2 * Xilinx SystemACE device driver
4 * Copyright 2007 Secret Lab Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
18 * This driver is a block device driver for the SystemACE.
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
43 * 3. release the lock.
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
58 * A state has two options when yielding execution:
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/mutex.h>
93 #include <linux/ata.h>
94 #include <linux/hdreg.h>
95 #include <linux/platform_device.h>
96 #if defined(CONFIG_OF)
97 #include <linux/of_address.h>
98 #include <linux/of_device.h>
99 #include <linux/of_platform.h>
102 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
103 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
104 MODULE_LICENSE("GPL");
106 /* SystemACE register definitions */
107 #define ACE_BUSMODE (0x00)
109 #define ACE_STATUS (0x04)
110 #define ACE_STATUS_CFGLOCK (0x00000001)
111 #define ACE_STATUS_MPULOCK (0x00000002)
112 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
113 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
114 #define ACE_STATUS_CFDETECT (0x00000010)
115 #define ACE_STATUS_DATABUFRDY (0x00000020)
116 #define ACE_STATUS_DATABUFMODE (0x00000040)
117 #define ACE_STATUS_CFGDONE (0x00000080)
118 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
119 #define ACE_STATUS_CFGMODEPIN (0x00000200)
120 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
121 #define ACE_STATUS_CFBSY (0x00020000)
122 #define ACE_STATUS_CFRDY (0x00040000)
123 #define ACE_STATUS_CFDWF (0x00080000)
124 #define ACE_STATUS_CFDSC (0x00100000)
125 #define ACE_STATUS_CFDRQ (0x00200000)
126 #define ACE_STATUS_CFCORR (0x00400000)
127 #define ACE_STATUS_CFERR (0x00800000)
129 #define ACE_ERROR (0x08)
130 #define ACE_CFGLBA (0x0c)
131 #define ACE_MPULBA (0x10)
133 #define ACE_SECCNTCMD (0x14)
134 #define ACE_SECCNTCMD_RESET (0x0100)
135 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
136 #define ACE_SECCNTCMD_READ_DATA (0x0300)
137 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
138 #define ACE_SECCNTCMD_ABORT (0x0600)
140 #define ACE_VERSION (0x16)
141 #define ACE_VERSION_REVISION_MASK (0x00FF)
142 #define ACE_VERSION_MINOR_MASK (0x0F00)
143 #define ACE_VERSION_MAJOR_MASK (0xF000)
145 #define ACE_CTRL (0x18)
146 #define ACE_CTRL_FORCELOCKREQ (0x0001)
147 #define ACE_CTRL_LOCKREQ (0x0002)
148 #define ACE_CTRL_FORCECFGADDR (0x0004)
149 #define ACE_CTRL_FORCECFGMODE (0x0008)
150 #define ACE_CTRL_CFGMODE (0x0010)
151 #define ACE_CTRL_CFGSTART (0x0020)
152 #define ACE_CTRL_CFGSEL (0x0040)
153 #define ACE_CTRL_CFGRESET (0x0080)
154 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
155 #define ACE_CTRL_ERRORIRQ (0x0200)
156 #define ACE_CTRL_CFGDONEIRQ (0x0400)
157 #define ACE_CTRL_RESETIRQ (0x0800)
158 #define ACE_CTRL_CFGPROG (0x1000)
159 #define ACE_CTRL_CFGADDR_MASK (0xe000)
161 #define ACE_FATSTAT (0x1c)
163 #define ACE_NUM_MINORS 16
164 #define ACE_SECTOR_SIZE (512)
165 #define ACE_FIFO_SIZE (32)
166 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
168 #define ACE_BUS_WIDTH_8 0
169 #define ACE_BUS_WIDTH_16 1
174 /* driver state data */
178 struct list_head list
;
180 /* finite state machine data */
181 struct tasklet_struct fsm_tasklet
;
182 uint fsm_task
; /* Current activity (ACE_TASK_*) */
183 uint fsm_state
; /* Current state (ACE_FSM_STATE_*) */
184 uint fsm_continue_flag
; /* cleared to exit FSM mainloop */
186 struct timer_list stall_timer
;
188 /* Transfer state/result, use for both id and block request */
189 struct request
*req
; /* request being processed */
190 void *data_ptr
