rcu: Simplify creating of lockdep class for root rcu_node
[linux-2.6/libata-dev.git] / kernel / rcutree.c
blob055f1a941a9e01a238b1831520936c1f0479ec10
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
50 #include "rcutree.h"
52 /* Data structures. */
54 static struct lock_class_key rcu_root_class;
56 #define RCU_STATE_INITIALIZER(name) { \
57 .level = { &name.node[0] }, \
58 .levelcnt = { \
59 NUM_RCU_LVL_0, /* root of hierarchy. */ \
60 NUM_RCU_LVL_1, \
61 NUM_RCU_LVL_2, \
62 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
63 }, \
64 .signaled = RCU_SIGNAL_INIT, \
65 .gpnum = -300, \
66 .completed = -300, \
67 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
68 .orphan_cbs_list = NULL, \
69 .orphan_cbs_tail = &name.orphan_cbs_list, \
70 .orphan_qlen = 0, \
71 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
72 .n_force_qs = 0, \
73 .n_force_qs_ngp = 0, \
76 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
77 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
79 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
85 * permit this function to be invoked without holding the root rcu_node
86 * structure's ->lock, but of course results can be subject to change.
88 static int rcu_gp_in_progress(struct rcu_state *rsp)
90 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
94 * Note a quiescent state. Because we do not need to know
95 * how many quiescent states passed, just if there was at least
96 * one since the start of the grace period, this just sets a flag.
98 void rcu_sched_qs(int cpu)
100 struct rcu_data *rdp;
102 rdp = &per_cpu(rcu_sched_data, cpu);
103 rdp->passed_quiesc_completed = rdp->completed;
104 barrier();
105 rdp->passed_quiesc = 1;
106 rcu_preempt_note_context_switch(cpu);
109 void rcu_bh_qs(int cpu)
111 struct rcu_data *rdp;
113 rdp = &per_cpu(rcu_bh_data, cpu);
114 rdp->passed_quiesc_completed = rdp->completed;
115 barrier();
116 rdp->passed_quiesc = 1;
119 #ifdef CONFIG_NO_HZ
120 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
121 .dynticks_nesting = 1,
122 .dynticks = 1,
124 #endif /* #ifdef CONFIG_NO_HZ */
126 static int blimit = 10; /* Maximum callbacks per softirq. */
127 static int qhimark = 10000; /* If this many pending, ignore blimit. */
128 static int qlowmark = 100; /* Once only this many pending, use blimit. */
130 module_param(blimit, int, 0);
131 module_param(qhimark, int, 0);
132 module_param(qlowmark, int, 0);
134 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
135 static int rcu_pending(int cpu);
138 * Return the number of RCU-sched batches processed thus far for debug & stats.
140 long rcu_batches_completed_sched(void)
142 return rcu_sched_state.completed;
144 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
147 * Return the number of RCU BH batches processed thus far for debug & stats.
149 long rcu_batches_completed_bh(void)
151 return rcu_bh_state.completed;
153 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
156 * Does the CPU have callbacks ready to be invoked?
158 static int
159 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
161 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
165 * Does the current CPU require a yet-as-unscheduled grace period?
167 static int
168 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
170 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
174 * Return the root node of the specified rcu_state structure.
176 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
178 return &rsp->node[0];
181 #ifdef CONFIG_SMP
184 * If the specified CPU is offline, tell the caller that it is in
185 * a quiescent state. Otherwise, whack it with a reschedule IPI.
186 * Grace periods can end up waiting on an offline CPU when that
187 * CPU is in the process of coming online -- it will be added to the
188 * rcu_node bitmasks before it actually makes it online. The same thing
189 * can happen while a CPU is in the process of coming online. Because this
190 * race is quite rare, we check for it after detecting that the grace
191 * period has been delayed rather than checking each and every CPU
192 * each and every time we start a new grace period.
194 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
197 * If the CPU is offline, it is in a quiescent state. We can
198 * trust its state not to change because interrupts are disabled.
200 if (cpu_is_offline(rdp->cpu)) {
201 rdp->offline_fqs++;
202 return 1;
205 /* If preemptable RCU, no point in sending reschedule IPI. */
206 if (rdp->preemptable)
207 return 0;
209 /* The CPU is online, so send it a reschedule IPI. */
210 if (rdp->cpu != smp_processor_id())
211 smp_send_reschedule(rdp->cpu);
212 else
213 set_need_resched();
214 rdp->resched_ipi++;
215 return 0;
218 #endif /* #ifdef CONFIG_SMP */
220 #ifdef CONFIG_NO_HZ
223 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
225 * Enter nohz mode, in other words, -leave- the mode in which RCU
226 * read-side critical sections can occur. (Though RCU read-side
227 * critical sections can occur in irq handlers in nohz mode, a possibility
228 * handled by rcu_irq_enter() and rcu_irq_exit()).
230 void rcu_enter_nohz(void)
232 unsigned long flags;
233 struct rcu_dynticks *rdtp;
235 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
236 local_irq_save(flags);
237 rdtp = &__get_cpu_var(rcu_dynticks);
238 rdtp->dynticks++;
239 rdtp->dynticks_nesting--;
240 WARN_ON_ONCE(rdtp->dynticks & 0x1);
241 local_irq_restore(flags);
245 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
247 * Exit nohz mode, in other words, -enter- the mode in which RCU
248 * read-side critical sections normally occur.
250 void rcu_exit_nohz(void)
252 unsigned long flags;
253 struct rcu_dynticks *rdtp;
255 local_irq_save(flags);
256 rdtp = &__get_cpu_var(rcu_dynticks);
257 rdtp->dynticks++;
258 rdtp->dynticks_nesting++;
259 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
260 local_irq_restore(flags);
261 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
265 * rcu_nmi_enter - inform RCU of entry to NMI context
267 * If the CPU was idle with dynamic ticks active, and there is no
268 * irq handler running, this updates rdtp->dynticks_nmi to let the
269 * RCU grace-period handling know that the CPU is active.
