation decisions will do
458 * something similar, although regular files will
459 * start at 2nd block group of the flexgroup. See
460 * ext4_ext_find_goal() and ext4_find_near().
462 grp *= flex_size;
463 for (i = 0; i < flex_size; i++) {
464 if (grp+i >= real_ngroups)
465 break;
466 desc = ext4_get_group_desc(sb, grp+i, NULL);
467 if (desc && ext4_free_inodes_count(sb, desc)) {
468 *group = grp+i;
469 return 0;
472 goto fallback;
475 max_dirs = ndirs / ngroups + inodes_per_group / 16;
476 min_inodes = avefreei - inodes_per_group*flex_size / 4;
477 if (min_inodes < 1)
478 min_inodes = 1;
479 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
482 * Start looking in the flex group where we last allocated an
483 * inode for this parent directory
485 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
486 parent_group = EXT4_I(parent)->i_last_alloc_group;
487 if (flex_size > 1)
488 parent_group >>= sbi->s_log_groups_per_flex;
491 for (i = 0; i < ngroups; i++) {
492 grp = (parent_group + i) % ngroups;
493 get_orlov_stats(sb, grp, flex_size, &stats);
494 if (stats.used_dirs >= max_dirs)
495 continue;
496 if (stats.free_inodes < min_inodes)
497 continue;
498 if (stats.free_clusters < min_clusters)
499 continue;
500 goto found_flex_bg;
503 fallback:
504 ngroups = real_ngroups;
505 avefreei = freei / ngroups;
506 fallback_retry:
507 parent_group = EXT4_I(parent)->i_block_group;
508 for (i = 0; i < ngroups; i++) {
509 grp = (parent_group + i) % ngroups;
510 desc = ext4_get_group_desc(sb, grp, NULL);
511 if (desc) {
512 grp_free = ext4_free_inodes_count(sb, desc);
513 if (grp_free && grp_free >= avefreei) {
514 *group = grp;
515 return 0;
520 if (avefreei) {
522 * The free-inodes counter is approximate, and for really small
523 * filesystems the above test can fail to find any blockgroups
525 avefreei = 0;
526 goto fallback_retry;
529 return -1;
532 static int find_group_other(struct super_block *sb, struct inode *parent,
533 ext4_group_t *group, umode_t mode)
535 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
536 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
537 struct ext4_group_desc *desc;
538 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
541 * Try to place the inode is the same flex group as its
542 * parent. If we can't find space, use the Orlov algorithm to
543 * find another flex group, and store that information in the
544 * parent directory's inode information so that use that flex
545 * group for future allocations.
547 if (flex_size > 1) {
548 int retry = 0;
550 try_again:
551 parent_group &= ~(flex_size-1);
552 last = parent_group + flex_size;
553 if (last > ngroups)
554 last = ngroups;
555 for (i = parent_group; i < last; i++) {
556 desc = ext4_get_group_desc(sb, i, NULL);
557 if (desc && ext4_free_inodes_count(sb, desc)) {
558 *group = i;
559 return 0;
562 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
563 retry = 1;
564 parent_group = EXT4_I(parent)->i_last_alloc_group;
565 goto try_again;
568 * If this didn't work, use the Orlov search algorithm
569 * to find a new flex group; we pass in the mode to
570 * avoid the topdir algorithms.
572 *group = parent_group + flex_size;
573 if (*group > ngroups)
574 *group = 0;
575 return find_group_orlov(sb, parent, group, mode, NULL);
579 * Try to place the inode in its parent directory
581 *group = parent_group;
582 desc = ext4_get_group_desc(sb, *group, NULL);
583 if (desc && ext4_free_inodes_count(sb, desc) &&
584 ext4_free_group_clusters(sb, desc))
585 return 0;
588 * We're going to place this inode in a different blockgroup from its
589 * parent. We want to cause files in a common directory to all land in
590 * the same blockgroup. But we want files which are in a different
591 * directory which shares a blockgroup with our parent to land in a
592 * different blockgroup.
594 * So add our directory's i_ino into the starting point for the hash.
596 *group = (*group + parent->i_ino) % ngroups;
599 * Use a quadratic hash to find a group with a free inode and some free
600 * blocks.