; /* pointer to I/O buffer */
191 int data_count
; /* number of buffers remaining */
192 int data_result
; /* Result of transfer; 0 := success */
194 int id_req_count
; /* count of id requests */
196 struct completion id_completion
; /* used when id req finishes */
199 /* Details of hardware device */
200 resource_size_t physaddr
;
201 void __iomem
*baseaddr
;
203 int bus_width
; /* 0 := 8 bit; 1 := 16 bit */
204 struct ace_reg_ops
*reg_ops
;
207 /* Block device data structures */
210 struct request_queue
*queue
;
213 /* Inserted CF card parameters */
214 u16 cf_id
[ATA_ID_WORDS
];
217 static DEFINE_MUTEX(xsysace_mutex
);
218 static int ace_major
;
220 /* ---------------------------------------------------------------------
221 * Low level register access
225 u16(*in
) (struct ace_device
* ace
, int reg
);
226 void (*out
) (struct ace_device
* ace
, int reg
, u16 val
);
227 void (*datain
) (struct ace_device
* ace
);
228 void (*dataout
) (struct ace_device
* ace
);
231 /* 8 Bit bus width */
232 static u16
ace_in_8(struct ace_device
*ace
, int reg
)
234 void __iomem
*r
= ace
->baseaddr
+ reg
;
235 return in_8(r
) | (in_8(r
+ 1) << 8);
238 static void ace_out_8(struct ace_device
*ace
, int reg
, u16 val
)
240 void __iomem
*r
= ace
->baseaddr
+ reg
;
242 out_8(r
+ 1, val
>> 8);
245 static void ace_datain_8(struct ace_device
*ace
)
247 void __iomem
*r
= ace
->baseaddr
+ 0x40;
248 u8
*dst
= ace
->data_ptr
;
249 int i
= ACE_FIFO_SIZE
;
255 static void ace_dataout_8(struct ace_device
*ace
)
257 void __iomem
*r
= ace
->baseaddr
+ 0x40;
258 u8
*src
= ace
->data_ptr
;
259 int i
= ACE_FIFO_SIZE
;
265 static struct ace_reg_ops ace_reg_8_ops
= {
268 .datain
= ace_datain_8
,
269 .dataout
= ace_dataout_8
,
272 /* 16 bit big endian bus attachment */
273 static u16
ace_in_be16(struct ace_device
*ace
, int reg
)
275 return in_be16(ace
->baseaddr
+ reg
);
278 static void ace_out_be16(struct ace_device
*ace
, int reg
, u16 val
)
280 out_be16(ace
->baseaddr
+ reg
, val
);
283 static void ace_datain_be16(struct ace_device
*ace
)
285 int i
= ACE_FIFO_SIZE
/ 2;
286 u16
*dst
= ace
->data_ptr
;
288 *dst
++ = in_le16(ace
->baseaddr
+ 0x40);
292 static void ace_dataout_be16(struct ace_device
*ace
)
294 int i
= ACE_FIFO_SIZE
/ 2;
295 u16
*src
= ace
->data_ptr
;
297 out_le16(ace
->baseaddr
+ 0x40, *src
++);
301 /* 16 bit little endian bus attachment */
302 static u16
ace_in_le16(struct ace_device
*ace
, int reg
)
304 return in_le16(ace
->baseaddr
+ reg
);
307 static void ace_out_le16(struct ace_device
*ace
, int reg
, u16 val
)
309 out_le16(ace
->baseaddr
+ reg
, val
);
312 static void ace_datain_le16(struct ace_device
*ace
)
314 int i
= ACE_FIFO_SIZE
/ 2;
315 u16
*dst
= ace
->data_ptr
;
317 *dst
++ = in_be16(ace
->baseaddr
+ 0x40);
321 static void ace_dataout_le16(struct ace_device
*ace
)
323 int i
= ACE_FIFO_SIZE
/ 2;
324 u16
*src
= ace
->data_ptr
;
326 out_be16(ace
->baseaddr
+ 0x40, *src
++);
330 static struct ace_reg_ops ace_reg_be16_ops
= {
333 .datain
= ace_datain_be16
,
334 .dataout
= ace_dataout_be16
,
337 static struct ace_reg_ops ace_reg_le16_ops
= {
340 .datain
= ace_datain_le16
,
341 .dataout
= ace_dataout_le16
,
344 static inline u16
ace_in(struct ace_device
*ace
, int reg
)
346 return ace
->reg_ops
->in(ace
, reg
);
349 static inline u32
ace_in32(struct ace_device
*ace
, int reg
)
351 return ace_in(ace
, reg
) | (ace_in(ace
, reg
+ 2) << 16);
354 static inline void ace_out(struct ace_device
*ace
, int reg
, u16 val
)
356 ace
->reg_ops
->out(ace
, reg
, val
);
359 static inline void ace_out32(struct ace_device
*ace
, int reg
, u32 val
)
361 ace_out(ace
