2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/cpu.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
38 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
40 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
43 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
44 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
46 #define RADIX_TREE_TAG_LONGS \
47 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
49 struct radix_tree_node
{
50 unsigned int height
; /* Height from the bottom */
53 struct radix_tree_node
*parent
; /* Used when ascending tree */
54 struct rcu_head rcu_head
; /* Used when freeing node */
56 void __rcu
*slots
[RADIX_TREE_MAP_SIZE
];
57 unsigned long tags
[RADIX_TREE_MAX_TAGS
][RADIX_TREE_TAG_LONGS
];
60 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
61 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
62 RADIX_TREE_MAP_SHIFT))
65 * The height_to_maxindex array needs to be one deeper than the maximum
66 * path as height 0 holds only 1 entry.
68 static unsigned long height_to_maxindex
[RADIX_TREE_MAX_PATH
+ 1] __read_mostly
;
71 * Radix tree node cache.
73 static struct kmem_cache
*radix_tree_node_cachep
;
76 * Per-cpu pool of preloaded nodes
78 struct radix_tree_preload
{
80 struct radix_tree_node
*nodes
[RADIX_TREE_MAX_PATH
];
82 static DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = { 0, };
84 static inline void *ptr_to_indirect(void *ptr
)
86 return (void *)((unsigned long)ptr
| RADIX_TREE_INDIRECT_PTR
);
89 static inline void *indirect_to_ptr(void *ptr
)
91 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INDIRECT_PTR
);
94 static inline gfp_t
root_gfp_mask(struct radix_tree_root
*root
)
96 return root
->gfp_mask
& __GFP_BITS_MASK
;
99 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
102 __set_bit(offset
, node
->tags
[tag
]);
105 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
108 __clear_bit(offset
, node
->tags
[tag
]);
111 static inline int tag_get(struct radix_tree_node
*node
, unsigned int tag
,
114 return test_bit(offset
, node
->tags
[tag
]);
117 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned int tag
)
119 root
->gfp_mask
|= (__force gfp_t
)(1 << (tag
+ __GFP_BITS_SHIFT
));
122 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned int tag
)
124 root
->gfp_mask
&= (__force gfp_t
)~(1 << (tag
+ __GFP_BITS_SHIFT
));
127 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
129 root
->gfp_mask
&= __GFP_BITS_MASK
;
132 static inline int root_tag_get(struct radix_tree_root
*root
, unsigned int tag
)
134 return (__force
unsigned)root
->gfp_mask
& (1 << (tag
+ __GFP_BITS_SHIFT
));
138 * Returns 1 if any slot in the node has this tag set.
139 * Otherwise returns 0.
141 static inline int any_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
144 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
145 if (node
->tags
[tag
][idx
])
152 * radix_tree_find_next_bit - find the next set bit in a memory region
154 * @addr: The address to base the search on
155 * @size: The bitmap size in bits
156 * @offset: The bitnumber to start searching at
158 * Unrollable variant of find_next_bit() for constant size arrays.
159 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
160 * Returns next bit offset, or size if nothing found.
162 static __always_inline
unsigned long
163 radix_tree_find_next_bit(const unsigned long *addr
,
164 unsigned long size
, unsigned long offset
)
166 if (!__builtin_constant_p(size
))
167 return find_next_bit(addr
, size
, offset
);
172 addr
+= offset
/ BITS_PER_LONG
;
173 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
175 return __ffs(tmp
) + offset
;
176 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
177 while (offset
< size
) {
180 return __ffs(tmp
) + offset
;
181 offset
+= BITS_PER_LONG
;
188 * This assumes that the caller has performed appropriate preallocation, and
189 * that the caller has pinned this thread of control to the current CPU.
191 static struct radix_tree_node
*
192 radix_tree_node_alloc(struct radix_tree_root
*root
)
194 struct radix_tree_node
*ret
= NULL
;
195 gfp_t gfp_mask
= root_gfp_mask(root
);
197 if (!(gfp_mask
& __GFP_WAIT
)) {
198 struct radix_tree_preload
*rtp
;
201 * Provided the caller has preloaded here, we will always
202 * succeed in getting a node here (and never reach
205 rtp
= &__get_cpu_var(radix_tree_preloads
);
207 ret
= rtp
->nodes
[rtp
->nr
- 1];
208 rtp
->nodes
[rtp
->nr
- 1] = NULL
;
213 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
215 BUG_ON(radix_tree_is_indirect_ptr(ret
));
219 static void radix_tree_node_rcu_free(struct rcu_head
*head
)
221 struct radix_tree_node
*node
=
222 container_of(head
, struct radix_tree_node
, rcu_head
);
226 * must only free zeroed nodes into the slab. radix_tree_shrink
227 * can leave us with a non-NULL entry in the first slot, so clear
228 * that here to make sure.
