ALSA: ASoC: Permit simultaneous compilation of both PXA AC97 drivers
[linux-2.6/libata-dev.git] / net / core / dev.c
blob0ae08d3f57e79730ac893dbb8a046a6678cd622a
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
131 #include "net-sysfs.h"
134 * The list of packet types we will receive (as opposed to discard)
135 * and the routines to invoke.
137 * Why 16. Because with 16 the only overlap we get on a hash of the
138 * low nibble of the protocol value is RARP/SNAP/X.25.
140 * NOTE: That is no longer true with the addition of VLAN tags. Not
141 * sure which should go first, but I bet it won't make much
142 * difference if we are running VLANs. The good news is that
143 * this protocol won't be in the list unless compiled in, so
144 * the average user (w/out VLANs) will not be adversely affected.
145 * --BLG
147 * 0800 IP
148 * 8100 802.1Q VLAN
149 * 0001 802.3
150 * 0002 AX.25
151 * 0004 802.2
152 * 8035 RARP
153 * 0005 SNAP
154 * 0805 X.25
155 * 0806 ARP
156 * 8137 IPX
157 * 0009 Localtalk
158 * 86DD IPv6
161 #define PTYPE_HASH_SIZE (16)
162 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
164 static DEFINE_SPINLOCK(ptype_lock);
165 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
166 static struct list_head ptype_all __read_mostly; /* Taps */
168 #ifdef CONFIG_NET_DMA
169 struct net_dma {
170 struct dma_client client;
171 spinlock_t lock;
172 cpumask_t channel_mask;
173 struct dma_chan **channels;
176 static enum dma_state_client
177 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
178 enum dma_state state);
180 static struct net_dma net_dma = {
181 .client = {
182 .event_callback = netdev_dma_event,
185 #endif
188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
189 * semaphore.
191 * Pure readers hold dev_base_lock for reading.
193 * Writers must hold the rtnl semaphore while they loop through the
194 * dev_base_head list, and hold dev_base_lock for writing when they do the
195 * actual updates. This allows pure readers to access the list even
196 * while a writer is preparing to update it.
198 * To put it another way, dev_base_lock is held for writing only to
199 * protect against pure readers; the rtnl semaphore provides the
200 * protection against other writers.
202 * See, for example usages, register_netdevice() and
203 * unregister_netdevice(), which must be called with the rtnl
204 * semaphore held.
206 DEFINE_RWLOCK(dev_base_lock);
208 EXPORT_SYMBOL(dev_base_lock);
210 #define NETDEV_HASHBITS 8
211 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
227 struct net *net = dev_net(dev);
229 ASSERT_RTNL();
231 write_lock_bh(&dev_base_lock);
232 list_add_tail(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
239 /* Device list removal */
240 static void unlist_netdevice(struct net_device *dev)
242 ASSERT_RTNL();
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del(&dev->dev_list);
247 hlist_del(&dev->name_hlist);
248 hlist_del(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
253 * Our notifier list
256 static RAW_NOTIFIER_HEAD(netdev_chain);
259 * Device drivers call our routines to queue packets here. We empty the
260 * queue in the local softnet handler.
263 DEFINE_PER_CPU(struct softnet_data, softnet_data);
265 #ifdef CONFIG_LOCKDEP
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
285 ARPHRD_NONE};
287 static const char *netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
302 "_xmit_NONE"};
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
309 int i;
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
321 int i;
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 int i;
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 #endif
347 /*******************************************************************************
349 Protocol management and registration routines
351 *******************************************************************************/
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
370 * dev_add_pack - add packet handler
371 * @pt: packet type declaration
373 * Add a protocol handler to the networking stack. The passed &packet_type
374 * is linked into kernel lists and may not be freed until it has been
375 * removed from the kernel lists.
377 * This call does not sleep therefore it can not
378 * guarantee all CPU's that are in middle of receiving packets
379 * will see the new packet type (until the next received packet).
382 void dev_add_pack(struct packet_type *pt)
384 int hash;
386 spin_lock_bh(&ptype_lock);
387 if (pt->type == htons(ETH_P_ALL))
388 list_add_rcu(&pt->list, &ptype_all);
389 else {
390 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
391 list_add_rcu(&pt->list, &ptype_base[hash]);
393 spin_unlock_bh(&ptype_lock);
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
409 void __dev_remove_pack(struct packet_type *pt)
411 struct list_head *head;
412 struct packet_type *pt1;
414 spin_lock_bh(&ptype_lock);
416 if (pt->type == htons(ETH_P_ALL))
417 head = &ptype_all;
418 else
419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
421 list_for_each_entry(pt1, head, list) {
422 if (pt == pt1) {
423 list_del_rcu(&pt->list);
424 goto out;
428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
429 out:
430 spin_unlock_bh(&ptype_lock);
433 * dev_remove_pack - remove packet handler
434 * @pt: packet type declaration
436 * Remove a protocol handler that was previously added to the kernel
437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
438 * from the kernel lists and can be freed or reused once this function
439 * returns.
441 * This call sleeps to guarantee that no CPU is looking at the packet
442 * type after return.
444 void dev_remove_pack(struct packet_type *pt)
446 __dev_remove_pack(pt);
448 synchronize_net();
451 /******************************************************************************
453 Device Boot-time Settings Routines
455 *******************************************************************************/
457 /* Boot time configuration table */
458 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
461 * netdev_boot_setup_add - add new setup entry
462 * @name: name of the device
463 * @map: configured settings for the device
465 * Adds new setup entry to the dev_boot_setup list. The function
466 * returns 0 on error and 1 on success. This is a generic routine to
467 * all netdevices.
469 static int netdev_boot_setup_add(char *name, struct ifmap *map)
471 struct netdev_boot_setup *s;
472 int i;
474 s = dev_boot_setup;
475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
477 memset(s[i].name, 0, sizeof(s[i].name));
478 strlcpy(s[i].name, name, IFNAMSIZ);
479 memcpy(&s[i].map, map, sizeof(s[i].map));
480 break;
484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
488 * netdev_boot_setup_check - check boot time settings
489 * @dev: the netdevice
491 * Check boot time settings for the device.
492 * The found settings are set for the device to be used
493 * later in the device probing.
494 * Returns 0 if no settings found, 1 if they are.
496 int netdev_boot_setup_check(struct net_device *dev)
498 struct netdev_boot_setup *s = dev_boot_setup;
499 int i;
501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
503 !strcmp(dev->name, s[i].name)) {
504 dev->irq = s[i].map.irq;
505 dev->base_addr = s[i].map.base_addr;
506 dev->mem_start = s[i].map.mem_start;
507 dev->mem_end = s[i].map.mem_end;
508 return 1;
511 return 0;
516 * netdev_boot_base - get address from boot time settings
517 * @prefix: prefix for network device
518 * @unit: id for network device
520 * Check boot time settings for the base address of device.
521 * The found settings are set for the device to be used
522 * later in the device probing.
523 * Returns 0 if no settings found.
525 unsigned long netdev_boot_base(const char *prefix, int unit)
527 const struct netdev_boot_setup *s = dev_boot_setup;
528 char name[IFNAMSIZ];
529 int i;
531 sprintf(name, "%s%d", prefix, unit);
534 * If device already registered then return base of 1
535 * to indicate not to probe for this interface
537 if (__dev_get_by_name(&init_net, name))
538 return 1;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
541 if (!strcmp(name, s[i].name))
542 return s[i].map.base_addr;
543 return 0;
547 * Saves at boot time configured settings for any netdevice.
549 int __init netdev_boot_setup(char *str)
551 int ints[5];
552 struct ifmap map;
554 str = get_options(str, ARRAY_SIZE(ints), ints);
555 if (!str || !*str)
556 return 0;
558 /* Save settings */
559 memset(&map, 0, sizeof(map));
560 if (ints[0] > 0)
561 map.irq = ints[1];
562 if (ints[0] > 1)
563 map.base_addr = ints[2];
564 if (ints[0] > 2)
565 map.mem_start = ints[3];
566 if (ints[0] > 3)
567 map.mem_end = ints[4];
569 /* Add new entry to the list */
570 return netdev_boot_setup_add(str, &map);
573 __setup("netdev=", netdev_boot_setup);
575 /*******************************************************************************
577 Device Interface Subroutines
579 *******************************************************************************/
582 * __dev_get_by_name - find a device by its name
583 * @net: the applicable net namespace
584 * @name: name to find
586 * Find an interface by name. Must be called under RTNL semaphore
587 * or @dev_base_lock. If the name is found a pointer to the device
588 * is returned. If the name is not found then %NULL is returned. The
589 * reference counters are not incremented so the caller must be
590 * careful with locks.
593 struct net_device *__dev_get_by_name(struct net *net, const char *name)
595 struct hlist_node *p;
597 hlist_for_each(p, dev_name_hash(net, name)) {
598 struct net_device *dev
599 = hlist_entry(p, struct net_device, name_hlist);
600 if (!strncmp(dev->name, name, IFNAMSIZ))
601 return dev;
603 return NULL;
607 * dev_get_by_name - find a device by its name
608 * @net: the applicable net namespace
609 * @name: name to find
611 * Find an interface by name. This can be called from any
612 * context and does its own locking. The returned handle has
613 * the usage count incremented and the caller must use dev_put() to
614 * release it when it is no longer needed. %NULL is returned if no
615 * matching device is found.
618 struct net_device *dev_get_by_name(struct net *net, const char *name)
620 struct net_device *dev;
622 read_lock(&dev_base_lock);
623 dev = __dev_get_by_name(net, name);
624 if (dev)
625 dev_hold(dev);
626 read_unlock(&dev_base_lock);
627 return dev;
631 * __dev_get_by_index - find a device by its ifindex
632 * @net: the applicable net namespace
633 * @ifindex: index of device
635 * Search for an interface by index. Returns %NULL if the device
636 * is not found or a pointer to the device. The device has not
637 * had its reference counter increased so the caller must be careful
638 * about locking. The caller must hold either the RTNL semaphore
639 * or @dev_base_lock.
642 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
644 struct hlist_node *p;
646 hlist_for_each(p, dev_index_hash(net, ifindex)) {
647 struct net_device *dev
648 = hlist_entry(p, struct net_device, index_hlist);
649 if (dev->ifindex == ifindex)
650 return dev;
652 return NULL;
657 * dev_get_by_index - find a device by its ifindex
658 * @net: the applicable net namespace
659 * @ifindex: index of device
661 * Search for an interface by index. Returns NULL if the device
662 * is not found or a pointer to the device. The device returned has
663 * had a reference added and the pointer is safe until the user calls
664 * dev_put to indicate they have finished with it.
667 struct net_device *dev_get_by_index(struct net *net, int ifindex)
669 struct net_device *dev;
671 read_lock(&dev_base_lock);
672 dev = __dev_get_by_index(net, ifindex);
673 if (dev)
674 dev_hold(dev);
675 read_unlock(&dev_base_lock);
676 return dev;
680 * dev_getbyhwaddr - find a device by its hardware address
681 * @net: the applicable net namespace
682 * @type: media type of device
683 * @ha: hardware address
685 * Search for an interface by MAC address. Returns NULL if the device
686 * is not found or a pointer to the device. The caller must hold the
687 * rtnl semaphore. The returned device has not had its ref count increased
688 * and the caller must therefore be careful about locking
690 * BUGS:
691 * If the API was consistent this would be __dev_get_by_hwaddr
694 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
696 struct net_device *dev;
698 ASSERT_RTNL();
700 for_each_netdev(net, dev)
701 if (dev->type == type &&
702 !memcmp(dev->dev_addr, ha, dev->addr_len))
703 return dev;
705 return NULL;
708 EXPORT_SYMBOL(dev_getbyhwaddr);
710 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
712 struct net_device *dev;
714 ASSERT_RTNL();
715 for_each_netdev(net, dev)
716 if (dev->type == type)
717 return dev;
719 return NULL;
722 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
724 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
726 struct net_device *dev;
728 rtnl_lock();
729 dev = __dev_getfirstbyhwtype(net, type);
730 if (dev)
731 dev_hold(dev);
732 rtnl_unlock();
733 return dev;
736 EXPORT_SYMBOL(dev_getfirstbyhwtype);
739 * dev_get_by_flags - find any device with given flags
740 * @net: the applicable net namespace
741 * @if_flags: IFF_* values
742 * @mask: bitmask of bits in if_flags to check
744 * Search for any interface with the given flags. Returns NULL if a device
745 * is not found or a pointer to the device. The device returned has
746 * had a reference added and the pointer is safe until the user calls
747 * dev_put to indicate they have finished with it.
750 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
752 struct net_device *dev, *ret;
754 ret = NULL;
755 read_lock(&dev_base_lock);
756 for_each_netdev(net, dev) {
757 if (((dev->flags ^ if_flags) & mask) == 0) {
758 dev_hold(dev);
759 ret = dev;
760 break;
763 read_unlock(&dev_base_lock);
764 return ret;
768 * dev_valid_name - check if name is okay for network device
769 * @name: name string
771 * Network device names need to be valid file names to
772 * to allow sysfs to work. We also disallow any kind of
773 * whitespace.
775 int dev_valid_name(const char *name)
777 if (*name == '\0')
778 return 0;
779 if (strlen(name) >= IFNAMSIZ)
780 return 0;
781 if (!strcmp(name, ".") || !strcmp(name, ".."))
782 return 0;
784 while (*name) {
785 if (*name == '/' || isspace(*name))
786 return 0;
787 name++;
789 return 1;
793 * __dev_alloc_name - allocate a name for a device
794 * @net: network namespace to allocate the device name in
795 * @name: name format string
796 * @buf: scratch buffer and result name string
798 * Passed a format string - eg "lt%d" it will try and find a suitable
799 * id. It scans list of devices to build up a free map, then chooses
800 * the first empty slot. The caller must hold the dev_base or rtnl lock
801 * while allocating the name and adding the device in order to avoid
802 * duplicates.
803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
804 * Returns the number of the unit assigned or a negative errno code.
807 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
809 int i = 0;
810 const char *p;
811 const int max_netdevices = 8*PAGE_SIZE;
812 unsigned long *inuse;
813 struct net_device *d;
815 p = strnchr(name, IFNAMSIZ-1, '%');
816 if (p) {
818 * Verify the string as this thing may have come from
819 * the user. There must be either one "%d" and no other "%"
820 * characters.
822 if (p[1] != 'd' || strchr(p + 2, '%'))
823 return -EINVAL;
825 /* Use one page as a bit array of possible slots */
826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
827 if (!inuse)
828 return -ENOMEM;
830 for_each_netdev(net, d) {
831 if (!sscanf(d->name, name, &i))
832 continue;
833 if (i < 0 || i >= max_netdevices)
834 continue;
836 /* avoid cases where sscanf is not exact inverse of printf */
837 snprintf(buf, IFNAMSIZ, name, i);
838 if (!strncmp(buf, d->name, IFNAMSIZ))
839 set_bit(i, inuse);
842 i = find_first_zero_bit(inuse, max_netdevices);
843 free_page((unsigned long) inuse);
846 snprintf(buf, IFNAMSIZ, name, i);
847 if (!__dev_get_by_name(net, buf))
848 return i;
850 /* It is possible to run out of possible slots
851 * when the name is long and there isn't enough space left
852 * for the digits, or if all bits are used.