, reg
, val
);
362 ace_out(ace
, reg
+ 2, val
>> 16);
365 /* ---------------------------------------------------------------------
366 * Debug support functions
370 static void ace_dump_mem(void *base
, int len
)
372 const char *ptr
= base
;
375 for (i
= 0; i
< len
; i
+= 16) {
376 printk(KERN_INFO
"%.8x:", i
);
377 for (j
= 0; j
< 16; j
++) {
380 printk("%.2x", ptr
[i
+ j
]);
383 for (j
= 0; j
< 16; j
++)
384 printk("%c", isprint(ptr
[i
+ j
]) ? ptr
[i
+ j
] : '.');
389 static inline void ace_dump_mem(void *base
, int len
)
394 static void ace_dump_regs(struct ace_device
*ace
)
397 " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
398 " status:%.8x mpu_lba:%.8x busmode:%4x\n"
399 " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
400 ace_in32(ace
, ACE_CTRL
),
401 ace_in(ace
, ACE_SECCNTCMD
),
402 ace_in(ace
, ACE_VERSION
),
403 ace_in32(ace
, ACE_STATUS
),
404 ace_in32(ace
, ACE_MPULBA
),
405 ace_in(ace
, ACE_BUSMODE
),
406 ace_in32(ace
, ACE_ERROR
),
407 ace_in32(ace
, ACE_CFGLBA
), ace_in(ace
, ACE_FATSTAT
));
410 void ace_fix_driveid(u16
*id
)
412 #if defined(__BIG_ENDIAN)
415 /* All half words have wrong byte order; swap the bytes */
416 for (i
= 0; i
< ATA_ID_WORDS
; i
++, id
++)
417 *id
= le16_to_cpu(*id
);
421 /* ---------------------------------------------------------------------
422 * Finite State Machine (FSM) implementation
425 /* FSM tasks; used to direct state transitions */
426 #define ACE_TASK_IDLE 0
427 #define ACE_TASK_IDENTIFY 1
428 #define ACE_TASK_READ 2
429 #define ACE_TASK_WRITE 3
430 #define ACE_FSM_NUM_TASKS 4
432 /* FSM state definitions */
433 #define ACE_FSM_STATE_IDLE 0
434 #define ACE_FSM_STATE_REQ_LOCK 1
435 #define ACE_FSM_STATE_WAIT_LOCK 2
436 #define ACE_FSM_STATE_WAIT_CFREADY 3
437 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
438 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
439 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
440 #define ACE_FSM_STATE_REQ_PREPARE 7
441 #define ACE_FSM_STATE_REQ_TRANSFER 8
442 #define ACE_FSM_STATE_REQ_COMPLETE 9
443 #define ACE_FSM_STATE_ERROR 10
444 #define ACE_FSM_NUM_STATES 11
446 /* Set flag to exit FSM loop and reschedule tasklet */
447 static inline void ace_fsm_yield(struct ace_device
*ace
)
449 dev_dbg(ace
->dev
, "ace_fsm_yield()\n");
450 tasklet_schedule(&ace
->fsm_tasklet
);
451 ace
->fsm_continue_flag
= 0;
454 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
455 static inline void ace_fsm_yieldirq(struct ace_device
*ace
)
457 dev_dbg(ace
->dev
, "ace_fsm_yieldirq()\n");
460 /* No IRQ assigned, so need to poll */
461 tasklet_schedule(&ace
->fsm_tasklet
);
462 ace
->fsm_continue_flag
= 0;
465 /* Get the next read/write request; ending requests that we don't handle */
466 struct request
*ace_get_next_request(struct request_queue
* q
)
470 while ((req
= blk_peek_request(q
)) != NULL
) {
471 if (req
->cmd_type
== REQ_TYPE_FS
)
473 blk_start_request(req
);
474 __blk_end_request_all(req
, -EIO
);
479 static void ace_fsm_dostate(struct ace_device
*ace
)
487 dev_dbg(ace
->dev
, "fsm_state=%i, id_req_count=%i\n",
488 ace
->fsm_state
, ace
->id_req_count
);
491 /* Verify that there is actually a CF in the slot. If not, then
492 * bail out back to the idle state and wake up all the waiters */
493 status
= ace_in32(ace
, ACE_STATUS
);
494 if ((status
& ACE_STATUS_CFDETECT
) == 0) {
495 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
496 ace
->media_change
= 1;
497 set_capacity(ace
->gd
, 0);
498 dev_info(ace
->dev
, "No CF in slot\n");
500 /* Drop all in-flight and pending requests */
502 __blk_end_request_all(ace
->req
, -EIO
);