271 void rcu_nmi_enter(void)
273 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
275 if (rdtp->dynticks & 0x1)
276 return;
277 rdtp->dynticks_nmi++;
278 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
279 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
283 * rcu_nmi_exit - inform RCU of exit from NMI context
285 * If the CPU was idle with dynamic ticks active, and there is no
286 * irq handler running, this updates rdtp->dynticks_nmi to let the
287 * RCU grace-period handling know that the CPU is no longer active.
289 void rcu_nmi_exit(void)
291 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
293 if (rdtp->dynticks & 0x1)
294 return;
295 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
296 rdtp->dynticks_nmi++;
297 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
301 * rcu_irq_enter - inform RCU of entry to hard irq context
303 * If the CPU was idle with dynamic ticks active, this updates the
304 * rdtp->dynticks to let the RCU handling know that the CPU is active.
306 void rcu_irq_enter(void)
308 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
310 if (rdtp->dynticks_nesting++)
311 return;
312 rdtp->dynticks++;
313 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
314 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
318 * rcu_irq_exit - inform RCU of exit from hard irq context
320 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
321 * to put let the RCU handling be aware that the CPU is going back to idle
322 * with no ticks.
324 void rcu_irq_exit(void)
326 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
328 if (--rdtp->dynticks_nesting)
329 return;
330 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
331 rdtp->dynticks++;
332 WARN_ON_ONCE(rdtp->dynticks & 0x1);
334 /* If the interrupt queued a callback, get out of dyntick mode. */
335 if (__get_cpu_var(rcu_sched_data).nxtlist ||
336 __get_cpu_var(rcu_bh_data).nxtlist)
337 set_need_resched();
341 * Record the specified "completed" value, which is later used to validate
342 * dynticks counter manipulations. Specify "rsp->completed - 1" to
343 * unconditionally invalidate any future dynticks manipulations (which is
344 * useful at the beginning of a grace period).
346 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
348 rsp->dynticks_completed = comp;
351 #ifdef CONFIG_SMP
354 * Recall the previously recorded value of the completion for dynticks.
356 static long dyntick_recall_completed(struct rcu_state *rsp)
358 return rsp->dynticks_completed;
362 * Snapshot the specified CPU's dynticks counter so that we can later
363 * credit them with an implicit quiescent state. Return 1 if this CPU
364 * is in dynticks idle mode, which is an extended quiescent state.
366 static int dyntick_save_progress_counter(struct rcu_data *rdp)
368 int ret;
369 int snap;
370 int snap_nmi;
372 snap = rdp->dynticks->dynticks;
373 snap_nmi = rdp->dynticks->dynticks_nmi;
374 smp_mb(); /* Order sampling of snap with end of grace period. */
375 rdp->dynticks_snap = snap;
376 rdp->dynticks_nmi_snap = snap_nmi;
377 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
378 if (ret)
379 rdp->dynticks_fqs++;
380 return ret;
384 * Return true if the specified CPU has passed through a quiescent
385 * state by virtue of being in or having passed through an dynticks
386 * idle state since the last call to dyntick_save_progress_counter()
387 * for this same CPU.
389 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
391 long curr;
392 long curr_nmi;
393 long snap;
394 long snap_nmi;
396 curr = rdp->dynticks->dynticks;
397 snap = rdp->dynticks_snap;
398 curr_nmi = rdp->dynticks->dynticks_nmi;
399 snap_nmi = rdp->dynticks_nmi_snap;
400 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
403 * If the CPU passed through or entered a dynticks idle phase with
404 * no active irq/NMI handlers, then we can safely pretend that the CPU
405 * already acknowledged the request to pass through a quiescent
406 * state. Either way, that CPU cannot possibly be in an RCU
407 * read-side critical section that started before the beginning
408 * of the current RCU grace period.
410 if ((curr != snap || (curr & 0x1) == 0) &&
411 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
412 rdp->dynticks_fqs++;
413 return 1;
416 /* Go check for the CPU being offline. */
417 return rcu_implicit_offline_qs(rdp);
420 #endif /* #ifdef CONFIG_SMP */
422 #else /* #ifdef CONFIG_NO_HZ */
424 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
428 #ifdef CONFIG_SMP
431 * If there are no dynticks, then the only way that a CPU can passively
432 * be in a quiescent state is to be offline. Unlike dynticks idle, which
433 * is a point in time during the prior (already finished) grace period,
434 * an offline CPU is always in a quiescent state, and thus can be
435 * unconditionally applied. So just return the current value of completed.
437 static long dyntick_recall_completed(struct rcu_state *rsp)
439 return rsp->completed;
442 static int dyntick_save_progress_counter(struct rcu_data *rdp)
444 return 0;
447 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
449 return rcu_implicit_offline_qs(rdp);
452 #endif /* #ifdef CONFIG_SMP */
454 #endif /* #else #ifdef CONFIG_NO_HZ */
456 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
458 static void record_gp_stall_check_time(struct rcu_state *rsp)
460 rsp->gp_start = jiffies;
461 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
464 static void print_other_cpu_stall(struct rcu_state *rsp)
466 int cpu;
467 long delta;
468 unsigned long flags;
469 struct rcu_node *rnp = rcu_get_root(rsp);
471 /* Only let one CPU complain about others per time interval. */
473 spin_lock_irqsave(&rnp->lock, flags);
474 delta = jiffies - rsp->jiffies_stall;
475 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
476 spin_unlock_irqrestore(&rnp->lock, flags);
477 return;
479 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
482 * Now rat on any tasks that got kicked up to the root rcu_node
483 * due to CPU offlining.