230 for (i
= 0; i
< RADIX_TREE_MAX_TAGS
; i
++)
231 tag_clear(node
, i
, 0);
233 node
->slots
[0] = NULL
;
236 kmem_cache_free(radix_tree_node_cachep
, node
);
240 radix_tree_node_free(struct radix_tree_node
*node
)
242 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
246 * Load up this CPU's radix_tree_node buffer with sufficient objects to
247 * ensure that the addition of a single element in the tree cannot fail. On
248 * success, return zero, with preemption disabled. On error, return -ENOMEM
249 * with preemption not disabled.
251 * To make use of this facility, the radix tree must be initialised without
252 * __GFP_WAIT being passed to INIT_RADIX_TREE().
254 int radix_tree_preload(gfp_t gfp_mask
)
256 struct radix_tree_preload
*rtp
;
257 struct radix_tree_node
*node
;
261 rtp
= &__get_cpu_var(radix_tree_preloads
);
262 while (rtp
->nr
< ARRAY_SIZE(rtp
->nodes
)) {
264 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
268 rtp
= &__get_cpu_var(radix_tree_preloads
);
269 if (rtp
->nr
< ARRAY_SIZE(rtp
->nodes
))
270 rtp
->nodes
[rtp
->nr
++] = node
;
272 kmem_cache_free(radix_tree_node_cachep
, node
);
278 EXPORT_SYMBOL(radix_tree_preload
);
281 * Return the maximum key which can be store into a
282 * radix tree with height HEIGHT.
284 static inline unsigned long radix_tree_maxindex(unsigned int height
)
286 return height_to_maxindex
[height
];
290 * Extend a radix tree so it can store key @index.
292 static int radix_tree_extend(struct radix_tree_root
*root
, unsigned long index
)
294 struct radix_tree_node
*node
;
295 struct radix_tree_node
*slot
;
299 /* Figure out what the height should be. */
300 height
= root
->height
+ 1;
301 while (index
> radix_tree_maxindex(height
))
304 if (root
->rnode
== NULL
) {
305 root
->height
= height
;
310 unsigned int newheight
;
311 if (!(node
= radix_tree_node_alloc(root
)))
314 /* Propagate the aggregated tag info into the new root */
315 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
316 if (root_tag_get(root
, tag
))
317 tag_set(node
, tag
, 0);
320 /* Increase the height. */
321 newheight
= root
->height
+1;
322 node
->height
= newheight
;
327 slot
= indirect_to_ptr(slot
);
330 node
->slots
[0] = slot
;
331 node
= ptr_to_indirect(node
);
332 rcu_assign_pointer(root
->rnode
, node
);
333 root
->height
= newheight
;
334 } while (height
> root
->height
);
340 * radix_tree_insert - insert into a radix tree
341 * @root: radix tree root
343 * @item: item to insert
345 * Insert an item into the radix tree at position @index.
347 int radix_tree_insert(struct radix_tree_root
*root
,
348 unsigned long index
, void *item
)
350 struct radix_tree_node
*node
= NULL
, *slot
;
351 unsigned int height
, shift
;
355 BUG_ON(radix_tree_is_indirect_ptr(item
));
357 /* Make sure the tree is high enough. */
358 if (index
> radix_tree_maxindex(root
->height
)) {
359 error
= radix_tree_extend(root
, index
);
364 slot
= indirect_to_ptr(root
->rnode
);
366 height
= root
->height
;
367 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
369 offset
= 0; /* uninitialised var warning */
372 /* Have to add a child node. */
373 if (!(slot
= radix_tree_node_alloc(root
)))
375 slot
->height
= height
;
378 rcu_assign_pointer(node
->slots
[offset
], slot
);
381 rcu_assign_pointer(root
->rnode
, ptr_to_indirect(slot
));
384 /* Go a level down */
385 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
387 slot
= node
->slots
[offset
];
388 shift
-= RADIX_TREE_MAP_SHIFT
;
397 rcu_assign_pointer(node
->slots
[offset
], item
);
398 BUG_ON(tag_get(node
, 0, offset
));
399 BUG_ON(tag_get(node
, 1, offset
));
401 rcu_assign_pointer(root
->rnode
, item
);
402 BUG_ON(root_tag_get(root
, 0));
403 BUG_ON(root_tag_get(root
, 1));
408 EXPORT_SYMBOL(radix_tree_insert
);
411 * is_slot == 1 : search for the slot.