505 while ((req
= blk_fetch_request(ace
->queue
)) != NULL
)
506 __blk_end_request_all(req
, -EIO
);
508 /* Drop back to IDLE state and notify waiters */
509 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
510 ace
->id_result
= -EIO
;
511 while (ace
->id_req_count
) {
512 complete(&ace
->id_completion
);
517 switch (ace
->fsm_state
) {
518 case ACE_FSM_STATE_IDLE
:
519 /* See if there is anything to do */
520 if (ace
->id_req_count
|| ace_get_next_request(ace
->queue
)) {
522 ace
->fsm_state
= ACE_FSM_STATE_REQ_LOCK
;
523 mod_timer(&ace
->stall_timer
, jiffies
+ HZ
);
524 if (!timer_pending(&ace
->stall_timer
))
525 add_timer(&ace
->stall_timer
);
528 del_timer(&ace
->stall_timer
);
529 ace
->fsm_continue_flag
= 0;
532 case ACE_FSM_STATE_REQ_LOCK
:
533 if (ace_in(ace
, ACE_STATUS
) & ACE_STATUS_MPULOCK
) {
534 /* Already have the lock, jump to next state */
535 ace
->fsm_state
= ACE_FSM_STATE_WAIT_CFREADY
;
539 /* Request the lock */
540 val
= ace_in(ace
, ACE_CTRL
);
541 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_LOCKREQ
);
542 ace
->fsm_state
= ACE_FSM_STATE_WAIT_LOCK
;
545 case ACE_FSM_STATE_WAIT_LOCK
:
546 if (ace_in(ace
, ACE_STATUS
) & ACE_STATUS_MPULOCK
) {
547 /* got the lock; move to next state */
548 ace
->fsm_state
= ACE_FSM_STATE_WAIT_CFREADY
;
552 /* wait a bit for the lock */
556 case ACE_FSM_STATE_WAIT_CFREADY
:
557 status
= ace_in32(ace
, ACE_STATUS
);
558 if (!(status
& ACE_STATUS_RDYFORCFCMD
) ||
559 (status
& ACE_STATUS_CFBSY
)) {
560 /* CF card isn't ready; it needs to be polled */
565 /* Device is ready for command; determine what to do next */
566 if (ace
->id_req_count
)
567 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_PREPARE
;
569 ace
->fsm_state
= ACE_FSM_STATE_REQ_PREPARE
;
572 case ACE_FSM_STATE_IDENTIFY_PREPARE
:
573 /* Send identify command */
574 ace
->fsm_task
= ACE_TASK_IDENTIFY
;
575 ace
->data_ptr
= ace
->cf_id
;
576 ace
->data_count
= ACE_BUF_PER_SECTOR
;
577 ace_out(ace
, ACE_SECCNTCMD
, ACE_SECCNTCMD_IDENTIFY
);
579 /* As per datasheet, put config controller in reset */
580 val
= ace_in(ace
, ACE_CTRL
);
581 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_CFGRESET
);
583 /* irq handler takes over from this point; wait for the
584 * transfer to complete */
585 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_TRANSFER
;
586 ace_fsm_yieldirq(ace
);
589 case ACE_FSM_STATE_IDENTIFY_TRANSFER
:
590 /* Check that the sysace is ready to receive data */
591 status
= ace_in32(ace
, ACE_STATUS
);
592 if (status
& ACE_STATUS_CFBSY
) {
593 dev_dbg(ace
->dev
, "CFBSY set; t=%i iter=%i dc=%i\n",
594 ace
->fsm_task
, ace
->fsm_iter_num
,
599 if (!(status
& ACE_STATUS_DATABUFRDY
)) {
604 /* Transfer the next buffer */
605 ace
->reg_ops
->datain(ace
);
608 /* If there are still buffers to be transfers; jump out here */
609 if (ace
->data_count
!= 0) {
610 ace_fsm_yieldirq(ace
);
614 /* transfer finished; kick state machine */
615 dev_dbg(ace
->dev
, "identify finished\n");
616 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_COMPLETE
;
619 case ACE_FSM_STATE_IDENTIFY_COMPLETE
:
620 ace_fix_driveid(ace
->cf_id
);
621 ace_dump_mem(ace
->cf_id
, 512); /* Debug: Dump out disk ID */
623 if (ace
->data_result
) {
624 /* Error occurred, disable the disk */
625 ace
->media_change
= 1;
626 set_capacity(ace
->gd
, 0);
627 dev_err(ace
->dev
, "error fetching CF id (%i)\n",
630 ace
->media_change
= 0;
632 /* Record disk parameters */
633 set_capacity(ace
->gd
,
634 ata_id_u32(ace
->cf_id
, ATA_ID_LBA_CAPACITY
));
635 dev_info(ace
->dev
, "capacity: %i sectors\n",
636 ata_id_u32(ace
->cf_id
