4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
40 LIST_HEAD(super_blocks
);
41 DEFINE_SPINLOCK(sb_lock
);
43 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static int prune_super(struct shrinker
*shrink
, struct shrink_control
*sc
)
58 struct super_block
*sb
;
62 sb
= container_of(shrink
, struct super_block
, s_shrink
);
65 * Deadlock avoidance. We may hold various FS locks, and we don't want
66 * to recurse into the FS that called us in clear_inode() and friends..
68 if (sc
->nr_to_scan
&& !(sc
->gfp_mask
& __GFP_FS
))
71 if (!grab_super_passive(sb
))
74 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
75 fs_objects
= sb
->s_op
->nr_cached_objects(sb
);
77 total_objects
= sb
->s_nr_dentry_unused
+
78 sb
->s_nr_inodes_unused
+ fs_objects
+ 1;
84 /* proportion the scan between the caches */
85 dentries
= (sc
->nr_to_scan
* sb
->s_nr_dentry_unused
) /
87 inodes
= (sc
->nr_to_scan
* sb
->s_nr_inodes_unused
) /
90 fs_objects
= (sc
->nr_to_scan
* fs_objects
) /
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
96 prune_dcache_sb(sb
, dentries
);
97 prune_icache_sb(sb
, inodes
);
99 if (fs_objects
&& sb
->s_op
->free_cached_objects
) {
100 sb
->s_op
->free_cached_objects(sb
, fs_objects
);
101 fs_objects
= sb
->s_op
->nr_cached_objects(sb
);
103 total_objects
= sb
->s_nr_dentry_unused
+
104 sb
->s_nr_inodes_unused
+ fs_objects
;
107 total_objects
= (total_objects
/ 100) * sysctl_vfs_cache_pressure
;
109 return total_objects
;
112 static int init_sb_writers(struct super_block
*s
, struct file_system_type
*type
)
117 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
118 err
= percpu_counter_init(&s
->s_writers
.counter
[i
], 0);
121 lockdep_init_map(&s
->s_writers
.lock_map
[i
], sb_writers_name
[i
],
122 &type
->s_writers_key
[i
], 0);
124 init_waitqueue_head(&s
->s_writers
.wait
);
125 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
129 percpu_counter_destroy(&s
->s_writers
.counter
[i
]);
133 static void destroy_sb_writers(struct super_block
*s
)
137 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
138 percpu_counter_destroy(&s
->s_writers
.counter
[i
]);
142 * alloc_super - create new superblock
143 * @type: filesystem type superblock should belong to
144 * @flags: the mount flags
146 * Allocates and initializes a new &struct super_block. alloc_super()
147 * returns a pointer new superblock or %NULL if allocation had failed.
149 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
)
151 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
152 static const struct super_operations default_op
;
155 if (security_sb_alloc(s
)) {
157 * We cannot call security_sb_free() without
158 * security_sb_alloc() succeeding. So bail out manually
165 s
->s_files
= alloc_percpu(struct list_head
);
171 for_each_possible_cpu(i
)
172 INIT_LIST_HEAD(per_cpu_ptr(s
->s_files
, i
));
175 INIT_LIST_HEAD(&s
->s_files
);
177 if (init_sb_writers(s
, type
))
180 s
->s_bdi
= &default_backing_dev_info
;
181 INIT_HLIST_NODE(&s
->s_instances
);
182 INIT_HLIST_BL_HEAD(&s
->s_anon
);
183 INIT_LIST_HEAD(&s
->s_inodes
);
184 INIT_LIST_HEAD(&s
->s_dentry_lru
);
185 INIT_LIST_HEAD(&s
->s_inode_lru
);
186 spin_lock_init(&s
->s_inode_lru_lock
);
187 INIT_LIST_HEAD(&s
->s_mounts
);
188 init_rwsem(&s
->s_umount
);
189 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
191 * sget() can have s_umount recursion.
193 * When it cannot find a suitable sb, it allocates a new
194 * one (this one), and tries again to find a suitable old
197 * In case that succeeds, it will acquire the s_umount
198 * lock of the old one. Since these are clearly distrinct
199 * locks, and this object isn't exposed yet, there's no
202 * Annotate this by putting this lock in a different
205 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
207 atomic_set(&s
->s_active
, 1);
208 mutex_init(&s
->s_vfs_rename_mutex
);
209 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
210 mutex_init(&s
->s_dquot
.dqio_mutex
);
211 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
212 init_rwsem(&s
->s_dquot
.dqptr_sem
);
213 s
->s_maxbytes
= MAX_NON_LFS
;
214 s
->s_op
= &default_op
;
215 s
->s_time_gran
= 1000000000;
216 s
->cleancache_poolid
= -1;
218 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
219 s
->s_shrink
.shrink
= prune_super
;
220 s
->s_shrink
.batch
= 1024;
228 free_percpu(s
->s_files
);
230 destroy_sb_writers(s
);
237 * destroy_super - frees a superblock
238 * @s: superblock to free
240 * Frees a superblock.
242 static inline void destroy_super(struct super_block
*s
)
245 free_percpu(s
->s_files
);
247 destroy_sb_writers(s
);
249 WARN_ON(!list_empty(&s
->s_mounts
));
255 /* Superblock refcounting */
258 * Drop a superblock's refcount. The caller must hold sb_lock.