602 for (i = 1; i < ngroups; i <<= 1) {
603 *group += i;
604 if (*group >= ngroups)
605 *group -= ngroups;
606 desc = ext4_get_group_desc(sb, *group, NULL);
607 if (desc && ext4_free_inodes_count(sb, desc) &&
608 ext4_free_group_clusters(sb, desc))
609 return 0;
613 * That failed: try linear search for a free inode, even if that group
614 * has no free blocks.
616 *group = parent_group;
617 for (i = 0; i < ngroups; i++) {
618 if (++*group >= ngroups)
619 *group = 0;
620 desc = ext4_get_group_desc(sb, *group, NULL);
621 if (desc && ext4_free_inodes_count(sb, desc))
622 return 0;
625 return -1;
629 * There are two policies for allocating an inode. If the new inode is
630 * a directory, then a forward search is made for a block group with both
631 * free space and a low directory-to-inode ratio; if that fails, then of
632 * the groups with above-average free space, that group with the fewest
633 * directories already is chosen.
635 * For other inodes, search forward from the parent directory's block
636 * group to find a free inode.
638 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode,
639 const struct qstr *qstr, __u32 goal, uid_t *owner)
641 struct super_block *sb;
642 struct buffer_head *inode_bitmap_bh = NULL;
643 struct buffer_head *group_desc_bh;
644 ext4_group_t ngroups, group = 0;
645 unsigned long ino = 0;
646 struct inode *inode;
647 struct ext4_group_desc *gdp = NULL;
648 struct ext4_inode_info *ei;
649 struct ext4_sb_info *sbi;
650 int ret2, err = 0;
651 struct inode *ret;
652 ext4_group_t i;
653 ext4_group_t flex_group;
655 /* Cannot create files in a deleted directory */
656 if (!dir || !dir->i_nlink)
657 return ERR_PTR(-EPERM);
659 sb = dir->i_sb;
660 ngroups = ext4_get_groups_count(sb);
661 trace_ext4_request_inode(dir, mode);
662 inode = new_inode(sb);
663 if (!inode)
664 return ERR_PTR(-ENOMEM);
665 ei = EXT4_I(inode);
666 sbi = EXT4_SB(sb);
668 if (!goal)
669 goal = sbi->s_inode_goal;
671 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
672 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
673 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
674 ret2 = 0;
675 goto got_group;
678 if (S_ISDIR(mode))
679 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
680 else
681 ret2 = find_group_other(sb, dir, &group, mode);
683 got_group:
684 EXT4_I(dir)->i_last_alloc_group = group;
685 err = -ENOSPC;
686 if (ret2 == -1)
687 goto out;
690 * Normally we will only go through one pass of this loop,
691 * unless we get unlucky and it turns out the group we selected
692 * had its last inode grabbed by someone else.
694 for (i = 0; i < ngroups; i++, ino = 0) {
695 err = -EIO;
697 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
698 if (!gdp)
699 goto fail;
701 brelse(inode_bitmap_bh);
702 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
703 if (!inode_bitmap_bh)
704 goto fail;
706 repeat_in_this_group:
707 ino = ext4_find_next_zero_bit((unsigned long *)
708 inode_bitmap_bh->b_data,
709 EXT4_INODES_PER_GROUP(sb), ino);
710 if (ino >= EXT4_INODES_PER_GROUP(sb)) {
711 if (++group == ngroups)
712 group = 0;
713 continue;
715 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
716 ext4_error(sb, "reserved inode found cleared - "
717 "inode=%lu", ino + 1);
718 continue;
720 ext4_lock_group(sb, group);
721 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
722 ext4_unlock_group(sb, group);
723 ino++; /* the inode bitmap is zero-based */
724 if (!ret2)
725 goto got; /* we grabbed the inode! */
726 if (ino < EXT4_INODES_PER_GROUP(sb))
727 goto repeat_in_this_group;
729 err = -ENOSPC;
730 goto out;
732 got:
733 /* We may have to initialize the block bitmap if it isn't already */
734 if (ext4_has_group_desc_csum(sb) &&
735 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
736 struct buffer_head *block_bitmap_bh;
738 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
739 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
740 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
741 if (err) {