854 return -ENFILE;
858 * dev_alloc_name - allocate a name for a device
859 * @dev: device
860 * @name: name format string
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
871 int dev_alloc_name(struct net_device *dev, const char *name)
873 char buf[IFNAMSIZ];
874 struct net *net;
875 int ret;
877 BUG_ON(!dev_net(dev));
878 net = dev_net(dev);
879 ret = __dev_alloc_name(net, name, buf);
880 if (ret >= 0)
881 strlcpy(dev->name, buf, IFNAMSIZ);
882 return ret;
887 * dev_change_name - change name of a device
888 * @dev: device
889 * @newname: name (or format string) must be at least IFNAMSIZ
891 * Change name of a device, can pass format strings "eth%d".
892 * for wildcarding.
894 int dev_change_name(struct net_device *dev, char *newname)
896 char oldname[IFNAMSIZ];
897 int err = 0;
898 int ret;
899 struct net *net;
901 ASSERT_RTNL();
902 BUG_ON(!dev_net(dev));
904 net = dev_net(dev);
905 if (dev->flags & IFF_UP)
906 return -EBUSY;
908 if (!dev_valid_name(newname))
909 return -EINVAL;
911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
912 return 0;
914 memcpy(oldname, dev->name, IFNAMSIZ);
916 if (strchr(newname, '%')) {
917 err = dev_alloc_name(dev, newname);
918 if (err < 0)
919 return err;
920 strcpy(newname, dev->name);
922 else if (__dev_get_by_name(net, newname))
923 return -EEXIST;
924 else
925 strlcpy(dev->name, newname, IFNAMSIZ);
927 rollback:
928 err = device_rename(&dev->dev, dev->name);
929 if (err) {
930 memcpy(dev->name, oldname, IFNAMSIZ);
931 return err;
934 write_lock_bh(&dev_base_lock);
935 hlist_del(&dev->name_hlist);
936 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
937 write_unlock_bh(&dev_base_lock);
939 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
940 ret = notifier_to_errno(ret);
942 if (ret) {
943 if (err) {
944 printk(KERN_ERR
945 "%s: name change rollback failed: %d.\n",
946 dev->name, ret);
947 } else {
948 err = ret;
949 memcpy(dev->name, oldname, IFNAMSIZ);
950 goto rollback;
954 return err;
958 * netdev_features_change - device changes features
959 * @dev: device to cause notification
961 * Called to indicate a device has changed features.
963 void netdev_features_change(struct net_device *dev)
965 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
967 EXPORT_SYMBOL(netdev_features_change);
970 * netdev_state_change - device changes state
971 * @dev: device to cause notification
973 * Called to indicate a device has changed state. This function calls
974 * the notifier chains for netdev_chain and sends a NEWLINK message
975 * to the routing socket.
977 void netdev_state_change(struct net_device *dev)
979 if (dev->flags & IFF_UP) {
980 call_netdevice_notifiers(NETDEV_CHANGE, dev);
981 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
985 void netdev_bonding_change(struct net_device *dev)
987 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
989 EXPORT_SYMBOL(netdev_bonding_change);
992 * dev_load - load a network module
993 * @net: the applicable net namespace
994 * @name: name of interface
996 * If a network interface is not present and the process has suitable
997 * privileges this function loads the module. If module loading is not
998 * available in this kernel then it becomes a nop.
1001 void dev_load(struct net *net, const char *name)
1003 struct net_device *dev;
1005 read_lock(&dev_base_lock);
1006 dev = __dev_get_by_name(net, name);
1007 read_unlock(&dev_base_lock);
1009 if (!dev && capable(CAP_SYS_MODULE))
1010 request_module("%s", name);
1014 * dev_open - prepare an interface for use.
1015 * @dev: device to open
1017 * Takes a device from down to up state. The device's private open
1018 * function is invoked and then the multicast lists are loaded. Finally
1019 * the device is moved into the up state and a %NETDEV_UP message is
1020 * sent to the netdev notifier chain.
1022 * Calling this function on an active interface is a nop. On a failure
1023 * a negative errno code is returned.
1025 int dev_open(struct net_device *dev)
1027 int ret = 0;
1029 ASSERT_RTNL();
1032 * Is it already up?
1035 if (dev->flags & IFF_UP)
1036 return 0;
1039 * Is it even present?
1041 if (!netif_device_present(dev))
1042 return -ENODEV;
1045 * Call device private open method
1047 set_bit(__LINK_STATE_START, &dev->state);
1049 if (dev->validate_addr)
1050 ret = dev->validate_addr(dev);
1052 if (!ret && dev->open)
1053 ret = dev->open(dev);
1056 * If it went open OK then:
1059 if (ret)
1060 clear_bit(__LINK_STATE_START, &dev->state);
1061 else {
1063 * Set the flags.
1065 dev->flags |= IFF_UP;
1068 * Initialize multicasting status
1070 dev_set_rx_mode(dev);
1073 * Wakeup transmit queue engine
1075 dev_activate(dev);
1078 * ... and announce new interface.
1080 call_netdevice_notifiers(NETDEV_UP, dev);
1083 return ret;
1087 * dev_close - shutdown an interface.
1088 * @dev: device to shutdown
1090 * This function moves an active device into down state. A
1091 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1092 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1093 * chain.
1095 int dev_close(struct net_device *dev)
1097 ASSERT_RTNL();
1099 might_sleep();
1101 if (!(dev->flags & IFF_UP))
1102 return 0;
1105 * Tell people we are going down, so that they can
1106 * prepare to death, when device is still operating.
1108 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1110 clear_bit(__LINK_STATE_START, &dev->state);
1112 /* Synchronize to scheduled poll. We cannot touch poll list,
1113 * it can be even on different cpu. So just clear netif_running().
1115 * dev->stop() will invoke napi_disable() on all of it's
1116 * napi_struct instances on this device.
1118 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1120 dev_deactivate(dev);
1123 * Call the device specific close. This cannot fail.
1124 * Only if device is UP
1126 * We allow it to be called even after a DETACH hot-plug
1127 * event.
1129 if (dev->stop)
1130 dev->stop(dev);
1133 * Device is now down.
1136 dev->flags &= ~IFF_UP;
1139 * Tell people we are down
1141 call_netdevice_notifiers(NETDEV_DOWN, dev);
1143 return 0;
1148 * dev_disable_lro - disable Large Receive Offload on a device
1149 * @dev: device
1151 * Disable Large Receive Offload (LRO) on a net device. Must be
1152 * called under RTNL. This is needed if received packets may be
1153 * forwarded to another interface.
1155 void dev_disable_lro(struct net_device *dev)
1157 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1158 dev->ethtool_ops->set_flags) {
1159 u32 flags = dev->ethtool_ops->get_flags(dev);
1160 if (flags & ETH_FLAG_LRO) {
1161 flags &= ~ETH_FLAG_LRO;
1162 dev->ethtool_ops->set_flags(dev, flags);
1165 WARN_ON(dev->features & NETIF_F_LRO);
1167 EXPORT_SYMBOL(dev_disable_lro);
1170 static int dev_boot_phase = 1;
1173 * Device change register/unregister. These are not inline or static
1174 * as we export them to the world.
1178 * register_netdevice_notifier - register a network notifier block
1179 * @nb: notifier
1181 * Register a notifier to be called when network device events occur.
1182 * The notifier passed is linked into the kernel structures and must
1183 * not be reused until it has been unregistered. A negative errno code
1184 * is returned on a failure.
1186 * When registered all registration and up events are replayed
1187 * to the new notifier to allow device to have a race free
1188 * view of the network device list.
1191 int register_netdevice_notifier(struct notifier_block *nb)
1193 struct net_device *dev;
1194 struct net_device *last;
1195 struct net *net;
1196 int err;
1198 rtnl_lock();
1199 err = raw_notifier_chain_register(&netdev_chain, nb);
1200 if (err)
1201 goto unlock;
1202 if (dev_boot_phase)
1203 goto unlock;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1207 err = notifier_to_errno(err);
1208 if (err)
1209 goto rollback;
1211 if (!(dev->flags & IFF_UP))
1212 continue;
1214 nb->notifier_call(nb, NETDEV_UP, dev);
1218 unlock:
1219 rtnl_unlock();
1220 return err;
1222 rollback:
1223 last = dev;
1224 for_each_net(net) {
1225 for_each_netdev(net, dev) {
1226 if (dev == last)
1227 break;
1229 if (dev->flags & IFF_UP) {
1230 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1231 nb->notifier_call(nb, NETDEV_DOWN, dev);
1233 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1237 raw_notifier_chain_unregister(&netdev_chain, nb);
1238 goto unlock;
1242 * unregister_netdevice_notifier - unregister a network notifier block
1243 * @nb: notifier
1245 * Unregister a notifier previously registered by
1246 * register_netdevice_notifier(). The notifier is unlinked into the
1247 * kernel structures and may then be reused. A negative errno code
1248 * is returned on a failure.
1251 int unregister_netdevice_notifier(struct notifier_block *nb)
1253 int err;
1255 rtnl_lock();
1256 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1257 rtnl_unlock();
1258 return err;
1262 * call_netdevice_notifiers - call all network notifier blocks
1263 * @val: value passed unmodified to notifier function
1264 * @dev: net_device pointer passed unmodified to notifier function
1266 * Call all network notifier blocks. Parameters and return value
1267 * are as for raw_notifier_call_chain().
1270 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1272 return raw_notifier_call_chain(&netdev_chain, val, dev);
1275 /* When > 0 there are consumers of rx skb time stamps */
1276 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1278 void net_enable_timestamp(void)
1280 atomic_inc(&netstamp_needed);
1283 void net_disable_timestamp(void)
1285 atomic_dec(&netstamp_needed);
1288 static inline void net_timestamp(struct sk_buff *skb)
1290 if (atomic_read(&netstamp_needed))
1291 __net_timestamp(skb);
1292 else
1293 skb->tstamp.tv64 = 0;
1297 * Support routine. Sends outgoing frames to any network
1298 * taps currently in use.
1301 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1303 struct packet_type *ptype;
1305 net_timestamp(skb);
1307 rcu_read_lock();
1308 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1309 /* Never send packets back to the socket
1310 * they originated from - MvS (miquels@drinkel.ow.org)
1312 if ((ptype->dev == dev || !ptype->dev) &&
1313 (ptype->af_packet_priv == NULL ||
1314 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1315 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1316 if (!skb2)
1317 break;
1319 /* skb->nh should be correctly
1320 set by sender, so that the second statement is
1321 just protection against buggy protocols.
1323 skb_reset_mac_header(skb2);
1325 if (skb_network_header(skb2) < skb2->data ||
1326 skb2->network_header > skb2->tail) {
1327 if (net_ratelimit())
1328 printk(KERN_CRIT "protocol %04x is "
1329 "buggy, dev %s\n",
1330 skb2->protocol, dev->name);
1331 skb_reset_network_header(skb2);
1334 skb2->transport_header = skb2->network_header;
1335 skb2->pkt_type = PACKET_OUTGOING;
1336 ptype->func(skb2, skb->dev, ptype, skb->dev);
1339 rcu_read_unlock();
1343 static inline void __netif_reschedule(struct Qdisc *q)
1345 struct softnet_data *sd;
1346 unsigned long flags;
1348 local_irq_save(flags);
1349 sd = &__get_cpu_var(softnet_data);
1350 q->next_sched = sd->output_queue;
1351 sd->output_queue = q;
1352 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1353 local_irq_restore(flags);
1356 void __netif_schedule(struct Qdisc *q)
1358 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1359 __netif_reschedule(q);
1361 EXPORT_SYMBOL(__netif_schedule);
1363 void dev_kfree_skb_irq(struct sk_buff *skb)
1365 if (atomic_dec_and_test(&skb->users)) {
1366 struct softnet_data *sd;
1367 unsigned long flags;
1369 local_irq_save(flags);
1370 sd = &__get_cpu_var(softnet_data);
1371 skb->next = sd->completion_queue;
1372 sd->completion_queue = skb;
1373 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1374 local_irq_restore(flags);
1377 EXPORT_SYMBOL(dev_kfree_skb_irq);
1379 void dev_kfree_skb_any(struct sk_buff *skb)
1381 if (in_irq() || irqs_disabled())
1382 dev_kfree_skb_irq(skb);
1383 else
1384 dev_kfree_skb(skb);
1386 EXPORT_SYMBOL(dev_kfree_skb_any);
1390 * netif_device_detach - mark device as removed
1391 * @dev: network device
1393 * Mark device as removed from system and therefore no longer available.
1395 void netif_device_detach(struct net_device *dev)
1397 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1398 netif_running(dev)) {
1399 netif_stop_queue(dev);
1402 EXPORT_SYMBOL(netif_device_detach);
1405 * netif_device_attach - mark device as attached
1406 * @dev: network device
1408 * Mark device as attached from system and restart if needed.
1410 void netif_device_attach(struct net_device *dev)
1412 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1413 netif_running(dev)) {
1414 netif_wake_queue(dev);
1415 __netdev_watchdog_up(dev);
1418 EXPORT_SYMBOL(netif_device_attach);
1420 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1422 return ((features & NETIF_F_GEN_CSUM) ||
1423 ((features & NETIF_F_IP_CSUM) &&
1424 protocol == htons(ETH_P_IP)) ||
1425 ((features & NETIF_F_IPV6_CSUM) &&
1426 protocol == htons(ETH_P_IPV6)));
1429 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1431 if (can_checksum_protocol(dev->features, skb->protocol))
1432 return true;
1434 if (skb->protocol == htons(ETH_P_8021Q)) {
1435 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1436 if (can_checksum_protocol(dev->features & dev->vlan_features,
1437 veh->h_vlan_encapsulated_proto))
1438 return true;
1441 return false;
1445 * Invalidate hardware checksum when packet is to be mangled, and
1446 * complete checksum manually on outgoing path.
1448 int skb_checksum_help(struct sk_buff *skb)
1450 __wsum csum;
1451 int ret = 0, offset;
1453 if (skb->ip_summed == CHECKSUM_COMPLETE)
1454 goto out_set_summed;
1456 if (unlikely(skb_shinfo(skb)->gso_size)) {
1457 /* Let GSO fix up the checksum. */
1458 goto out_set_summed;
1461 offset = skb->csum_start - skb_headroom(skb);
1462 BUG_ON(offset >= skb_headlen(skb));
1463 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1465 offset += skb->csum_offset;
1466 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1468 if (skb_cloned(skb) &&
1469 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1470 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1471 if (ret)
1472 goto out;
1475 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1476 out_set_summed:
1477 skb->ip_summed = CHECKSUM_NONE;
1478 out:
1479 return ret;
1483 * skb_gso_segment - Perform segmentation on skb.
1484 * @skb: buffer to segment
1485 * @features: features for the output path (see dev->features)
1487 * This function segments the given skb and returns a list of segments.
1489 * It may return NULL if the skb requires no segmentation. This is
1490 * only possible when GSO is used for verifying header integrity.
