2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
34 static int ext3_writepage_trans_blocks(struct inode
*inode
);
35 static int ext3_block_truncate_page(struct inode
*inode
, loff_t from
);
38 * Test whether an inode is a fast symlink.
40 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
42 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
43 (inode
->i_sb
->s_blocksize
>> 9) : 0;
45 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
49 * The ext3 forget function must perform a revoke if we are freeing data
50 * which has been journaled. Metadata (eg. indirect blocks) must be
51 * revoked in all cases.
53 * "bh" may be NULL: a metadata block may have been freed from memory
54 * but there may still be a record of it in the journal, and that record
55 * still needs to be revoked.
57 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
58 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
64 trace_ext3_forget(inode
, is_metadata
, blocknr
);
65 BUFFER_TRACE(bh
, "enter");
67 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
69 bh
, is_metadata
, inode
->i_mode
,
70 test_opt(inode
->i_sb
, DATA_FLAGS
));
72 /* Never use the revoke function if we are doing full data
73 * journaling: there is no need to, and a V1 superblock won't
74 * support it. Otherwise, only skip the revoke on un-journaled
77 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
78 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
80 BUFFER_TRACE(bh
, "call journal_forget");
81 return ext3_journal_forget(handle
, bh
);
87 * data!=journal && (is_metadata || should_journal_data(inode))
89 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
90 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
92 ext3_abort(inode
->i_sb
, __func__
,
93 "error %d when attempting revoke", err
);
94 BUFFER_TRACE(bh
, "exit");
99 * Work out how many blocks we need to proceed with the next chunk of a
100 * truncate transaction.
102 static unsigned long blocks_for_truncate(struct inode
*inode
)
104 unsigned long needed
;
106 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
108 /* Give ourselves just enough room to cope with inodes in which
109 * i_blocks is corrupt: we've seen disk corruptions in the past
110 * which resulted in random data in an inode which looked enough
111 * like a regular file for ext3 to try to delete it. Things
112 * will go a bit crazy if that happens, but at least we should
113 * try not to panic the whole kernel. */
117 /* But we need to bound the transaction so we don't overflow the
119 if (needed
> EXT3_MAX_TRANS_DATA
)
120 needed
= EXT3_MAX_TRANS_DATA
;
122 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
126 * Truncate transactions can be complex and absolutely huge. So we need to
127 * be able to restart the transaction at a conventient checkpoint to make
128 * sure we don't overflow the journal.
130 * start_transaction gets us a new handle for a truncate transaction,
131 * and extend_transaction tries to extend the existing one a bit. If
132 * extend fails, we need to propagate the failure up and restart the
133 * transaction in the top-level truncate loop. --sct
135 static handle_t
*start_transaction(struct inode
*inode
)
139 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
143 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
148 * Try to extend this transaction for the purposes of truncation.
150 * Returns 0 if we managed to create more room. If we can't create more
151 * room, and the transaction must be restarted we return 1.
153 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
155 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
157 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
163 * Restart the transaction associated with *handle. This does a commit,
164 * so before we call here everything must be consistently dirtied against
167 static int truncate_restart_transaction(handle_t
*handle
, struct inode
*inode
)
171 jbd_debug(2, "restarting handle %p\n", handle
);
173 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
174 * At this moment, get_block can be called only for blocks inside
175 * i_size since page cache has been already dropped and writes are
176 * blocked by i_mutex. So we can safely drop the truncate_mutex.
178 mutex_unlock(&EXT3_I(inode
)->truncate_mutex
);
179 ret
= ext3_journal_restart(handle
, blocks_for_truncate(inode
));
180 mutex_lock(&EXT3_I(inode
)->truncate_mutex
);
185 * Called at inode eviction from icache
187 void ext3_evict_inode (struct inode
*inode
)
189 struct ext3_inode_info
*ei
= EXT3_I(inode
);
190 struct ext3_block_alloc_info
*rsv
;
194 trace_ext3_evict_inode(inode
);
195 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
196 dquot_initialize(inode
);
201 * When journalling data dirty buffers are tracked only in the journal.
202 * So although mm thinks everything is clean and ready for reaping the
203 * inode might still have some pages to write in the running
204 * transaction or waiting to be checkpointed. Thus calling
205 * journal_invalidatepage() (via truncate_inode_pages()) to discard
206 * these buffers can cause data loss. Also even if we did not discard
207 * these buffers, we would have no way to find them after the inode
208 * is reaped and thus user could see stale data if he tries to read
209 * them before the transaction is checkpointed. So be careful and
210 * force everything to disk here... We use ei->i_datasync_tid to
211 * store the newest transaction containing inode's data.
213 * Note that directories do not have this problem because they don't
216 * The s_journal check handles the case when ext3_get_journal() fails
217 * and puts the journal inode.
219 if (inode
->i_nlink
&& ext3_should_journal_data(inode
) &&
220 EXT3_SB(inode
->i_sb
)->s_journal
&&
221 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
222 tid_t commit_tid
= atomic_read(&ei
->i_datasync_tid
);
223 journal_t
*journal
= EXT3_SB(inode
->i_sb
)->s_journal
;
225 log_start_commit(journal
, commit_tid
);
226 log_wait_commit(journal
, commit_tid
);
227 filemap_write_and_wait(&inode
->i_data
);
229 truncate_inode_pages(&inode
->i_data
, 0);
231 ext3_discard_reservation(inode
);
232 rsv
= ei
->i_block_alloc_info
;
233 ei
->i_block_alloc_info
= NULL
;
240 handle
= start_transaction(inode
);
241 if (IS_ERR(handle
)) {
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
247 ext3_orphan_del(NULL
, inode
);
255 ext3_truncate(inode
);
257 * Kill off the orphan record created when the inode lost the last
258 * link. Note that ext3_orphan_del() has to be able to cope with the
259 * deletion of a non-existent orphan - ext3_truncate() could
260 * have removed the record.
262 ext3_orphan_del(handle
, inode
);
263 ei
->i_dtime
= get_seconds();
266 * One subtle ordering requirement: if anything has gone wrong
267 * (transaction abort, IO errors, whatever), then we can still
268 * do these next steps (the fs will already have been marked as
269 * having errors), but we can't free the inode if the mark_dirty
272 if (ext3_mark_inode_dirty(handle
, inode
)) {
273 /* If that failed, just dquot_drop() and be done with that */
277 ext3_xattr_delete_inode(handle
, inode
);
278 dquot_free_inode(inode
);
281 ext3_free_inode(handle
, inode
);
283 ext3_journal_stop(handle
);
293 struct buffer_head
*bh
;
296 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
298 p
->key
= *(p
->p
= v
);
302 static int verify_chain(Indirect
*from
, Indirect
*to
)
304 while (from
<= to
&& from
->key
== *from
->p
)
310 * ext3_block_to_path - parse the block number into array of offsets
311 * @inode: inode in question (we are only interested in its superblock)
312 * @i_block: block number to be parsed
313 * @offsets: array to store the offsets in
314 * @boundary: set this non-zero if the referred-to block is likely to be
315 * followed (on disk) by an indirect block.
317 * To store the locations of file's data ext3 uses a data structure common
318 * for UNIX filesystems - tree of pointers anchored in the inode, with
319 * data blocks at leaves and indirect blocks in intermediate nodes.
320 * This function translates the block number into path in that tree -
321 * return value is the path length and @offsets[n] is the offset of
322 * pointer to (n+1)th node in the nth one. If @block is out of range
323 * (negative or too large) warning is printed and zero returned.
325 * Note: function doesn't find node addresses, so no IO is needed. All
326 * we need to know is the capacity of indirect blocks (taken from the
331 * Portability note: the last comparison (check that we fit into triple
332 * indirect block) is spelled differently, because otherwise on an
333 * architecture with 32-bit longs and 8Kb pages we might get into trouble
334 * if our filesystem had 8Kb blocks. We might use long long, but that would
335 * kill us on x86. Oh, well, at least the sign propagation does not matter -
336 * i_block would have to be negative in the very beginning, so we would not
340 static int ext3_block_to_path(struct inode
*inode
,
341 long i_block
, int offsets
[4], int *boundary
)
343 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
344 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
345 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
346 indirect_blocks
= ptrs
,
347 double_blocks
= (1 << (ptrs_bits
* 2));
352 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
353 } else if (i_block
< direct_blocks
) {
354 offsets
[n
++] = i_block
;
355 final
= direct_blocks
;
356 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
357 offsets
[n
++] = EXT3_IND_BLOCK
;
358 offsets
[n
++] = i_block
;
360 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
361 offsets
[n
++] = EXT3_DIND_BLOCK
;
362 offsets
[n
++] = i_block
>> ptrs_bits
;
363 offsets
[n
++] = i_block
& (ptrs
- 1);
365 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
366 offsets
[n
++] = EXT3_TIND_BLOCK
;
367 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
368 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
369 offsets
[n
++] = i_block
& (ptrs
- 1);
372 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
375 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
380 * ext3_get_branch - read the chain of indirect blocks leading to data
381 * @inode: inode in question
382 * @depth: depth of the chain (1 - direct pointer, etc.)
383 * @offsets: offsets of pointers in inode/indirect blocks
384 * @chain: place to store the result
385 * @err: here we store the error value
387 * Function fills the array of triples <key, p, bh> and returns %NULL
388 * if everything went OK or the pointer to the last filled triple
389 * (incomplete one) otherwise. Upon the return chain[i].key contains
390 * the number of (i+1)-th block in the chain (as it is stored in memory,
391 * i.e. little-endian 32-bit), chain[i].p contains the address of that
392 * number (it points into struct inode for i==0 and into the bh->b_data
393 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
394 * block for i>0 and NULL for i==0. In other words, it holds the block
395 * numbers of the chain, addresses they were taken from (and where we can
396 * verify that chain did not change) and buffer_heads hosting these
399 * Function stops when it stumbles upon zero pointer (absent block)
400 * (pointer to last triple returned, *@err == 0)
401 * or when it gets an IO error reading an indirect block
402 * (ditto, *@err == -EIO)
403 * or when it notices that chain had been changed while it was reading
404 * (ditto, *@err == -EAGAIN)
405 * or when it reads all @depth-1 indirect blocks successfully and finds
406 * the whole chain, all way to the data (returns %NULL, *err == 0).
408 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
409 Indirect chain
[4], int *err
)
411 struct super_block
*sb
= inode
->i_sb
;
413 struct buffer_head
*bh
;
416 /* i_data is not going away, no lock needed */
417 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
421 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
424 /* Reader: pointers */
425 if (!verify_chain(chain
, p
))
427 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
445 * ext3_find_near - find a place for allocation with sufficient locality
447 * @ind: descriptor of indirect block.
449 * This function returns the preferred place for block allocation.
450 * It is used when heuristic for sequential allocation fails.
452 * + if there is a block to the left of our position - allocate near it.
453 * + if pointer will live in indirect block - allocate near that block.
454 * + if pointer will live in inode - allocate in the same
457 * In the latter case we colour the starting block by the callers PID to
458 * prevent it from clashing with concurrent allocations for a different inode
459 * in the same block group. The PID is used here so that functionally related
460 * files will be close-by on-disk.
462 * Caller must make sure that @ind is valid and will stay that way.
464 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
466 struct ext3_inode_info
*ei
= EXT3_I(inode
);
467 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
469 ext3_fsblk_t bg_start
;
470 ext3_grpblk_t colour
;
472 /* Try to find previous block */
473 for (p
= ind
->p
- 1; p
>= start
; p
--) {
475 return le32_to_cpu(*p
);
478 /* No such thing, so let's try location of indirect block */
480 return ind
->bh
->b_blocknr
;
483 * It is going to be referred to from the inode itself? OK, just put it
484 * into the same cylinder group then.