485 rcu_print_task_stall(rnp);
486 spin_unlock_irqrestore(&rnp->lock, flags);
488 /* OK, time to rat on our buddy... */
490 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
491 rcu_for_each_leaf_node(rsp, rnp) {
492 rcu_print_task_stall(rnp);
493 if (rnp->qsmask == 0)
494 continue;
495 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
496 if (rnp->qsmask & (1UL << cpu))
497 printk(" %d", rnp->grplo + cpu);
499 printk(" (detected by %d, t=%ld jiffies)\n",
500 smp_processor_id(), (long)(jiffies - rsp->gp_start));
501 trigger_all_cpu_backtrace();
503 force_quiescent_state(rsp, 0); /* Kick them all. */
506 static void print_cpu_stall(struct rcu_state *rsp)
508 unsigned long flags;
509 struct rcu_node *rnp = rcu_get_root(rsp);
511 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
512 smp_processor_id(), jiffies - rsp->gp_start);
513 trigger_all_cpu_backtrace();
515 spin_lock_irqsave(&rnp->lock, flags);
516 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
517 rsp->jiffies_stall =
518 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
519 spin_unlock_irqrestore(&rnp->lock, flags);
521 set_need_resched(); /* kick ourselves to get things going. */
524 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
526 long delta;
527 struct rcu_node *rnp;
529 delta = jiffies - rsp->jiffies_stall;
530 rnp = rdp->mynode;
531 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
533 /* We haven't checked in, so go dump stack. */
534 print_cpu_stall(rsp);
536 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
538 /* They had two time units to dump stack, so complain. */
539 print_other_cpu_stall(rsp);
543 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
545 static void record_gp_stall_check_time(struct rcu_state *rsp)
549 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
553 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
556 * Update CPU-local rcu_data state to record the newly noticed grace period.
557 * This is used both when we started the grace period and when we notice
558 * that someone else started the grace period.
560 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
562 rdp->qs_pending = 1;
563 rdp->passed_quiesc = 0;
564 rdp->gpnum = rsp->gpnum;
568 * Did someone else start a new RCU grace period start since we last
569 * checked? Update local state appropriately if so. Must be called
570 * on the CPU corresponding to rdp.
572 static int
573 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
575 unsigned long flags;
576 int ret = 0;
578 local_irq_save(flags);
579 if (rdp->gpnum != rsp->gpnum) {
580 note_new_gpnum(rsp, rdp);
581 ret = 1;
583 local_irq_restore(flags);
584 return ret;
588 * Start a new RCU grace period if warranted, re-initializing the hierarchy
589 * in preparation for detecting the next grace period. The caller must hold
590 * the root node's ->lock, which is released before return. Hard irqs must
591 * be disabled.
593 static void
594 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
595 __releases(rcu_get_root(rsp)->lock)
597 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
598 struct rcu_node *rnp = rcu_get_root(rsp);
600 if (!cpu_needs_another_gp(rsp, rdp)) {
601 spin_unlock_irqrestore(&rnp->lock, flags);
602 return;
605 /* Advance to a new grace period and initialize state. */
606 rsp->gpnum++;
607 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
608 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
609 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
610 record_gp_stall_check_time(rsp);
611 dyntick_record_completed(rsp, rsp->completed - 1);
612 note_new_gpnum(rsp, rdp);
615 * Because this CPU just now started the new grace period, we know
616 * that all of its callbacks will be covered by this upcoming grace
617 * period, even the ones that were registered arbitrarily recently.
618 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
620 * Other CPUs cannot be sure exactly when the grace period started.
621 * Therefore, their recently registered callbacks must pass through
622 * an additional RCU_NEXT_READY stage, so that they will be handled
623 * by the next RCU grace period.
625 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
626 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
628 /* Special-case the common single-level case. */
629 if (NUM_RCU_NODES == 1) {
630 rcu_preempt_check_blocked_tasks(rnp);
631 rnp->qsmask = rnp->qsmaskinit;
632 rnp->gpnum = rsp->gpnum;
633 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
634 spin_unlock_irqrestore(&rnp->lock, flags);
635 return;
638 spin_unlock(&rnp->lock); /* leave irqs disabled. */
641 /* Exclude any concurrent CPU-hotplug operations. */
642 spin_lock(&rsp->onofflock); /* irqs already disabled. */
645 * Set the quiescent-state-needed bits in all the rcu_node
646 * structures for all currently online CPUs in breadth-first
647 * order, starting from the root rcu_node structure. This
648 * operation relies on the layout of the hierarchy within the
649 * rsp->node[] array. Note that other CPUs will access only
650 * the leaves of the hierarchy, which still indicate that no
651 * grace period is in progress, at least until the corresponding
652 * leaf node has been initialized. In addition, we have excluded
653 * CPU-hotplug operations.
655 * Note that the grace period cannot complete until we finish
656 * the initialization process, as there will be at least one
657 * qsmask bit set in the root node until that time, namely the
658 * one corresponding to this CPU, due to the fact that we have
659 * irqs disabled.
661 rcu_for_each_node_breadth_first(rsp, rnp) {
662 spin_lock(&rnp->lock); /* irqs already disabled. */
663 rcu_preempt_check_blocked_tasks(rnp);
664 rnp->qsmask = rnp->qsmaskinit;
665 rnp->gpnum = rsp->gpnum;
666 spin_unlock(&rnp->lock); /* irqs already disabled. */
669 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
670 spin_unlock_irqrestore(&rsp->onofflock, flags);
674 * Advance this CPU's callbacks, but only if the current grace period
675 * has ended. This may be called only from the CPU to whom the rdp
676 * belongs.