1492 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1494 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1495 struct packet_type *ptype;
1496 __be16 type = skb->protocol;
1497 int err;
1499 BUG_ON(skb_shinfo(skb)->frag_list);
1501 skb_reset_mac_header(skb);
1502 skb->mac_len = skb->network_header - skb->mac_header;
1503 __skb_pull(skb, skb->mac_len);
1505 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1506 if (skb_header_cloned(skb) &&
1507 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1508 return ERR_PTR(err);
1511 rcu_read_lock();
1512 list_for_each_entry_rcu(ptype,
1513 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1514 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1515 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1516 err = ptype->gso_send_check(skb);
1517 segs = ERR_PTR(err);
1518 if (err || skb_gso_ok(skb, features))
1519 break;
1520 __skb_push(skb, (skb->data -
1521 skb_network_header(skb)));
1523 segs = ptype->gso_segment(skb, features);
1524 break;
1527 rcu_read_unlock();
1529 __skb_push(skb, skb->data - skb_mac_header(skb));
1531 return segs;
1534 EXPORT_SYMBOL(skb_gso_segment);
1536 /* Take action when hardware reception checksum errors are detected. */
1537 #ifdef CONFIG_BUG
1538 void netdev_rx_csum_fault(struct net_device *dev)
1540 if (net_ratelimit()) {
1541 printk(KERN_ERR "%s: hw csum failure.\n",
1542 dev ? dev->name : "<unknown>");
1543 dump_stack();
1546 EXPORT_SYMBOL(netdev_rx_csum_fault);
1547 #endif
1549 /* Actually, we should eliminate this check as soon as we know, that:
1550 * 1. IOMMU is present and allows to map all the memory.
1551 * 2. No high memory really exists on this machine.
1554 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1556 #ifdef CONFIG_HIGHMEM
1557 int i;
1559 if (dev->features & NETIF_F_HIGHDMA)
1560 return 0;
1562 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1563 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1564 return 1;
1566 #endif
1567 return 0;
1570 struct dev_gso_cb {
1571 void (*destructor)(struct sk_buff *skb);
1574 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1576 static void dev_gso_skb_destructor(struct sk_buff *skb)
1578 struct dev_gso_cb *cb;
1580 do {
1581 struct sk_buff *nskb = skb->next;
1583 skb->next = nskb->next;
1584 nskb->next = NULL;
1585 kfree_skb(nskb);
1586 } while (skb->next);
1588 cb = DEV_GSO_CB(skb);
1589 if (cb->destructor)
1590 cb->destructor(skb);
1594 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1595 * @skb: buffer to segment
1597 * This function segments the given skb and stores the list of segments
1598 * in skb->next.
1600 static int dev_gso_segment(struct sk_buff *skb)
1602 struct net_device *dev = skb->dev;
1603 struct sk_buff *segs;
1604 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1605 NETIF_F_SG : 0);
1607 segs = skb_gso_segment(skb, features);
1609 /* Verifying header integrity only. */
1610 if (!segs)
1611 return 0;
1613 if (IS_ERR(segs))
1614 return PTR_ERR(segs);
1616 skb->next = segs;
1617 DEV_GSO_CB(skb)->destructor = skb->destructor;
1618 skb->destructor = dev_gso_skb_destructor;
1620 return 0;
1623 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1624 struct netdev_queue *txq)
1626 if (likely(!skb->next)) {
1627 if (!list_empty(&ptype_all))
1628 dev_queue_xmit_nit(skb, dev);
1630 if (netif_needs_gso(dev, skb)) {
1631 if (unlikely(dev_gso_segment(skb)))
1632 goto out_kfree_skb;
1633 if (skb->next)
1634 goto gso;
1637 return dev->hard_start_xmit(skb, dev);
1640 gso:
1641 do {
1642 struct sk_buff *nskb = skb->next;
1643 int rc;
1645 skb->next = nskb->next;
1646 nskb->next = NULL;
1647 rc = dev->hard_start_xmit(nskb, dev);
1648 if (unlikely(rc)) {
1649 nskb->next = skb->next;
1650 skb->next = nskb;
1651 return rc;
1653 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1654 return NETDEV_TX_BUSY;
1655 } while (skb->next);
1657 skb->destructor = DEV_GSO_CB(skb)->destructor;
1659 out_kfree_skb:
1660 kfree_skb(skb);
1661 return 0;
1664 static u32 simple_tx_hashrnd;
1665 static int simple_tx_hashrnd_initialized = 0;
1667 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1669 u32 addr1, addr2, ports;
1670 u32 hash, ihl;
1671 u8 ip_proto = 0;
1673 if (unlikely(!simple_tx_hashrnd_initialized)) {
1674 get_random_bytes(&simple_tx_hashrnd, 4);
1675 simple_tx_hashrnd_initialized = 1;
1678 switch (skb->protocol) {
1679 case __constant_htons(ETH_P_IP):
1680 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1681 ip_proto = ip_hdr(skb)->protocol;
1682 addr1 = ip_hdr(skb)->saddr;
1683 addr2 = ip_hdr(skb)->daddr;
1684 ihl = ip_hdr(skb)->ihl;
1685 break;
1686 case __constant_htons(ETH_P_IPV6):
1687 ip_proto = ipv6_hdr(skb)->nexthdr;
1688 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1689 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1690 ihl = (40 >> 2);
1691 break;
1692 default:
1693 return 0;
1697 switch (ip_proto) {
1698 case IPPROTO_TCP:
1699 case IPPROTO_UDP:
1700 case IPPROTO_DCCP:
1701 case IPPROTO_ESP:
1702 case IPPROTO_AH:
1703 case IPPROTO_SCTP:
1704 case IPPROTO_UDPLITE:
1705 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1706 break;
1708 default:
1709 ports = 0;
1710 break;
1713 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1715 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1718 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1719 struct sk_buff *skb)
1721 u16 queue_index = 0;
1723 if (dev->select_queue)
1724 queue_index = dev->select_queue(dev, skb);
1725 else if (dev->real_num_tx_queues > 1)
1726 queue_index = simple_tx_hash(dev, skb);
1728 skb_set_queue_mapping(skb, queue_index);
1729 return netdev_get_tx_queue(dev, queue_index);
1733 * dev_queue_xmit - transmit a buffer
1734 * @skb: buffer to transmit
1736 * Queue a buffer for transmission to a network device. The caller must
1737 * have set the device and priority and built the buffer before calling
1738 * this function. The function can be called from an interrupt.
1740 * A negative errno code is returned on a failure. A success does not
1741 * guarantee the frame will be transmitted as it may be dropped due
1742 * to congestion or traffic shaping.
1744 * -----------------------------------------------------------------------------------
1745 * I notice this method can also return errors from the queue disciplines,
1746 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1747 * be positive.
1749 * Regardless of the return value, the skb is consumed, so it is currently
1750 * difficult to retry a send to this method. (You can bump the ref count
1751 * before sending to hold a reference for retry if you are careful.)
1753 * When calling this method, interrupts MUST be enabled. This is because
1754 * the BH enable code must have IRQs enabled so that it will not deadlock.
1755 * --BLG
1757 int dev_queue_xmit(struct sk_buff *skb)
1759 struct net_device *dev = skb->dev;
1760 struct netdev_queue *txq;
1761 struct Qdisc *q;
1762 int rc = -ENOMEM;
1764 /* GSO will handle the following emulations directly. */
1765 if (netif_needs_gso(dev, skb))
1766 goto gso;
1768 if (skb_shinfo(skb)->frag_list &&
1769 !(dev->features & NETIF_F_FRAGLIST) &&
1770 __skb_linearize(skb))
1771 goto out_kfree_skb;
1773 /* Fragmented skb is linearized if device does not support SG,
1774 * or if at least one of fragments is in highmem and device
1775 * does not support DMA from it.
1777 if (skb_shinfo(skb)->nr_frags &&
1778 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1779 __skb_linearize(skb))
1780 goto out_kfree_skb;
1782 /* If packet is not checksummed and device does not support
1783 * checksumming for this protocol, complete checksumming here.
1785 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1786 skb_set_transport_header(skb, skb->csum_start -
1787 skb_headroom(skb));
1788 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1789 goto out_kfree_skb;
1792 gso:
1793 /* Disable soft irqs for various locks below. Also
1794 * stops preemption for RCU.
1796 rcu_read_lock_bh();
1798 txq = dev_pick_tx(dev, skb);
1799 q = rcu_dereference(txq->qdisc);
1801 #ifdef CONFIG_NET_CLS_ACT
1802 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1803 #endif
1804 if (q->enqueue) {
1805 spinlock_t *root_lock = qdisc_lock(q);
1807 spin_lock(root_lock);
1809 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1810 kfree_skb(skb);
1811 rc = NET_XMIT_DROP;
1812 } else {
1813 rc = qdisc_enqueue_root(skb, q);
1814 qdisc_run(q);
1816 spin_unlock(root_lock);
1818 goto out;
1821 /* The device has no queue. Common case for software devices:
1822 loopback, all the sorts of tunnels...
1824 Really, it is unlikely that netif_tx_lock protection is necessary
1825 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1826 counters.)
1827 However, it is possible, that they rely on protection
1828 made by us here.
1830 Check this and shot the lock. It is not prone from deadlocks.
1831 Either shot noqueue qdisc, it is even simpler 8)
1833 if (dev->flags & IFF_UP) {
1834 int cpu = smp_processor_id(); /* ok because BHs are off */
1836 if (txq->xmit_lock_owner != cpu) {
1838 HARD_TX_LOCK(dev, txq, cpu);
1840 if (!netif_tx_queue_stopped(txq)) {
1841 rc = 0;
1842 if (!dev_hard_start_xmit(skb, dev, txq)) {
1843 HARD_TX_UNLOCK(dev, txq);
1844 goto out;
1847 HARD_TX_UNLOCK(dev, txq);
1848 if (net_ratelimit())
1849 printk(KERN_CRIT "Virtual device %s asks to "
1850 "queue packet!\n", dev->name);
1851 } else {
1852 /* Recursion is detected! It is possible,
1853 * unfortunately */
1854 if (net_ratelimit())
1855 printk(KERN_CRIT "Dead loop on virtual device "
1856 "%s, fix it urgently!\n", dev->name);
1860 rc = -ENETDOWN;
1861 rcu_read_unlock_bh();
1863 out_kfree_skb:
1864 kfree_skb(skb);
1865 return rc;
1866 out:
1867 rcu_read_unlock_bh();
1868 return rc;
1872 /*=======================================================================
1873 Receiver routines
1874 =======================================================================*/
1876 int netdev_max_backlog __read_mostly = 1000;
1877 int netdev_budget __read_mostly = 300;
1878 int weight_p __read_mostly = 64; /* old backlog weight */
1880 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1884 * netif_rx - post buffer to the network code
1885 * @skb: buffer to post
1887 * This function receives a packet from a device driver and queues it for
1888 * the upper (protocol) levels to process. It always succeeds. The buffer
1889 * may be dropped during processing for congestion control or by the
1890 * protocol layers.
1892 * return values:
1893 * NET_RX_SUCCESS (no congestion)
1894 * NET_RX_DROP (packet was dropped)
1898 int netif_rx(struct sk_buff *skb)
1900 struct softnet_data *queue;
1901 unsigned long flags;
1903 /* if netpoll wants it, pretend we never saw it */
1904 if (netpoll_rx(skb))
1905 return NET_RX_DROP;
1907 if (!skb->tstamp.tv64)
1908 net_timestamp(skb);
1911 * The code is rearranged so that the path is the most
1912 * short when CPU is congested, but is still operating.
1914 local_irq_save(flags);
1915 queue = &__get_cpu_var(softnet_data);
1917 __get_cpu_var(netdev_rx_stat).total++;
1918 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1919 if (queue->input_pkt_queue.qlen) {
1920 enqueue:
1921 __skb_queue_tail(&queue->input_pkt_queue, skb);
1922 local_irq_restore(flags);
1923 return NET_RX_SUCCESS;
1926 napi_schedule(&queue->backlog);
1927 goto enqueue;
1930 __get_cpu_var(netdev_rx_stat).dropped++;
1931 local_irq_restore(flags);
1933 kfree_skb(skb);
1934 return NET_RX_DROP;
1937 int netif_rx_ni(struct sk_buff *skb)
1939 int err;
1941 preempt_disable();
1942 err = netif_rx(skb);
1943 if (local_softirq_pending())
1944 do_softirq();
1945 preempt_enable();
1947 return err;
1950 EXPORT_SYMBOL(netif_rx_ni);
1952 static void net_tx_action(struct softirq_action *h)
1954 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1956 if (sd->completion_queue) {
1957 struct sk_buff *clist;
1959 local_irq_disable();
1960 clist = sd->completion_queue;
1961 sd->completion_queue = NULL;
1962 local_irq_enable();
1964 while (clist) {
1965 struct sk_buff *skb = clist;
1966 clist = clist->next;
1968 WARN_ON(atomic_read(&skb->users));
1969 __kfree_skb(skb);
1973 if (sd->output_queue) {
1974 struct Qdisc *head;
1976 local_irq_disable();
1977 head = sd->output_queue;
1978 sd->output_queue = NULL;
1979 local_irq_enable();
1981 while (head) {
1982 struct Qdisc *q = head;
1983 spinlock_t *root_lock;
1985 head = head->next_sched;
1987 root_lock = qdisc_lock(q);
1988 if (spin_trylock(root_lock)) {
1989 smp_mb__before_clear_bit();
1990 clear_bit(__QDISC_STATE_SCHED,
1991 &q->state);
1992 qdisc_run(q);
1993 spin_unlock(root_lock);
1994 } else {
1995 if (!test_bit(__QDISC_STATE_DEACTIVATED,
1996 &q->state)) {
1997 __netif_reschedule(q);
1998 } else {
1999 smp_mb__before_clear_bit();
2000 clear_bit(__QDISC_STATE_SCHED,
2001 &q->state);
2008 static inline int deliver_skb(struct sk_buff *skb,
2009 struct packet_type *pt_prev,
2010 struct net_device *orig_dev)
2012 atomic_inc(&skb->users);
2013 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2016 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2017 /* These hooks defined here for ATM */
2018 struct net_bridge;
2019 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2020 unsigned char *addr);
2021 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2024 * If bridge module is loaded call bridging hook.
2025 * returns NULL if packet was consumed.
2027 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2028 struct sk_buff *skb) __read_mostly;
2029 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2030 struct packet_type **pt_prev, int *ret,
2031 struct net_device *orig_dev)
2033 struct net_bridge_port *port;
2035 if (skb->pkt_type == PACKET_LOOPBACK ||
2036 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2037 return skb;
2039 if (*pt_prev) {
2040 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2041 *pt_prev = NULL;
2044 return br_handle_frame_hook(port, skb);
2046 #else
2047 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2048 #endif
2050 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2051 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2052 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2054 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2055 struct packet_type **pt_prev,
2056 int *ret,
2057 struct net_device *orig_dev)
2059 if (skb->dev->macvlan_port == NULL)
2060 return skb;
2062 if (*pt_prev) {
2063 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2064 *pt_prev = NULL;
2066 return macvlan_handle_frame_hook(skb);
2068 #else
2069 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2070 #endif
2072 #ifdef CONFIG_NET_CLS_ACT
2073 /* TODO: Maybe we should just force sch_ingress to be compiled in
2074 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2075 * a compare and 2 stores extra right now if we dont have it on
2076 * but have CONFIG_NET_CLS_ACT
2077 * NOTE: This doesnt stop any functionality; if you dont have
2078 * the ingress scheduler, you just cant add policies on ingress.