, ATA_ID_LBA_CAPACITY
));
639 /* We're done, drop to IDLE state and notify waiters */
640 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
641 ace
->id_result
= ace
->data_result
;
642 while (ace
->id_req_count
) {
643 complete(&ace
->id_completion
);
648 case ACE_FSM_STATE_REQ_PREPARE
:
649 req
= ace_get_next_request(ace
->queue
);
651 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
654 blk_start_request(req
);
656 /* Okay, it's a data request, set it up for transfer */
658 "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
659 (unsigned long long)blk_rq_pos(req
),
660 blk_rq_sectors(req
), blk_rq_cur_sectors(req
),
664 ace
->data_ptr
= req
->buffer
;
665 ace
->data_count
= blk_rq_cur_sectors(req
) * ACE_BUF_PER_SECTOR
;
666 ace_out32(ace
, ACE_MPULBA
, blk_rq_pos(req
) & 0x0FFFFFFF);
668 count
= blk_rq_sectors(req
);
669 if (rq_data_dir(req
)) {
670 /* Kick off write request */
671 dev_dbg(ace
->dev
, "write data\n");
672 ace
->fsm_task
= ACE_TASK_WRITE
;
673 ace_out(ace
, ACE_SECCNTCMD
,
674 count
| ACE_SECCNTCMD_WRITE_DATA
);
676 /* Kick off read request */
677 dev_dbg(ace
->dev
, "read data\n");
678 ace
->fsm_task
= ACE_TASK_READ
;
679 ace_out(ace
, ACE_SECCNTCMD
,
680 count
| ACE_SECCNTCMD_READ_DATA
);
683 /* As per datasheet, put config controller in reset */
684 val
= ace_in(ace
, ACE_CTRL
);
685 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_CFGRESET
);
687 /* Move to the transfer state. The systemace will raise
688 * an interrupt once there is something to do
690 ace
->fsm_state
= ACE_FSM_STATE_REQ_TRANSFER
;
691 if (ace
->fsm_task
== ACE_TASK_READ
)
692 ace_fsm_yieldirq(ace
); /* wait for data ready */
695 case ACE_FSM_STATE_REQ_TRANSFER
:
696 /* Check that the sysace is ready to receive data */
697 status
= ace_in32(ace
, ACE_STATUS
);
698 if (status
& ACE_STATUS_CFBSY
) {
700 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
701 ace
->fsm_task
, ace
->fsm_iter_num
,
702 blk_rq_cur_sectors(ace
->req
) * 16,
703 ace
->data_count
, ace
->in_irq
);
704 ace_fsm_yield(ace
); /* need to poll CFBSY bit */
707 if (!(status
& ACE_STATUS_DATABUFRDY
)) {
709 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
710 ace
->fsm_task
, ace
->fsm_iter_num
,
711 blk_rq_cur_sectors(ace
->req
) * 16,
712 ace
->data_count
, ace
->in_irq
);
713 ace_fsm_yieldirq(ace
);
717 /* Transfer the next buffer */
718 if (ace
->fsm_task
== ACE_TASK_WRITE
)
719 ace
->reg_ops
->dataout(ace
);
721 ace
->reg_ops
->datain(ace
);
724 /* If there are still buffers to be transfers; jump out here */
725 if (ace
->data_count
!= 0) {
726 ace_fsm_yieldirq(ace
);
730 /* bio finished; is there another one? */
731 if (__blk_end_request_cur(ace
->req
, 0)) {
732 /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
733 * blk_rq_sectors(ace->req),
734 * blk_rq_cur_sectors(ace->req));
736 ace
->data_ptr
= ace
->req
->buffer
;
737 ace
->data_count
= blk_rq_cur_sectors(ace
->req
) * 16;
738 ace_fsm_yieldirq(ace
);
742 ace
->fsm_state
= ACE_FSM_STATE_REQ_COMPLETE
;
745 case ACE_FSM_STATE_REQ_COMPLETE
:
748 /* Finished request; go to idle state */
749 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
753 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
758 static void ace_fsm_tasklet(unsigned long data
)
760 struct ace_device
*ace
= (void *)data
;
763 spin_lock_irqsave(&ace
->lock
, flags
);
765 /* Loop over state machine until told to stop */
766 ace
->fsm_continue_flag
= 1;
767 while (ace
->fsm_continue_flag
)
768 ace_fsm_dostate(ace
);
770 spin_unlock_irqrestore(&ace
->lock
, flags
);
773 static void ace_stall_timer(unsigned long data
)