412 * is_slot == 0 : search for the node.
414 static void *radix_tree_lookup_element(struct radix_tree_root
*root
,
415 unsigned long index
, int is_slot
)
417 unsigned int height
, shift
;
418 struct radix_tree_node
*node
, **slot
;
420 node
= rcu_dereference_raw(root
->rnode
);
424 if (!radix_tree_is_indirect_ptr(node
)) {
427 return is_slot
? (void *)&root
->rnode
: node
;
429 node
= indirect_to_ptr(node
);
431 height
= node
->height
;
432 if (index
> radix_tree_maxindex(height
))
435 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
438 slot
= (struct radix_tree_node
**)
439 (node
->slots
+ ((index
>>shift
) & RADIX_TREE_MAP_MASK
));
440 node
= rcu_dereference_raw(*slot
);
444 shift
-= RADIX_TREE_MAP_SHIFT
;
446 } while (height
> 0);
448 return is_slot
? (void *)slot
: indirect_to_ptr(node
);
452 * radix_tree_lookup_slot - lookup a slot in a radix tree
453 * @root: radix tree root
456 * Returns: the slot corresponding to the position @index in the
457 * radix tree @root. This is useful for update-if-exists operations.
459 * This function can be called under rcu_read_lock iff the slot is not
460 * modified by radix_tree_replace_slot, otherwise it must be called
461 * exclusive from other writers. Any dereference of the slot must be done
462 * using radix_tree_deref_slot.
464 void **radix_tree_lookup_slot(struct radix_tree_root
*root
, unsigned long index
)
466 return (void **)radix_tree_lookup_element(root
, index
, 1);
468 EXPORT_SYMBOL(radix_tree_lookup_slot
);
471 * radix_tree_lookup - perform lookup operation on a radix tree
472 * @root: radix tree root
475 * Lookup the item at the position @index in the radix tree @root.
477 * This function can be called under rcu_read_lock, however the caller
478 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
479 * them safely). No RCU barriers are required to access or modify the
480 * returned item, however.
482 void *radix_tree_lookup(struct radix_tree_root
*root
, unsigned long index
)
484 return radix_tree_lookup_element(root
, index
, 0);
486 EXPORT_SYMBOL(radix_tree_lookup
);
489 * radix_tree_tag_set - set a tag on a radix tree node
490 * @root: radix tree root
494 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
495 * corresponding to @index in the radix tree. From
496 * the root all the way down to the leaf node.
498 * Returns the address of the tagged item. Setting a tag on a not-present
501 void *radix_tree_tag_set(struct radix_tree_root
*root
,
502 unsigned long index
, unsigned int tag
)
504 unsigned int height
, shift
;
505 struct radix_tree_node
*slot
;
507 height
= root
->height
;
508 BUG_ON(index
> radix_tree_maxindex(height
));
510 slot
= indirect_to_ptr(root
->rnode
);
511 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
516 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
517 if (!tag_get(slot
, tag
, offset
))
518 tag_set(slot
, tag
, offset
);
519 slot
= slot
->slots
[offset
];
520 BUG_ON(slot
== NULL
);
521 shift
-= RADIX_TREE_MAP_SHIFT
;
525 /* set the root's tag bit */
526 if (slot
&& !root_tag_get(root
, tag
))
527 root_tag_set(root
, tag
);
531 EXPORT_SYMBOL(radix_tree_tag_set
);
534 * radix_tree_tag_clear - clear a tag on a radix tree node
535 * @root: radix tree root
539 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
540 * corresponding to @index in the radix tree. If
541 * this causes the leaf node to have no tags set then clear the tag in the
542 * next-to-leaf node, etc.
544 * Returns the address of the tagged item on success, else NULL. ie:
545 * has the same return value and semantics as radix_tree_lookup().