486 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
487 colour
= (current
->pid
% 16) *
488 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
489 return bg_start
+ colour
;
493 * ext3_find_goal - find a preferred place for allocation.
495 * @block: block we want
496 * @partial: pointer to the last triple within a chain
498 * Normally this function find the preferred place for block allocation,
502 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
505 struct ext3_block_alloc_info
*block_i
;
507 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
510 * try the heuristic for sequential allocation,
511 * failing that at least try to get decent locality.
513 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
514 && (block_i
->last_alloc_physical_block
!= 0)) {
515 return block_i
->last_alloc_physical_block
+ 1;
518 return ext3_find_near(inode
, partial
);
522 * ext3_blks_to_allocate - Look up the block map and count the number
523 * of direct blocks need to be allocated for the given branch.
525 * @branch: chain of indirect blocks
526 * @k: number of blocks need for indirect blocks
527 * @blks: number of data blocks to be mapped.
528 * @blocks_to_boundary: the offset in the indirect block
530 * return the total number of blocks to be allocate, including the
531 * direct and indirect blocks.
533 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
534 int blocks_to_boundary
)
536 unsigned long count
= 0;
539 * Simple case, [t,d]Indirect block(s) has not allocated yet
540 * then it's clear blocks on that path have not allocated
543 /* right now we don't handle cross boundary allocation */
544 if (blks
< blocks_to_boundary
+ 1)
547 count
+= blocks_to_boundary
+ 1;
552 while (count
< blks
&& count
<= blocks_to_boundary
&&
553 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
560 * ext3_alloc_blocks - multiple allocate blocks needed for a branch
561 * @handle: handle for this transaction
563 * @goal: preferred place for allocation
564 * @indirect_blks: the number of blocks need to allocate for indirect
566 * @blks: number of blocks need to allocated for direct blocks
567 * @new_blocks: on return it will store the new block numbers for
568 * the indirect blocks(if needed) and the first direct block,
569 * @err: here we store the error value
571 * return the number of direct blocks allocated
573 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
574 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
575 ext3_fsblk_t new_blocks
[4], int *err
)
578 unsigned long count
= 0;
580 ext3_fsblk_t current_block
= 0;
584 * Here we try to allocate the requested multiple blocks at once,
585 * on a best-effort basis.
586 * To build a branch, we should allocate blocks for
587 * the indirect blocks(if not allocated yet), and at least
588 * the first direct block of this branch. That's the
589 * minimum number of blocks need to allocate(required)
591 target
= blks
+ indirect_blks
;
595 /* allocating blocks for indirect blocks and direct blocks */
596 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
601 /* allocate blocks for indirect blocks */
602 while (index
< indirect_blks
&& count
) {
603 new_blocks
[index
++] = current_block
++;
611 /* save the new block number for the first direct block */
612 new_blocks
[index
] = current_block
;
614 /* total number of blocks allocated for direct blocks */
619 for (i
= 0; i
<index
; i
++)
620 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
625 * ext3_alloc_branch - allocate and set up a chain of blocks.
626 * @handle: handle for this transaction
628 * @indirect_blks: number of allocated indirect blocks
629 * @blks: number of allocated direct blocks
630 * @goal: preferred place for allocation
631 * @offsets: offsets (in the blocks) to store the pointers to next.
632 * @branch: place to store the chain in.
634 * This function allocates blocks, zeroes out all but the last one,
635 * links them into chain and (if we are synchronous) writes them to disk.
636 * In other words, it prepares a branch that can be spliced onto the
637 * inode. It stores the information about that chain in the branch[], in
638 * the same format as ext3_get_branch() would do. We are calling it after
639 * we had read the existing part of chain and partial points to the last
640 * triple of that (one with zero ->key). Upon the exit we have the same
641 * picture as after the successful ext3_get_block(), except that in one
642 * place chain is disconnected - *branch->p is still zero (we did not
643 * set the last link), but branch->key contains the number that should
644 * be placed into *branch->p to fill that gap.
646 * If allocation fails we free all blocks we've allocated (and forget
647 * their buffer_heads) and return the error value the from failed
648 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
649 * as described above and return 0.
651 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
652 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
653 int *offsets
, Indirect
*branch
)
655 int blocksize
= inode
->i_sb
->s_blocksize
;
658 struct buffer_head
*bh
;
660 ext3_fsblk_t new_blocks
[4];
661 ext3_fsblk_t current_block
;
663 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
664 *blks
, new_blocks
, &err
);
668 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
670 * metadata blocks and data blocks are allocated.
672 for (n
= 1; n
<= indirect_blks
; n
++) {
674 * Get buffer_head for parent block, zero it out
675 * and set the pointer to new one, then send
678 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
681 BUFFER_TRACE(bh
, "call get_create_access");
682 err
= ext3_journal_get_create_access(handle
, bh
);
689 memset(bh
->b_data
, 0, blocksize
);
690 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
691 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
692 *branch
[n
].p
= branch
[n
].key
;
693 if ( n
== indirect_blks
) {
694 current_block
= new_blocks
[n
];
696 * End of chain, update the last new metablock of
697 * the chain to point to the new allocated
698 * data blocks numbers
700 for (i
=1; i
< num
; i
++)
701 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
703 BUFFER_TRACE(bh
, "marking uptodate");
704 set_buffer_uptodate(bh
);
707 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
708 err
= ext3_journal_dirty_metadata(handle
, bh
);
715 /* Allocation failed, free what we already allocated */
716 for (i
= 1; i
<= n
; i
++) {
717 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
718 ext3_journal_forget(handle
, branch
[i
].bh
);
720 for (i
= 0; i
<indirect_blks
; i
++)
721 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
723 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
729 * ext3_splice_branch - splice the allocated branch onto inode.
730 * @handle: handle for this transaction
732 * @block: (logical) number of block we are adding
733 * @where: location of missing link
734 * @num: number of indirect blocks we are adding
735 * @blks: number of direct blocks we are adding
737 * This function fills the missing link and does all housekeeping needed in
738 * inode (->i_blocks, etc.). In case of success we end up with the full
739 * chain to new block and return 0.
741 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
742 long block
, Indirect
*where
, int num
, int blks
)
746 struct ext3_block_alloc_info
*block_i
;
747 ext3_fsblk_t current_block
;
748 struct ext3_inode_info
*ei
= EXT3_I(inode
);
751 block_i
= ei
->i_block_alloc_info
;
753 * If we're splicing into a [td]indirect block (as opposed to the
754 * inode) then we need to get write access to the [td]indirect block
758 BUFFER_TRACE(where
->bh
, "get_write_access");
759 err
= ext3_journal_get_write_access(handle
, where
->bh
);
765 *where
->p
= where
->key
;
768 * Update the host buffer_head or inode to point to more just allocated
769 * direct blocks blocks
771 if (num
== 0 && blks
> 1) {
772 current_block
= le32_to_cpu(where
->key
) + 1;
773 for (i
= 1; i
< blks
; i
++)
774 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
778 * update the most recently allocated logical & physical block
779 * in i_block_alloc_info, to assist find the proper goal block for next
783 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
784 block_i
->last_alloc_physical_block
=
785 le32_to_cpu(where
[num
].key
) + blks
- 1;
788 /* We are done with atomic stuff, now do the rest of housekeeping */
789 now
= CURRENT_TIME_SEC
;
790 if (!timespec_equal(&inode
->i_ctime
, &now
) || !where
->bh
) {
791 inode
->i_ctime
= now
;
792 ext3_mark_inode_dirty(handle
, inode
);
794 /* ext3_mark_inode_dirty already updated i_sync_tid */
795 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
797 /* had we spliced it onto indirect block? */
800 * If we spliced it onto an indirect block, we haven't
801 * altered the inode. Note however that if it is being spliced
802 * onto an indirect block at the very end of the file (the
803 * file is growing) then we *will* alter the inode to reflect
804 * the new i_size. But that is not done here - it is done in
805 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
807 jbd_debug(5, "splicing indirect only\n");
808 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
809 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
814 * OK, we spliced it into the inode itself on a direct block.
815 * Inode was dirtied above.
817 jbd_debug(5, "splicing direct\n");
822 for (i
= 1; i
<= num
; i
++) {
823 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
824 ext3_journal_forget(handle
, where
[i
].bh
);
825 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
827 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
833 * Allocation strategy is simple: if we have to allocate something, we will
834 * have to go the whole way to leaf. So let's do it before attaching anything
835 * to tree, set linkage between the newborn blocks, write them if sync is
836 * required, recheck the path, free and repeat if check fails, otherwise
837 * set the last missing link (that will protect us from any truncate-generated
838 * removals - all blocks on the path are immune now) and possibly force the
839 * write on the parent block.
840 * That has a nice additional property: no special recovery from the failed
841 * allocations is needed - we simply release blocks and do not touch anything
842 * reachable from inode.
844 * `handle' can be NULL if create == 0.
846 * The BKL may not be held on entry here. Be sure to take it early.
847 * return > 0, # of blocks mapped or allocated.
848 * return = 0, if plain lookup failed.
849 * return < 0, error case.
851 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
852 sector_t iblock
, unsigned long maxblocks
,
853 struct buffer_head
*bh_result
,
862 int blocks_to_boundary
= 0;
864 struct ext3_inode_info
*ei
= EXT3_I(inode
);
866 ext3_fsblk_t first_block
= 0;
869 trace_ext3_get_blocks_enter(inode
, iblock
, maxblocks
, create
);
870 J_ASSERT(handle
!= NULL
|| create
== 0);
871 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
876 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
878 /* Simplest case - block found, no allocation needed */
880 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
881 clear_buffer_new(bh_result
);
884 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
887 if (!verify_chain(chain
, chain
+ depth
- 1)) {
889 * Indirect block might be removed by
890 * truncate while we were reading it.
891 * Handling of that case: forget what we've
892 * got now. Flag the err as EAGAIN, so it
899 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
901 if (blk
== first_block
+ count
)
910 /* Next simple case - plain lookup or failed read of indirect block */
911 if (!create
|| err
== -EIO
)
915 * Block out ext3_truncate while we alter the tree
917 mutex_lock(&ei
->truncate_mutex
);
920 * If the indirect block is missing while we are reading
921 * the chain(ext3_get_branch() returns -EAGAIN err), or
922 * if the chain has been changed after we grab the semaphore,
923 * (either because another process truncated this branch, or
924 * another get_block allocated this branch) re-grab the chain to see if
925 * the request block has been allocated or not.
927 * Since we already block the truncate/other get_block
928 * at this point, we will have the current copy of the chain when we
929 * splice the branch into the tree.
931 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
932 while (partial
> chain
) {
936 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
939 mutex_unlock(&ei
->truncate_mutex
);
942 clear_buffer_new(bh_result
);
948 * Okay, we need to do block allocation. Lazily initialize the block
949 * allocation info here if necessary
951 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
952 ext3_init_block_alloc_info(inode
);
954 goal
= ext3_find_goal(inode
, iblock
, partial
);
956 /* the number of blocks need to allocate for [d,t]indirect blocks */
957 indirect_blks
= (chain
+ depth
) - partial
- 1;
960 * Next look up the indirect map to count the totoal number of
961 * direct blocks to allocate for this branch.