2081 static int ing_filter(struct sk_buff *skb)
2083 struct net_device *dev = skb->dev;
2084 u32 ttl = G_TC_RTTL(skb->tc_verd);
2085 struct netdev_queue *rxq;
2086 int result = TC_ACT_OK;
2087 struct Qdisc *q;
2089 if (MAX_RED_LOOP < ttl++) {
2090 printk(KERN_WARNING
2091 "Redir loop detected Dropping packet (%d->%d)\n",
2092 skb->iif, dev->ifindex);
2093 return TC_ACT_SHOT;
2096 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2097 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2099 rxq = &dev->rx_queue;
2101 q = rxq->qdisc;
2102 if (q != &noop_qdisc) {
2103 spin_lock(qdisc_lock(q));
2104 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2105 result = qdisc_enqueue_root(skb, q);
2106 spin_unlock(qdisc_lock(q));
2109 return result;
2112 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2113 struct packet_type **pt_prev,
2114 int *ret, struct net_device *orig_dev)
2116 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2117 goto out;
2119 if (*pt_prev) {
2120 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2121 *pt_prev = NULL;
2122 } else {
2123 /* Huh? Why does turning on AF_PACKET affect this? */
2124 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2127 switch (ing_filter(skb)) {
2128 case TC_ACT_SHOT:
2129 case TC_ACT_STOLEN:
2130 kfree_skb(skb);
2131 return NULL;
2134 out:
2135 skb->tc_verd = 0;
2136 return skb;
2138 #endif
2141 * netif_nit_deliver - deliver received packets to network taps
2142 * @skb: buffer
2144 * This function is used to deliver incoming packets to network
2145 * taps. It should be used when the normal netif_receive_skb path
2146 * is bypassed, for example because of VLAN acceleration.
2148 void netif_nit_deliver(struct sk_buff *skb)
2150 struct packet_type *ptype;
2152 if (list_empty(&ptype_all))
2153 return;
2155 skb_reset_network_header(skb);
2156 skb_reset_transport_header(skb);
2157 skb->mac_len = skb->network_header - skb->mac_header;
2159 rcu_read_lock();
2160 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2161 if (!ptype->dev || ptype->dev == skb->dev)
2162 deliver_skb(skb, ptype, skb->dev);
2164 rcu_read_unlock();
2168 * netif_receive_skb - process receive buffer from network
2169 * @skb: buffer to process
2171 * netif_receive_skb() is the main receive data processing function.
2172 * It always succeeds. The buffer may be dropped during processing
2173 * for congestion control or by the protocol layers.
2175 * This function may only be called from softirq context and interrupts
2176 * should be enabled.
2178 * Return values (usually ignored):
2179 * NET_RX_SUCCESS: no congestion
2180 * NET_RX_DROP: packet was dropped
2182 int netif_receive_skb(struct sk_buff *skb)
2184 struct packet_type *ptype, *pt_prev;
2185 struct net_device *orig_dev;
2186 struct net_device *null_or_orig;
2187 int ret = NET_RX_DROP;
2188 __be16 type;
2190 /* if we've gotten here through NAPI, check netpoll */
2191 if (netpoll_receive_skb(skb))
2192 return NET_RX_DROP;
2194 if (!skb->tstamp.tv64)
2195 net_timestamp(skb);
2197 if (!skb->iif)
2198 skb->iif = skb->dev->ifindex;
2200 null_or_orig = NULL;
2201 orig_dev = skb->dev;
2202 if (orig_dev->master) {
2203 if (skb_bond_should_drop(skb))
2204 null_or_orig = orig_dev; /* deliver only exact match */
2205 else
2206 skb->dev = orig_dev->master;
2209 __get_cpu_var(netdev_rx_stat).total++;
2211 skb_reset_network_header(skb);
2212 skb_reset_transport_header(skb);
2213 skb->mac_len = skb->network_header - skb->mac_header;
2215 pt_prev = NULL;
2217 rcu_read_lock();
2219 /* Don't receive packets in an exiting network namespace */
2220 if (!net_alive(dev_net(skb->dev)))
2221 goto out;
2223 #ifdef CONFIG_NET_CLS_ACT
2224 if (skb->tc_verd & TC_NCLS) {
2225 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2226 goto ncls;
2228 #endif
2230 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2231 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2232 ptype->dev == orig_dev) {
2233 if (pt_prev)
2234 ret = deliver_skb(skb, pt_prev, orig_dev);
2235 pt_prev = ptype;
2239 #ifdef CONFIG_NET_CLS_ACT
2240 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2241 if (!skb)
2242 goto out;
2243 ncls:
2244 #endif
2246 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2247 if (!skb)
2248 goto out;
2249 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2250 if (!skb)
2251 goto out;
2253 type = skb->protocol;
2254 list_for_each_entry_rcu(ptype,
2255 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2256 if (ptype->type == type &&
2257 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2258 ptype->dev == orig_dev)) {
2259 if (pt_prev)
2260 ret = deliver_skb(skb, pt_prev, orig_dev);
2261 pt_prev = ptype;
2265 if (pt_prev) {
2266 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2267 } else {
2268 kfree_skb(skb);
2269 /* Jamal, now you will not able to escape explaining
2270 * me how you were going to use this. :-)
2272 ret = NET_RX_DROP;
2275 out:
2276 rcu_read_unlock();
2277 return ret;
2280 /* Network device is going away, flush any packets still pending */
2281 static void flush_backlog(void *arg)
2283 struct net_device *dev = arg;
2284 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2285 struct sk_buff *skb, *tmp;
2287 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2288 if (skb->dev == dev) {
2289 __skb_unlink(skb, &queue->input_pkt_queue);
2290 kfree_skb(skb);
2294 static int process_backlog(struct napi_struct *napi, int quota)
2296 int work = 0;
2297 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2298 unsigned long start_time = jiffies;
2300 napi->weight = weight_p;
2301 do {
2302 struct sk_buff *skb;
2304 local_irq_disable();
2305 skb = __skb_dequeue(&queue->input_pkt_queue);
2306 if (!skb) {
2307 __napi_complete(napi);
2308 local_irq_enable();
2309 break;
2311 local_irq_enable();
2313 netif_receive_skb(skb);
2314 } while (++work < quota && jiffies == start_time);
2316 return work;
2320 * __napi_schedule - schedule for receive
2321 * @n: entry to schedule
2323 * The entry's receive function will be scheduled to run
2325 void __napi_schedule(struct napi_struct *n)
2327 unsigned long flags;
2329 local_irq_save(flags);
2330 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2331 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2332 local_irq_restore(flags);
2334 EXPORT_SYMBOL(__napi_schedule);
2337 static void net_rx_action(struct softirq_action *h)
2339 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2340 unsigned long start_time = jiffies;
2341 int budget = netdev_budget;
2342 void *have;
2344 local_irq_disable();
2346 while (!list_empty(list)) {
2347 struct napi_struct *n;
2348 int work, weight;
2350 /* If softirq window is exhuasted then punt.
2352 * Note that this is a slight policy change from the
2353 * previous NAPI code, which would allow up to 2
2354 * jiffies to pass before breaking out. The test
2355 * used to be "jiffies - start_time > 1".
2357 if (unlikely(budget <= 0 || jiffies != start_time))
2358 goto softnet_break;
2360 local_irq_enable();
2362 /* Even though interrupts have been re-enabled, this
2363 * access is safe because interrupts can only add new
2364 * entries to the tail of this list, and only ->poll()
2365 * calls can remove this head entry from the list.
2367 n = list_entry(list->next, struct napi_struct, poll_list);
2369 have = netpoll_poll_lock(n);
2371 weight = n->weight;
2373 /* This NAPI_STATE_SCHED test is for avoiding a race
2374 * with netpoll's poll_napi(). Only the entity which
2375 * obtains the lock and sees NAPI_STATE_SCHED set will
2376 * actually make the ->poll() call. Therefore we avoid
2377 * accidently calling ->poll() when NAPI is not scheduled.
2379 work = 0;
2380 if (test_bit(NAPI_STATE_SCHED, &n->state))
2381 work = n->poll(n, weight);
2383 WARN_ON_ONCE(work > weight);
2385 budget -= work;
2387 local_irq_disable();
2389 /* Drivers must not modify the NAPI state if they
2390 * consume the entire weight. In such cases this code
2391 * still "owns" the NAPI instance and therefore can
2392 * move the instance around on the list at-will.
2394 if (unlikely(work == weight)) {
2395 if (unlikely(napi_disable_pending(n)))
2396 __napi_complete(n);
2397 else
2398 list_move_tail(&n->poll_list, list);
2401 netpoll_poll_unlock(have);
2403 out:
2404 local_irq_enable();
2406 #ifdef CONFIG_NET_DMA
2408 * There may not be any more sk_buffs coming right now, so push
2409 * any pending DMA copies to hardware
2411 if (!cpus_empty(net_dma.channel_mask)) {
2412 int chan_idx;
2413 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2414 struct dma_chan *chan = net_dma.channels[chan_idx];
2415 if (chan)
2416 dma_async_memcpy_issue_pending(chan);
2419 #endif
2421 return;
2423 softnet_break:
2424 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2425 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2426 goto out;
2429 static gifconf_func_t * gifconf_list [NPROTO];
2432 * register_gifconf - register a SIOCGIF handler
2433 * @family: Address family
2434 * @gifconf: Function handler
2436 * Register protocol dependent address dumping routines. The handler
2437 * that is passed must not be freed or reused until it has been replaced
2438 * by another handler.
2440 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2442 if (family >= NPROTO)
2443 return -EINVAL;
2444 gifconf_list[family] = gifconf;
2445 return 0;
2450 * Map an interface index to its name (SIOCGIFNAME)
2454 * We need this ioctl for efficient implementation of the
2455 * if_indextoname() function required by the IPv6 API. Without
2456 * it, we would have to search all the interfaces to find a
2457 * match. --pb
2460 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2462 struct net_device *dev;
2463 struct ifreq ifr;
2466 * Fetch the caller's info block.
2469 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2470 return -EFAULT;
2472 read_lock(&dev_base_lock);
2473 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2474 if (!dev) {
2475 read_unlock(&dev_base_lock);
2476 return -ENODEV;
2479 strcpy(ifr.ifr_name, dev->name);
2480 read_unlock(&dev_base_lock);
2482 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2483 return -EFAULT;
2484 return 0;
2488 * Perform a SIOCGIFCONF call. This structure will change
2489 * size eventually, and there is nothing I can do about it.
2490 * Thus we will need a 'compatibility mode'.
2493 static int dev_ifconf(struct net *net, char __user *arg)
2495 struct ifconf ifc;
2496 struct net_device *dev;
2497 char __user *pos;
2498 int len;
2499 int total;
2500 int i;
2503 * Fetch the caller's info block.
2506 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2507 return -EFAULT;
2509 pos = ifc.ifc_buf;
2510 len = ifc.ifc_len;
2513 * Loop over the interfaces, and write an info block for each.
2516 total = 0;
2517 for_each_netdev(net, dev) {
2518 for (i = 0; i < NPROTO; i++) {
2519 if (gifconf_list[i]) {
2520 int done;
2521 if (!pos)
2522 done = gifconf_list[i](dev, NULL, 0);
2523 else
2524 done = gifconf_list[i](dev, pos + total,
2525 len - total);
2526 if (done < 0)
2527 return -EFAULT;
2528 total += done;
2534 * All done. Write the updated control block back to the caller.
2536 ifc.ifc_len = total;
2539 * Both BSD and Solaris return 0 here, so we do too.
2541 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2544 #ifdef CONFIG_PROC_FS
2546 * This is invoked by the /proc filesystem handler to display a device
2547 * in detail.
2549 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2550 __acquires(dev_base_lock)
2552 struct net *net = seq_file_net(seq);
2553 loff_t off;
2554 struct net_device *dev;
2556 read_lock(&dev_base_lock);
2557 if (!*pos)
2558 return SEQ_START_TOKEN;
2560 off = 1;
2561 for_each_netdev(net, dev)
2562 if (off++ == *pos)
2563 return dev;
2565 return NULL;
2568 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2570 struct net *net = seq_file_net(seq);
2571 ++*pos;
2572 return v == SEQ_START_TOKEN ?