742 brelse(block_bitmap_bh);
743 goto fail;
746 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
747 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
748 brelse(block_bitmap_bh);
750 /* recheck and clear flag under lock if we still need to */
751 ext4_lock_group(sb, group);
752 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
753 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
754 ext4_free_group_clusters_set(sb, gdp,
755 ext4_free_clusters_after_init(sb, group, gdp));
756 ext4_block_bitmap_csum_set(sb, group, gdp,
757 block_bitmap_bh,
758 EXT4_BLOCKS_PER_GROUP(sb) /
760 ext4_group_desc_csum_set(sb, group, gdp);
762 ext4_unlock_group(sb, group);
764 if (err)
765 goto fail;
768 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
769 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
770 if (err)
771 goto fail;
773 BUFFER_TRACE(group_desc_bh, "get_write_access");
774 err = ext4_journal_get_write_access(handle, group_desc_bh);
775 if (err)
776 goto fail;
778 /* Update the relevant bg descriptor fields */
779 if (ext4_has_group_desc_csum(sb)) {
780 int free;
781 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
783 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
784 ext4_lock_group(sb, group); /* while we modify the bg desc */
785 free = EXT4_INODES_PER_GROUP(sb) -
786 ext4_itable_unused_count(sb, gdp);
787 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
788 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
789 free = 0;
792 * Check the relative inode number against the last used
793 * relative inode number in this group. if it is greater
794 * we need to update the bg_itable_unused count
796 if (ino > free)
797 ext4_itable_unused_set(sb, gdp,
798 (EXT4_INODES_PER_GROUP(sb) - ino));
799 up_read(&grp->alloc_sem);
800 } else {
801 ext4_lock_group(sb, group);
804 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
805 if (S_ISDIR(mode)) {
806 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
807 if (sbi->s_log_groups_per_flex) {
808 ext4_group_t f = ext4_flex_group(sbi, group);
810 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
813 if (ext4_has_group_desc_csum(sb)) {
814 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
815 EXT4_INODES_PER_GROUP(sb) / 8);
816 ext4_group_desc_csum_set(sb, group, gdp);
818 ext4_unlock_group(sb, group);
820 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
821 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
822 if (err)
823 goto fail;
825 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
826 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
827 if (err)
828 goto fail;
830 percpu_counter_dec(&sbi->s_freeinodes_counter);
831 if (S_ISDIR(mode))
832 percpu_counter_inc(&sbi->s_dirs_counter);
833 ext4_mark_super_dirty(sb);
835 if (sbi->s_log_groups_per_flex) {
836 flex_group = ext4_flex_group(sbi, group);
837 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
839 if (owner) {
840 inode->i_mode = mode;
841 i_uid_write(inode, owner[0]);
842 i_gid_write(inode, owner[1]);
843 } else if (test_opt(sb, GRPID)) {
844 inode->i_mode = mode;
845 inode->i_uid = current_fsuid();
846 inode->i_gid = dir->i_gid;
847 } else
848 inode_init_owner(inode, dir, mode);
850 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
851 /* This is the optimal IO size (for stat), not the fs block size */
852 inode->i_blocks = 0;
853 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
854 ext4_current_time(inode);
856 memset(ei->i_data, 0, sizeof(ei->i_data));
857 ei->i_dir_start_lookup = 0;
858 ei->i_disksize = 0;
860 /* Don't inherit extent flag from directory, amongst others. */
861 ei->i_flags =
862 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
863 ei->i_file_acl = 0;
864 ei->i_dtime = 0;
865 ei->i_block_group = group;
866 ei->i_last_alloc_group = ~0;
868 ext4_set_inode_flags(inode);
869 if (IS_DIRSYNC(inode))
870 ext4_handle_sync(handle);
871 if (insert_inode_locked(inode) < 0) {
873 * Likely a bitmap corruption causing inode to be allocated
874 * twice.