963 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
964 maxblocks
, blocks_to_boundary
);
965 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
966 offsets
+ (partial
- chain
), partial
);
969 * The ext3_splice_branch call will free and forget any buffers
970 * on the new chain if there is a failure, but that risks using
971 * up transaction credits, especially for bitmaps where the
972 * credits cannot be returned. Can we handle this somehow? We
973 * may need to return -EAGAIN upwards in the worst case. --sct
976 err
= ext3_splice_branch(handle
, inode
, iblock
,
977 partial
, indirect_blks
, count
);
978 mutex_unlock(&ei
->truncate_mutex
);
982 set_buffer_new(bh_result
);
984 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
985 if (count
> blocks_to_boundary
)
986 set_buffer_boundary(bh_result
);
988 /* Clean up and exit */
989 partial
= chain
+ depth
- 1; /* the whole chain */
991 while (partial
> chain
) {
992 BUFFER_TRACE(partial
->bh
, "call brelse");
996 BUFFER_TRACE(bh_result
, "returned");
998 trace_ext3_get_blocks_exit(inode
, iblock
,
999 depth
? le32_to_cpu(chain
[depth
-1].key
) : 0,
1004 /* Maximum number of blocks we map for direct IO at once. */
1005 #define DIO_MAX_BLOCKS 4096
1007 * Number of credits we need for writing DIO_MAX_BLOCKS:
1008 * We need sb + group descriptor + bitmap + inode -> 4
1009 * For B blocks with A block pointers per block we need:
1010 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1011 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1013 #define DIO_CREDITS 25
1015 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
1016 struct buffer_head
*bh_result
, int create
)
1018 handle_t
*handle
= ext3_journal_current_handle();
1019 int ret
= 0, started
= 0;
1020 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1022 if (create
&& !handle
) { /* Direct IO write... */
1023 if (max_blocks
> DIO_MAX_BLOCKS
)
1024 max_blocks
= DIO_MAX_BLOCKS
;
1025 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
1026 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
));
1027 if (IS_ERR(handle
)) {
1028 ret
= PTR_ERR(handle
);
1034 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
1035 max_blocks
, bh_result
, create
);
1037 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1041 ext3_journal_stop(handle
);
1046 int ext3_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
1049 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
1054 * `handle' can be NULL if create is zero
1056 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
1057 long block
, int create
, int *errp
)
1059 struct buffer_head dummy
;
1062 J_ASSERT(handle
!= NULL
|| create
== 0);
1065 dummy
.b_blocknr
= -1000;
1066 buffer_trace_init(&dummy
.b_history
);
1067 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1070 * ext3_get_blocks_handle() returns number of blocks
1071 * mapped. 0 in case of a HOLE.
1079 if (!err
&& buffer_mapped(&dummy
)) {
1080 struct buffer_head
*bh
;
1081 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1086 if (buffer_new(&dummy
)) {
1087 J_ASSERT(create
!= 0);
1088 J_ASSERT(handle
!= NULL
);
1091 * Now that we do not always journal data, we should
1092 * keep in mind whether this should always journal the
1093 * new buffer as metadata. For now, regular file
1094 * writes use ext3_get_block instead, so it's not a
1098 BUFFER_TRACE(bh
, "call get_create_access");
1099 fatal
= ext3_journal_get_create_access(handle
, bh
);
1100 if (!fatal
&& !buffer_uptodate(bh
)) {
1101 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1102 set_buffer_uptodate(bh
);
1105 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1106 err
= ext3_journal_dirty_metadata(handle
, bh
);
1110 BUFFER_TRACE(bh
, "not a new buffer");
1123 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1124 int block
, int create
, int *err
)
1126 struct buffer_head
* bh
;
1128 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1131 if (bh_uptodate_or_lock(bh
))
1134 bh
->b_end_io
= end_buffer_read_sync
;
1135 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
1137 if (buffer_uptodate(bh
))
1144 static int walk_page_buffers( handle_t
*handle
,
1145 struct buffer_head
*head
,
1149 int (*fn
)( handle_t
*handle
,
1150 struct buffer_head
*bh
))
1152 struct buffer_head
*bh
;
1153 unsigned block_start
, block_end
;
1154 unsigned blocksize
= head
->b_size
;
1156 struct buffer_head
*next
;
1158 for ( bh
= head
, block_start
= 0;
1159 ret
== 0 && (bh
!= head
|| !block_start
);
1160 block_start
= block_end
, bh
= next
)
1162 next
= bh
->b_this_page
;
1163 block_end
= block_start
+ blocksize
;
1164 if (block_end
<= from
|| block_start
>= to
) {
1165 if (partial
&& !buffer_uptodate(bh
))
1169 err
= (*fn
)(handle
, bh
);
1177 * To preserve ordering, it is essential that the hole instantiation and
1178 * the data write be encapsulated in a single transaction. We cannot
1179 * close off a transaction and start a new one between the ext3_get_block()
1180 * and the commit_write(). So doing the journal_start at the start of
1181 * prepare_write() is the right place.
1183 * Also, this function can nest inside ext3_writepage() ->
1184 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1185 * has generated enough buffer credits to do the whole page. So we won't
1186 * block on the journal in that case, which is good, because the caller may
1189 * By accident, ext3 can be reentered when a transaction is open via
1190 * quota file writes. If we were to commit the transaction while thus
1191 * reentered, there can be a deadlock - we would be holding a quota
1192 * lock, and the commit would never complete if another thread had a
1193 * transaction open and was blocking on the quota lock - a ranking
1196 * So what we do is to rely on the fact that journal_stop/journal_start
1197 * will _not_ run commit under these circumstances because handle->h_ref
1198 * is elevated. We'll still have enough credits for the tiny quotafile
1201 static int do_journal_get_write_access(handle_t
*handle
,
1202 struct buffer_head
*bh
)
1204 int dirty
= buffer_dirty(bh
);
1207 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1210 * __block_prepare_write() could have dirtied some buffers. Clean
1211 * the dirty bit as jbd2_journal_get_write_access() could complain
1212 * otherwise about fs integrity issues. Setting of the dirty bit
1213 * by __block_prepare_write() isn't a real problem here as we clear
1214 * the bit before releasing a page lock and thus writeback cannot
1215 * ever write the buffer.
1218 clear_buffer_dirty(bh
);
1219 ret
= ext3_journal_get_write_access(handle
, bh
);
1221 ret
= ext3_journal_dirty_metadata(handle
, bh
);
1226 * Truncate blocks that were not used by write. We have to truncate the
1227 * pagecache as well so that corresponding buffers get properly unmapped.
1229 static void ext3_truncate_failed_write(struct inode
*inode
)
1231 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1232 ext3_truncate(inode
);
1236 * Truncate blocks that were not used by direct IO write. We have to zero out
1237 * the last file block as well because direct IO might have written to it.
1239 static void ext3_truncate_failed_direct_write(struct inode
*inode
)
1241 ext3_block_truncate_page(inode
, inode
->i_size
);
1242 ext3_truncate(inode
);
1245 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1246 loff_t pos
, unsigned len
, unsigned flags
,
1247 struct page
**pagep
, void **fsdata
)
1249 struct inode
*inode
= mapping
->host
;
1256 /* Reserve one block more for addition to orphan list in case
1257 * we allocate blocks but write fails for some reason */
1258 int needed_blocks
= ext3_writepage_trans_blocks(inode
) + 1;
1260 trace_ext3_write_begin(inode
, pos
, len
, flags
);
1262 index
= pos
>> PAGE_CACHE_SHIFT
;
1263 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1267 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1272 handle
= ext3_journal_start(inode
, needed_blocks
);
1273 if (IS_ERR(handle
)) {
1275 page_cache_release(page
);
1276 ret
= PTR_ERR(handle
);
1279 ret
= __block_write_begin(page
, pos
, len
, ext3_get_block
);
1281 goto write_begin_failed
;
1283 if (ext3_should_journal_data(inode
)) {
1284 ret
= walk_page_buffers(handle
, page_buffers(page
),
1285 from
, to
, NULL
, do_journal_get_write_access
);
1290 * block_write_begin may have instantiated a few blocks
1291 * outside i_size. Trim these off again. Don't need
1292 * i_size_read because we hold i_mutex.
1294 * Add inode to orphan list in case we crash before truncate
1295 * finishes. Do this only if ext3_can_truncate() agrees so
1296 * that orphan processing code is happy.
1298 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1299 ext3_orphan_add(handle
, inode
);
1300 ext3_journal_stop(handle
);
1302 page_cache_release(page
);
1303 if (pos
+ len
> inode
->i_size
)
1304 ext3_truncate_failed_write(inode
);
1306 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1313 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1315 int err
= journal_dirty_data(handle
, bh
);
1317 ext3_journal_abort_handle(__func__
, __func__
,
1322 /* For ordered writepage and write_end functions */
1323 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1326 * Write could have mapped the buffer but it didn't copy the data in
1327 * yet. So avoid filing such buffer into a transaction.
1329 if (buffer_mapped(bh
) && buffer_uptodate(bh
))
1330 return ext3_journal_dirty_data(handle
, bh
);
1334 /* For write_end() in data=journal mode */
1335 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1337 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1339 set_buffer_uptodate(bh
);
1340 return ext3_journal_dirty_metadata(handle
, bh
);
1344 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1345 * for the whole page but later we failed to copy the data in. Update inode
1346 * size according to what we managed to copy. The rest is going to be
1347 * truncated in write_end function.
1349 static void update_file_sizes(struct inode
*inode
, loff_t pos
, unsigned copied
)
1351 /* What matters to us is i_disksize. We don't write i_size anywhere */
1352 if (pos
+ copied
> inode
->i_size
)
1353 i_size_write(inode
, pos
+ copied
);
1354 if (pos
+ copied
> EXT3_I(inode
)->i_disksize
) {
1355 EXT3_I(inode
)->i_disksize
= pos
+ copied
;
1356 mark_inode_dirty(inode
);
1361 * We need to pick up the new inode size which generic_commit_write gave us
1362 * `file' can be NULL - eg, when called from page_symlink().
1364 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1365 * buffers are managed internally.
1367 static int ext3_ordered_write_end(struct file
*file
,
1368 struct address_space
*mapping
,
1369 loff_t pos
, unsigned len
, unsigned copied
,
1370 struct page
*page
, void *fsdata
)
1372 handle_t
*handle
= ext3_journal_current_handle();
1373 struct inode
*inode
= file
->f_mapping
->host
;
1377 trace_ext3_ordered_write_end(inode
, pos
, len
, copied
);
1378 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1380 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1382 ret
= walk_page_buffers(handle
, page_buffers(page
),
1383 from
, to
, NULL
, journal_dirty_data_fn
);
1386 update_file_sizes(inode
, pos
, copied
);
1388 * There may be allocated blocks outside of i_size because
1389 * we failed to copy some data. Prepare for truncate.
1391 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1392 ext3_orphan_add(handle
, inode
);
1393 ret2
= ext3_journal_stop(handle
);
1397 page_cache_release(page
);
1399 if (pos
+ len
> inode
->i_size
)
1400 ext3_truncate_failed_write(inode
);
1401 return ret
? ret
: copied
;
1404 static int ext3_writeback_write_end(struct file
*file
,
1405 struct address_space
*mapping
,
1406 loff_t pos
, unsigned len
, unsigned copied
,
1407 struct page
*page
, void *fsdata
)
1409 handle_t
*handle
= ext3_journal_current_handle();
1410 struct inode
*inode
= file
->f_mapping
->host
;
1413 trace_ext3_writeback_write_end(inode
, pos
, len
, copied
);
1414 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1415 update_file_sizes(inode
, pos
, copied
);
1417 * There may be allocated blocks outside of i_size because
1418 * we failed to copy some data. Prepare for truncate.