678 static void
679 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
681 long completed_snap;
682 unsigned long flags;
684 local_irq_save(flags);
685 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
687 /* Did another grace period end? */
688 if (rdp->completed != completed_snap) {
690 /* Advance callbacks. No harm if list empty. */
691 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
692 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
693 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
695 /* Remember that we saw this grace-period completion. */
696 rdp->completed = completed_snap;
698 local_irq_restore(flags);
702 * Clean up after the prior grace period and let rcu_start_gp() start up
703 * the next grace period if one is needed. Note that the caller must
704 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
706 static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
707 __releases(rcu_get_root(rsp)->lock)
709 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
710 rsp->completed = rsp->gpnum;
711 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
712 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
716 * Similar to cpu_quiet(), for which it is a helper function. Allows
717 * a group of CPUs to be quieted at one go, though all the CPUs in the
718 * group must be represented by the same leaf rcu_node structure.
719 * That structure's lock must be held upon entry, and it is released
720 * before return.
722 static void
723 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
724 unsigned long flags)
725 __releases(rnp->lock)
727 struct rcu_node *rnp_c;
729 /* Walk up the rcu_node hierarchy. */
730 for (;;) {
731 if (!(rnp->qsmask & mask)) {
733 /* Our bit has already been cleared, so done. */
734 spin_unlock_irqrestore(&rnp->lock, flags);
735 return;
737 rnp->qsmask &= ~mask;
738 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
740 /* Other bits still set at this level, so done. */
741 spin_unlock_irqrestore(&rnp->lock, flags);
742 return;
744 mask = rnp->grpmask;
745 if (rnp->parent == NULL) {
747 /* No more levels. Exit loop holding root lock. */
749 break;
751 spin_unlock_irqrestore(&rnp->lock, flags);
752 rnp_c = rnp;
753 rnp = rnp->parent;
754 spin_lock_irqsave(&rnp->lock, flags);
755 WARN_ON_ONCE(rnp_c->qsmask);
759 * Get here if we are the last CPU to pass through a quiescent
760 * state for this grace period. Invoke cpu_quiet_msk_finish()
761 * to clean up and start the next grace period if one is needed.
763 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
767 * Record a quiescent state for the specified CPU, which must either be
768 * the current CPU. The lastcomp argument is used to make sure we are
769 * still in the grace period of interest. We don't want to end the current
770 * grace period based on quiescent states detected in an earlier grace
771 * period!
773 static void
774 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
776 unsigned long flags;
777 unsigned long mask;
778 struct rcu_node *rnp;
780 rnp = rdp->mynode;
781 spin_lock_irqsave(&rnp->lock, flags);
782 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
785 * Someone beat us to it for this grace period, so leave.
786 * The race with GP start is resolved by the fact that we
787 * hold the leaf rcu_node lock, so that the per-CPU bits
788 * cannot yet be initialized -- so we would simply find our
789 * CPU's bit already cleared in cpu_quiet_msk() if this race
790 * occurred.
792 rdp->passed_quiesc = 0; /* try again later! */
793 spin_unlock_irqrestore(&rnp->lock, flags);
794 return;
796 mask = rdp->grpmask;
797 if ((rnp->qsmask & mask) == 0) {
798 spin_unlock_irqrestore(&rnp->lock, flags);
799 } else {
800 rdp->qs_pending = 0;
803 * This GP can't end until cpu checks in, so all of our
804 * callbacks can be processed during the next GP.
806 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
808 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
813 * Check to see if there is a new grace period of which this CPU
814 * is not yet aware, and if so, set up local rcu_data state for it.
815 * Otherwise, see if this CPU has just passed through its first
816 * quiescent state for this grace period, and record that fact if so.
818 static void
819 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
821 /* If there is now a new grace period, record and return. */
822 if (check_for_new_grace_period(rsp, rdp))
823 return;
826 * Does this CPU still need to do its part for current grace period?
827 * If no, return and let the other CPUs do their part as well.
829 if (!rdp->qs_pending)
830 return;
833 * Was there a quiescent state since the beginning of the grace
834 * period? If no, then exit and wait for the next call.
836 if (!rdp->passed_quiesc)
837 return;
839 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
840 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
843 #ifdef CONFIG_HOTPLUG_CPU
846 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
847 * specified flavor of RCU. The callbacks will be adopted by the next
848 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
849 * comes first. Because this is invoked from the CPU_DYING notifier,
850 * irqs are already disabled.
852 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
854 int i;
855 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
857 if (rdp->nxtlist == NULL)
858 return; /* irqs disabled, so comparison is stable. */
859 spin_lock(&rsp->onofflock); /* irqs already disabled. */
860 *rsp->orphan_cbs_tail = rdp->nxtlist;
861 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
862 rdp->nxtlist = NULL;
863 for (i = 0; i < RCU_NEXT_SIZE; i++)
864 rdp->nxttail[i] = &rdp->nxtlist;
865 rsp->orphan_qlen += rdp->qlen;
866 rdp->qlen = 0;
867 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
871 * Adopt previously orphaned RCU callbacks.
873 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
875 unsigned long flags;
876 struct rcu_data *rdp;
878 spin_lock_irqsave(&rsp->onofflock, flags);
879 rdp = rsp->rda[smp_processor_id()];
880 if (rsp->orphan_cbs_list == NULL) {
881 spin_unlock_irqrestore(&rsp->onofflock, flags);
882 return;
884 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
885 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
886 rdp->qlen += rsp->orphan_qlen;
887 rsp->orphan_cbs_list = NULL;
888 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
889 rsp->orphan_qlen = 0;
890 spin_unlock_irqrestore(&rsp->onofflock, flags);
894 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
895 * and move all callbacks from the outgoing CPU to the current one.