547 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
548 unsigned long index
, unsigned int tag
)
550 struct radix_tree_node
*node
= NULL
;
551 struct radix_tree_node
*slot
= NULL
;
552 unsigned int height
, shift
;
553 int uninitialized_var(offset
);
555 height
= root
->height
;
556 if (index
> radix_tree_maxindex(height
))
559 shift
= height
* RADIX_TREE_MAP_SHIFT
;
560 slot
= indirect_to_ptr(root
->rnode
);
566 shift
-= RADIX_TREE_MAP_SHIFT
;
567 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
569 slot
= slot
->slots
[offset
];
576 if (!tag_get(node
, tag
, offset
))
578 tag_clear(node
, tag
, offset
);
579 if (any_tag_set(node
, tag
))
582 index
>>= RADIX_TREE_MAP_SHIFT
;
583 offset
= index
& RADIX_TREE_MAP_MASK
;
587 /* clear the root's tag bit */
588 if (root_tag_get(root
, tag
))
589 root_tag_clear(root
, tag
);
594 EXPORT_SYMBOL(radix_tree_tag_clear
);
597 * radix_tree_tag_get - get a tag on a radix tree node
598 * @root: radix tree root
600 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
604 * 0: tag not present or not set
607 * Note that the return value of this function may not be relied on, even if
608 * the RCU lock is held, unless tag modification and node deletion are excluded
611 int radix_tree_tag_get(struct radix_tree_root
*root
,
612 unsigned long index
, unsigned int tag
)
614 unsigned int height
, shift
;
615 struct radix_tree_node
*node
;
617 /* check the root's tag bit */
618 if (!root_tag_get(root
, tag
))
621 node
= rcu_dereference_raw(root
->rnode
);
625 if (!radix_tree_is_indirect_ptr(node
))
627 node
= indirect_to_ptr(node
);
629 height
= node
->height
;
630 if (index
> radix_tree_maxindex(height
))
633 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
641 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
642 if (!tag_get(node
, tag
, offset
))
646 node
= rcu_dereference_raw(node
->slots
[offset
]);
647 shift
-= RADIX_TREE_MAP_SHIFT
;
651 EXPORT_SYMBOL(radix_tree_tag_get
);
654 * radix_tree_next_chunk - find next chunk of slots for iteration
656 * @root: radix tree root
657 * @iter: iterator state
658 * @flags: RADIX_TREE_ITER_* flags and tag index
659 * Returns: pointer to chunk first slot, or NULL if iteration is over
661 void **radix_tree_next_chunk(struct radix_tree_root
*root
,
662 struct radix_tree_iter
*iter
, unsigned flags
)
664 unsigned shift
, tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
665 struct radix_tree_node
*rnode
, *node
;
666 unsigned long index
, offset
;
668 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
672 * Catch next_index overflow after ~0UL. iter->index never overflows
673 * during iterating; it can be zero only at the beginning.
674 * And we cannot overflow iter->next_index in a single step,
675 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
677 index
= iter
->next_index
;
678 if (!index
&& iter
->index
)
681 rnode
= rcu_dereference_raw(root
->rnode
);
682 if (radix_tree_is_indirect_ptr(rnode
)) {
683 rnode
= indirect_to_ptr(rnode
);
684 } else if (rnode
&& !index
) {
685 /* Single-slot tree */
687 iter
->next_index
= 1;
689 return (void **)&root
->rnode
;
694 shift
= (rnode
->height
- 1) * RADIX_TREE_MAP_SHIFT
;
695 offset
= index
>> shift
;
697 /* Index outside of the tree */
698 if (offset
>= RADIX_TREE_MAP_SIZE
)
703 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
704 !test_bit(offset
, node
->tags
[tag
]) :
705 !node
->slots
[offset
]) {
707 if (flags
& RADIX_TREE_ITER_CONTIG
)
710 if (flags
& RADIX_TREE_ITER_TAGGED
)
711 offset
= radix_tree_find_next_bit(
716 while (++offset
< RADIX_TREE_MAP_SIZE
) {
717 if (node
->slots
[offset
])
720 index
&= ~((RADIX_TREE_MAP_SIZE
<< shift
) - 1);
721 index
+= offset
<< shift
;
722 /* Overflow after ~0UL */
725 if (offset
== RADIX_TREE_MAP_SIZE
)
729 /* This is leaf-node */
733 node
= rcu_dereference_raw(node
->slots
[offset
]);
736 shift
-= RADIX_TREE_MAP_SHIFT
;
737 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
740 /* Update the iterator state */
742 iter
->next_index
= (index
| RADIX_TREE_MAP_MASK
) + 1;
744 /* Construct iter->tags bit-mask from node->tags[tag] array */
745 if (flags
& RADIX_TREE_ITER_TAGGED
) {
746 unsigned tag_long
, tag_bit
;
748 tag_long
= offset
/ BITS_PER_LONG
;
749 tag_bit
= offset
% BITS_PER_LONG
;
750 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
751 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
752 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
753 /* Pick tags from next element */
755 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
756 (BITS_PER_LONG
- tag_bit
);
757 /* Clip chunk size, here only BITS_PER_LONG tags */
758 iter
->next_index
= index
+ BITS_PER_LONG
;
762 return node
->slots
+ offset
;
764 EXPORT_SYMBOL(radix_tree_next_chunk
);
767 * radix_tree_range_tag_if_tagged - for each item in given range set given
768 * tag if item has another tag set
769 * @root: radix tree root
770 * @first_indexp: pointer to a starting index of a range to scan
771 * @last_index: last index of a range to scan
772 * @nr_to_tag: maximum number items to tag
773 * @iftag: tag index to test
774 * @settag: tag index to set if tested tag is set
776 * This function scans range of radix tree from first_index to last_index
777 * (inclusive). For each item in the range if iftag is set, the function sets
778 * also settag. The function stops either after tagging nr_to_tag items or
779 * after reaching last_index.