1420 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1421 ext3_orphan_add(handle
, inode
);
1422 ret
= ext3_journal_stop(handle
);
1424 page_cache_release(page
);
1426 if (pos
+ len
> inode
->i_size
)
1427 ext3_truncate_failed_write(inode
);
1428 return ret
? ret
: copied
;
1431 static int ext3_journalled_write_end(struct file
*file
,
1432 struct address_space
*mapping
,
1433 loff_t pos
, unsigned len
, unsigned copied
,
1434 struct page
*page
, void *fsdata
)
1436 handle_t
*handle
= ext3_journal_current_handle();
1437 struct inode
*inode
= mapping
->host
;
1438 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1443 trace_ext3_journalled_write_end(inode
, pos
, len
, copied
);
1444 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1448 if (!PageUptodate(page
))
1450 page_zero_new_buffers(page
, from
+ copied
, to
);
1454 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1455 to
, &partial
, write_end_fn
);
1457 SetPageUptodate(page
);
1459 if (pos
+ copied
> inode
->i_size
)
1460 i_size_write(inode
, pos
+ copied
);
1462 * There may be allocated blocks outside of i_size because
1463 * we failed to copy some data. Prepare for truncate.
1465 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1466 ext3_orphan_add(handle
, inode
);
1467 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1468 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
1469 if (inode
->i_size
> ei
->i_disksize
) {
1470 ei
->i_disksize
= inode
->i_size
;
1471 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1476 ret2
= ext3_journal_stop(handle
);
1480 page_cache_release(page
);
1482 if (pos
+ len
> inode
->i_size
)
1483 ext3_truncate_failed_write(inode
);
1484 return ret
? ret
: copied
;
1488 * bmap() is special. It gets used by applications such as lilo and by
1489 * the swapper to find the on-disk block of a specific piece of data.
1491 * Naturally, this is dangerous if the block concerned is still in the
1492 * journal. If somebody makes a swapfile on an ext3 data-journaling
1493 * filesystem and enables swap, then they may get a nasty shock when the
1494 * data getting swapped to that swapfile suddenly gets overwritten by
1495 * the original zero's written out previously to the journal and
1496 * awaiting writeback in the kernel's buffer cache.
1498 * So, if we see any bmap calls here on a modified, data-journaled file,
1499 * take extra steps to flush any blocks which might be in the cache.
1501 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1503 struct inode
*inode
= mapping
->host
;
1507 if (ext3_test_inode_state(inode
, EXT3_STATE_JDATA
)) {
1509 * This is a REALLY heavyweight approach, but the use of
1510 * bmap on dirty files is expected to be extremely rare:
1511 * only if we run lilo or swapon on a freshly made file
1512 * do we expect this to happen.
1514 * (bmap requires CAP_SYS_RAWIO so this does not
1515 * represent an unprivileged user DOS attack --- we'd be
1516 * in trouble if mortal users could trigger this path at
1519 * NB. EXT3_STATE_JDATA is not set on files other than
1520 * regular files. If somebody wants to bmap a directory
1521 * or symlink and gets confused because the buffer
1522 * hasn't yet been flushed to disk, they deserve
1523 * everything they get.
1526 ext3_clear_inode_state(inode
, EXT3_STATE_JDATA
);
1527 journal
= EXT3_JOURNAL(inode
);
1528 journal_lock_updates(journal
);
1529 err
= journal_flush(journal
);
1530 journal_unlock_updates(journal
);
1536 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1539 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1545 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1551 static int buffer_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
1553 return !buffer_mapped(bh
);
1557 * Note that we always start a transaction even if we're not journalling
1558 * data. This is to preserve ordering: any hole instantiation within
1559 * __block_write_full_page -> ext3_get_block() should be journalled
1560 * along with the data so we don't crash and then get metadata which
1561 * refers to old data.
1563 * In all journalling modes block_write_full_page() will start the I/O.
1567 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1572 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1574 * Same applies to ext3_get_block(). We will deadlock on various things like
1575 * lock_journal and i_truncate_mutex.
1577 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1580 * 16May01: If we're reentered then journal_current_handle() will be
1581 * non-zero. We simply *return*.
1583 * 1 July 2001: @@@ FIXME:
1584 * In journalled data mode, a data buffer may be metadata against the
1585 * current transaction. But the same file is part of a shared mapping
1586 * and someone does a writepage() on it.
1588 * We will move the buffer onto the async_data list, but *after* it has
1589 * been dirtied. So there's a small window where we have dirty data on
1592 * Note that this only applies to the last partial page in the file. The
1593 * bit which block_write_full_page() uses prepare/commit for. (That's
1594 * broken code anyway: it's wrong for msync()).
1596 * It's a rare case: affects the final partial page, for journalled data
1597 * where the file is subject to bith write() and writepage() in the same
1598 * transction. To fix it we'll need a custom block_write_full_page().
1599 * We'll probably need that anyway for journalling writepage() output.
1601 * We don't honour synchronous mounts for writepage(). That would be
1602 * disastrous. Any write() or metadata operation will sync the fs for
1605 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1606 * we don't need to open a transaction here.
1608 static int ext3_ordered_writepage(struct page
*page
,
1609 struct writeback_control
*wbc
)
1611 struct inode
*inode
= page
->mapping
->host
;
1612 struct buffer_head
*page_bufs
;
1613 handle_t
*handle
= NULL
;
1617 J_ASSERT(PageLocked(page
));
1619 * We don't want to warn for emergency remount. The condition is
1620 * ordered to avoid dereferencing inode->i_sb in non-error case to
1623 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1624 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1627 * We give up here if we're reentered, because it might be for a
1628 * different filesystem.
1630 if (ext3_journal_current_handle())
1633 trace_ext3_ordered_writepage(page
);
1634 if (!page_has_buffers(page
)) {
1635 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1636 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1637 page_bufs
= page_buffers(page
);
1639 page_bufs
= page_buffers(page
);
1640 if (!walk_page_buffers(NULL
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1641 NULL
, buffer_unmapped
)) {
1642 /* Provide NULL get_block() to catch bugs if buffers
1643 * weren't really mapped */
1644 return block_write_full_page(page
, NULL
, wbc
);
1647 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1649 if (IS_ERR(handle
)) {
1650 ret
= PTR_ERR(handle
);
1654 walk_page_buffers(handle
, page_bufs
, 0,
1655 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1657 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1660 * The page can become unlocked at any point now, and
1661 * truncate can then come in and change things. So we
1662 * can't touch *page from now on. But *page_bufs is
1663 * safe due to elevated refcount.
1667 * And attach them to the current transaction. But only if
1668 * block_write_full_page() succeeded. Otherwise they are unmapped,
1669 * and generally junk.
1672 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1673 NULL
, journal_dirty_data_fn
);
1677 walk_page_buffers(handle
, page_bufs
, 0,
1678 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1679 err
= ext3_journal_stop(handle
);
1685 redirty_page_for_writepage(wbc
, page
);
1690 static int ext3_writeback_writepage(struct page
*page
,
1691 struct writeback_control
*wbc
)
1693 struct inode
*inode
= page
->mapping
->host
;
1694 handle_t
*handle
= NULL
;
1698 J_ASSERT(PageLocked(page
));
1700 * We don't want to warn for emergency remount. The condition is
1701 * ordered to avoid dereferencing inode->i_sb in non-error case to
1704 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1705 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1707 if (ext3_journal_current_handle())
1710 trace_ext3_writeback_writepage(page
);
1711 if (page_has_buffers(page
)) {
1712 if (!walk_page_buffers(NULL
, page_buffers(page
), 0,
1713 PAGE_CACHE_SIZE
, NULL
, buffer_unmapped
)) {
1714 /* Provide NULL get_block() to catch bugs if buffers
1715 * weren't really mapped */
1716 return block_write_full_page(page
, NULL
, wbc
);
1720 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1721 if (IS_ERR(handle
)) {
1722 ret
= PTR_ERR(handle
);
1726 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1728 err
= ext3_journal_stop(handle
);
1734 redirty_page_for_writepage(wbc
, page
);
1739 static int ext3_journalled_writepage(struct page
*page
,
1740 struct writeback_control
*wbc
)
1742 struct inode
*inode
= page
->mapping
->host
;
1743 handle_t
*handle
= NULL
;
1747 J_ASSERT(PageLocked(page
));
1749 * We don't want to warn for emergency remount. The condition is
1750 * ordered to avoid dereferencing inode->i_sb in non-error case to
1753 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1754 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1756 if (ext3_journal_current_handle())
1759 trace_ext3_journalled_writepage(page
);
1760 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1761 if (IS_ERR(handle
)) {
1762 ret
= PTR_ERR(handle
);
1766 if (!page_has_buffers(page
) || PageChecked(page
)) {
1768 * It's mmapped pagecache. Add buffers and journal it. There
1769 * doesn't seem much point in redirtying the page here.
1771 ClearPageChecked(page
);
1772 ret
= __block_write_begin(page
, 0, PAGE_CACHE_SIZE
,
1775 ext3_journal_stop(handle
);
1778 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1779 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1781 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1782 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1785 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1786 atomic_set(&EXT3_I(inode
)->i_datasync_tid
,
1787 handle
->h_transaction
->t_tid
);
1791 * It may be a page full of checkpoint-mode buffers. We don't
1792 * really know unless we go poke around in the buffer_heads.
1793 * But block_write_full_page will do the right thing.
1795 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1797 err
= ext3_journal_stop(handle
);
1804 redirty_page_for_writepage(wbc
, page
);
1810 static int ext3_readpage(struct file
*file
, struct page
*page
)
1812 trace_ext3_readpage(page
);
1813 return mpage_readpage(page
, ext3_get_block
);
1817 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1818 struct list_head
*pages
, unsigned nr_pages
)
1820 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1823 static void ext3_invalidatepage(struct page
*page
, unsigned long offset
)
1825 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1827 trace_ext3_invalidatepage(page
, offset
);
1830 * If it's a full truncate we just forget about the pending dirtying
1833 ClearPageChecked(page
);
1835 journal_invalidatepage(journal
, page
, offset
);
1838 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1840 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1842 trace_ext3_releasepage(page
);
1843 WARN_ON(PageChecked(page
));
1844 if (!page_has_buffers(page
))
1846 return journal_try_to_free_buffers(journal
, page
, wait
);
1850 * If the O_DIRECT write will extend the file then add this inode to the
1851 * orphan list. So recovery will truncate it back to the original size
1852 * if the machine crashes during the write.
1854 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1855 * crashes then stale disk data _may_ be exposed inside the file. But current
1856 * VFS code falls back into buffered path in that case so we are safe.
1858 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1859 const struct iovec
*iov
, loff_t offset
,
1860 unsigned long nr_segs
)
1862 struct file
*file
= iocb
->ki_filp
;
1863 struct inode
*inode
= file
->f_mapping
->host
;
1864 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1868 size_t count
= iov_length(iov
, nr_segs
);
1871 trace_ext3_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
1874 loff_t final_size
= offset
+ count
;
1876 if (final_size
> inode
->i_size
) {
1877 /* Credits for sb + inode write */
1878 handle
= ext3_journal_start(inode
, 2);
1879 if (IS_ERR(handle
)) {
1880 ret
= PTR_ERR(handle
);
1883 ret
= ext3_orphan_add(handle
, inode
);
1885 ext3_journal_stop(handle
);
1889 ei
->i_disksize
= inode
->i_size
;
1890 ext3_journal_stop(handle
);
1895 ret
= blockdev_direct_IO(rw
, iocb
, inode
, iov
, offset
, nr_segs
,
1898 * In case of error extending write may have instantiated a few
1899 * blocks outside i_size. Trim these off again.