2573 first_net_device(net) : next_net_device((struct net_device *)v);
2576 void dev_seq_stop(struct seq_file *seq, void *v)
2577 __releases(dev_base_lock)
2579 read_unlock(&dev_base_lock);
2582 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2584 struct net_device_stats *stats = dev->get_stats(dev);
2586 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2587 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2588 dev->name, stats->rx_bytes, stats->rx_packets,
2589 stats->rx_errors,
2590 stats->rx_dropped + stats->rx_missed_errors,
2591 stats->rx_fifo_errors,
2592 stats->rx_length_errors + stats->rx_over_errors +
2593 stats->rx_crc_errors + stats->rx_frame_errors,
2594 stats->rx_compressed, stats->multicast,
2595 stats->tx_bytes, stats->tx_packets,
2596 stats->tx_errors, stats->tx_dropped,
2597 stats->tx_fifo_errors, stats->collisions,
2598 stats->tx_carrier_errors +
2599 stats->tx_aborted_errors +
2600 stats->tx_window_errors +
2601 stats->tx_heartbeat_errors,
2602 stats->tx_compressed);
2606 * Called from the PROCfs module. This now uses the new arbitrary sized
2607 * /proc/net interface to create /proc/net/dev
2609 static int dev_seq_show(struct seq_file *seq, void *v)
2611 if (v == SEQ_START_TOKEN)
2612 seq_puts(seq, "Inter-| Receive "
2613 " | Transmit\n"
2614 " face |bytes packets errs drop fifo frame "
2615 "compressed multicast|bytes packets errs "
2616 "drop fifo colls carrier compressed\n");
2617 else
2618 dev_seq_printf_stats(seq, v);
2619 return 0;
2622 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2624 struct netif_rx_stats *rc = NULL;
2626 while (*pos < nr_cpu_ids)
2627 if (cpu_online(*pos)) {
2628 rc = &per_cpu(netdev_rx_stat, *pos);
2629 break;
2630 } else
2631 ++*pos;
2632 return rc;
2635 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2637 return softnet_get_online(pos);
2640 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2642 ++*pos;
2643 return softnet_get_online(pos);
2646 static void softnet_seq_stop(struct seq_file *seq, void *v)
2650 static int softnet_seq_show(struct seq_file *seq, void *v)
2652 struct netif_rx_stats *s = v;
2654 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2655 s->total, s->dropped, s->time_squeeze, 0,
2656 0, 0, 0, 0, /* was fastroute */
2657 s->cpu_collision );
2658 return 0;
2661 static const struct seq_operations dev_seq_ops = {
2662 .start = dev_seq_start,
2663 .next = dev_seq_next,
2664 .stop = dev_seq_stop,
2665 .show = dev_seq_show,
2668 static int dev_seq_open(struct inode *inode, struct file *file)
2670 return seq_open_net(inode, file, &dev_seq_ops,
2671 sizeof(struct seq_net_private));
2674 static const struct file_operations dev_seq_fops = {
2675 .owner = THIS_MODULE,
2676 .open = dev_seq_open,
2677 .read = seq_read,
2678 .llseek = seq_lseek,
2679 .release = seq_release_net,
2682 static const struct seq_operations softnet_seq_ops = {
2683 .start = softnet_seq_start,
2684 .next = softnet_seq_next,
2685 .stop = softnet_seq_stop,
2686 .show = softnet_seq_show,
2689 static int softnet_seq_open(struct inode *inode, struct file *file)
2691 return seq_open(file, &softnet_seq_ops);
2694 static const struct file_operations softnet_seq_fops = {
2695 .owner = THIS_MODULE,
2696 .open = softnet_seq_open,
2697 .read = seq_read,
2698 .llseek = seq_lseek,
2699 .release = seq_release,
2702 static void *ptype_get_idx(loff_t pos)
2704 struct packet_type *pt = NULL;
2705 loff_t i = 0;
2706 int t;
2708 list_for_each_entry_rcu(pt, &ptype_all, list) {
2709 if (i == pos)
2710 return pt;
2711 ++i;
2714 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2715 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2716 if (i == pos)
2717 return pt;
2718 ++i;
2721 return NULL;
2724 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2725 __acquires(RCU)
2727 rcu_read_lock();
2728 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2731 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2733 struct packet_type *pt;
2734 struct list_head *nxt;
2735 int hash;
2737 ++*pos;
2738 if (v == SEQ_START_TOKEN)
2739 return ptype_get_idx(0);
2741 pt = v;
2742 nxt = pt->list.next;
2743 if (pt->type == htons(ETH_P_ALL)) {
2744 if (nxt != &ptype_all)
2745 goto found;
2746 hash = 0;
2747 nxt = ptype_base[0].next;
2748 } else
2749 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2751 while (nxt == &ptype_base[hash]) {
2752 if (++hash >= PTYPE_HASH_SIZE)
2753 return NULL;
2754 nxt = ptype_base[hash].next;
2756 found:
2757 return list_entry(nxt, struct packet_type, list);
2760 static void ptype_seq_stop(struct seq_file *seq, void *v)
2761 __releases(RCU)
2763 rcu_read_unlock();
2766 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2768 #ifdef CONFIG_KALLSYMS
2769 unsigned long offset = 0, symsize;
2770 const char *symname;
2771 char *modname;
2772 char namebuf[128];
2774 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2775 &modname, namebuf);
2777 if (symname) {
2778 char *delim = ":";
2780 if (!modname)
2781 modname = delim = "";
2782 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2783 symname, offset);
2784 return;
2786 #endif
2788 seq_printf(seq, "[%p]", sym);
2791 static int ptype_seq_show(struct seq_file *seq, void *v)
2793 struct packet_type *pt = v;
2795 if (v == SEQ_START_TOKEN)
2796 seq_puts(seq, "Type Device Function\n");
2797 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2798 if (pt->type == htons(ETH_P_ALL))
2799 seq_puts(seq, "ALL ");
2800 else
2801 seq_printf(seq, "%04x", ntohs(pt->type));
2803 seq_printf(seq, " %-8s ",
2804 pt->dev ? pt->dev->name : "");
2805 ptype_seq_decode(seq, pt->func);
2806 seq_putc(seq, '\n');
2809 return 0;
2812 static const struct seq_operations ptype_seq_ops = {
2813 .start = ptype_seq_start,
2814 .next = ptype_seq_next,
2815 .stop = ptype_seq_stop,
2816 .show = ptype_seq_show,
2819 static int ptype_seq_open(struct inode *inode, struct file *file)
2821 return seq_open_net(inode, file, &ptype_seq_ops,
2822 sizeof(struct seq_net_private));
2825 static const struct file_operations ptype_seq_fops = {
2826 .owner = THIS_MODULE,
2827 .open = ptype_seq_open,
2828 .read = seq_read,
2829 .llseek = seq_lseek,
2830 .release = seq_release_net,
2834 static int __net_init dev_proc_net_init(struct net *net)
2836 int rc = -ENOMEM;
2838 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2839 goto out;
2840 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2841 goto out_dev;
2842 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2843 goto out_softnet;
2845 if (wext_proc_init(net))
2846 goto out_ptype;
2847 rc = 0;
2848 out:
2849 return rc;
2850 out_ptype:
2851 proc_net_remove(net, "ptype");
2852 out_softnet:
2853 proc_net_remove(net, "softnet_stat");
2854 out_dev:
2855 proc_net_remove(net, "dev");
2856 goto out;
2859 static void __net_exit dev_proc_net_exit(struct net *net)
2861 wext_proc_exit(net);
2863 proc_net_remove(net, "ptype");
2864 proc_net_remove(net, "softnet_stat");
2865 proc_net_remove(net, "dev");
2868 static struct pernet_operations __net_initdata dev_proc_ops = {
2869 .init = dev_proc_net_init,
2870 .exit = dev_proc_net_exit,
2873 static int __init dev_proc_init(void)
2875 return register_pernet_subsys(&dev_proc_ops);
2877 #else
2878 #define dev_proc_init() 0
2879 #endif /* CONFIG_PROC_FS */
2883 * netdev_set_master - set up master/slave pair
2884 * @slave: slave device
2885 * @master: new master device
2887 * Changes the master device of the slave. Pass %NULL to break the
2888 * bonding. The caller must hold the RTNL semaphore. On a failure
2889 * a negative errno code is returned. On success the reference counts
2890 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2891 * function returns zero.
2893 int netdev_set_master(struct net_device *slave, struct net_device *master)
2895 struct net_device *old = slave->master;
2897 ASSERT_RTNL();
2899 if (master) {
2900 if (old)
2901 return -EBUSY;
2902 dev_hold(master);
2905 slave->master = master;
2907 synchronize_net();
2909 if (old)
2910 dev_put(old);
2912 if (master)
2913 slave->flags |= IFF_SLAVE;
2914 else
2915 slave->flags &= ~IFF_SLAVE;
2917 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2918 return 0;
2921 static void dev_change_rx_flags(struct net_device *dev, int flags)
2923 if (dev->flags & IFF_UP && dev->change_rx_flags)
2924 dev->change_rx_flags(dev, flags);
2927 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2929 unsigned short old_flags = dev->flags;
2931 ASSERT_RTNL();
2933 dev->flags |= IFF_PROMISC;
2934 dev->promiscuity += inc;
2935 if (dev->promiscuity == 0) {
2937 * Avoid overflow.
2938 * If inc causes overflow, untouch promisc and return error.
2940 if (inc < 0)
2941 dev->flags &= ~IFF_PROMISC;
2942 else {
2943 dev->promiscuity -= inc;
2944 printk(KERN_WARNING "%s: promiscuity touches roof, "
2945 "set promiscuity failed, promiscuity feature "
2946 "of device might be broken.\n", dev->name);
2947 return -EOVERFLOW;
2950 if (dev->flags != old_flags) {
2951 printk(KERN_INFO "device %s %s promiscuous mode\n",
2952 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2953 "left");
2954 if (audit_enabled)
2955 audit_log(current->audit_context, GFP_ATOMIC,
2956 AUDIT_ANOM_PROMISCUOUS,
2957 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2958 dev->name, (dev->flags & IFF_PROMISC),
2959 (old_flags & IFF_PROMISC),
2960 audit_get_loginuid(current),
2961 current->uid, current->gid,
2962 audit_get_sessionid(current));
2964 dev_change_rx_flags(dev, IFF_PROMISC);
2966 return 0;
2970 * dev_set_promiscuity - update promiscuity count on a device
2971 * @dev: device
2972 * @inc: modifier
2974 * Add or remove promiscuity from a device. While the count in the device
2975 * remains above zero the interface remains promiscuous. Once it hits zero
2976 * the device reverts back to normal filtering operation. A negative inc
2977 * value is used to drop promiscuity on the device.
2978 * Return 0 if successful or a negative errno code on error.
2980 int dev_set_promiscuity(struct net_device *dev, int inc)
2982 unsigned short old_flags = dev->flags;
2983 int err;
2985 err = __dev_set_promiscuity(dev, inc);
2986 if (err < 0)
2987 return err;
2988 if (dev->flags != old_flags)
2989 dev_set_rx_mode(dev);
2990 return err;
2994 * dev_set_allmulti - update allmulti count on a device
2995 * @dev: device
2996 * @inc: modifier
2998 * Add or remove reception of all multicast frames to a device. While the
2999 * count in the device remains above zero the interface remains listening
3000 * to all interfaces. Once it hits zero the device reverts back to normal
3001 * filtering operation. A negative @inc value is used to drop the counter
3002 * when releasing a resource needing all multicasts.
3003 * Return 0 if successful or a negative errno code on error.
3006 int dev_set_allmulti(struct net_device *dev, int inc)
3008 unsigned short old_flags = dev->flags;
3010 ASSERT_RTNL();
3012 dev->flags |= IFF_ALLMULTI;
3013 dev->allmulti += inc;
3014 if (dev->allmulti == 0) {
3016 * Avoid overflow.
3017 * If inc causes overflow, untouch allmulti and return error.
3019 if (inc < 0)
3020 dev->flags &= ~IFF_ALLMULTI;
3021 else {
3022 dev->allmulti -= inc;
3023 printk(KERN_WARNING "%s: allmulti touches roof, "
3024 "set allmulti failed, allmulti feature of "
3025 "device might be broken.\n", dev->name);
3026 return -EOVERFLOW;
3029 if (dev->flags ^ old_flags) {
3030 dev_change_rx_flags(dev, IFF_ALLMULTI);
3031 dev_set_rx_mode(dev);
3033 return 0;
3037 * Upload unicast and multicast address lists to device and
3038 * configure RX filtering. When the device doesn't support unicast
3039 * filtering it is put in promiscuous mode while unicast addresses
3040 * are present.
3042 void __dev_set_rx_mode(struct net_device *dev)
3044 /* dev_open will call this function so the list will stay sane. */
3045 if (!(dev->flags&IFF_UP))
3046 return;
3048 if (!netif_device_present(dev))
3049 return;
3051 if (dev->set_rx_mode)
3052 dev->set_rx_mode(dev);
3053 else {
3054 /* Unicast addresses changes may only happen under the rtnl,
3055 * therefore calling __dev_set_promiscuity here is safe.
3057 if (dev->uc_count > 0 && !dev->uc_promisc) {
3058 __dev_set_promiscuity(dev, 1);
3059 dev->uc_promisc = 1;
3060 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3061 __dev_set_promiscuity(dev, -1);
3062 dev->uc_promisc = 0;
3065 if (dev->set_multicast_list)
3066 dev->set_multicast_list(dev);
3070 void dev_set_rx_mode(struct net_device *dev)
3072 netif_addr_lock_bh(dev);
3073 __dev_set_rx_mode(dev);
3074 netif_addr_unlock_bh(dev);
3077 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3078 void *addr, int alen, int glbl)
3080 struct dev_addr_list *da;
3082 for (; (da = *list) != NULL; list = &da->next) {
3083 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3084 alen == da->da_addrlen) {
3085 if (glbl) {
3086 int old_glbl = da->da_gusers;
3087 da->da_gusers = 0;
3088 if (old_glbl == 0)
3089 break;
3091 if (--da->da_users)
3092 return 0;
3094 *list = da->next;
3095 kfree(da);
3096 (*count)--;
3097 return 0;
3100 return -ENOENT;
3103 int __dev_addr_add(struct dev_addr_list **list, int *count,
3104 void *addr, int alen, int glbl)
3106 struct dev_addr_list *da;
3108 for (da = *list; da != NULL; da = da->next) {
3109 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3110 da->da_addrlen == alen) {
3111 if (glbl) {
3112 int old_glbl = da->da_gusers;
3113 da->da_gusers = 1;
3114 if (old_glbl)
3115 return 0;
3117 da->da_users++;
3118 return 0;
3122 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3123 if (da == NULL)
3124 return -ENOMEM;
3125 memcpy(da->da_addr, addr, alen);
3126 da->da_addrlen = alen;
3127 da->da_users = 1;
3128 da->da_gusers = glbl ? 1 : 0;
3129 da->next = *list;
3130 *list = da;
3131 (*count)++;
3132 return 0;
3136 * dev_unicast_delete - Release secondary unicast address.
3137 * @dev: device
3138 * @addr: address to delete
3139 * @alen: length of @addr
3141 * Release reference to a secondary unicast address and remove it
3142 * from the device if the reference count drops to zero.
3144 * The caller must hold the rtnl_mutex.
3146 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3148 int err;
3150 ASSERT_RTNL();
3152 netif_addr_lock_bh(dev);
3153 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3154 if (!err)
3155 __dev_set_rx_mode(dev);
3156 netif_addr_unlock_bh(dev);
3157 return err;
3159 EXPORT_SYMBOL(dev_unicast_delete);
3162 * dev_unicast_add - add a secondary unicast address
3163 * @dev: device
3164 * @addr: address to add
3165 * @alen: length of @addr
3167 * Add a secondary unicast address to the device or increase
3168 * the reference count if it already exists.
3170 * The caller must hold the rtnl_mutex.
3172 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3174 int err;
3176 ASSERT_RTNL();
3178 netif_addr_lock_bh(dev);
3179 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3180 if (!err)
3181 __dev_set_rx_mode(dev);
3182 netif_addr_unlock_bh(dev);
3183 return err;
3185 EXPORT_SYMBOL(dev_unicast_add);
3187 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3188 struct dev_addr_list **from, int *from_count)
3190 struct dev_addr_list *da, *next;
3191 int err = 0;
3193 da = *from;
3194 while (da != NULL) {
3195 next = da->next;
3196 if (!da->da_synced) {
3197 err = __dev_addr_add(to, to_count,
3198 da->da_addr, da->da_addrlen, 0);
3199 if (err < 0)
3200 break;
3201 da->da_synced = 1;
3202 da->da_users++;
3203 } else if (da->da_users == 1) {
3204 __dev_addr_delete(to, to_count,
3205 da->da_addr, da->da_addrlen, 0);
3206 __dev_addr_delete(from, from_count,
3207 da->da_addr, da->da_addrlen, 0);
3209 da = next;
3211 return err;
3214 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3215 struct dev_addr_list **from, int *from_count)
3217 struct dev_addr_list *da, *next;
3219 da = *from;
3220 while (da != NULL) {
3221 next = da->next;
3222 if (da->da_synced) {
3223 __dev_addr_delete(to, to_count,
3224 da->da_addr, da->da_addrlen, 0);
3225 da->da_synced = 0;
3226 __dev_addr_delete(from, from_count,
3227 da->da_addr, da->da_addrlen, 0);
3229 da = next;
3234 * dev_unicast_sync - Synchronize device's unicast list to another device
3235 * @to: destination device
3236 * @from: source device
3238 * Add newly added addresses to the destination device and release
3239 * addresses that have no users left. The source device must be
3240 * locked by netif_tx_lock_bh.