775 struct ace_device
*ace
= (void *)data
;
779 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
780 ace
->fsm_state
, ace
->fsm_task
, ace
->fsm_iter_num
,
782 spin_lock_irqsave(&ace
->lock
, flags
);
784 /* Rearm the stall timer *before* entering FSM (which may then
785 * delete the timer) */
786 mod_timer(&ace
->stall_timer
, jiffies
+ HZ
);
788 /* Loop over state machine until told to stop */
789 ace
->fsm_continue_flag
= 1;
790 while (ace
->fsm_continue_flag
)
791 ace_fsm_dostate(ace
);
793 spin_unlock_irqrestore(&ace
->lock
, flags
);
796 /* ---------------------------------------------------------------------
797 * Interrupt handling routines
799 static int ace_interrupt_checkstate(struct ace_device
*ace
)
801 u32 sreg
= ace_in32(ace
, ACE_STATUS
);
802 u16 creg
= ace_in(ace
, ACE_CTRL
);
804 /* Check for error occurrence */
805 if ((sreg
& (ACE_STATUS_CFGERROR
| ACE_STATUS_CFCERROR
)) &&
806 (creg
& ACE_CTRL_ERRORIRQ
)) {
807 dev_err(ace
->dev
, "transfer failure\n");
815 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
818 struct ace_device
*ace
= dev_id
;
820 /* be safe and get the lock */
821 spin_lock(&ace
->lock
);
824 /* clear the interrupt */
825 creg
= ace_in(ace
, ACE_CTRL
);
826 ace_out(ace
, ACE_CTRL
, creg
| ACE_CTRL_RESETIRQ
);
827 ace_out(ace
, ACE_CTRL
, creg
);
829 /* check for IO failures */
830 if (ace_interrupt_checkstate(ace
))
831 ace
->data_result
= -EIO
;
833 if (ace
->fsm_task
== 0) {
835 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
836 ace_in32(ace
, ACE_STATUS
), ace_in32(ace
, ACE_CTRL
),
837 ace_in(ace
, ACE_SECCNTCMD
));
838 dev_err(ace
->dev
, "fsm_task=%i fsm_state=%i data_count=%i\n",
839 ace
->fsm_task
, ace
->fsm_state
, ace
->data_count
);
842 /* Loop over state machine until told to stop */
843 ace
->fsm_continue_flag
= 1;
844 while (ace
->fsm_continue_flag
)
845 ace_fsm_dostate(ace
);
847 /* done with interrupt; drop the lock */
849 spin_unlock(&ace
->lock
);
854 /* ---------------------------------------------------------------------
857 static void ace_request(struct request_queue
* q
)
860 struct ace_device
*ace
;
862 req
= ace_get_next_request(q
);
865 ace
= req
->rq_disk
->private_data
;
866 tasklet_schedule(&ace
->fsm_tasklet
);
870 static unsigned int ace_check_events(struct gendisk
*gd
, unsigned int clearing
)
872 struct ace_device
*ace
= gd
->private_data
;
873 dev_dbg(ace
->dev
, "ace_check_events(): %i\n", ace
->media_change
);
875 return ace
->media_change
? DISK_EVENT_MEDIA_CHANGE
: 0;
878 static int ace_revalidate_disk(struct gendisk
*gd
)
880 struct ace_device
*ace
= gd
->private_data
;
883 dev_dbg(ace
->dev
, "ace_revalidate_disk()\n");
885 if (ace
->media_change
) {
886 dev_dbg(ace
->dev
, "requesting cf id and scheduling tasklet\n");
888 spin_lock_irqsave(&ace
->lock
, flags
);
890 spin_unlock_irqrestore(&ace
->lock
, flags
);
892 tasklet_schedule(&ace
->fsm_tasklet
);
893 wait_for_completion(&ace
->id_completion
);
896 dev_dbg(ace
->dev
, "revalidate complete\n");
897 return ace
->id_result
;
900 static int ace_open(struct block_device
*bdev
, fmode_t mode
)
902 struct ace_device
*ace
= bdev
->bd_disk
->private_data
;
905 dev_dbg(ace
->dev
, "ace_open() users=%i\n", ace
->users
+ 1);
907 mutex_lock(&xsysace_mutex
);
908 spin_lock_irqsave(&ace
->lock
, flags
);
910 spin_unlock_irqrestore(&ace
->lock
, flags
);
912 check_disk_change(bdev
);
913 mutex_unlock(&xsysace_mutex
);
918 static int ace_release(struct gendisk
*disk
, fmode_t mode
)
920 struct ace_device
*ace
= disk
->private_data
;
924 dev_dbg(ace
->dev
, "ace_release() users=%i\n", ace
->users
- 1);