897 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
899 unsigned long flags;
900 long lastcomp;
901 unsigned long mask;
902 struct rcu_data *rdp = rsp->rda[cpu];
903 struct rcu_node *rnp;
905 /* Exclude any attempts to start a new grace period. */
906 spin_lock_irqsave(&rsp->onofflock, flags);
908 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
909 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
910 mask = rdp->grpmask; /* rnp->grplo is constant. */
911 do {
912 spin_lock(&rnp->lock); /* irqs already disabled. */
913 rnp->qsmaskinit &= ~mask;
914 if (rnp->qsmaskinit != 0) {
915 spin_unlock(&rnp->lock); /* irqs remain disabled. */
916 break;
918 rcu_preempt_offline_tasks(rsp, rnp, rdp);
919 mask = rnp->grpmask;
920 spin_unlock(&rnp->lock); /* irqs remain disabled. */
921 rnp = rnp->parent;
922 } while (rnp != NULL);
923 lastcomp = rsp->completed;
925 spin_unlock_irqrestore(&rsp->onofflock, flags);
927 rcu_adopt_orphan_cbs(rsp);
931 * Remove the specified CPU from the RCU hierarchy and move any pending
932 * callbacks that it might have to the current CPU. This code assumes
933 * that at least one CPU in the system will remain running at all times.
934 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
936 static void rcu_offline_cpu(int cpu)
938 __rcu_offline_cpu(cpu, &rcu_sched_state);
939 __rcu_offline_cpu(cpu, &rcu_bh_state);
940 rcu_preempt_offline_cpu(cpu);
943 #else /* #ifdef CONFIG_HOTPLUG_CPU */
945 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
949 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
953 static void rcu_offline_cpu(int cpu)
957 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
960 * Invoke any RCU callbacks that have made it to the end of their grace
961 * period. Thottle as specified by rdp->blimit.
963 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
965 unsigned long flags;
966 struct rcu_head *next, *list, **tail;
967 int count;
969 /* If no callbacks are ready, just return.*/
970 if (!cpu_has_callbacks_ready_to_invoke(rdp))
971 return;
974 * Extract the list of ready callbacks, disabling to prevent
975 * races with call_rcu() from interrupt handlers.
977 local_irq_save(flags);
978 list = rdp->nxtlist;
979 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
980 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
981 tail = rdp->nxttail[RCU_DONE_TAIL];
982 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
983 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
984 rdp->nxttail[count] = &rdp->nxtlist;
985 local_irq_restore(flags);
987 /* Invoke callbacks. */
988 count = 0;
989 while (list) {
990 next = list->next;
991 prefetch(next);
992 list->func(list);
993 list = next;
994 if (++count >= rdp->blimit)
995 break;
998 local_irq_save(flags);
1000 /* Update count, and requeue any remaining callbacks. */
1001 rdp->qlen -= count;
1002 if (list != NULL) {
1003 *tail = rdp->nxtlist;
1004 rdp->nxtlist = list;
1005 for (count = 0; count < RCU_NEXT_SIZE; count++)
1006 if (&rdp->nxtlist == rdp->nxttail[count])
1007 rdp->nxttail[count] = tail;
1008 else
1009 break;
1012 /* Reinstate batch limit if we have worked down the excess. */
1013 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1014 rdp->blimit = blimit;
1016 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1017 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1018 rdp->qlen_last_fqs_check = 0;
1019 rdp->n_force_qs_snap = rsp->n_force_qs;
1020 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1021 rdp->qlen_last_fqs_check = rdp->qlen;
1023 local_irq_restore(flags);
1025 /* Re-raise the RCU softirq if there are callbacks remaining. */
1026 if (cpu_has_callbacks_ready_to_invoke(rdp))
1027 raise_softirq(RCU_SOFTIRQ);
1031 * Check to see if this CPU is in a non-context-switch quiescent state
1032 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1033 * Also schedule the RCU softirq handler.
1035 * This function must be called with hardirqs disabled. It is normally
1036 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1037 * false, there is no point in invoking rcu_check_callbacks().
1039 void rcu_check_callbacks(int cpu, int user)
1041 if (!rcu_pending(cpu))
1042 return; /* if nothing for RCU to do. */
1043 if (user ||
1044 (idle_cpu(cpu) && rcu_scheduler_active &&
1045 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1048 * Get here if this CPU took its interrupt from user
1049 * mode or from the idle loop, and if this is not a
1050 * nested interrupt. In this case, the CPU is in
1051 * a quiescent state, so note it.
1053 * No memory barrier is required here because both
1054 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1055 * variables that other CPUs neither access nor modify,
1056 * at least not while the corresponding CPU is online.
1059 rcu_sched_qs(cpu);
1060 rcu_bh_qs(cpu);
1062 } else if (!in_softirq()) {
1065 * Get here if this CPU did not take its interrupt from
1066 * softirq, in other words, if it is not interrupting
1067 * a rcu_bh read-side critical section. This is an _bh
1068 * critical section, so note it.
1071 rcu_bh_qs(cpu);
1073 rcu_preempt_check_callbacks(cpu);
1074 raise_softirq(RCU_SOFTIRQ);
1077 #ifdef CONFIG_SMP
1080 * Scan the leaf rcu_node structures, processing dyntick state for any that
1081 * have not yet encountered a quiescent state, using the function specified.
1082 * Returns 1 if the current grace period ends while scanning (possibly
1083 * because we made it end).
1085 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1086 int (*f)(struct rcu_data *))
1088 unsigned long bit;
1089 int cpu;
1090 unsigned long flags;
1091 unsigned long mask;
1092 struct rcu_node *rnp;
1094 rcu_for_each_leaf_node(rsp, rnp) {
1095 mask = 0;
1096 spin_lock_irqsave(&rnp->lock, flags);
1097 if (rsp->completed != lastcomp) {
1098 spin_unlock_irqrestore(&rnp->lock, flags);
1099 return 1;
1101 if (rnp->qsmask == 0) {
1102 spin_unlock_irqrestore(&rnp->lock, flags);
1103 continue;
1105 cpu = rnp->grplo;
1106 bit = 1;
1107 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1108 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1109 mask |= bit;
1111 if (mask != 0 && rsp->completed == lastcomp) {
1113 /* cpu_quiet_msk() releases rnp->lock. */
1114 cpu_quiet_msk(mask, rsp, rnp, flags);
1115 continue;
1117 spin_unlock_irqrestore(&rnp->lock, flags);
1119 return 0;
1123 * Force quiescent states on reluctant CPUs, and also detect which
1124 * CPUs are in dyntick-idle mode.