876 err = -EIO;
877 goto fail;
879 spin_lock(&sbi->s_next_gen_lock);
880 inode->i_generation = sbi->s_next_generation++;
881 spin_unlock(&sbi->s_next_gen_lock);
883 /* Precompute checksum seed for inode metadata */
884 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
885 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
886 __u32 csum;
887 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
888 __le32 inum = cpu_to_le32(inode->i_ino);
889 __le32 gen = cpu_to_le32(inode->i_generation);
890 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
891 sizeof(inum));
892 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
893 sizeof(gen));
896 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
897 ext4_set_inode_state(inode, EXT4_STATE_NEW);
899 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
901 ret = inode;
902 dquot_initialize(inode);
903 err = dquot_alloc_inode(inode);
904 if (err)
905 goto fail_drop;
907 err = ext4_init_acl(handle, inode, dir);
908 if (err)
909 goto fail_free_drop;
911 err = ext4_init_security(handle, inode, dir, qstr);
912 if (err)
913 goto fail_free_drop;
915 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
916 /* set extent flag only for directory, file and normal symlink*/
917 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
918 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
919 ext4_ext_tree_init(handle, inode);
923 if (ext4_handle_valid(handle)) {
924 ei->i_sync_tid = handle->h_transaction->t_tid;
925 ei->i_datasync_tid = handle->h_transaction->t_tid;
928 err = ext4_mark_inode_dirty(handle, inode);
929 if (err) {
930 ext4_std_error(sb, err);
931 goto fail_free_drop;
934 ext4_debug("allocating inode %lu\n", inode->i_ino);
935 trace_ext4_allocate_inode(inode, dir, mode);
936 goto really_out;
937 fail:
938 ext4_std_error(sb, err);
939 out:
940 iput(inode);
941 ret = ERR_PTR(err);
942 really_out:
943 brelse(inode_bitmap_bh);
944 return ret;
946 fail_free_drop:
947 dquot_free_inode(inode);
949 fail_drop:
950 dquot_drop(inode);
951 inode->i_flags |= S_NOQUOTA;
952 clear_nlink(inode);
953 unlock_new_inode(inode);
954 iput(inode);
955 brelse(inode_bitmap_bh);
956 return ERR_PTR(err);
959 /* Verify that we are loading a valid orphan from disk */
960 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
962 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
963 ext4_group_t block_group;
964 int bit;
965 struct buffer_head *bitmap_bh;
966 struct inode *inode = NULL;
967 long err = -EIO;
969 /* Error cases - e2fsck has already cleaned up for us */
970 if (ino > max_ino) {
971 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
972 goto error;
975 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
976 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
977 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
978 if (!bitmap_bh) {
979 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
980 goto error;
983 /* Having the inode bit set should be a 100% indicator that this
984 * is a valid orphan (no e2fsck run on fs). Orphans also include
985 * inodes that were being truncated, so we can't check i_nlink==0.
987 if (!ext4_test_bit(bit, bitmap_bh->b_data))
988 goto bad_orphan;
990 inode = ext4_iget(sb, ino);
991 if (IS_ERR(inode))
992 goto iget_failed;
995 * If the orphans has i_nlinks > 0 then it should be able to be
996 * truncated, otherwise it won't be removed from the orphan list
997 * during processing and an infinite loop will result.
999 if (inode->i_nlink && !ext4_can_truncate(inode))
1000 goto bad_orphan;
1002 if (NEXT_ORPHAN(inode) > max_ino)
1003 goto bad_orphan;
1004 brelse(bitmap_bh);
1005 return inode;
1007 iget_failed:
1008 err = PTR_ERR(inode);
1009 inode = NULL;
1010 bad_orphan:
1011 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1012 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1013 bit, (unsigned long long)bitmap_bh->b_blocknr,
1014 ext4_test_bit(bit, bitmap_bh->b_data));
1015 printk(KERN_NOTICE "inode=%p\n", inode);
1016 if (inode) {
1017 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1018 is_bad_inode(inode));
1019 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1020 NEXT_ORPHAN(inode));
1021 printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1022 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1023 /* Avoid freeing blocks if we got a bad deleted inode */
1024 if (inode->i_nlink == 0)
1025 inode->i_blocks = 0;
1026 iput(inode);
1028 brelse(bitmap_bh);
1029 error:
1030 return ERR_PTR(err);
1033 unsigned long ext4_count_free_inodes(struct super_block *sb)
1035 unsigned long desc_count;
1036 struct ext4_group_desc *gdp;