781 * The tags must be set from the leaf level only and propagated back up the
782 * path to the root. We must do this so that we resolve the full path before
783 * setting any tags on intermediate nodes. If we set tags as we descend, then
784 * we can get to the leaf node and find that the index that has the iftag
785 * set is outside the range we are scanning. This reults in dangling tags and
786 * can lead to problems with later tag operations (e.g. livelocks on lookups).
788 * The function returns number of leaves where the tag was set and sets
789 * *first_indexp to the first unscanned index.
790 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
791 * be prepared to handle that.
793 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root
*root
,
794 unsigned long *first_indexp
, unsigned long last_index
,
795 unsigned long nr_to_tag
,
796 unsigned int iftag
, unsigned int settag
)
798 unsigned int height
= root
->height
;
799 struct radix_tree_node
*node
= NULL
;
800 struct radix_tree_node
*slot
;
802 unsigned long tagged
= 0;
803 unsigned long index
= *first_indexp
;
805 last_index
= min(last_index
, radix_tree_maxindex(height
));
806 if (index
> last_index
)
810 if (!root_tag_get(root
, iftag
)) {
811 *first_indexp
= last_index
+ 1;
815 *first_indexp
= last_index
+ 1;
816 root_tag_set(root
, settag
);
820 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
821 slot
= indirect_to_ptr(root
->rnode
);
824 unsigned long upindex
;
827 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
828 if (!slot
->slots
[offset
])
830 if (!tag_get(slot
, iftag
, offset
))
833 /* Go down one level */
834 shift
-= RADIX_TREE_MAP_SHIFT
;
836 slot
= slot
->slots
[offset
];
842 tag_set(slot
, settag
, offset
);
844 /* walk back up the path tagging interior nodes */
847 upindex
>>= RADIX_TREE_MAP_SHIFT
;
848 offset
= upindex
& RADIX_TREE_MAP_MASK
;
850 /* stop if we find a node with the tag already set */
851 if (tag_get(node
, settag
, offset
))
853 tag_set(node
, settag
, offset
);
858 * Small optimization: now clear that node pointer.
859 * Since all of this slot's ancestors now have the tag set
860 * from setting it above, we have no further need to walk
861 * back up the tree setting tags, until we update slot to
862 * point to another radix_tree_node.
867 /* Go to next item at level determined by 'shift' */
868 index
= ((index
>> shift
) + 1) << shift
;
869 /* Overflow can happen when last_index is ~0UL... */
870 if (index
> last_index
|| !index
)
872 if (tagged
>= nr_to_tag
)
874 while (((index
>> shift
) & RADIX_TREE_MAP_MASK
) == 0) {
876 * We've fully scanned this node. Go up. Because
877 * last_index is guaranteed to be in the tree, what
878 * we do below cannot wander astray.
881 shift
+= RADIX_TREE_MAP_SHIFT
;
885 * We need not to tag the root tag if there is no tag which is set with
886 * settag within the range from *first_indexp to last_index.
889 root_tag_set(root
, settag
);
890 *first_indexp
= index
;
894 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged
);
898 * radix_tree_next_hole - find the next hole (not-present entry)
901 * @max_scan: maximum range to search
903 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
906 * Returns: the index of the hole if found, otherwise returns an index
907 * outside of the set specified (in which case 'return - index >= max_scan'
908 * will be true). In rare cases of index wrap-around, 0 will be returned.