1126 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1128 unsigned long flags;
1129 long lastcomp;
1130 struct rcu_node *rnp = rcu_get_root(rsp);
1131 u8 signaled;
1133 if (!rcu_gp_in_progress(rsp))
1134 return; /* No grace period in progress, nothing to force. */
1135 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1136 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1137 return; /* Someone else is already on the job. */
1139 if (relaxed &&
1140 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1141 goto unlock_ret; /* no emergency and done recently. */
1142 rsp->n_force_qs++;
1143 spin_lock(&rnp->lock);
1144 lastcomp = rsp->completed;
1145 signaled = rsp->signaled;
1146 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1147 if (lastcomp == rsp->gpnum) {
1148 rsp->n_force_qs_ngp++;
1149 spin_unlock(&rnp->lock);
1150 goto unlock_ret; /* no GP in progress, time updated. */
1152 spin_unlock(&rnp->lock);
1153 switch (signaled) {
1154 case RCU_GP_INIT:
1156 break; /* grace period still initializing, ignore. */
1158 case RCU_SAVE_DYNTICK:
1160 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1161 break; /* So gcc recognizes the dead code. */
1163 /* Record dyntick-idle state. */
1164 if (rcu_process_dyntick(rsp, lastcomp,
1165 dyntick_save_progress_counter))
1166 goto unlock_ret;
1168 /* Update state, record completion counter. */
1169 spin_lock(&rnp->lock);
1170 if (lastcomp == rsp->completed) {
1171 rsp->signaled = RCU_FORCE_QS;
1172 dyntick_record_completed(rsp, lastcomp);
1174 spin_unlock(&rnp->lock);
1175 break;
1177 case RCU_FORCE_QS:
1179 /* Check dyntick-idle state, send IPI to laggarts. */
1180 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1181 rcu_implicit_dynticks_qs))
1182 goto unlock_ret;
1184 /* Leave state in case more forcing is required. */
1186 break;
1188 unlock_ret:
1189 spin_unlock_irqrestore(&rsp->fqslock, flags);
1192 #else /* #ifdef CONFIG_SMP */
1194 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1196 set_need_resched();
1199 #endif /* #else #ifdef CONFIG_SMP */
1202 * This does the RCU processing work from softirq context for the
1203 * specified rcu_state and rcu_data structures. This may be called
1204 * only from the CPU to whom the rdp belongs.
1206 static void
1207 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1209 unsigned long flags;
1211 WARN_ON_ONCE(rdp->beenonline == 0);
1214 * If an RCU GP has gone long enough, go check for dyntick
1215 * idle CPUs and, if needed, send resched IPIs.
1217 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1218 force_quiescent_state(rsp, 1);
1221 * Advance callbacks in response to end of earlier grace
1222 * period that some other CPU ended.
1224 rcu_process_gp_end(rsp, rdp);
1226 /* Update RCU state based on any recent quiescent states. */
1227 rcu_check_quiescent_state(rsp, rdp);
1229 /* Does this CPU require a not-yet-started grace period? */
1230 if (cpu_needs_another_gp(rsp, rdp)) {
1231 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1232 rcu_start_gp(rsp, flags); /* releases above lock */
1235 /* If there are callbacks ready, invoke them. */
1236 rcu_do_batch(rsp, rdp);
1240 * Do softirq processing for the current CPU.
1242 static void rcu_process_callbacks(struct softirq_action *unused)
1245 * Memory references from any prior RCU read-side critical sections
1246 * executed by the interrupted code must be seen before any RCU
1247 * grace-period manipulations below.
1249 smp_mb(); /* See above block comment. */
1251 __rcu_process_callbacks(&rcu_sched_state,
1252 &__get_cpu_var(rcu_sched_data));
1253 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1254 rcu_preempt_process_callbacks();
1257 * Memory references from any later RCU read-side critical sections
1258 * executed by the interrupted code must be seen after any RCU
1259 * grace-period manipulations above.
1261 smp_mb(); /* See above block comment. */
1264 static void
1265 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1266 struct rcu_state *rsp)
1268 unsigned long flags;
1269 struct rcu_data *rdp;
1271 head->func = func;
1272 head->next = NULL;
1274 smp_mb(); /* Ensure RCU update seen before callback registry. */
1277 * Opportunistically note grace-period endings and beginnings.
1278 * Note that we might see a beginning right after we see an
1279 * end, but never vice versa, since this CPU has to pass through
1280 * a quiescent state betweentimes.
1282 local_irq_save(flags);
1283 rdp = rsp->rda[smp_processor_id()];
1284 rcu_process_gp_end(rsp, rdp);
1285 check_for_new_grace_period(rsp, rdp);
1287 /* Add the callback to our list. */
1288 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1289 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1291 /* Start a new grace period if one not already started. */
1292 if (!rcu_gp_in_progress(rsp)) {
1293 unsigned long nestflag;
1294 struct rcu_node *rnp_root = rcu_get_root(rsp);
1296 spin_lock_irqsave(&rnp_root->lock, nestflag);
1297 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1301 * Force the grace period if too many callbacks or too long waiting.
1302 * Enforce hysteresis, and don't invoke force_quiescent_state()
1303 * if some other CPU has recently done so. Also, don't bother
1304 * invoking force_quiescent_state() if the newly enqueued callback
1305 * is the only one waiting for a grace period to complete.
1307 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1308 rdp->blimit = LONG_MAX;
1309 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1310 *rdp->nxttail[RCU_DONE_TAIL] != head)
1311 force_quiescent_state(rsp, 0);
1312 rdp->n_force_qs_snap = rsp->n_force_qs;
1313 rdp->qlen_last_fqs_check = rdp->qlen;
1314 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1315 force_quiescent_state(rsp, 1);
1316 local_irq_restore(flags);
1320 * Queue an RCU-sched callback for invocation after a grace period.