1901 if (unlikely((rw
& WRITE
) && ret
< 0)) {
1902 loff_t isize
= i_size_read(inode
);
1903 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
1906 ext3_truncate_failed_direct_write(inode
);
1908 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1914 /* Credits for sb + inode write */
1915 handle
= ext3_journal_start(inode
, 2);
1916 if (IS_ERR(handle
)) {
1917 /* This is really bad luck. We've written the data
1918 * but cannot extend i_size. Truncate allocated blocks
1919 * and pretend the write failed... */
1920 ext3_truncate_failed_direct_write(inode
);
1921 ret
= PTR_ERR(handle
);
1925 ext3_orphan_del(handle
, inode
);
1927 loff_t end
= offset
+ ret
;
1928 if (end
> inode
->i_size
) {
1929 ei
->i_disksize
= end
;
1930 i_size_write(inode
, end
);
1932 * We're going to return a positive `ret'
1933 * here due to non-zero-length I/O, so there's
1934 * no way of reporting error returns from
1935 * ext3_mark_inode_dirty() to userspace. So
1938 ext3_mark_inode_dirty(handle
, inode
);
1941 err
= ext3_journal_stop(handle
);
1946 trace_ext3_direct_IO_exit(inode
, offset
,
1947 iov_length(iov
, nr_segs
), rw
, ret
);
1952 * Pages can be marked dirty completely asynchronously from ext3's journalling
1953 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1954 * much here because ->set_page_dirty is called under VFS locks. The page is
1955 * not necessarily locked.
1957 * We cannot just dirty the page and leave attached buffers clean, because the
1958 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1959 * or jbddirty because all the journalling code will explode.
1961 * So what we do is to mark the page "pending dirty" and next time writepage
1962 * is called, propagate that into the buffers appropriately.
1964 static int ext3_journalled_set_page_dirty(struct page
*page
)
1966 SetPageChecked(page
);
1967 return __set_page_dirty_nobuffers(page
);
1970 static const struct address_space_operations ext3_ordered_aops
= {
1971 .readpage
= ext3_readpage
,
1972 .readpages
= ext3_readpages
,
1973 .writepage
= ext3_ordered_writepage
,
1974 .write_begin
= ext3_write_begin
,
1975 .write_end
= ext3_ordered_write_end
,
1977 .invalidatepage
= ext3_invalidatepage
,
1978 .releasepage
= ext3_releasepage
,
1979 .direct_IO
= ext3_direct_IO
,
1980 .migratepage
= buffer_migrate_page
,
1981 .is_partially_uptodate
= block_is_partially_uptodate
,
1982 .error_remove_page
= generic_error_remove_page
,
1985 static const struct address_space_operations ext3_writeback_aops
= {
1986 .readpage
= ext3_readpage
,
1987 .readpages
= ext3_readpages
,
1988 .writepage
= ext3_writeback_writepage
,
1989 .write_begin
= ext3_write_begin
,
1990 .write_end
= ext3_writeback_write_end
,
1992 .invalidatepage
= ext3_invalidatepage
,
1993 .releasepage
= ext3_releasepage
,
1994 .direct_IO
= ext3_direct_IO
,
1995 .migratepage
= buffer_migrate_page
,
1996 .is_partially_uptodate
= block_is_partially_uptodate
,
1997 .error_remove_page
= generic_error_remove_page
,
2000 static const struct address_space_operations ext3_journalled_aops
= {
2001 .readpage
= ext3_readpage
,
2002 .readpages
= ext3_readpages
,
2003 .writepage
= ext3_journalled_writepage
,
2004 .write_begin
= ext3_write_begin
,
2005 .write_end
= ext3_journalled_write_end
,
2006 .set_page_dirty
= ext3_journalled_set_page_dirty
,
2008 .invalidatepage
= ext3_invalidatepage
,
2009 .releasepage
= ext3_releasepage
,
2010 .is_partially_uptodate
= block_is_partially_uptodate
,
2011 .error_remove_page
= generic_error_remove_page
,
2014 void ext3_set_aops(struct inode
*inode
)
2016 if (ext3_should_order_data(inode
))
2017 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
2018 else if (ext3_should_writeback_data(inode
))
2019 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
2021 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
2025 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2026 * up to the end of the block which corresponds to `from'.
2027 * This required during truncate. We need to physically zero the tail end
2028 * of that block so it doesn't yield old data if the file is later grown.
2030 static int ext3_block_truncate_page(struct inode
*inode
, loff_t from
)
2032 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
2033 unsigned offset
= from
& (PAGE_CACHE_SIZE
- 1);
2034 unsigned blocksize
, iblock
, length
, pos
;
2036 handle_t
*handle
= NULL
;
2037 struct buffer_head
*bh
;
2040 /* Truncated on block boundary - nothing to do */
2041 blocksize
= inode
->i_sb
->s_blocksize
;
2042 if ((from
& (blocksize
- 1)) == 0)
2045 page
= grab_cache_page(inode
->i_mapping
, index
);
2048 length
= blocksize
- (offset
& (blocksize
- 1));
2049 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2051 if (!page_has_buffers(page
))
2052 create_empty_buffers(page
, blocksize
, 0);
2054 /* Find the buffer that contains "offset" */
2055 bh
= page_buffers(page
);
2057 while (offset
>= pos
) {
2058 bh
= bh
->b_this_page
;
2064 if (buffer_freed(bh
)) {
2065 BUFFER_TRACE(bh
, "freed: skip");
2069 if (!buffer_mapped(bh
)) {
2070 BUFFER_TRACE(bh
, "unmapped");
2071 ext3_get_block(inode
, iblock
, bh
, 0);
2072 /* unmapped? It's a hole - nothing to do */
2073 if (!buffer_mapped(bh
)) {
2074 BUFFER_TRACE(bh
, "still unmapped");
2079 /* Ok, it's mapped. Make sure it's up-to-date */
2080 if (PageUptodate(page
))
2081 set_buffer_uptodate(bh
);
2083 if (!bh_uptodate_or_lock(bh
)) {
2084 err
= bh_submit_read(bh
);
2085 /* Uhhuh. Read error. Complain and punt. */
2090 /* data=writeback mode doesn't need transaction to zero-out data */
2091 if (!ext3_should_writeback_data(inode
)) {
2092 /* We journal at most one block */
2093 handle
= ext3_journal_start(inode
, 1);
2094 if (IS_ERR(handle
)) {
2095 clear_highpage(page
);
2096 flush_dcache_page(page
);
2097 err
= PTR_ERR(handle
);
2102 if (ext3_should_journal_data(inode
)) {
2103 BUFFER_TRACE(bh
, "get write access");
2104 err
= ext3_journal_get_write_access(handle
, bh
);
2109 zero_user(page
, offset
, length
);
2110 BUFFER_TRACE(bh
, "zeroed end of block");
2113 if (ext3_should_journal_data(inode
)) {
2114 err
= ext3_journal_dirty_metadata(handle
, bh
);
2116 if (ext3_should_order_data(inode
))
2117 err
= ext3_journal_dirty_data(handle
, bh
);
2118 mark_buffer_dirty(bh
);
2122 ext3_journal_stop(handle
);
2126 page_cache_release(page
);
2131 * Probably it should be a library function... search for first non-zero word
2132 * or memcmp with zero_page, whatever is better for particular architecture.
2135 static inline int all_zeroes(__le32
*p
, __le32
*q
)
2144 * ext3_find_shared - find the indirect blocks for partial truncation.
2145 * @inode: inode in question
2146 * @depth: depth of the affected branch
2147 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2148 * @chain: place to store the pointers to partial indirect blocks
2149 * @top: place to the (detached) top of branch
2151 * This is a helper function used by ext3_truncate().
2153 * When we do truncate() we may have to clean the ends of several
2154 * indirect blocks but leave the blocks themselves alive. Block is
2155 * partially truncated if some data below the new i_size is referred
2156 * from it (and it is on the path to the first completely truncated
2157 * data block, indeed). We have to free the top of that path along
2158 * with everything to the right of the path. Since no allocation
2159 * past the truncation point is possible until ext3_truncate()
2160 * finishes, we may safely do the latter, but top of branch may
2161 * require special attention - pageout below the truncation point
2162 * might try to populate it.
2164 * We atomically detach the top of branch from the tree, store the
2165 * block number of its root in *@top, pointers to buffer_heads of
2166 * partially truncated blocks - in @chain[].bh and pointers to
2167 * their last elements that should not be removed - in
2168 * @chain[].p. Return value is the pointer to last filled element
2171 * The work left to caller to do the actual freeing of subtrees:
2172 * a) free the subtree starting from *@top
2173 * b) free the subtrees whose roots are stored in
2174 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2175 * c) free the subtrees growing from the inode past the @chain[0].
2176 * (no partially truncated stuff there). */
2178 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
2179 int offsets
[4], Indirect chain
[4], __le32
*top
)
2181 Indirect
*partial
, *p
;
2185 /* Make k index the deepest non-null offset + 1 */
2186 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2188 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
2189 /* Writer: pointers */
2191 partial
= chain
+ k
-1;
2193 * If the branch acquired continuation since we've looked at it -
2194 * fine, it should all survive and (new) top doesn't belong to us.
2196 if (!partial
->key
&& *partial
->p
)
2199 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2202 * OK, we've found the last block that must survive. The rest of our
2203 * branch should be detached before unlocking. However, if that rest
2204 * of branch is all ours and does not grow immediately from the inode
2205 * it's easier to cheat and just decrement partial->p.
2207 if (p
== chain
+ k
- 1 && p
> chain
) {
2211 /* Nope, don't do this in ext3. Must leave the tree intact */
2218 while(partial
> p
) {
2219 brelse(partial
->bh
);
2227 * Zero a number of block pointers in either an inode or an indirect block.
2228 * If we restart the transaction we must again get write access to the
2229 * indirect block for further modification.
2231 * We release `count' blocks on disk, but (last - first) may be greater
2232 * than `count' because there can be holes in there.
2234 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2235 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2236 unsigned long count
, __le32
*first
, __le32
*last
)
2239 if (try_to_extend_transaction(handle
, inode
)) {
2241 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2242 if (ext3_journal_dirty_metadata(handle
, bh
))
2245 ext3_mark_inode_dirty(handle
, inode
);
2246 truncate_restart_transaction(handle
, inode
);
2248 BUFFER_TRACE(bh
, "retaking write access");
2249 if (ext3_journal_get_write_access(handle
, bh
))
2255 * Any buffers which are on the journal will be in memory. We find
2256 * them on the hash table so journal_revoke() will run journal_forget()
2257 * on them. We've already detached each block from the file, so
2258 * bforget() in journal_forget() should be safe.
2260 * AKPM: turn on bforget in journal_forget()!!!
2262 for (p
= first
; p
< last
; p
++) {
2263 u32 nr
= le32_to_cpu(*p
);
2265 struct buffer_head
*bh
;
2268 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2269 ext3_forget(handle
, 0, inode
, bh
, nr
);
2273 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2277 * ext3_free_data - free a list of data blocks
2278 * @handle: handle for this transaction
2279 * @inode: inode we are dealing with
2280 * @this_bh: indirect buffer_head which contains *@first and *@last
2281 * @first: array of block numbers
2282 * @last: points immediately past the end of array
2284 * We are freeing all blocks referred from that array (numbers are stored as
2285 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2287 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2288 * blocks are contiguous then releasing them at one time will only affect one
2289 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2290 * actually use a lot of journal space.