3242 * This function is intended to be called from the dev->set_rx_mode
3243 * function of layered software devices.
3245 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3247 int err = 0;
3249 netif_addr_lock_bh(to);
3250 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3251 &from->uc_list, &from->uc_count);
3252 if (!err)
3253 __dev_set_rx_mode(to);
3254 netif_addr_unlock_bh(to);
3255 return err;
3257 EXPORT_SYMBOL(dev_unicast_sync);
3260 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3261 * @to: destination device
3262 * @from: source device
3264 * Remove all addresses that were added to the destination device by
3265 * dev_unicast_sync(). This function is intended to be called from the
3266 * dev->stop function of layered software devices.
3268 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3270 netif_addr_lock_bh(from);
3271 netif_addr_lock(to);
3273 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3274 &from->uc_list, &from->uc_count);
3275 __dev_set_rx_mode(to);
3277 netif_addr_unlock(to);
3278 netif_addr_unlock_bh(from);
3280 EXPORT_SYMBOL(dev_unicast_unsync);
3282 static void __dev_addr_discard(struct dev_addr_list **list)
3284 struct dev_addr_list *tmp;
3286 while (*list != NULL) {
3287 tmp = *list;
3288 *list = tmp->next;
3289 if (tmp->da_users > tmp->da_gusers)
3290 printk("__dev_addr_discard: address leakage! "
3291 "da_users=%d\n", tmp->da_users);
3292 kfree(tmp);
3296 static void dev_addr_discard(struct net_device *dev)
3298 netif_addr_lock_bh(dev);
3300 __dev_addr_discard(&dev->uc_list);
3301 dev->uc_count = 0;
3303 __dev_addr_discard(&dev->mc_list);
3304 dev->mc_count = 0;
3306 netif_addr_unlock_bh(dev);
3309 unsigned dev_get_flags(const struct net_device *dev)
3311 unsigned flags;
3313 flags = (dev->flags & ~(IFF_PROMISC |
3314 IFF_ALLMULTI |
3315 IFF_RUNNING |
3316 IFF_LOWER_UP |
3317 IFF_DORMANT)) |
3318 (dev->gflags & (IFF_PROMISC |
3319 IFF_ALLMULTI));
3321 if (netif_running(dev)) {
3322 if (netif_oper_up(dev))
3323 flags |= IFF_RUNNING;
3324 if (netif_carrier_ok(dev))
3325 flags |= IFF_LOWER_UP;
3326 if (netif_dormant(dev))
3327 flags |= IFF_DORMANT;
3330 return flags;
3333 int dev_change_flags(struct net_device *dev, unsigned flags)
3335 int ret, changes;
3336 int old_flags = dev->flags;
3338 ASSERT_RTNL();
3341 * Set the flags on our device.
3344 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3345 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3346 IFF_AUTOMEDIA)) |
3347 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3348 IFF_ALLMULTI));
3351 * Load in the correct multicast list now the flags have changed.
3354 if ((old_flags ^ flags) & IFF_MULTICAST)
3355 dev_change_rx_flags(dev, IFF_MULTICAST);
3357 dev_set_rx_mode(dev);
3360 * Have we downed the interface. We handle IFF_UP ourselves
3361 * according to user attempts to set it, rather than blindly
3362 * setting it.
3365 ret = 0;
3366 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3367 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3369 if (!ret)
3370 dev_set_rx_mode(dev);
3373 if (dev->flags & IFF_UP &&
3374 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3375 IFF_VOLATILE)))
3376 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3378 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3379 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3380 dev->gflags ^= IFF_PROMISC;
3381 dev_set_promiscuity(dev, inc);
3384 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3385 is important. Some (broken) drivers set IFF_PROMISC, when
3386 IFF_ALLMULTI is requested not asking us and not reporting.
3388 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3389 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3390 dev->gflags ^= IFF_ALLMULTI;
3391 dev_set_allmulti(dev, inc);
3394 /* Exclude state transition flags, already notified */
3395 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3396 if (changes)
3397 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3399 return ret;
3402 int dev_set_mtu(struct net_device *dev, int new_mtu)
3404 int err;
3406 if (new_mtu == dev->mtu)
3407 return 0;
3409 /* MTU must be positive. */
3410 if (new_mtu < 0)
3411 return -EINVAL;
3413 if (!netif_device_present(dev))
3414 return -ENODEV;
3416 err = 0;
3417 if (dev->change_mtu)
3418 err = dev->change_mtu(dev, new_mtu);
3419 else
3420 dev->mtu = new_mtu;
3421 if (!err && dev->flags & IFF_UP)
3422 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3423 return err;
3426 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3428 int err;
3430 if (!dev->set_mac_address)
3431 return -EOPNOTSUPP;
3432 if (sa->sa_family != dev->type)
3433 return -EINVAL;
3434 if (!netif_device_present(dev))
3435 return -ENODEV;
3436 err = dev->set_mac_address(dev, sa);
3437 if (!err)
3438 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3439 return err;
3443 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3445 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3447 int err;
3448 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3450 if (!dev)
3451 return -ENODEV;
3453 switch (cmd) {
3454 case SIOCGIFFLAGS: /* Get interface flags */
3455 ifr->ifr_flags = dev_get_flags(dev);
3456 return 0;
3458 case SIOCGIFMETRIC: /* Get the metric on the interface
3459 (currently unused) */
3460 ifr->ifr_metric = 0;
3461 return 0;
3463 case SIOCGIFMTU: /* Get the MTU of a device */
3464 ifr->ifr_mtu = dev->mtu;
3465 return 0;
3467 case SIOCGIFHWADDR:
3468 if (!dev->addr_len)
3469 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3470 else
3471 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3472 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3473 ifr->ifr_hwaddr.sa_family = dev->type;
3474 return 0;
3476 case SIOCGIFSLAVE:
3477 err = -EINVAL;
3478 break;
3480 case SIOCGIFMAP:
3481 ifr->ifr_map.mem_start = dev->mem_start;
3482 ifr->ifr_map.mem_end = dev->mem_end;
3483 ifr->ifr_map.base_addr = dev->base_addr;
3484 ifr->ifr_map.irq = dev->irq;
3485 ifr->ifr_map.dma = dev->dma;
3486 ifr->ifr_map.port = dev->if_port;
3487 return 0;
3489 case SIOCGIFINDEX:
3490 ifr->ifr_ifindex = dev->ifindex;
3491 return 0;
3493 case SIOCGIFTXQLEN:
3494 ifr->ifr_qlen = dev->tx_queue_len;
3495 return 0;
3497 default:
3498 /* dev_ioctl() should ensure this case
3499 * is never reached
3501 WARN_ON(1);
3502 err = -EINVAL;
3503 break;
3506 return err;
3510 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3512 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3514 int err;
3515 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3517 if (!dev)
3518 return -ENODEV;
3520 switch (cmd) {
3521 case SIOCSIFFLAGS: /* Set interface flags */
3522 return dev_change_flags(dev, ifr->ifr_flags);
3524 case SIOCSIFMETRIC: /* Set the metric on the interface
3525 (currently unused) */
3526 return -EOPNOTSUPP;
3528 case SIOCSIFMTU: /* Set the MTU of a device */
3529 return dev_set_mtu(dev, ifr->ifr_mtu);
3531 case SIOCSIFHWADDR:
3532 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3534 case SIOCSIFHWBROADCAST:
3535 if (ifr->ifr_hwaddr.sa_family != dev->type)
3536 return -EINVAL;
3537 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3538 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3539 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3540 return 0;
3542 case SIOCSIFMAP:
3543 if (dev->set_config) {
3544 if (!netif_device_present(dev))
3545 return -ENODEV;
3546 return dev->set_config(dev, &ifr->ifr_map);
3548 return -EOPNOTSUPP;
3550 case SIOCADDMULTI:
3551 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3552 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3553 return -EINVAL;
3554 if (!netif_device_present(dev))
3555 return -ENODEV;
3556 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3557 dev->addr_len, 1);
3559 case SIOCDELMULTI:
3560 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3561 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3562 return -EINVAL;
3563 if (!netif_device_present(dev))
3564 return -ENODEV;
3565 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3566 dev->addr_len, 1);
3568 case SIOCSIFTXQLEN:
3569 if (ifr->ifr_qlen < 0)
3570 return -EINVAL;
3571 dev->tx_queue_len = ifr->ifr_qlen;
3572 return 0;
3574 case SIOCSIFNAME:
3575 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3576 return dev_change_name(dev, ifr->ifr_newname);
3579 * Unknown or private ioctl
3582 default:
3583 if ((cmd >= SIOCDEVPRIVATE &&
3584 cmd <= SIOCDEVPRIVATE + 15) ||
3585 cmd == SIOCBONDENSLAVE ||
3586 cmd == SIOCBONDRELEASE ||
3587 cmd == SIOCBONDSETHWADDR ||
3588 cmd == SIOCBONDSLAVEINFOQUERY ||
3589 cmd == SIOCBONDINFOQUERY ||
3590 cmd == SIOCBONDCHANGEACTIVE ||
3591 cmd == SIOCGMIIPHY ||
3592 cmd == SIOCGMIIREG ||
3593 cmd == SIOCSMIIREG ||
3594 cmd == SIOCBRADDIF ||
3595 cmd == SIOCBRDELIF ||
3596 cmd == SIOCWANDEV) {
3597 err = -EOPNOTSUPP;
3598 if (dev->do_ioctl) {
3599 if (netif_device_present(dev))
3600 err = dev->do_ioctl(dev, ifr,
3601 cmd);
3602 else
3603 err = -ENODEV;
3605 } else
3606 err = -EINVAL;
3609 return err;
3613 * This function handles all "interface"-type I/O control requests. The actual
3614 * 'doing' part of this is dev_ifsioc above.
3618 * dev_ioctl - network device ioctl
3619 * @net: the applicable net namespace
3620 * @cmd: command to issue
3621 * @arg: pointer to a struct ifreq in user space
3623 * Issue ioctl functions to devices. This is normally called by the
3624 * user space syscall interfaces but can sometimes be useful for
3625 * other purposes. The return value is the return from the syscall if
3626 * positive or a negative errno code on error.
3629 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3631 struct ifreq ifr;
3632 int ret;
3633 char *colon;
3635 /* One special case: SIOCGIFCONF takes ifconf argument
3636 and requires shared lock, because it sleeps writing
3637 to user space.
3640 if (cmd == SIOCGIFCONF) {
3641 rtnl_lock();
3642 ret = dev_ifconf(net, (char __user *) arg);
3643 rtnl_unlock();
3644 return ret;
3646 if (cmd == SIOCGIFNAME)
3647 return dev_ifname(net, (struct ifreq __user *)arg);
3649 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3650 return -EFAULT;
3652 ifr.ifr_name[IFNAMSIZ-1] = 0;
3654 colon = strchr(ifr.ifr_name, ':');
3655 if (colon)
3656 *colon = 0;
3659 * See which interface the caller is talking about.
3662 switch (cmd) {
3664 * These ioctl calls:
3665 * - can be done by all.
3666 * - atomic and do not require locking.
3667 * - return a value
3669 case SIOCGIFFLAGS:
3670 case SIOCGIFMETRIC:
3671 case SIOCGIFMTU:
3672 case SIOCGIFHWADDR:
3673 case SIOCGIFSLAVE:
3674 case SIOCGIFMAP:
3675 case SIOCGIFINDEX:
3676 case SIOCGIFTXQLEN:
3677 dev_load(net, ifr.ifr_name);
3678 read_lock(&dev_base_lock);
3679 ret = dev_ifsioc_locked(net, &ifr, cmd);
3680 read_unlock(&dev_base_lock);
3681 if (!ret) {
3682 if (colon)
3683 *colon = ':';
3684 if (copy_to_user(arg, &ifr,
3685 sizeof(struct ifreq)))
3686 ret = -EFAULT;
3688 return ret;
3690 case SIOCETHTOOL:
3691 dev_load(net, ifr.ifr_name);
3692 rtnl_lock();
3693 ret = dev_ethtool(net, &ifr);
3694 rtnl_unlock();
3695 if (!ret) {
3696 if (colon)
3697 *colon = ':';
3698 if (copy_to_user(arg, &ifr,
3699 sizeof(struct ifreq)))
3700 ret = -EFAULT;
3702 return ret;
3705 * These ioctl calls:
3706 * - require superuser power.
3707 * - require strict serialization.
3708 * - return a value
3710 case SIOCGMIIPHY:
3711 case SIOCGMIIREG:
3712 case SIOCSIFNAME:
3713 if (!capable(CAP_NET_ADMIN))
3714 return -EPERM;
3715 dev_load(net, ifr.ifr_name);
3716 rtnl_lock();
3717 ret = dev_ifsioc(net, &ifr, cmd);
3718 rtnl_unlock();
3719 if (!ret) {
3720 if (colon)
3721 *colon = ':';
3722 if (copy_to_user(arg, &ifr,
3723 sizeof(struct ifreq)))
3724 ret = -EFAULT;
3726 return ret;
3729 * These ioctl calls:
3730 * - require superuser power.
3731 * - require strict serialization.
3732 * - do not return a value
3734 case SIOCSIFFLAGS:
3735 case SIOCSIFMETRIC:
3736 case SIOCSIFMTU:
3737 case SIOCSIFMAP:
3738 case SIOCSIFHWADDR:
3739 case SIOCSIFSLAVE:
3740 case SIOCADDMULTI:
3741 case SIOCDELMULTI:
3742 case SIOCSIFHWBROADCAST:
3743 case SIOCSIFTXQLEN:
3744 case SIOCSMIIREG:
3745 case SIOCBONDENSLAVE:
3746 case SIOCBONDRELEASE:
3747 case SIOCBONDSETHWADDR:
3748 case SIOCBONDCHANGEACTIVE:
3749 case SIOCBRADDIF:
3750 case SIOCBRDELIF:
3751 if (!capable(CAP_NET_ADMIN))
3752 return -EPERM;
3753 /* fall through */
3754 case SIOCBONDSLAVEINFOQUERY:
3755 case SIOCBONDINFOQUERY:
3756 dev_load(net, ifr.ifr_name);
3757 rtnl_lock();
3758 ret = dev_ifsioc(net, &ifr, cmd);
3759 rtnl_unlock();
3760 return ret;
3762 case SIOCGIFMEM:
3763 /* Get the per device memory space. We can add this but
3764 * currently do not support it */
3765 case SIOCSIFMEM:
3766 /* Set the per device memory buffer space.
3767 * Not applicable in our case */
3768 case SIOCSIFLINK:
3769 return -EINVAL;
3772 * Unknown or private ioctl.