1322 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1324 __call_rcu(head, func, &rcu_sched_state);
1326 EXPORT_SYMBOL_GPL(call_rcu_sched);
1329 * Queue an RCU for invocation after a quicker grace period.
1331 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1333 __call_rcu(head, func, &rcu_bh_state);
1335 EXPORT_SYMBOL_GPL(call_rcu_bh);
1338 * Check to see if there is any immediate RCU-related work to be done
1339 * by the current CPU, for the specified type of RCU, returning 1 if so.
1340 * The checks are in order of increasing expense: checks that can be
1341 * carried out against CPU-local state are performed first. However,
1342 * we must check for CPU stalls first, else we might not get a chance.
1344 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1346 rdp->n_rcu_pending++;
1348 /* Check for CPU stalls, if enabled. */
1349 check_cpu_stall(rsp, rdp);
1351 /* Is the RCU core waiting for a quiescent state from this CPU? */
1352 if (rdp->qs_pending) {
1353 rdp->n_rp_qs_pending++;
1354 return 1;
1357 /* Does this CPU have callbacks ready to invoke? */
1358 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1359 rdp->n_rp_cb_ready++;
1360 return 1;
1363 /* Has RCU gone idle with this CPU needing another grace period? */
1364 if (cpu_needs_another_gp(rsp, rdp)) {
1365 rdp->n_rp_cpu_needs_gp++;
1366 return 1;
1369 /* Has another RCU grace period completed? */
1370 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1371 rdp->n_rp_gp_completed++;
1372 return 1;
1375 /* Has a new RCU grace period started? */
1376 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1377 rdp->n_rp_gp_started++;
1378 return 1;
1381 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1382 if (rcu_gp_in_progress(rsp) &&
1383 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1384 rdp->n_rp_need_fqs++;
1385 return 1;
1388 /* nothing to do */
1389 rdp->n_rp_need_nothing++;
1390 return 0;
1394 * Check to see if there is any immediate RCU-related work to be done
1395 * by the current CPU, returning 1 if so. This function is part of the
1396 * RCU implementation; it is -not- an exported member of the RCU API.
1398 static int rcu_pending(int cpu)
1400 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1401 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1402 rcu_preempt_pending(cpu);
1406 * Check to see if any future RCU-related work will need to be done
1407 * by the current CPU, even if none need be done immediately, returning
1408 * 1 if so. This function is part of the RCU implementation; it is -not-
1409 * an exported member of the RCU API.
1411 int rcu_needs_cpu(int cpu)
1413 /* RCU callbacks either ready or pending? */
1414 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1415 per_cpu(rcu_bh_data, cpu).nxtlist ||
1416 rcu_preempt_needs_cpu(cpu);
1419 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1420 static atomic_t rcu_barrier_cpu_count;
1421 static DEFINE_MUTEX(rcu_barrier_mutex);
1422 static struct completion rcu_barrier_completion;
1424 static void rcu_barrier_callback(struct rcu_head *notused)
1426 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1427 complete(&rcu_barrier_completion);
1431 * Called with preemption disabled, and from cross-cpu IRQ context.
1433 static void rcu_barrier_func(void *type)
1435 int cpu = smp_processor_id();
1436 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1437 void (*call_rcu_func)(struct rcu_head *head,
1438 void (*func)(struct rcu_head *head));
1440 atomic_inc(&rcu_barrier_cpu_count);
1441 call_rcu_func = type;
1442 call_rcu_func(head, rcu_barrier_callback);
1446 * Orchestrate the specified type of RCU barrier, waiting for all
1447 * RCU callbacks of the specified type to complete.
1449 static void _rcu_barrier(struct rcu_state *rsp,
1450 void (*call_rcu_func)(struct rcu_head *head,
1451 void (*func)(struct rcu_head *head)))
1453 BUG_ON(in_interrupt());
1454 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1455 mutex_lock(&rcu_barrier_mutex);
1456 init_completion(&rcu_barrier_completion);
1458 * Initialize rcu_barrier_cpu_count to 1, then invoke
1459 * rcu_barrier_func() on each CPU, so that each CPU also has
1460 * incremented rcu_barrier_cpu_count. Only then is it safe to
1461 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1462 * might complete its grace period before all of the other CPUs
1463 * did their increment, causing this function to return too
1464 * early.
1466 atomic_set(&rcu_barrier_cpu_count, 1);
1467 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1468 rcu_adopt_orphan_cbs(rsp);
1469 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1470 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1471 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1472 complete(&rcu_barrier_completion);
1473 wait_for_completion(&rcu_barrier_completion);
1474 mutex_unlock(&rcu_barrier_mutex);
1478 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1480 void rcu_barrier_bh(void)
1482 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1484 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1487 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1489 void rcu_barrier_sched(void)
1491 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1493 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1496 * Do boot-time initialization of a CPU's per-CPU RCU data.