2292 * @this_bh will be %NULL if @first and @last point into the inode's direct
2295 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2296 struct buffer_head
*this_bh
,
2297 __le32
*first
, __le32
*last
)
2299 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2300 unsigned long count
= 0; /* Number of blocks in the run */
2301 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2304 ext3_fsblk_t nr
; /* Current block # */
2305 __le32
*p
; /* Pointer into inode/ind
2306 for current block */
2309 if (this_bh
) { /* For indirect block */
2310 BUFFER_TRACE(this_bh
, "get_write_access");
2311 err
= ext3_journal_get_write_access(handle
, this_bh
);
2312 /* Important: if we can't update the indirect pointers
2313 * to the blocks, we can't free them. */
2318 for (p
= first
; p
< last
; p
++) {
2319 nr
= le32_to_cpu(*p
);
2321 /* accumulate blocks to free if they're contiguous */
2324 block_to_free_p
= p
;
2326 } else if (nr
== block_to_free
+ count
) {
2329 ext3_clear_blocks(handle
, inode
, this_bh
,
2331 count
, block_to_free_p
, p
);
2333 block_to_free_p
= p
;
2340 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2341 count
, block_to_free_p
, p
);
2344 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2347 * The buffer head should have an attached journal head at this
2348 * point. However, if the data is corrupted and an indirect
2349 * block pointed to itself, it would have been detached when
2350 * the block was cleared. Check for this instead of OOPSing.
2353 ext3_journal_dirty_metadata(handle
, this_bh
);
2355 ext3_error(inode
->i_sb
, "ext3_free_data",
2356 "circular indirect block detected, "
2357 "inode=%lu, block=%llu",
2359 (unsigned long long)this_bh
->b_blocknr
);
2364 * ext3_free_branches - free an array of branches
2365 * @handle: JBD handle for this transaction
2366 * @inode: inode we are dealing with
2367 * @parent_bh: the buffer_head which contains *@first and *@last
2368 * @first: array of block numbers
2369 * @last: pointer immediately past the end of array
2370 * @depth: depth of the branches to free
2372 * We are freeing all blocks referred from these branches (numbers are
2373 * stored as little-endian 32-bit) and updating @inode->i_blocks
2376 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2377 struct buffer_head
*parent_bh
,
2378 __le32
*first
, __le32
*last
, int depth
)
2383 if (is_handle_aborted(handle
))
2387 struct buffer_head
*bh
;
2388 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2390 while (--p
>= first
) {
2391 nr
= le32_to_cpu(*p
);
2393 continue; /* A hole */
2395 /* Go read the buffer for the next level down */
2396 bh
= sb_bread(inode
->i_sb
, nr
);
2399 * A read failure? Report error and clear slot
2403 ext3_error(inode
->i_sb
, "ext3_free_branches",
2404 "Read failure, inode=%lu, block="E3FSBLK
,
2409 /* This zaps the entire block. Bottom up. */
2410 BUFFER_TRACE(bh
, "free child branches");
2411 ext3_free_branches(handle
, inode
, bh
,
2412 (__le32
*)bh
->b_data
,
2413 (__le32
*)bh
->b_data
+ addr_per_block
,
2417 * Everything below this this pointer has been
2418 * released. Now let this top-of-subtree go.
2420 * We want the freeing of this indirect block to be
2421 * atomic in the journal with the updating of the
2422 * bitmap block which owns it. So make some room in
2425 * We zero the parent pointer *after* freeing its
2426 * pointee in the bitmaps, so if extend_transaction()
2427 * for some reason fails to put the bitmap changes and
2428 * the release into the same transaction, recovery
2429 * will merely complain about releasing a free block,
2430 * rather than leaking blocks.
2432 if (is_handle_aborted(handle
))
2434 if (try_to_extend_transaction(handle
, inode
)) {
2435 ext3_mark_inode_dirty(handle
, inode
);
2436 truncate_restart_transaction(handle
, inode
);
2440 * We've probably journalled the indirect block several
2441 * times during the truncate. But it's no longer
2442 * needed and we now drop it from the transaction via
2445 * That's easy if it's exclusively part of this
2446 * transaction. But if it's part of the committing
2447 * transaction then journal_forget() will simply
2448 * brelse() it. That means that if the underlying
2449 * block is reallocated in ext3_get_block(),
2450 * unmap_underlying_metadata() will find this block
2451 * and will try to get rid of it. damn, damn. Thus
2452 * we don't allow a block to be reallocated until
2453 * a transaction freeing it has fully committed.
2455 * We also have to make sure journal replay after a
2456 * crash does not overwrite non-journaled data blocks
2457 * with old metadata when the block got reallocated for
2458 * data. Thus we have to store a revoke record for a
2459 * block in the same transaction in which we free the
2462 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2464 ext3_free_blocks(handle
, inode
, nr
, 1);
2468 * The block which we have just freed is
2469 * pointed to by an indirect block: journal it
2471 BUFFER_TRACE(parent_bh
, "get_write_access");
2472 if (!ext3_journal_get_write_access(handle
,
2475 BUFFER_TRACE(parent_bh
,
2476 "call ext3_journal_dirty_metadata");
2477 ext3_journal_dirty_metadata(handle
,
2483 /* We have reached the bottom of the tree. */
2484 BUFFER_TRACE(parent_bh
, "free data blocks");
2485 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2489 int ext3_can_truncate(struct inode
*inode
)
2491 if (S_ISREG(inode
->i_mode
))
2493 if (S_ISDIR(inode
->i_mode
))
2495 if (S_ISLNK(inode
->i_mode
))
2496 return !ext3_inode_is_fast_symlink(inode
);
2503 * We block out ext3_get_block() block instantiations across the entire
2504 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2505 * simultaneously on behalf of the same inode.
2507 * As we work through the truncate and commit bits of it to the journal there
2508 * is one core, guiding principle: the file's tree must always be consistent on
2509 * disk. We must be able to restart the truncate after a crash.
2511 * The file's tree may be transiently inconsistent in memory (although it
2512 * probably isn't), but whenever we close off and commit a journal transaction,
2513 * the contents of (the filesystem + the journal) must be consistent and
2514 * restartable. It's pretty simple, really: bottom up, right to left (although
2515 * left-to-right works OK too).
2517 * Note that at recovery time, journal replay occurs *before* the restart of
2518 * truncate against the orphan inode list.
2520 * The committed inode has the new, desired i_size (which is the same as
2521 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2522 * that this inode's truncate did not complete and it will again call
2523 * ext3_truncate() to have another go. So there will be instantiated blocks
2524 * to the right of the truncation point in a crashed ext3 filesystem. But
2525 * that's fine - as long as they are linked from the inode, the post-crash
2526 * ext3_truncate() run will find them and release them.
2528 void ext3_truncate(struct inode
*inode
)
2531 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2532 __le32
*i_data
= ei
->i_data
;
2533 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2540 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2542 trace_ext3_truncate_enter(inode
);
2544 if (!ext3_can_truncate(inode
))
2547 if (inode
->i_size
== 0 && ext3_should_writeback_data(inode
))
2548 ext3_set_inode_state(inode
, EXT3_STATE_FLUSH_ON_CLOSE
);
2550 handle
= start_transaction(inode
);
2554 last_block
= (inode
->i_size
+ blocksize
-1)
2555 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2556 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2558 goto out_stop
; /* error */
2561 * OK. This truncate is going to happen. We add the inode to the
2562 * orphan list, so that if this truncate spans multiple transactions,
2563 * and we crash, we will resume the truncate when the filesystem
2564 * recovers. It also marks the inode dirty, to catch the new size.
2566 * Implication: the file must always be in a sane, consistent
2567 * truncatable state while each transaction commits.
2569 if (ext3_orphan_add(handle
, inode
))
2573 * The orphan list entry will now protect us from any crash which
2574 * occurs before the truncate completes, so it is now safe to propagate
2575 * the new, shorter inode size (held for now in i_size) into the
2576 * on-disk inode. We do this via i_disksize, which is the value which
2577 * ext3 *really* writes onto the disk inode.
2579 ei
->i_disksize
= inode
->i_size
;
2582 * From here we block out all ext3_get_block() callers who want to
2583 * modify the block allocation tree.
2585 mutex_lock(&ei
->truncate_mutex
);
2587 if (n
== 1) { /* direct blocks */
2588 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2589 i_data
+ EXT3_NDIR_BLOCKS
);
2593 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2594 /* Kill the top of shared branch (not detached) */
2596 if (partial
== chain
) {
2597 /* Shared branch grows from the inode */
2598 ext3_free_branches(handle
, inode
, NULL
,
2599 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2602 * We mark the inode dirty prior to restart,
2603 * and prior to stop. No need for it here.
2606 /* Shared branch grows from an indirect block */
2607 ext3_free_branches(handle
, inode
, partial
->bh
,
2609 partial
->p
+1, (chain
+n
-1) - partial
);
2612 /* Clear the ends of indirect blocks on the shared branch */
2613 while (partial
> chain
) {
2614 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2615 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2616 (chain
+n
-1) - partial
);
2617 BUFFER_TRACE(partial
->bh
, "call brelse");
2618 brelse (partial
->bh
);
2622 /* Kill the remaining (whole) subtrees */
2623 switch (offsets
[0]) {
2625 nr
= i_data
[EXT3_IND_BLOCK
];
2627 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2628 i_data
[EXT3_IND_BLOCK
] = 0;
2630 case EXT3_IND_BLOCK
:
2631 nr
= i_data
[EXT3_DIND_BLOCK
];
2633 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2634 i_data
[EXT3_DIND_BLOCK
] = 0;
2636 case EXT3_DIND_BLOCK
:
2637 nr
= i_data
[EXT3_TIND_BLOCK
];
2639 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2640 i_data
[EXT3_TIND_BLOCK
] = 0;
2642 case EXT3_TIND_BLOCK
:
2646 ext3_discard_reservation(inode
);
2648 mutex_unlock(&ei
->truncate_mutex
);
2649 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2650 ext3_mark_inode_dirty(handle
, inode
);
2653 * In a multi-transaction truncate, we only make the final transaction
2660 * If this was a simple ftruncate(), and the file will remain alive
2661 * then we need to clear up the orphan record which we created above.
2662 * However, if this was a real unlink then we were called by
2663 * ext3_evict_inode(), and we allow that function to clean up the
2664 * orphan info for us.
2667 ext3_orphan_del(handle
, inode
);
2669 ext3_journal_stop(handle
);
2670 trace_ext3_truncate_exit(inode
);
2674 * Delete the inode from orphan list so that it doesn't stay there
2675 * forever and trigger assertion on umount.
2678 ext3_orphan_del(NULL
, inode
);
2679 trace_ext3_truncate_exit(inode
);
2682 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2683 unsigned long ino
, struct ext3_iloc
*iloc
)
2685 unsigned long block_group
;
2686 unsigned long offset
;
2688 struct ext3_group_desc
*gdp
;
2690 if (!ext3_valid_inum(sb
, ino
)) {
2692 * This error is already checked for in namei.c unless we are
2693 * looking at an NFS filehandle, in which case no error
2699 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2700 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2704 * Figure out the offset within the block group inode table
2706 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2707 EXT3_INODE_SIZE(sb
);
2708 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2709 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2711 iloc
->block_group
= block_group
;
2712 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2717 * ext3_get_inode_loc returns with an extra refcount against the inode's
2718 * underlying buffer_head on success. If 'in_mem' is true, we have all
2719 * data in memory that is needed to recreate the on-disk version of this
2722 static int __ext3_get_inode_loc(struct inode
*inode
,
2723 struct ext3_iloc
*iloc
, int in_mem
)
2726 struct buffer_head
*bh
;
2728 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2732 bh
= sb_getblk(inode
->i_sb
, block
);
2734 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2735 "unable to read inode block - "
2736 "inode=%lu, block="E3FSBLK
,
2737 inode
->i_ino
, block
);
2740 if (!buffer_uptodate(bh
)) {
2744 * If the buffer has the write error flag, we have failed
2745 * to write out another inode in the same block. In this
2746 * case, we don't have to read the block because we may
2747 * read the old inode data successfully.