1037 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1038 #ifdef EXT4FS_DEBUG
1039 struct ext4_super_block *es;
1040 unsigned long bitmap_count, x;
1041 struct buffer_head *bitmap_bh = NULL;
1043 es = EXT4_SB(sb)->s_es;
1044 desc_count = 0;
1045 bitmap_count = 0;
1046 gdp = NULL;
1047 for (i = 0; i < ngroups; i++) {
1048 gdp = ext4_get_group_desc(sb, i, NULL);
1049 if (!gdp)
1050 continue;
1051 desc_count += ext4_free_inodes_count(sb, gdp);
1052 brelse(bitmap_bh);
1053 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1054 if (!bitmap_bh)
1055 continue;
1057 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1058 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1059 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1060 bitmap_count += x;
1062 brelse(bitmap_bh);
1063 printk(KERN_DEBUG "ext4_count_free_inodes: "
1064 "stored = %u, computed = %lu, %lu\n",
1065 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1066 return desc_count;
1067 #else
1068 desc_count = 0;
1069 for (i = 0; i < ngroups; i++) {
1070 gdp = ext4_get_group_desc(sb, i, NULL);
1071 if (!gdp)
1072 continue;
1073 desc_count += ext4_free_inodes_count(sb, gdp);
1074 cond_resched();
1076 return desc_count;
1077 #endif
1080 /* Called at mount-time, super-block is locked */
1081 unsigned long ext4_count_dirs(struct super_block * sb)
1083 unsigned long count = 0;
1084 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1086 for (i = 0; i < ngroups; i++) {
1087 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1088 if (!gdp)
1089 continue;
1090 count += ext4_used_dirs_count(sb, gdp);
1092 return count;
1096 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1097 * inode table. Must be called without any spinlock held. The only place
1098 * where it is called from on active part of filesystem is ext4lazyinit
1099 * thread, so we do not need any special locks, however we have to prevent
1100 * inode allocation from the current group, so we take alloc_sem lock, to
1101 * block ext4_new_inode() until we are finished.
1103 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1104 int barrier)
1106 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1107 struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 struct ext4_group_desc *gdp = NULL;
1109 struct buffer_head *group_desc_bh;
1110 handle_t *handle;
1111 ext4_fsblk_t blk;
1112 int num, ret = 0, used_blks = 0;
1114 /* This should not happen, but just to be sure check this */
1115 if (sb->s_flags & MS_RDONLY) {
1116 ret = 1;
1117 goto out;
1120 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1121 if (!gdp)
1122 goto out;
1125 * We do not need to lock this, because we are the only one
1126 * handling this flag.
1128 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1129 goto out;
1131 handle = ext4_journal_start_sb(sb, 1);
1132 if (IS_ERR(handle)) {
1133 ret = PTR_ERR(handle);
1134 goto out;
1137 down_write(&grp->alloc_sem);
1139 * If inode bitmap was already initialized there may be some
1140 * used inodes so we need to skip blocks with used inodes in
1141 * inode table.
1143 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1144 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1145 ext4_itable_unused_count(sb, gdp)),
1146 sbi->s_inodes_per_block);
1148 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1149 ext4_error(sb, "Something is wrong with group %u: "
1150 "used itable blocks: %d; "
1151 "itable unused count: %u",
1152 group, used_blks,
1153 ext4_itable_unused_count(sb, gdp));
1154 ret = 1;
1155 goto err_out;
1158 blk = ext4_inode_table(sb, gdp) + used_blks;
1159 num = sbi->s_itb_per_group - used_blks;
1161 BUFFER_TRACE(group_desc_bh, "get_write_access");
1162 ret = ext4_journal_get_write_access(handle,
1163 group_desc_bh);
1164 if (ret)
1165 goto err_out;
1168 * Skip zeroout if the inode table is full. But we set the ZEROED
1169 * flag anyway, because obviously, when it is full it does not need
1170 * further zeroing.
1172 if (unlikely(num == 0))
1173 goto skip_zeroout;
1175 ext4_debug("going to zero out inode table in group %d\n",
1176 group);
1177 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1178 if (ret < 0)
1179 goto err_out;
1180 if (barrier)
1181 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1183 skip_zeroout:
1184 ext4_lock_group(sb, group);
1185 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1186 ext4_group_desc_csum_set(sb, group, gdp);
1187 ext4_unlock_group(sb, group);
1189 BUFFER_TRACE(group_desc_bh,
1190 "call ext4_handle_dirty_metadata");
1191 ret = ext4_handle_dirty_metadata(handle, NULL,
1192 group_desc_bh);
1194 err_out:
1195 up_write(&grp->alloc_sem);
1196 ext4_journal_stop(handle);
1197 out:
1198 return ret;