1498 static void __init
1499 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1501 unsigned long flags;
1502 int i;
1503 struct rcu_data *rdp = rsp->rda[cpu];
1504 struct rcu_node *rnp = rcu_get_root(rsp);
1506 /* Set up local state, ensuring consistent view of global state. */
1507 spin_lock_irqsave(&rnp->lock, flags);
1508 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1509 rdp->nxtlist = NULL;
1510 for (i = 0; i < RCU_NEXT_SIZE; i++)
1511 rdp->nxttail[i] = &rdp->nxtlist;
1512 rdp->qlen = 0;
1513 #ifdef CONFIG_NO_HZ
1514 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1515 #endif /* #ifdef CONFIG_NO_HZ */
1516 rdp->cpu = cpu;
1517 spin_unlock_irqrestore(&rnp->lock, flags);
1521 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1522 * offline event can be happening at a given time. Note also that we
1523 * can accept some slop in the rsp->completed access due to the fact
1524 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1526 static void __cpuinit
1527 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1529 unsigned long flags;
1530 long lastcomp;
1531 unsigned long mask;
1532 struct rcu_data *rdp = rsp->rda[cpu];
1533 struct rcu_node *rnp = rcu_get_root(rsp);
1535 /* Set up local state, ensuring consistent view of global state. */
1536 spin_lock_irqsave(&rnp->lock, flags);
1537 lastcomp = rsp->completed;
1538 rdp->completed = lastcomp;
1539 rdp->gpnum = lastcomp;
1540 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1541 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1542 rdp->beenonline = 1; /* We have now been online. */
1543 rdp->preemptable = preemptable;
1544 rdp->passed_quiesc_completed = lastcomp - 1;
1545 rdp->qlen_last_fqs_check = 0;
1546 rdp->n_force_qs_snap = rsp->n_force_qs;
1547 rdp->blimit = blimit;
1548 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1551 * A new grace period might start here. If so, we won't be part
1552 * of it, but that is OK, as we are currently in a quiescent state.
1555 /* Exclude any attempts to start a new GP on large systems. */
1556 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1558 /* Add CPU to rcu_node bitmasks. */
1559 rnp = rdp->mynode;
1560 mask = rdp->grpmask;
1561 do {
1562 /* Exclude any attempts to start a new GP on small systems. */
1563 spin_lock(&rnp->lock); /* irqs already disabled. */
1564 rnp->qsmaskinit |= mask;
1565 mask = rnp->grpmask;
1566 spin_unlock(&rnp->lock); /* irqs already disabled. */
1567 rnp = rnp->parent;
1568 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1570 spin_unlock_irqrestore(&rsp->onofflock, flags);
1573 static void __cpuinit rcu_online_cpu(int cpu)
1575 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1576 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1577 rcu_preempt_init_percpu_data(cpu);
1581 * Handle CPU online/offline notification events.
1583 int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1584 unsigned long action, void *hcpu)
1586 long cpu = (long)hcpu;
1588 switch (action) {
1589 case CPU_UP_PREPARE:
1590 case CPU_UP_PREPARE_FROZEN:
1591 rcu_online_cpu(cpu);
1592 break;
1593 case CPU_DYING:
1594 case CPU_DYING_FROZEN:
1596 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1597 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1598 * returns, all online cpus have queued rcu_barrier_func().
1599 * The dying CPU clears its cpu_online_mask bit and
1600 * moves all of its RCU callbacks to ->orphan_cbs_list
1601 * in the context of stop_machine(), so subsequent calls
1602 * to _rcu_barrier() will adopt these callbacks and only
1603 * then queue rcu_barrier_func() on all remaining CPUs.
1605 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1606 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1607 rcu_preempt_send_cbs_to_orphanage();
1608 break;
1609 case CPU_DEAD:
1610 case CPU_DEAD_FROZEN:
1611 case CPU_UP_CANCELED:
1612 case CPU_UP_CANCELED_FROZEN:
1613 rcu_offline_cpu(cpu);
1614 break;
1615 default:
1616 break;
1618 return NOTIFY_OK;
1622 * Compute the per-level fanout, either using the exact fanout specified
1623 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1625 #ifdef CONFIG_RCU_FANOUT_EXACT
1626 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1628 int i;
1630 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1631 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1633 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1634 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1636 int ccur;
1637 int cprv;
1638 int i;
1640 cprv = NR_CPUS;
1641 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1642 ccur = rsp->levelcnt[i];
1643 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1644 cprv = ccur;
1647 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1650 * Helper function for rcu_init() that initializes one rcu_state structure.
1652 static void __init rcu_init_one(struct rcu_state *rsp)
1654 int cpustride = 1;
1655 int i;
1656 int j;
1657 struct rcu_node *rnp;
1659 /* Initialize the level-tracking arrays. */
1661 for (i = 1; i < NUM_RCU_LVLS; i++)
1662 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1663 rcu_init_levelspread(rsp);
1665 /* Initialize the elements themselves, starting from the leaves. */
1667 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1668 cpustride *= rsp->levelspread[i];
1669 rnp = rsp->level[i];
1670 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1671 spin_lock_init(&rnp->lock);
1672 rnp->gpnum = 0;
1673 rnp->qsmask = 0;
1674 rnp->qsmaskinit = 0;
1675 rnp->grplo = j * cpustride;
1676 rnp->grphi = (j + 1) * cpustride - 1;
1677 if (rnp->grphi >= NR_CPUS)
1678 rnp->grphi = NR_CPUS - 1;
1679 if (i == 0) {
1680 rnp->grpnum = 0;
1681 rnp->grpmask = 0;
1682 rnp->parent = NULL;
1683 } else {
1684 rnp->grpnum = j % rsp->levelspread[i - 1];
1685 rnp->grpmask = 1UL << rnp->grpnum;
1686 rnp->parent = rsp->level[i - 1] +
1687 j / rsp->levelspread[i - 1];
1689 rnp->level = i;
1690 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1691 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1694 lockdep_set_class(&rcu_get_root(rsp)->lock, &rcu_root_class);
1698 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1699 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1700 * structure.
1702 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1703 do { \
1704 int i; \
1705 int j; \
1706 struct rcu_node *rnp; \
1708 rcu_init_one(rsp); \
1709 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1710 j = 0; \
1711 for_each_possible_cpu(i) { \
1712 if (i > rnp[j].grphi) \
1713 j++; \
1714 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1715 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1716 rcu_boot_init_percpu_data(i, rsp); \
1718 } while (0)
1720 void __init __rcu_init(void)
1722 rcu_bootup_announce();
1723 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1724 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1725 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1726 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1727 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1728 __rcu_init_preempt();
1729 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1732 #include "rcutree_plugin.h"