2749 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
2750 set_buffer_uptodate(bh
);
2752 if (buffer_uptodate(bh
)) {
2753 /* someone brought it uptodate while we waited */
2759 * If we have all information of the inode in memory and this
2760 * is the only valid inode in the block, we need not read the
2764 struct buffer_head
*bitmap_bh
;
2765 struct ext3_group_desc
*desc
;
2766 int inodes_per_buffer
;
2767 int inode_offset
, i
;
2771 block_group
= (inode
->i_ino
- 1) /
2772 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2773 inodes_per_buffer
= bh
->b_size
/
2774 EXT3_INODE_SIZE(inode
->i_sb
);
2775 inode_offset
= ((inode
->i_ino
- 1) %
2776 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2777 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2779 /* Is the inode bitmap in cache? */
2780 desc
= ext3_get_group_desc(inode
->i_sb
,
2785 bitmap_bh
= sb_getblk(inode
->i_sb
,
2786 le32_to_cpu(desc
->bg_inode_bitmap
));
2791 * If the inode bitmap isn't in cache then the
2792 * optimisation may end up performing two reads instead
2793 * of one, so skip it.
2795 if (!buffer_uptodate(bitmap_bh
)) {
2799 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2800 if (i
== inode_offset
)
2802 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2806 if (i
== start
+ inodes_per_buffer
) {
2807 /* all other inodes are free, so skip I/O */
2808 memset(bh
->b_data
, 0, bh
->b_size
);
2809 set_buffer_uptodate(bh
);
2817 * There are other valid inodes in the buffer, this inode
2818 * has in-inode xattrs, or we don't have this inode in memory.
2819 * Read the block from disk.
2821 trace_ext3_load_inode(inode
);
2823 bh
->b_end_io
= end_buffer_read_sync
;
2824 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
2826 if (!buffer_uptodate(bh
)) {
2827 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2828 "unable to read inode block - "
2829 "inode=%lu, block="E3FSBLK
,
2830 inode
->i_ino
, block
);
2840 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2842 /* We have all inode data except xattrs in memory here. */
2843 return __ext3_get_inode_loc(inode
, iloc
,
2844 !ext3_test_inode_state(inode
, EXT3_STATE_XATTR
));
2847 void ext3_set_inode_flags(struct inode
*inode
)
2849 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2851 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2852 if (flags
& EXT3_SYNC_FL
)
2853 inode
->i_flags
|= S_SYNC
;
2854 if (flags
& EXT3_APPEND_FL
)
2855 inode
->i_flags
|= S_APPEND
;
2856 if (flags
& EXT3_IMMUTABLE_FL
)
2857 inode
->i_flags
|= S_IMMUTABLE
;
2858 if (flags
& EXT3_NOATIME_FL
)
2859 inode
->i_flags
|= S_NOATIME
;
2860 if (flags
& EXT3_DIRSYNC_FL
)
2861 inode
->i_flags
|= S_DIRSYNC
;
2864 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2865 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2867 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2869 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2870 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2872 ei
->i_flags
|= EXT3_SYNC_FL
;
2873 if (flags
& S_APPEND
)
2874 ei
->i_flags
|= EXT3_APPEND_FL
;
2875 if (flags
& S_IMMUTABLE
)
2876 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2877 if (flags
& S_NOATIME
)
2878 ei
->i_flags
|= EXT3_NOATIME_FL
;
2879 if (flags
& S_DIRSYNC
)
2880 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2883 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2885 struct ext3_iloc iloc
;
2886 struct ext3_inode
*raw_inode
;
2887 struct ext3_inode_info
*ei
;
2888 struct buffer_head
*bh
;
2889 struct inode
*inode
;
2890 journal_t
*journal
= EXT3_SB(sb
)->s_journal
;
2891 transaction_t
*transaction
;
2897 inode
= iget_locked(sb
, ino
);
2899 return ERR_PTR(-ENOMEM
);
2900 if (!(inode
->i_state
& I_NEW
))
2904 ei
->i_block_alloc_info
= NULL
;
2906 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2910 raw_inode
= ext3_raw_inode(&iloc
);
2911 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2912 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2913 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2914 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2915 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2916 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2918 i_uid_write(inode
, i_uid
);
2919 i_gid_write(inode
, i_gid
);
2920 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
2921 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2922 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2923 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2924 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2925 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2927 ei
->i_state_flags
= 0;
2928 ei
->i_dir_start_lookup
= 0;
2929 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2930 /* We now have enough fields to check if the inode was active or not.
2931 * This is needed because nfsd might try to access dead inodes
2932 * the test is that same one that e2fsck uses
2933 * NeilBrown 1999oct15
2935 if (inode
->i_nlink
== 0) {
2936 if (inode
->i_mode
== 0 ||
2937 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2938 /* this inode is deleted */
2943 /* The only unlinked inodes we let through here have
2944 * valid i_mode and are being read by the orphan
2945 * recovery code: that's fine, we're about to complete
2946 * the process of deleting those. */
2948 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2949 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2950 #ifdef EXT3_FRAGMENTS
2951 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2952 ei
->i_frag_no
= raw_inode
->i_frag
;
2953 ei
->i_frag_size
= raw_inode
->i_fsize
;
2955 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2956 if (!S_ISREG(inode
->i_mode
)) {
2957 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2960 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2962 ei
->i_disksize
= inode
->i_size
;
2963 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2964 ei
->i_block_group
= iloc
.block_group
;
2966 * NOTE! The in-memory inode i_data array is in little-endian order
2967 * even on big-endian machines: we do NOT byteswap the block numbers!
2969 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2970 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2971 INIT_LIST_HEAD(&ei
->i_orphan
);
2974 * Set transaction id's of transactions that have to be committed
2975 * to finish f[data]sync. We set them to currently running transaction
2976 * as we cannot be sure that the inode or some of its metadata isn't
2977 * part of the transaction - the inode could have been reclaimed and
2978 * now it is reread from disk.
2983 spin_lock(&journal
->j_state_lock
);
2984 if (journal
->j_running_transaction
)
2985 transaction
= journal
->j_running_transaction
;
2987 transaction
= journal
->j_committing_transaction
;
2989 tid
= transaction
->t_tid
;
2991 tid
= journal
->j_commit_sequence
;
2992 spin_unlock(&journal
->j_state_lock
);
2993 atomic_set(&ei
->i_sync_tid
, tid
);
2994 atomic_set(&ei
->i_datasync_tid
, tid
);
2997 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
2998 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
3000 * When mke2fs creates big inodes it does not zero out
3001 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3002 * so ignore those first few inodes.
3004 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3005 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3006 EXT3_INODE_SIZE(inode
->i_sb
)) {
3011 if (ei
->i_extra_isize
== 0) {
3012 /* The extra space is currently unused. Use it. */
3013 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
3014 EXT3_GOOD_OLD_INODE_SIZE
;
3016 __le32
*magic
= (void *)raw_inode
+
3017 EXT3_GOOD_OLD_INODE_SIZE
+
3019 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
3020 ext3_set_inode_state(inode
, EXT3_STATE_XATTR
);
3023 ei
->i_extra_isize
= 0;
3025 if (S_ISREG(inode
->i_mode
)) {
3026 inode
->i_op
= &ext3_file_inode_operations
;
3027 inode
->i_fop
= &ext3_file_operations
;
3028 ext3_set_aops(inode
);
3029 } else if (S_ISDIR(inode
->i_mode
)) {
3030 inode
->i_op
= &ext3_dir_inode_operations
;
3031 inode
->i_fop
= &ext3_dir_operations
;
3032 } else if (S_ISLNK(inode
->i_mode
)) {
3033 if (ext3_inode_is_fast_symlink(inode
)) {
3034 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
3035 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3036 sizeof(ei
->i_data
) - 1);
3038 inode
->i_op
= &ext3_symlink_inode_operations
;
3039 ext3_set_aops(inode
);
3042 inode
->i_op
= &ext3_special_inode_operations
;
3043 if (raw_inode
->i_block
[0])
3044 init_special_inode(inode
, inode
->i_mode
,
3045 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3047 init_special_inode(inode
, inode
->i_mode
,
3048 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3051 ext3_set_inode_flags(inode
);
3052 unlock_new_inode(inode
);
3057 return ERR_PTR(ret
);
3061 * Post the struct inode info into an on-disk inode location in the
3062 * buffer-cache. This gobbles the caller's reference to the
3063 * buffer_head in the inode location struct.
3065 * The caller must have write access to iloc->bh.
3067 static int ext3_do_update_inode(handle_t
*handle
,
3068 struct inode
*inode
,
3069 struct ext3_iloc
*iloc
)
3071 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
3072 struct ext3_inode_info
*ei
= EXT3_I(inode
);
3073 struct buffer_head
*bh
= iloc
->bh
;
3074 int err
= 0, rc
, block
;
3079 /* we can't allow multiple procs in here at once, its a bit racey */
3082 /* For fields not not tracking in the in-memory inode,
3083 * initialise them to zero for new inodes. */
3084 if (ext3_test_inode_state(inode
, EXT3_STATE_NEW
))
3085 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
3087 ext3_get_inode_flags(ei
);
3088 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3089 i_uid
= i_uid_read(inode
);
3090 i_gid
= i_gid_read(inode
);
3091 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
3092 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
3093 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
3095 * Fix up interoperability with old kernels. Otherwise, old inodes get
3096 * re-used with the upper 16 bits of the uid/gid intact
3099 raw_inode
->i_uid_high
=
3100 cpu_to_le16(high_16_bits(i_uid
));
3101 raw_inode
->i_gid_high
=
3102 cpu_to_le16(high_16_bits(i_gid
));
3104 raw_inode
->i_uid_high
= 0;
3105 raw_inode
->i_gid_high
= 0;
3108 raw_inode
->i_uid_low
=
3109 cpu_to_le16(fs_high2lowuid(i_uid
));
3110 raw_inode
->i_gid_low
=
3111 cpu_to_le16(fs_high2lowgid(i_gid
));
3112 raw_inode
->i_uid_high
= 0;
3113 raw_inode
->i_gid_high
= 0;
3115 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3116 raw_inode
->i_size
= cpu_to_le32(ei
->i_disksize
);
3117 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
3118 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
3119 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
3120 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
3121 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3122 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
3123 #ifdef EXT3_FRAGMENTS
3124 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
3125 raw_inode
->i_frag
= ei
->i_frag_no
;
3126 raw_inode
->i_fsize
= ei
->i_frag_size
;
3128 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
3129 if (!S_ISREG(inode
->i_mode
)) {
3130 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
3132 raw_inode
->i_size_high
=
3133 cpu_to_le32(ei
->i_disksize
>> 32);
3134 if (ei
->i_disksize
> 0x7fffffffULL
) {
3135 struct super_block
*sb
= inode
->i_sb
;
3136 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
3137 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3138 EXT3_SB(sb
)->s_es
->s_rev_level
==
3139 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
3140 /* If this is the first large file
3141 * created, add a flag to the superblock.