3774 default:
3775 if (cmd == SIOCWANDEV ||
3776 (cmd >= SIOCDEVPRIVATE &&
3777 cmd <= SIOCDEVPRIVATE + 15)) {
3778 dev_load(net, ifr.ifr_name);
3779 rtnl_lock();
3780 ret = dev_ifsioc(net, &ifr, cmd);
3781 rtnl_unlock();
3782 if (!ret && copy_to_user(arg, &ifr,
3783 sizeof(struct ifreq)))
3784 ret = -EFAULT;
3785 return ret;
3787 /* Take care of Wireless Extensions */
3788 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3789 return wext_handle_ioctl(net, &ifr, cmd, arg);
3790 return -EINVAL;
3796 * dev_new_index - allocate an ifindex
3797 * @net: the applicable net namespace
3799 * Returns a suitable unique value for a new device interface
3800 * number. The caller must hold the rtnl semaphore or the
3801 * dev_base_lock to be sure it remains unique.
3803 static int dev_new_index(struct net *net)
3805 static int ifindex;
3806 for (;;) {
3807 if (++ifindex <= 0)
3808 ifindex = 1;
3809 if (!__dev_get_by_index(net, ifindex))
3810 return ifindex;
3814 /* Delayed registration/unregisteration */
3815 static LIST_HEAD(net_todo_list);
3817 static void net_set_todo(struct net_device *dev)
3819 list_add_tail(&dev->todo_list, &net_todo_list);
3822 static void rollback_registered(struct net_device *dev)
3824 BUG_ON(dev_boot_phase);
3825 ASSERT_RTNL();
3827 /* Some devices call without registering for initialization unwind. */
3828 if (dev->reg_state == NETREG_UNINITIALIZED) {
3829 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3830 "was registered\n", dev->name, dev);
3832 WARN_ON(1);
3833 return;
3836 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3838 /* If device is running, close it first. */
3839 dev_close(dev);
3841 /* And unlink it from device chain. */
3842 unlist_netdevice(dev);
3844 dev->reg_state = NETREG_UNREGISTERING;
3846 synchronize_net();
3848 /* Shutdown queueing discipline. */
3849 dev_shutdown(dev);
3852 /* Notify protocols, that we are about to destroy
3853 this device. They should clean all the things.
3855 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3858 * Flush the unicast and multicast chains
3860 dev_addr_discard(dev);
3862 if (dev->uninit)
3863 dev->uninit(dev);
3865 /* Notifier chain MUST detach us from master device. */
3866 WARN_ON(dev->master);
3868 /* Remove entries from kobject tree */
3869 netdev_unregister_kobject(dev);
3871 synchronize_net();
3873 dev_put(dev);
3876 static void __netdev_init_queue_locks_one(struct net_device *dev,
3877 struct netdev_queue *dev_queue,
3878 void *_unused)
3880 spin_lock_init(&dev_queue->_xmit_lock);
3881 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3882 dev_queue->xmit_lock_owner = -1;
3885 static void netdev_init_queue_locks(struct net_device *dev)
3887 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3888 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3892 * register_netdevice - register a network device
3893 * @dev: device to register
3895 * Take a completed network device structure and add it to the kernel
3896 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3897 * chain. 0 is returned on success. A negative errno code is returned
3898 * on a failure to set up the device, or if the name is a duplicate.
3900 * Callers must hold the rtnl semaphore. You may want
3901 * register_netdev() instead of this.
3903 * BUGS:
3904 * The locking appears insufficient to guarantee two parallel registers
3905 * will not get the same name.
3908 int register_netdevice(struct net_device *dev)
3910 struct hlist_head *head;
3911 struct hlist_node *p;
3912 int ret;
3913 struct net *net;
3915 BUG_ON(dev_boot_phase);
3916 ASSERT_RTNL();
3918 might_sleep();
3920 /* When net_device's are persistent, this will be fatal. */
3921 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3922 BUG_ON(!dev_net(dev));
3923 net = dev_net(dev);
3925 spin_lock_init(&dev->addr_list_lock);
3926 netdev_set_addr_lockdep_class(dev);
3927 netdev_init_queue_locks(dev);
3929 dev->iflink = -1;
3931 /* Init, if this function is available */
3932 if (dev->init) {
3933 ret = dev->init(dev);
3934 if (ret) {
3935 if (ret > 0)
3936 ret = -EIO;
3937 goto out;
3941 if (!dev_valid_name(dev->name)) {
3942 ret = -EINVAL;
3943 goto err_uninit;
3946 dev->ifindex = dev_new_index(net);
3947 if (dev->iflink == -1)
3948 dev->iflink = dev->ifindex;
3950 /* Check for existence of name */
3951 head = dev_name_hash(net, dev->name);
3952 hlist_for_each(p, head) {
3953 struct net_device *d
3954 = hlist_entry(p, struct net_device, name_hlist);
3955 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3956 ret = -EEXIST;
3957 goto err_uninit;
3961 /* Fix illegal checksum combinations */
3962 if ((dev->features & NETIF_F_HW_CSUM) &&
3963 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3964 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3965 dev->name);
3966 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3969 if ((dev->features & NETIF_F_NO_CSUM) &&
3970 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3971 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3972 dev->name);
3973 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3977 /* Fix illegal SG+CSUM combinations. */
3978 if ((dev->features & NETIF_F_SG) &&
3979 !(dev->features & NETIF_F_ALL_CSUM)) {
3980 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3981 dev->name);
3982 dev->features &= ~NETIF_F_SG;
3985 /* TSO requires that SG is present as well. */
3986 if ((dev->features & NETIF_F_TSO) &&
3987 !(dev->features & NETIF_F_SG)) {
3988 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3989 dev->name);
3990 dev->features &= ~NETIF_F_TSO;
3992 if (dev->features & NETIF_F_UFO) {
3993 if (!(dev->features & NETIF_F_HW_CSUM)) {
3994 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3995 "NETIF_F_HW_CSUM feature.\n",
3996 dev->name);
3997 dev->features &= ~NETIF_F_UFO;
3999 if (!(dev->features & NETIF_F_SG)) {
4000 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
4001 "NETIF_F_SG feature.\n",
4002 dev->name);
4003 dev->features &= ~NETIF_F_UFO;
4007 /* Enable software GSO if SG is supported. */
4008 if (dev->features & NETIF_F_SG)
4009 dev->features |= NETIF_F_GSO;
4011 netdev_initialize_kobject(dev);
4012 ret = netdev_register_kobject(dev);
4013 if (ret)
4014 goto err_uninit;
4015 dev->reg_state = NETREG_REGISTERED;
4018 * Default initial state at registry is that the
4019 * device is present.
4022 set_bit(__LINK_STATE_PRESENT, &dev->state);
4024 dev_init_scheduler(dev);
4025 dev_hold(dev);
4026 list_netdevice(dev);
4028 /* Notify protocols, that a new device appeared. */
4029 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4030 ret = notifier_to_errno(ret);
4031 if (ret) {
4032 rollback_registered(dev);
4033 dev->reg_state = NETREG_UNREGISTERED;
4036 out:
4037 return ret;
4039 err_uninit:
4040 if (dev->uninit)
4041 dev->uninit(dev);
4042 goto out;
4046 * register_netdev - register a network device
4047 * @dev: device to register
4049 * Take a completed network device structure and add it to the kernel
4050 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4051 * chain. 0 is returned on success. A negative errno code is returned
4052 * on a failure to set up the device, or if the name is a duplicate.
4054 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4055 * and expands the device name if you passed a format string to
4056 * alloc_netdev.
4058 int register_netdev(struct net_device *dev)
4060 int err;
4062 rtnl_lock();
4065 * If the name is a format string the caller wants us to do a
4066 * name allocation.
4068 if (strchr(dev->name, '%')) {
4069 err = dev_alloc_name(dev, dev->name);
4070 if (err < 0)
4071 goto out;
4074 err = register_netdevice(dev);
4075 out:
4076 rtnl_unlock();
4077 return err;
4079 EXPORT_SYMBOL(register_netdev);
4082 * netdev_wait_allrefs - wait until all references are gone.
4084 * This is called when unregistering network devices.
4086 * Any protocol or device that holds a reference should register
4087 * for netdevice notification, and cleanup and put back the
4088 * reference if they receive an UNREGISTER event.
4089 * We can get stuck here if buggy protocols don't correctly
4090 * call dev_put.
4092 static void netdev_wait_allrefs(struct net_device *dev)
4094 unsigned long rebroadcast_time, warning_time;
4096 rebroadcast_time = warning_time = jiffies;
4097 while (atomic_read(&dev->refcnt) != 0) {
4098 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4099 rtnl_lock();
4101 /* Rebroadcast unregister notification */
4102 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4104 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4105 &dev->state)) {
4106 /* We must not have linkwatch events
4107 * pending on unregister. If this
4108 * happens, we simply run the queue
4109 * unscheduled, resulting in a noop
4110 * for this device.
4112 linkwatch_run_queue();
4115 __rtnl_unlock();
4117 rebroadcast_time = jiffies;
4120 msleep(250);
4122 if (time_after(jiffies, warning_time + 10 * HZ)) {
4123 printk(KERN_EMERG "unregister_netdevice: "
4124 "waiting for %s to become free. Usage "
4125 "count = %d\n",
4126 dev->name, atomic_read(&dev->refcnt));
4127 warning_time = jiffies;
4132 /* The sequence is:
4134 * rtnl_lock();
4135 * ...
4136 * register_netdevice(x1);
4137 * register_netdevice(x2);
4138 * ...
4139 * unregister_netdevice(y1);
4140 * unregister_netdevice(y2);
4141 * ...
4142 * rtnl_unlock();
4143 * free_netdev(y1);
4144 * free_netdev(y2);
4146 * We are invoked by rtnl_unlock().
4147 * This allows us to deal with problems:
4148 * 1) We can delete sysfs objects which invoke hotplug
4149 * without deadlocking with linkwatch via keventd.
4150 * 2) Since we run with the RTNL semaphore not held, we can sleep
4151 * safely in order to wait for the netdev refcnt to drop to zero.
4153 * We must not return until all unregister events added during
4154 * the interval the lock was held have been completed.
4156 void netdev_run_todo(void)
4158 struct list_head list;
4160 /* Snapshot list, allow later requests */
4161 list_replace_init(&net_todo_list, &list);
4163 __rtnl_unlock();
4165 while (!list_empty(&list)) {
4166 struct net_device *dev
4167 = list_entry(list.next, struct net_device, todo_list);
4168 list_del(&dev->todo_list);
4170 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4171 printk(KERN_ERR "network todo '%s' but state %d\n",
4172 dev->name, dev->reg_state);
4173 dump_stack();
4174 continue;
4177 dev->reg_state = NETREG_UNREGISTERED;
4179 on_each_cpu(flush_backlog, dev, 1);
4181 netdev_wait_allrefs(dev);
4183 /* paranoia */
4184 BUG_ON(atomic_read(&dev->refcnt));
4185 WARN_ON(dev->ip_ptr);
4186 WARN_ON(dev->ip6_ptr);
4187 WARN_ON(dev->dn_ptr);
4189 if (dev->destructor)
4190 dev->destructor(dev);
4192 /* Free network device */
4193 kobject_put(&dev->dev.kobj);
4197 static struct net_device_stats *internal_stats(struct net_device *dev)
4199 return &dev->stats;
4202 static void netdev_init_one_queue(struct net_device *dev,
4203 struct netdev_queue *queue,
4204 void *_unused)
4206 queue->dev = dev;
4209 static void netdev_init_queues(struct net_device *dev)
4211 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4212 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4213 spin_lock_init(&dev->tx_global_lock);
4217 * alloc_netdev_mq - allocate network device
4218 * @sizeof_priv: size of private data to allocate space for
4219 * @name: device name format string
4220 * @setup: callback to initialize device
4221 * @queue_count: the number of subqueues to allocate
4223 * Allocates a struct net_device with private data area for driver use
4224 * and performs basic initialization. Also allocates subquue structs
4225 * for each queue on the device at the end of the netdevice.
4227 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4228 void (*setup)(struct net_device *), unsigned int queue_count)
4230 struct netdev_queue *tx;
4231 struct net_device *dev;
4232 size_t alloc_size;
4233 void *p;
4235 BUG_ON(strlen(name) >= sizeof(dev->name));
4237 alloc_size = sizeof(struct net_device);
4238 if (sizeof_priv) {
4239 /* ensure 32-byte alignment of private area */
4240 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4241 alloc_size += sizeof_priv;
4243 /* ensure 32-byte alignment of whole construct */
4244 alloc_size += NETDEV_ALIGN_CONST;
4246 p = kzalloc(alloc_size, GFP_KERNEL);
4247 if (!p) {
4248 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4249 return NULL;
4252 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4253 if (!tx) {
4254 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4255 "tx qdiscs.\n");
4256 kfree(p);
4257 return NULL;
4260 dev = (struct net_device *)
4261 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4262 dev->padded = (char *)dev - (char *)p;
4263 dev_net_set(dev, &init_net);
4265 dev->_tx = tx;
4266 dev->num_tx_queues = queue_count;
4267 dev->real_num_tx_queues = queue_count;
4269 if (sizeof_priv) {
4270 dev->priv = ((char *)dev +
4271 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4272 & ~NETDEV_ALIGN_CONST));
4275 dev->gso_max_size = GSO_MAX_SIZE;
4277 netdev_init_queues(dev);
4279 dev->get_stats = internal_stats;
4280 netpoll_netdev_init(dev);
4281 setup(dev);
4282 strcpy(dev->name, name);
4283 return dev;
4285 EXPORT_SYMBOL(alloc_netdev_mq);
4288 * free_netdev - free network device
4289 * @dev: device
4291 * This function does the last stage of destroying an allocated device
4292 * interface. The reference to the device object is released.
4293 * If this is the last reference then it will be freed.
4295 void free_netdev(struct net_device *dev)
4297 release_net(dev_net(dev));
4299 kfree(dev->_tx);
4301 /* Compatibility with error handling in drivers */
4302 if (dev->reg_state == NETREG_UNINITIALIZED) {
4303 kfree((char *)dev - dev->padded);
4304 return;
4307 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4308 dev->reg_state = NETREG_RELEASED;
4310 /* will free via device release */
4311 put_device(&dev->dev);
4314 /* Synchronize with packet receive processing. */
4315 void synchronize_net(void)
4317 might_sleep();
4318 synchronize_rcu();
4322 * unregister_netdevice - remove device from the kernel
4323 * @dev: device
4325 * This function shuts down a device interface and removes it
4326 * from the kernel tables.
4328 * Callers must hold the rtnl semaphore. You may want
4329 * unregister_netdev() instead of this.
4332 void unregister_netdevice(struct net_device *dev)
4334 ASSERT_RTNL();
4336 rollback_registered(dev);
4337 /* Finish processing unregister after unlock */
4338 net_set_todo(dev);
4342 * unregister_netdev - remove device from the kernel
4343 * @dev: device
4345 * This function shuts down a device interface and removes it
4346 * from the kernel tables.
4348 * This is just a wrapper for unregister_netdevice that takes
4349 * the rtnl semaphore. In general you want to use this and not
4350 * unregister_netdevice.
4352 void unregister_netdev(struct net_device *dev)
4354 rtnl_lock();
4355 unregister_netdevice(dev);
4356 rtnl_unlock();
4359 EXPORT_SYMBOL(unregister_netdev);
4362 * dev_change_net_namespace - move device to different nethost namespace
4363 * @dev: device
4364 * @net: network namespace
4365 * @pat: If not NULL name pattern to try if the current device name
4366 * is already taken in the destination network namespace.