910 * radix_tree_next_hole may be called under rcu_read_lock. However, like
911 * radix_tree_gang_lookup, this will not atomically search a snapshot of
912 * the tree at a single point in time. For example, if a hole is created
913 * at index 5, then subsequently a hole is created at index 10,
914 * radix_tree_next_hole covering both indexes may return 10 if called
915 * under rcu_read_lock.
917 unsigned long radix_tree_next_hole(struct radix_tree_root
*root
,
918 unsigned long index
, unsigned long max_scan
)
922 for (i
= 0; i
< max_scan
; i
++) {
923 if (!radix_tree_lookup(root
, index
))
932 EXPORT_SYMBOL(radix_tree_next_hole
);
935 * radix_tree_prev_hole - find the prev hole (not-present entry)
938 * @max_scan: maximum range to search
940 * Search backwards in the range [max(index-max_scan+1, 0), index]
941 * for the first hole.
943 * Returns: the index of the hole if found, otherwise returns an index
944 * outside of the set specified (in which case 'index - return >= max_scan'
945 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
947 * radix_tree_next_hole may be called under rcu_read_lock. However, like
948 * radix_tree_gang_lookup, this will not atomically search a snapshot of
949 * the tree at a single point in time. For example, if a hole is created
950 * at index 10, then subsequently a hole is created at index 5,
951 * radix_tree_prev_hole covering both indexes may return 5 if called under
954 unsigned long radix_tree_prev_hole(struct radix_tree_root
*root
,
955 unsigned long index
, unsigned long max_scan
)
959 for (i
= 0; i
< max_scan
; i
++) {
960 if (!radix_tree_lookup(root
, index
))
963 if (index
== ULONG_MAX
)
969 EXPORT_SYMBOL(radix_tree_prev_hole
);
972 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
973 * @root: radix tree root
974 * @results: where the results of the lookup are placed
975 * @first_index: start the lookup from this key
976 * @max_items: place up to this many items at *results
978 * Performs an index-ascending scan of the tree for present items. Places
979 * them at *@results and returns the number of items which were placed at
982 * The implementation is naive.
984 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
985 * rcu_read_lock. In this case, rather than the returned results being
986 * an atomic snapshot of the tree at a single point in time, the semantics
987 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
988 * have been issued in individual locks, and results stored in 'results'.
991 radix_tree_gang_lookup(struct radix_tree_root
*root
, void **results
,
992 unsigned long first_index
, unsigned int max_items
)
994 struct radix_tree_iter iter
;
996 unsigned int ret
= 0;
998 if (unlikely(!max_items
))
1001 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1002 results
[ret
] = indirect_to_ptr(rcu_dereference_raw(*slot
));
1005 if (++ret
== max_items
)
1011 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1014 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1015 * @root: radix tree root
1016 * @results: where the results of the lookup are placed
1017 * @indices: where their indices should be placed (but usually NULL)
1018 * @first_index: start the lookup from this key
1019 * @max_items: place up to this many items at *results
1021 * Performs an index-ascending scan of the tree for present items. Places
1022 * their slots at *@results and returns the number of items which were
1023 * placed at *@results.
1025 * The implementation is naive.
1027 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1028 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1029 * protection, radix_tree_deref_slot may fail requiring a retry.
1032 radix_tree_gang_lookup_slot(struct radix_tree_root
*root
,
1033 void ***results
, unsigned long *indices
,
1034 unsigned long first_index
, unsigned int max_items
)
1036 struct radix_tree_iter iter
;
1038 unsigned int ret
= 0;
1040 if (unlikely(!max_items
))
1043 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1044 results
[ret
] = slot
;
1046 indices
[ret
] = iter
.index
;
1047 if (++ret
== max_items
)
1053 EXPORT_SYMBOL(radix_tree_gang_lookup_slot
);
1056 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1058 * @root: radix tree root
1059 * @results: where the results of the lookup are placed
1060 * @first_index: start the lookup from this key
1061 * @max_items: place up to this many items at *results
1062 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1064 * Performs an index-ascending scan of the tree for present items which
1065 * have the tag indexed by @tag set. Places the items at *@results and
1066 * returns the number of items which were placed at *@results.
1069 radix_tree_gang_lookup_tag(struct radix_tree_root
*root
, void **results
,
1070 unsigned long first_index
, unsigned int max_items
,
1073 struct radix_tree_iter iter
;
1075 unsigned int ret
= 0;
1077 if (unlikely(!max_items
))
1080 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1081 results
[ret
] = indirect_to_ptr(rcu_dereference_raw(*slot
));
1084 if (++ret
== max_items
)
1090 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1093 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1094 * radix tree based on a tag
1095 * @root: radix tree root
1096 * @results: where the results of the lookup are placed
1097 * @first_index: start the lookup from this key
1098 * @max_items: place up to this many items at *results
1099 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1101 * Performs an index-ascending scan of the tree for present items which
1102 * have the tag indexed by @tag set. Places the slots at *@results and
1103 * returns the number of slots which were placed at *@results.