3144 err
= ext3_journal_get_write_access(handle
,
3145 EXT3_SB(sb
)->s_sbh
);
3149 ext3_update_dynamic_rev(sb
);
3150 EXT3_SET_RO_COMPAT_FEATURE(sb
,
3151 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
3153 err
= ext3_journal_dirty_metadata(handle
,
3154 EXT3_SB(sb
)->s_sbh
);
3155 /* get our lock and start over */
3160 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3161 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3162 if (old_valid_dev(inode
->i_rdev
)) {
3163 raw_inode
->i_block
[0] =
3164 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3165 raw_inode
->i_block
[1] = 0;
3167 raw_inode
->i_block
[0] = 0;
3168 raw_inode
->i_block
[1] =
3169 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3170 raw_inode
->i_block
[2] = 0;
3172 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
3173 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3175 if (ei
->i_extra_isize
)
3176 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3178 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
3180 rc
= ext3_journal_dirty_metadata(handle
, bh
);
3183 ext3_clear_inode_state(inode
, EXT3_STATE_NEW
);
3185 atomic_set(&ei
->i_sync_tid
, handle
->h_transaction
->t_tid
);
3188 ext3_std_error(inode
->i_sb
, err
);
3193 * ext3_write_inode()
3195 * We are called from a few places:
3197 * - Within generic_file_write() for O_SYNC files.
3198 * Here, there will be no transaction running. We wait for any running
3199 * trasnaction to commit.
3201 * - Within sys_sync(), kupdate and such.
3202 * We wait on commit, if tol to.
3204 * - Within prune_icache() (PF_MEMALLOC == true)
3205 * Here we simply return. We can't afford to block kswapd on the
3208 * In all cases it is actually safe for us to return without doing anything,
3209 * because the inode has been copied into a raw inode buffer in
3210 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3213 * Note that we are absolutely dependent upon all inode dirtiers doing the
3214 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3215 * which we are interested.
3217 * It would be a bug for them to not do this. The code:
3219 * mark_inode_dirty(inode)
3221 * inode->i_size = expr;
3223 * is in error because a kswapd-driven write_inode() could occur while
3224 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3225 * will no longer be on the superblock's dirty inode list.
3227 int ext3_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3229 if (current
->flags
& PF_MEMALLOC
)
3232 if (ext3_journal_current_handle()) {
3233 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3238 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3241 return ext3_force_commit(inode
->i_sb
);
3247 * Called from notify_change.
3249 * We want to trap VFS attempts to truncate the file as soon as
3250 * possible. In particular, we want to make sure that when the VFS
3251 * shrinks i_size, we put the inode on the orphan list and modify
3252 * i_disksize immediately, so that during the subsequent flushing of
3253 * dirty pages and freeing of disk blocks, we can guarantee that any
3254 * commit will leave the blocks being flushed in an unused state on
3255 * disk. (On recovery, the inode will get truncated and the blocks will
3256 * be freed, so we have a strong guarantee that no future commit will
3257 * leave these blocks visible to the user.)
3259 * Called with inode->sem down.
3261 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3263 struct inode
*inode
= dentry
->d_inode
;
3265 const unsigned int ia_valid
= attr
->ia_valid
;
3267 error
= inode_change_ok(inode
, attr
);
3271 if (is_quota_modification(inode
, attr
))
3272 dquot_initialize(inode
);
3273 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
3274 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
3277 /* (user+group)*(old+new) structure, inode write (sb,
3278 * inode block, ? - but truncate inode update has it) */
3279 handle
= ext3_journal_start(inode
, EXT3_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
3280 EXT3_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)+3);
3281 if (IS_ERR(handle
)) {
3282 error
= PTR_ERR(handle
);
3285 error
= dquot_transfer(inode
, attr
);
3287 ext3_journal_stop(handle
);
3290 /* Update corresponding info in inode so that everything is in
3291 * one transaction */
3292 if (attr
->ia_valid
& ATTR_UID
)
3293 inode
->i_uid
= attr
->ia_uid
;
3294 if (attr
->ia_valid
& ATTR_GID
)
3295 inode
->i_gid
= attr
->ia_gid
;
3296 error
= ext3_mark_inode_dirty(handle
, inode
);
3297 ext3_journal_stop(handle
);
3300 if (attr
->ia_valid
& ATTR_SIZE
)
3301 inode_dio_wait(inode
);
3303 if (S_ISREG(inode
->i_mode
) &&
3304 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3307 handle
= ext3_journal_start(inode
, 3);
3308 if (IS_ERR(handle
)) {
3309 error
= PTR_ERR(handle
);
3313 error
= ext3_orphan_add(handle
, inode
);
3315 ext3_journal_stop(handle
);
3318 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3319 error
= ext3_mark_inode_dirty(handle
, inode
);
3320 ext3_journal_stop(handle
);
3322 /* Some hard fs error must have happened. Bail out. */
3323 ext3_orphan_del(NULL
, inode
);
3326 rc
= ext3_block_truncate_page(inode
, attr
->ia_size
);
3328 /* Cleanup orphan list and exit */
3329 handle
= ext3_journal_start(inode
, 3);
3330 if (IS_ERR(handle
)) {
3331 ext3_orphan_del(NULL
, inode
);
3334 ext3_orphan_del(handle
, inode
);
3335 ext3_journal_stop(handle
);
3340 if ((attr
->ia_valid
& ATTR_SIZE
) &&
3341 attr
->ia_size
!= i_size_read(inode
)) {
3342 truncate_setsize(inode
, attr
->ia_size
);
3343 ext3_truncate(inode
);
3346 setattr_copy(inode
, attr
);
3347 mark_inode_dirty(inode
);
3349 if (ia_valid
& ATTR_MODE
)
3350 rc
= ext3_acl_chmod(inode
);
3353 ext3_std_error(inode
->i_sb
, error
);
3361 * How many blocks doth make a writepage()?
3363 * With N blocks per page, it may be:
3368 * N+5 bitmap blocks (from the above)
3369 * N+5 group descriptor summary blocks
3372 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3374 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3376 * With ordered or writeback data it's the same, less the N data blocks.
3378 * If the inode's direct blocks can hold an integral number of pages then a
3379 * page cannot straddle two indirect blocks, and we can only touch one indirect
3380 * and dindirect block, and the "5" above becomes "3".
3382 * This still overestimates under most circumstances. If we were to pass the
3383 * start and end offsets in here as well we could do block_to_path() on each
3384 * block and work out the exact number of indirects which are touched. Pah.
3387 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3389 int bpp
= ext3_journal_blocks_per_page(inode
);
3390 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3393 if (ext3_should_journal_data(inode
))
3394 ret
= 3 * (bpp
+ indirects
) + 2;
3396 ret
= 2 * (bpp
+ indirects
) + indirects
+ 2;
3399 /* We know that structure was already allocated during dquot_initialize so
3400 * we will be updating only the data blocks + inodes */
3401 ret
+= EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
3408 * The caller must have previously called ext3_reserve_inode_write().
3409 * Give this, we know that the caller already has write access to iloc->bh.
3411 int ext3_mark_iloc_dirty(handle_t
*handle
,
3412 struct inode
*inode
, struct ext3_iloc
*iloc
)
3416 /* the do_update_inode consumes one bh->b_count */
3419 /* ext3_do_update_inode() does journal_dirty_metadata */
3420 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3426 * On success, We end up with an outstanding reference count against
3427 * iloc->bh. This _must_ be cleaned up later.
3431 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3432 struct ext3_iloc
*iloc
)
3436 err
= ext3_get_inode_loc(inode
, iloc
);
3438 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3439 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3446 ext3_std_error(inode
->i_sb
, err
);
3451 * What we do here is to mark the in-core inode as clean with respect to inode
3452 * dirtiness (it may still be data-dirty).
3453 * This means that the in-core inode may be reaped by prune_icache
3454 * without having to perform any I/O. This is a very good thing,
3455 * because *any* task may call prune_icache - even ones which
3456 * have a transaction open against a different journal.
3458 * Is this cheating? Not really. Sure, we haven't written the
3459 * inode out, but prune_icache isn't a user-visible syncing function.
3460 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3461 * we start and wait on commits.
3463 * Is this efficient/effective? Well, we're being nice to the system
3464 * by cleaning up our inodes proactively so they can be reaped
3465 * without I/O. But we are potentially leaving up to five seconds'
3466 * worth of inodes floating about which prune_icache wants us to
3467 * write out. One way to fix that would be to get prune_icache()
3468 * to do a write_super() to free up some memory. It has the desired
3471 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3473 struct ext3_iloc iloc
;
3477 trace_ext3_mark_inode_dirty(inode
, _RET_IP_
);
3478 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3480 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3485 * ext3_dirty_inode() is called from __mark_inode_dirty()
3487 * We're really interested in the case where a file is being extended.
3488 * i_size has been changed by generic_commit_write() and we thus need
3489 * to include the updated inode in the current transaction.
3491 * Also, dquot_alloc_space() will always dirty the inode when blocks
3492 * are allocated to the file.
3494 * If the inode is marked synchronous, we don't honour that here - doing
3495 * so would cause a commit on atime updates, which we don't bother doing.
3496 * We handle synchronous inodes at the highest possible level.
3498 void ext3_dirty_inode(struct inode
*inode
, int flags
)
3500 handle_t
*current_handle
= ext3_journal_current_handle();
3503 handle
= ext3_journal_start(inode
, 2);
3506 if (current_handle
&&
3507 current_handle
->h_transaction
!= handle
->h_transaction
) {
3508 /* This task has a transaction open against a different fs */
3509 printk(KERN_EMERG
"%s: transactions do not match!\n",
3512 jbd_debug(5, "marking dirty. outer handle=%p\n",
3514 ext3_mark_inode_dirty(handle
, inode
);
3516 ext3_journal_stop(handle
);
3523 * Bind an inode's backing buffer_head into this transaction, to prevent
3524 * it from being flushed to disk early. Unlike
3525 * ext3_reserve_inode_write, this leaves behind no bh reference and
3526 * returns no iloc structure, so the caller needs to repeat the iloc
3527 * lookup to mark the inode dirty later.
3529 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3531 struct ext3_iloc iloc
;
3535 err
= ext3_get_inode_loc(inode
, &iloc
);
3537 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3538 err
= journal_get_write_access(handle
, iloc
.bh
);
3540 err
= ext3_journal_dirty_metadata(handle
,
3545 ext3_std_error(inode
->i_sb
, err
);
3550 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3557 * We have to be very careful here: changing a data block's
3558 * journaling status dynamically is dangerous. If we write a
3559 * data block to the journal, change the status and then delete
3560 * that block, we risk forgetting to revoke the old log record
3561 * from the journal and so a subsequent replay can corrupt data.
3562 * So, first we make sure that the journal is empty and that
3563 * nobody is changing anything.
3566 journal
= EXT3_JOURNAL(inode
);
3567 if (is_journal_aborted(journal
))
3570 journal_lock_updates(journal
);
3571 journal_flush(journal
);
3574 * OK, there are no updates running now, and all cached data is
3575 * synced to disk. We are now in a completely consistent state
3576 * which doesn't have anything in the journal, and we know that
3577 * no filesystem updates are running, so it is safe to modify
3578 * the inode's in-core data-journaling state flag now.
3582 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3584 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3585 ext3_set_aops(inode
);
3587 journal_unlock_updates(journal
);
3589 /* Finally we can mark the inode as dirty. */
3591 handle
= ext3_journal_start(inode
, 1);
3593 return PTR_ERR(handle
);
3595 err
= ext3_mark_inode_dirty(handle
, inode
);
3597 ext3_journal_stop(handle
);
3598 ext3_std_error(inode
->i_sb
, err
);