4368 * This function shuts down a device interface and moves it
4369 * to a new network namespace. On success 0 is returned, on
4370 * a failure a netagive errno code is returned.
4372 * Callers must hold the rtnl semaphore.
4375 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4377 char buf[IFNAMSIZ];
4378 const char *destname;
4379 int err;
4381 ASSERT_RTNL();
4383 /* Don't allow namespace local devices to be moved. */
4384 err = -EINVAL;
4385 if (dev->features & NETIF_F_NETNS_LOCAL)
4386 goto out;
4388 /* Ensure the device has been registrered */
4389 err = -EINVAL;
4390 if (dev->reg_state != NETREG_REGISTERED)
4391 goto out;
4393 /* Get out if there is nothing todo */
4394 err = 0;
4395 if (net_eq(dev_net(dev), net))
4396 goto out;
4398 /* Pick the destination device name, and ensure
4399 * we can use it in the destination network namespace.
4401 err = -EEXIST;
4402 destname = dev->name;
4403 if (__dev_get_by_name(net, destname)) {
4404 /* We get here if we can't use the current device name */
4405 if (!pat)
4406 goto out;
4407 if (!dev_valid_name(pat))
4408 goto out;
4409 if (strchr(pat, '%')) {
4410 if (__dev_alloc_name(net, pat, buf) < 0)
4411 goto out;
4412 destname = buf;
4413 } else
4414 destname = pat;
4415 if (__dev_get_by_name(net, destname))
4416 goto out;
4420 * And now a mini version of register_netdevice unregister_netdevice.
4423 /* If device is running close it first. */
4424 dev_close(dev);
4426 /* And unlink it from device chain */
4427 err = -ENODEV;
4428 unlist_netdevice(dev);
4430 synchronize_net();
4432 /* Shutdown queueing discipline. */
4433 dev_shutdown(dev);
4435 /* Notify protocols, that we are about to destroy
4436 this device. They should clean all the things.
4438 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4441 * Flush the unicast and multicast chains
4443 dev_addr_discard(dev);
4445 /* Actually switch the network namespace */
4446 dev_net_set(dev, net);
4448 /* Assign the new device name */
4449 if (destname != dev->name)
4450 strcpy(dev->name, destname);
4452 /* If there is an ifindex conflict assign a new one */
4453 if (__dev_get_by_index(net, dev->ifindex)) {
4454 int iflink = (dev->iflink == dev->ifindex);
4455 dev->ifindex = dev_new_index(net);
4456 if (iflink)
4457 dev->iflink = dev->ifindex;
4460 /* Fixup kobjects */
4461 netdev_unregister_kobject(dev);
4462 err = netdev_register_kobject(dev);
4463 WARN_ON(err);
4465 /* Add the device back in the hashes */
4466 list_netdevice(dev);
4468 /* Notify protocols, that a new device appeared. */
4469 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4471 synchronize_net();
4472 err = 0;
4473 out:
4474 return err;
4477 static int dev_cpu_callback(struct notifier_block *nfb,
4478 unsigned long action,
4479 void *ocpu)
4481 struct sk_buff **list_skb;
4482 struct Qdisc **list_net;
4483 struct sk_buff *skb;
4484 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4485 struct softnet_data *sd, *oldsd;
4487 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4488 return NOTIFY_OK;
4490 local_irq_disable();
4491 cpu = smp_processor_id();
4492 sd = &per_cpu(softnet_data, cpu);
4493 oldsd = &per_cpu(softnet_data, oldcpu);
4495 /* Find end of our completion_queue. */
4496 list_skb = &sd->completion_queue;
4497 while (*list_skb)
4498 list_skb = &(*list_skb)->next;
4499 /* Append completion queue from offline CPU. */
4500 *list_skb = oldsd->completion_queue;
4501 oldsd->completion_queue = NULL;
4503 /* Find end of our output_queue. */
4504 list_net = &sd->output_queue;
4505 while (*list_net)
4506 list_net = &(*list_net)->next_sched;
4507 /* Append output queue from offline CPU. */
4508 *list_net = oldsd->output_queue;
4509 oldsd->output_queue = NULL;
4511 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4512 local_irq_enable();
4514 /* Process offline CPU's input_pkt_queue */
4515 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4516 netif_rx(skb);
4518 return NOTIFY_OK;
4521 #ifdef CONFIG_NET_DMA
4523 * net_dma_rebalance - try to maintain one DMA channel per CPU
4524 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4526 * This is called when the number of channels allocated to the net_dma client
4527 * changes. The net_dma client tries to have one DMA channel per CPU.
4530 static void net_dma_rebalance(struct net_dma *net_dma)
4532 unsigned int cpu, i, n, chan_idx;
4533 struct dma_chan *chan;
4535 if (cpus_empty(net_dma->channel_mask)) {
4536 for_each_online_cpu(cpu)
4537 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4538 return;
4541 i = 0;
4542 cpu = first_cpu(cpu_online_map);
4544 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4545 chan = net_dma->channels[chan_idx];
4547 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4548 + (i < (num_online_cpus() %
4549 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4551 while(n) {
4552 per_cpu(softnet_data, cpu).net_dma = chan;
4553 cpu = next_cpu(cpu, cpu_online_map);
4554 n--;
4556 i++;
4561 * netdev_dma_event - event callback for the net_dma_client
4562 * @client: should always be net_dma_client
4563 * @chan: DMA channel for the event
4564 * @state: DMA state to be handled
4566 static enum dma_state_client
4567 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4568 enum dma_state state)
4570 int i, found = 0, pos = -1;
4571 struct net_dma *net_dma =
4572 container_of(client, struct net_dma, client);
4573 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4575 spin_lock(&net_dma->lock);
4576 switch (state) {
4577 case DMA_RESOURCE_AVAILABLE:
4578 for (i = 0; i < nr_cpu_ids; i++)
4579 if (net_dma->channels[i] == chan) {
4580 found = 1;
4581 break;
4582 } else if (net_dma->channels[i] == NULL && pos < 0)
4583 pos = i;
4585 if (!found && pos >= 0) {
4586 ack = DMA_ACK;
4587 net_dma->channels[pos] = chan;
4588 cpu_set(pos, net_dma->channel_mask);
4589 net_dma_rebalance(net_dma);
4591 break;
4592 case DMA_RESOURCE_REMOVED:
4593 for (i = 0; i < nr_cpu_ids; i++)
4594 if (net_dma->channels[i] == chan) {
4595 found = 1;
4596 pos = i;
4597 break;
4600 if (found) {
4601 ack = DMA_ACK;
4602 cpu_clear(pos, net_dma->channel_mask);
4603 net_dma->channels[i] = NULL;
4604 net_dma_rebalance(net_dma);
4606 break;
4607 default:
4608 break;
4610 spin_unlock(&net_dma->lock);
4612 return ack;
4616 * netdev_dma_regiser - register the networking subsystem as a DMA client
4618 static int __init netdev_dma_register(void)
4620 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4621 GFP_KERNEL);
4622 if (unlikely(!net_dma.channels)) {
4623 printk(KERN_NOTICE
4624 "netdev_dma: no memory for net_dma.channels\n");
4625 return -ENOMEM;
4627 spin_lock_init(&net_dma.lock);
4628 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4629 dma_async_client_register(&net_dma.client);
4630 dma_async_client_chan_request(&net_dma.client);
4631 return 0;
4634 #else
4635 static int __init netdev_dma_register(void) { return -ENODEV; }
4636 #endif /* CONFIG_NET_DMA */
4639 * netdev_compute_feature - compute conjunction of two feature sets
4640 * @all: first feature set
4641 * @one: second feature set
4643 * Computes a new feature set after adding a device with feature set
4644 * @one to the master device with current feature set @all. Returns
4645 * the new feature set.
4647 int netdev_compute_features(unsigned long all, unsigned long one)
4649 /* if device needs checksumming, downgrade to hw checksumming */
4650 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4651 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4653 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4654 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4655 all ^= NETIF_F_HW_CSUM
4656 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4658 if (one & NETIF_F_GSO)
4659 one |= NETIF_F_GSO_SOFTWARE;
4660 one |= NETIF_F_GSO;
4662 /* If even one device supports robust GSO, enable it for all. */
4663 if (one & NETIF_F_GSO_ROBUST)
4664 all |= NETIF_F_GSO_ROBUST;
4666 all &= one | NETIF_F_LLTX;
4668 if (!(all & NETIF_F_ALL_CSUM))
4669 all &= ~NETIF_F_SG;
4670 if (!(all & NETIF_F_SG))
4671 all &= ~NETIF_F_GSO_MASK;
4673 return all;
4675 EXPORT_SYMBOL(netdev_compute_features);
4677 static struct hlist_head *netdev_create_hash(void)
4679 int i;
4680 struct hlist_head *hash;
4682 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4683 if (hash != NULL)
4684 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4685 INIT_HLIST_HEAD(&hash[i]);
4687 return hash;
4690 /* Initialize per network namespace state */
4691 static int __net_init netdev_init(struct net *net)
4693 INIT_LIST_HEAD(&net->dev_base_head);
4695 net->dev_name_head = netdev_create_hash();
4696 if (net->dev_name_head == NULL)
4697 goto err_name;
4699 net->dev_index_head = netdev_create_hash();
4700 if (net->dev_index_head == NULL)
4701 goto err_idx;
4703 return 0;
4705 err_idx:
4706 kfree(net->dev_name_head);
4707 err_name:
4708 return -ENOMEM;
4711 char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4713 struct device_driver *driver;
4714 struct device *parent;
4716 if (len <= 0 || !buffer)
4717 return buffer;
4718 buffer[0] = 0;
4720 parent = dev->dev.parent;
4722 if (!parent)
4723 return buffer;
4725 driver = parent->driver;
4726 if (driver && driver->name)
4727 strlcpy(buffer, driver->name, len);
4728 return buffer;
4731 static void __net_exit netdev_exit(struct net *net)
4733 kfree(net->dev_name_head);
4734 kfree(net->dev_index_head);
4737 static struct pernet_operations __net_initdata netdev_net_ops = {
4738 .init = netdev_init,
4739 .exit = netdev_exit,
4742 static void __net_exit default_device_exit(struct net *net)
4744 struct net_device *dev, *next;
4746 * Push all migratable of the network devices back to the
4747 * initial network namespace
4749 rtnl_lock();
4750 for_each_netdev_safe(net, dev, next) {
4751 int err;
4752 char fb_name[IFNAMSIZ];
4754 /* Ignore unmoveable devices (i.e. loopback) */
4755 if (dev->features & NETIF_F_NETNS_LOCAL)
4756 continue;
4758 /* Push remaing network devices to init_net */
4759 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4760 err = dev_change_net_namespace(dev, &init_net, fb_name);
4761 if (err) {
4762 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4763 __func__, dev->name, err);
4764 BUG();
4767 rtnl_unlock();
4770 static struct pernet_operations __net_initdata default_device_ops = {
4771 .exit = default_device_exit,
4775 * Initialize the DEV module. At boot time this walks the device list and
4776 * unhooks any devices that fail to initialise (normally hardware not
4777 * present) and leaves us with a valid list of present and active devices.
4782 * This is called single threaded during boot, so no need
4783 * to take the rtnl semaphore.
4785 static int __init net_dev_init(void)
4787 int i, rc = -ENOMEM;
4789 BUG_ON(!dev_boot_phase);
4791 if (dev_proc_init())
4792 goto out;
4794 if (netdev_kobject_init())
4795 goto out;
4797 INIT_LIST_HEAD(&ptype_all);
4798 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4799 INIT_LIST_HEAD(&ptype_base[i]);
4801 if (register_pernet_subsys(&netdev_net_ops))
4802 goto out;
4804 if (register_pernet_device(&default_device_ops))
4805 goto out;
4808 * Initialise the packet receive queues.
4811 for_each_possible_cpu(i) {
4812 struct softnet_data *queue;
4814 queue = &per_cpu(softnet_data, i);
4815 skb_queue_head_init(&queue->input_pkt_queue);
4816 queue->completion_queue = NULL;
4817 INIT_LIST_HEAD(&queue->poll_list);
4819 queue->backlog.poll = process_backlog;
4820 queue->backlog.weight = weight_p;
4823 netdev_dma_register();
4825 dev_boot_phase = 0;
4827 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4828 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4830 hotcpu_notifier(dev_cpu_callback, 0);
4831 dst_init();
4832 dev_mcast_init();
4833 rc = 0;
4834 out:
4835 return rc;
4838 subsys_initcall(net_dev_init);
4840 EXPORT_SYMBOL(__dev_get_by_index);
4841 EXPORT_SYMBOL(__dev_get_by_name);
4842 EXPORT_SYMBOL(__dev_remove_pack);
4843 EXPORT_SYMBOL(dev_valid_name);
4844 EXPORT_SYMBOL(dev_add_pack);
4845 EXPORT_SYMBOL(dev_alloc_name);
4846 EXPORT_SYMBOL(dev_close);
4847 EXPORT_SYMBOL(dev_get_by_flags);
4848 EXPORT_SYMBOL(dev_get_by_index);
4849 EXPORT_SYMBOL(dev_get_by_name);
4850 EXPORT_SYMBOL(dev_open);
4851 EXPORT_SYMBOL(dev_queue_xmit);
4852 EXPORT_SYMBOL(dev_remove_pack);
4853 EXPORT_SYMBOL(dev_set_allmulti);
4854 EXPORT_SYMBOL(dev_set_promiscuity);
4855 EXPORT_SYMBOL(dev_change_flags);
4856 EXPORT_SYMBOL(dev_set_mtu);
4857 EXPORT_SYMBOL(dev_set_mac_address);
4858 EXPORT_SYMBOL(free_netdev);
4859 EXPORT_SYMBOL(netdev_boot_setup_check);
4860 EXPORT_SYMBOL(netdev_set_master);
4861 EXPORT_SYMBOL(netdev_state_change);
4862 EXPORT_SYMBOL(netif_receive_skb);
4863 EXPORT_SYMBOL(netif_rx);
4864 EXPORT_SYMBOL(register_gifconf);
4865 EXPORT_SYMBOL(register_netdevice);
4866 EXPORT_SYMBOL(register_netdevice_notifier);
4867 EXPORT_SYMBOL(skb_checksum_help);
4868 EXPORT_SYMBOL(synchronize_net);
4869 EXPORT_SYMBOL(unregister_netdevice);
4870 EXPORT_SYMBOL(unregister_netdevice_notifier);
4871 EXPORT_SYMBOL(net_enable_timestamp);
4872 EXPORT_SYMBOL(net_disable_timestamp);
4873 EXPORT_SYMBOL(dev_get_flags);
4875 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4876 EXPORT_SYMBOL(br_handle_frame_hook);
4877 EXPORT_SYMBOL(br_fdb_get_hook);
4878 EXPORT_SYMBOL(br_fdb_put_hook);
4879 #endif
4881 #ifdef CONFIG_KMOD
4882 EXPORT_SYMBOL(dev_load);
4883 #endif
4885 EXPORT_PER_CPU_SYMBOL(softnet_data);