1106 radix_tree_gang_lookup_tag_slot(struct radix_tree_root
*root
, void ***results
,
1107 unsigned long first_index
, unsigned int max_items
,
1110 struct radix_tree_iter iter
;
1112 unsigned int ret
= 0;
1114 if (unlikely(!max_items
))
1117 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1118 results
[ret
] = slot
;
1119 if (++ret
== max_items
)
1125 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1127 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1128 #include <linux/sched.h> /* for cond_resched() */
1131 * This linear search is at present only useful to shmem_unuse_inode().
1133 static unsigned long __locate(struct radix_tree_node
*slot
, void *item
,
1134 unsigned long index
, unsigned long *found_index
)
1136 unsigned int shift
, height
;
1139 height
= slot
->height
;
1140 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
1142 for ( ; height
> 1; height
--) {
1143 i
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
1145 if (slot
->slots
[i
] != NULL
)
1147 index
&= ~((1UL << shift
) - 1);
1148 index
+= 1UL << shift
;
1150 goto out
; /* 32-bit wraparound */
1152 if (i
== RADIX_TREE_MAP_SIZE
)
1156 shift
-= RADIX_TREE_MAP_SHIFT
;
1157 slot
= rcu_dereference_raw(slot
->slots
[i
]);
1162 /* Bottom level: check items */
1163 for (i
= 0; i
< RADIX_TREE_MAP_SIZE
; i
++) {
1164 if (slot
->slots
[i
] == item
) {
1165 *found_index
= index
+ i
;
1170 index
+= RADIX_TREE_MAP_SIZE
;
1176 * radix_tree_locate_item - search through radix tree for item
1177 * @root: radix tree root
1178 * @item: item to be found
1180 * Returns index where item was found, or -1 if not found.
1181 * Caller must hold no lock (since this time-consuming function needs
1182 * to be preemptible), and must check afterwards if item is still there.
1184 unsigned long radix_tree_locate_item(struct radix_tree_root
*root
, void *item
)
1186 struct radix_tree_node
*node
;
1187 unsigned long max_index
;
1188 unsigned long cur_index
= 0;
1189 unsigned long found_index
= -1;
1193 node
= rcu_dereference_raw(root
->rnode
);
1194 if (!radix_tree_is_indirect_ptr(node
)) {
1201 node
= indirect_to_ptr(node
);
1202 max_index
= radix_tree_maxindex(node
->height
);
1203 if (cur_index
> max_index
)
1206 cur_index
= __locate(node
, item
, cur_index
, &found_index
);
1209 } while (cur_index
!= 0 && cur_index
<= max_index
);
1214 unsigned long radix_tree_locate_item(struct radix_tree_root
*root
, void *item
)
1218 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1221 * radix_tree_shrink - shrink height of a radix tree to minimal
1222 * @root radix tree root
1224 static inline void radix_tree_shrink(struct radix_tree_root
*root
)
1226 /* try to shrink tree height */
1227 while (root
->height
> 0) {
1228 struct radix_tree_node
*to_free
= root
->rnode
;
1229 struct radix_tree_node
*slot
;
1231 BUG_ON(!radix_tree_is_indirect_ptr(to_free
));
1232 to_free
= indirect_to_ptr(to_free
);
1235 * The candidate node has more than one child, or its child
1236 * is not at the leftmost slot, we cannot shrink.
1238 if (to_free
->count
!= 1)
1240 if (!to_free
->slots
[0])
1244 * We don't need rcu_assign_pointer(), since we are simply
1245 * moving the node from one part of the tree to another: if it
1246 * was safe to dereference the old pointer to it
1247 * (to_free->slots[0]), it will be safe to dereference the new
1248 * one (root->rnode) as far as dependent read barriers go.
1250 slot
= to_free
->slots
[0];
1251 if (root
->height
> 1) {
1252 slot
->parent
= NULL
;
1253 slot
= ptr_to_indirect(slot
);
1259 * We have a dilemma here. The node's slot[0] must not be
1260 * NULLed in case there are concurrent lookups expecting to
1261 * find the item. However if this was a bottom-level node,
1262 * then it may be subject to the slot pointer being visible
1263 * to callers dereferencing it. If item corresponding to
1264 * slot[0] is subsequently deleted, these callers would expect
1265 * their slot to become empty sooner or later.