926 mutex_lock(&xsysace_mutex
);
927 spin_lock_irqsave(&ace
->lock
, flags
);
929 if (ace
->users
== 0) {
930 val
= ace_in(ace
, ACE_CTRL
);
931 ace_out(ace
, ACE_CTRL
, val
& ~ACE_CTRL_LOCKREQ
);
933 spin_unlock_irqrestore(&ace
->lock
, flags
);
934 mutex_unlock(&xsysace_mutex
);
938 static int ace_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
940 struct ace_device
*ace
= bdev
->bd_disk
->private_data
;
941 u16
*cf_id
= ace
->cf_id
;
943 dev_dbg(ace
->dev
, "ace_getgeo()\n");
945 geo
->heads
= cf_id
[ATA_ID_HEADS
];
946 geo
->sectors
= cf_id
[ATA_ID_SECTORS
];
947 geo
->cylinders
= cf_id
[ATA_ID_CYLS
];
952 static const struct block_device_operations ace_fops
= {
953 .owner
= THIS_MODULE
,
955 .release
= ace_release
,
956 .check_events
= ace_check_events
,
957 .revalidate_disk
= ace_revalidate_disk
,
958 .getgeo
= ace_getgeo
,
961 /* --------------------------------------------------------------------
962 * SystemACE device setup/teardown code
964 static int __devinit
ace_setup(struct ace_device
*ace
)
970 dev_dbg(ace
->dev
, "ace_setup(ace=0x%p)\n", ace
);
971 dev_dbg(ace
->dev
, "physaddr=0x%llx irq=%i\n",
972 (unsigned long long)ace
->physaddr
, ace
->irq
);
974 spin_lock_init(&ace
->lock
);
975 init_completion(&ace
->id_completion
);
980 ace
->baseaddr
= ioremap(ace
->physaddr
, 0x80);
985 * Initialize the state machine tasklet and stall timer
987 tasklet_init(&ace
->fsm_tasklet
, ace_fsm_tasklet
, (unsigned long)ace
);
988 setup_timer(&ace
->stall_timer
, ace_stall_timer
, (unsigned long)ace
);
991 * Initialize the request queue
993 ace
->queue
= blk_init_queue(ace_request
, &ace
->lock
);
994 if (ace
->queue
== NULL
)
996 blk_queue_logical_block_size(ace
->queue
, 512);
999 * Allocate and initialize GD structure
1001 ace
->gd
= alloc_disk(ACE_NUM_MINORS
);
1003 goto err_alloc_disk
;
1005 ace
->gd
->major
= ace_major
;
1006 ace
->gd
->first_minor
= ace
->id
* ACE_NUM_MINORS
;
1007 ace
->gd
->fops
= &ace_fops
;
1008 ace
->gd
->queue
= ace
->queue
;
1009 ace
->gd
->private_data
= ace
;
1010 snprintf(ace
->gd
->disk_name
, 32, "xs%c", ace
->id
+ 'a');
1013 if (ace
->bus_width
== ACE_BUS_WIDTH_16
) {
1014 /* 0x0101 should work regardless of endianess */
1015 ace_out_le16(ace
, ACE_BUSMODE
, 0x0101);
1017 /* read it back to determine endianess */
1018 if (ace_in_le16(ace
, ACE_BUSMODE
) == 0x0001)
1019 ace
->reg_ops
= &ace_reg_le16_ops
;
1021 ace
->reg_ops
= &ace_reg_be16_ops
;
1023 ace_out_8(ace
, ACE_BUSMODE
, 0x00);
1024 ace
->reg_ops
= &ace_reg_8_ops
;
1027 /* Make sure version register is sane */
1028 version
= ace_in(ace
, ACE_VERSION
);
1029 if ((version
== 0) || (version
== 0xFFFF))
1032 /* Put sysace in a sane state by clearing most control reg bits */
1033 ace_out(ace
, ACE_CTRL
, ACE_CTRL_FORCECFGMODE
|
1034 ACE_CTRL_DATABUFRDYIRQ
| ACE_CTRL_ERRORIRQ
);
1036 /* Now we can hook up the irq handler */
1038 rc
= request_irq(ace
->irq
, ace_interrupt
, 0, "systemace", ace
);
1040 /* Failure - fall back to polled mode */
1041 dev_err(ace
->dev
, "request_irq failed\n");
1046 /* Enable interrupts */
1047 val
= ace_in(ace
, ACE_CTRL
);
1048 val
|= ACE_CTRL_DATABUFRDYIRQ
| ACE_CTRL_ERRORIRQ
;
1049 ace_out(ace
, ACE_CTRL
, val
);
1051 /* Print the identification */
1052 dev_info(ace
->dev
, "Xilinx SystemACE revision %i.%i.%i\n",
1053 (version
>> 12) & 0xf, (version
>> 8) & 0x0f, version
& 0xff);
1054 dev_dbg(ace
->dev
, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1055 (unsigned long long) ace
->physaddr
, ace
->baseaddr
, ace
->irq
);
1057 ace
->media_change
= 1;
1058 ace_revalidate_disk(ace
->gd
);
1060 /* Make the sysace device 'live' */