1267 * For example, lockless pagecache will look up a slot, deref
1268 * the page pointer, and if the page is 0 refcount it means it
1269 * was concurrently deleted from pagecache so try the deref
1270 * again. Fortunately there is already a requirement for logic
1271 * to retry the entire slot lookup -- the indirect pointer
1272 * problem (replacing direct root node with an indirect pointer
1273 * also results in a stale slot). So tag the slot as indirect
1274 * to force callers to retry.
1276 if (root
->height
== 0)
1277 *((unsigned long *)&to_free
->slots
[0]) |=
1278 RADIX_TREE_INDIRECT_PTR
;
1280 radix_tree_node_free(to_free
);
1285 * radix_tree_delete - delete an item from a radix tree
1286 * @root: radix tree root
1289 * Remove the item at @index from the radix tree rooted at @root.
1291 * Returns the address of the deleted item, or NULL if it was not present.
1293 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
1295 struct radix_tree_node
*node
= NULL
;
1296 struct radix_tree_node
*slot
= NULL
;
1297 struct radix_tree_node
*to_free
;
1298 unsigned int height
, shift
;
1300 int uninitialized_var(offset
);
1302 height
= root
->height
;
1303 if (index
> radix_tree_maxindex(height
))
1308 root_tag_clear_all(root
);
1312 slot
= indirect_to_ptr(slot
);
1313 shift
= height
* RADIX_TREE_MAP_SHIFT
;
1319 shift
-= RADIX_TREE_MAP_SHIFT
;
1320 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
1322 slot
= slot
->slots
[offset
];
1329 * Clear all tags associated with the item to be deleted.
1330 * This way of doing it would be inefficient, but seldom is any set.
1332 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
1333 if (tag_get(node
, tag
, offset
))
1334 radix_tree_tag_clear(root
, index
, tag
);
1338 /* Now free the nodes we do not need anymore */
1340 node
->slots
[offset
] = NULL
;
1343 * Queue the node for deferred freeing after the
1344 * last reference to it disappears (set NULL, above).
1347 radix_tree_node_free(to_free
);
1350 if (node
== indirect_to_ptr(root
->rnode
))
1351 radix_tree_shrink(root
);
1355 /* Node with zero slots in use so free it */
1358 index
>>= RADIX_TREE_MAP_SHIFT
;
1359 offset
= index
& RADIX_TREE_MAP_MASK
;
1360 node
= node
->parent
;
1363 root_tag_clear_all(root
);
1367 radix_tree_node_free(to_free
);
1372 EXPORT_SYMBOL(radix_tree_delete
);
1375 * radix_tree_tagged - test whether any items in the tree are tagged
1376 * @root: radix tree root
1379 int radix_tree_tagged(struct radix_tree_root
*root
, unsigned int tag
)
1381 return root_tag_get(root
, tag
);
1383 EXPORT_SYMBOL(radix_tree_tagged
);
1386 radix_tree_node_ctor(void *node
)
1388 memset(node
, 0, sizeof(struct radix_tree_node
));
1391 static __init
unsigned long __maxindex(unsigned int height
)
1393 unsigned int width
= height
* RADIX_TREE_MAP_SHIFT
;
1394 int shift
= RADIX_TREE_INDEX_BITS
- width
;
1398 if (shift
>= BITS_PER_LONG
)
1400 return ~0UL >> shift
;
1403 static __init
void radix_tree_init_maxindex(void)
1407 for (i
= 0; i
< ARRAY_SIZE(height_to_maxindex
); i
++)
1408 height_to_maxindex
[i
] = __maxindex(i
);
1411 static int radix_tree_callback(struct notifier_block
*nfb
,
1412 unsigned long action
,
1415 int cpu
= (long)hcpu
;
1416 struct radix_tree_preload
*rtp
;
1418 /* Free per-cpu pool of perloaded nodes */
1419 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
1420 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
1422 kmem_cache_free(radix_tree_node_cachep
,
1423 rtp
->nodes
[rtp
->nr
-1]);
1424 rtp
->nodes
[rtp
->nr
-1] = NULL
;
1431 void __init
radix_tree_init(void)
1433 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
1434 sizeof(struct radix_tree_node
), 0,
1435 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
1436 radix_tree_node_ctor
);
1437 radix_tree_init_maxindex();
1438 hotcpu_notifier(radix_tree_callback
, 0);