1068 blk_cleanup_queue(ace
->queue
);
1070 iounmap(ace
->baseaddr
);
1072 dev_info(ace
->dev
, "xsysace: error initializing device at 0x%llx\n",
1073 (unsigned long long) ace
->physaddr
);
1077 static void __devexit
ace_teardown(struct ace_device
*ace
)
1080 del_gendisk(ace
->gd
);
1085 blk_cleanup_queue(ace
->queue
);
1087 tasklet_kill(&ace
->fsm_tasklet
);
1090 free_irq(ace
->irq
, ace
);
1092 iounmap(ace
->baseaddr
);
1095 static int __devinit
1096 ace_alloc(struct device
*dev
, int id
, resource_size_t physaddr
,
1097 int irq
, int bus_width
)
1099 struct ace_device
*ace
;
1101 dev_dbg(dev
, "ace_alloc(%p)\n", dev
);
1108 /* Allocate and initialize the ace device structure */
1109 ace
= kzalloc(sizeof(struct ace_device
), GFP_KERNEL
);
1117 ace
->physaddr
= physaddr
;
1119 ace
->bus_width
= bus_width
;
1121 /* Call the setup code */
1122 rc
= ace_setup(ace
);
1126 dev_set_drvdata(dev
, ace
);
1130 dev_set_drvdata(dev
, NULL
);
1134 dev_err(dev
, "could not initialize device, err=%i\n", rc
);
1138 static void __devexit
ace_free(struct device
*dev
)
1140 struct ace_device
*ace
= dev_get_drvdata(dev
);
1141 dev_dbg(dev
, "ace_free(%p)\n", dev
);
1145 dev_set_drvdata(dev
, NULL
);
1150 /* ---------------------------------------------------------------------
1151 * Platform Bus Support
1154 static int __devinit
ace_probe(struct platform_device
*dev
)
1156 resource_size_t physaddr
= 0;
1157 int bus_width
= ACE_BUS_WIDTH_16
; /* FIXME: should not be hard coded */
1162 dev_dbg(&dev
->dev
, "ace_probe(%p)\n", dev
);
1164 /* device id and bus width */
1165 of_property_read_u32(dev
->dev
.of_node
, "port-number", &id
);
1168 if (of_find_property(dev
->dev
.of_node
, "8-bit", NULL
))
1169 bus_width
= ACE_BUS_WIDTH_8
;
1171 for (i
= 0; i
< dev
->num_resources
; i
++) {
1172 if (dev
->resource
[i
].flags
& IORESOURCE_MEM
)
1173 physaddr
= dev
->resource
[i
].start
;
1174 if (dev
->resource
[i
].flags
& IORESOURCE_IRQ
)
1175 irq
= dev
->resource
[i
].start
;
1178 /* Call the bus-independent setup code */
1179 return ace_alloc(&dev
->dev
, id
, physaddr
, irq
, bus_width
);
1183 * Platform bus remove() method
1185 static int __devexit
ace_remove(struct platform_device
*dev
)
1187 ace_free(&dev
->dev
);
1191 #if defined(CONFIG_OF)
1192 /* Match table for of_platform binding */
1193 static const struct of_device_id ace_of_match
[] __devinitconst
= {
1194 { .compatible
= "xlnx,opb-sysace-1.00.b", },
1195 { .compatible
= "xlnx,opb-sysace-1.00.c", },
1196 { .compatible
= "xlnx,xps-sysace-1.00.a", },
1197 { .compatible
= "xlnx,sysace", },
1200 MODULE_DEVICE_TABLE(of
, ace_of_match
);
1201 #else /* CONFIG_OF */
1202 #define ace_of_match NULL
1203 #endif /* CONFIG_OF */
1205 static struct platform_driver ace_platform_driver
= {
1207 .remove
= __devexit_p(ace_remove
),
1209 .owner
= THIS_MODULE
,
1211 .of_match_table
= ace_of_match
,
1215 /* ---------------------------------------------------------------------
1216 * Module init/exit routines
1218 static int __init
ace_init(void)
1222 ace_major
= register_blkdev(ace_major
, "xsysace");
1223 if (ace_major
<= 0) {
1228 rc
= platform_driver_register(&ace_platform_driver
);
1232 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major
);
1236 unregister_blkdev(ace_major
, "xsysace");
1238 printk(KERN_ERR
"xsysace: registration failed; err=%i\n", rc
);
1241 module_init(ace_init
);
1243 static void __exit
ace_exit(void)
1245 pr_debug("Unregistering Xilinx SystemACE driver\n");
1246 platform_driver_unregister(&ace_platform_driver
);
1247 unregister_blkdev(ace_major
, "xsysace");
1249 module_exit(ace_exit
);