260 static void __put_super(struct super_block
*sb
)
262 if (!--sb
->s_count
) {
263 list_del_init(&sb
->s_list
);
269 * put_super - drop a temporary reference to superblock
270 * @sb: superblock in question
272 * Drops a temporary reference, frees superblock if there's no
275 static void put_super(struct super_block
*sb
)
279 spin_unlock(&sb_lock
);
284 * deactivate_locked_super - drop an active reference to superblock
285 * @s: superblock to deactivate
287 * Drops an active reference to superblock, converting it into a temprory
288 * one if there is no other active references left. In that case we
289 * tell fs driver to shut it down and drop the temporary reference we
292 * Caller holds exclusive lock on superblock; that lock is released.
294 void deactivate_locked_super(struct super_block
*s
)
296 struct file_system_type
*fs
= s
->s_type
;
297 if (atomic_dec_and_test(&s
->s_active
)) {
298 cleancache_invalidate_fs(s
);
301 /* caches are now gone, we can safely kill the shrinker now */
302 unregister_shrinker(&s
->s_shrink
);
306 up_write(&s
->s_umount
);
310 EXPORT_SYMBOL(deactivate_locked_super
);
313 * deactivate_super - drop an active reference to superblock
314 * @s: superblock to deactivate
316 * Variant of deactivate_locked_super(), except that superblock is *not*
317 * locked by caller. If we are going to drop the final active reference,
318 * lock will be acquired prior to that.
320 void deactivate_super(struct super_block
*s
)
322 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
323 down_write(&s
->s_umount
);
324 deactivate_locked_super(s
);
328 EXPORT_SYMBOL(deactivate_super
);
331 * grab_super - acquire an active reference
332 * @s: reference we are trying to make active
334 * Tries to acquire an active reference. grab_super() is used when we
335 * had just found a superblock in super_blocks or fs_type->fs_supers
336 * and want to turn it into a full-blown active reference. grab_super()
337 * is called with sb_lock held and drops it. Returns 1 in case of
338 * success, 0 if we had failed (superblock contents was already dead or
339 * dying when grab_super() had been called).
341 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
343 if (atomic_inc_not_zero(&s
->s_active
)) {
344 spin_unlock(&sb_lock
);
347 /* it's going away */
349 spin_unlock(&sb_lock
);
350 /* wait for it to die */
351 down_write(&s
->s_umount
);
352 up_write(&s
->s_umount
);
358 * grab_super_passive - acquire a passive reference
359 * @sb: reference we are trying to grab
361 * Tries to acquire a passive reference. This is used in places where we
362 * cannot take an active reference but we need to ensure that the
363 * superblock does not go away while we are working on it. It returns
364 * false if a reference was not gained, and returns true with the s_umount
365 * lock held in read mode if a reference is gained. On successful return,
366 * the caller must drop the s_umount lock and the passive reference when
369 bool grab_super_passive(struct super_block
*sb
)
372 if (hlist_unhashed(&sb
->s_instances
)) {
373 spin_unlock(&sb_lock
);
378 spin_unlock(&sb_lock
);
380 if (down_read_trylock(&sb
->s_umount
)) {
381 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
383 up_read(&sb
->s_umount
);
391 * generic_shutdown_super - common helper for ->kill_sb()
392 * @sb: superblock to kill
394 * generic_shutdown_super() does all fs-independent work on superblock
395 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
396 * that need destruction out of superblock, call generic_shutdown_super()
397 * and release aforementioned objects. Note: dentries and inodes _are_
398 * taken care of and do not need specific handling.
400 * Upon calling this function, the filesystem may no longer alter or
401 * rearrange the set of dentries belonging to this super_block, nor may it
402 * change the attachments of dentries to inodes.
404 void generic_shutdown_super(struct super_block
*sb
)
406 const struct super_operations
*sop
= sb
->s_op
;
409 shrink_dcache_for_umount(sb
);
411 sb
->s_flags
&= ~MS_ACTIVE
;
413 fsnotify_unmount_inodes(&sb
->s_inodes
);
420 if (!list_empty(&sb
->s_inodes
)) {
421 printk("VFS: Busy inodes after unmount of %s. "
422 "Self-destruct in 5 seconds. Have a nice day...\n",
427 /* should be initialized for __put_super_and_need_restart() */
428 hlist_del_init(&sb
->s_instances
);
429 spin_unlock(&sb_lock
);
430 up_write(&sb
->s_umount
);
433 EXPORT_SYMBOL(generic_shutdown_super
);
436 * sget - find or create a superblock
437 * @type: filesystem type superblock should belong to
438 * @test: comparison callback
439 * @set: setup callback
440 * @flags: mount flags
441 * @data: argument to each of them
443 struct super_block
*sget(struct file_system_type
*type
,
444 int (*test
)(struct super_block
*,void *),
445 int (*set
)(struct super_block
*,void *),
449 struct super_block
*s
= NULL
;
450 struct hlist_node
*node
;
451 struct super_block
*old
;
457 hlist_for_each_entry(old
, node
, &type
->fs_supers
, s_instances
) {
458 if (!test(old
, data
))
460 if (!grab_super(old
))
463 up_write(&s
->s_umount
);
467 down_write(&old
->s_umount
);
468 if (unlikely(!(old
->s_flags
& MS_BORN
))) {
469 deactivate_locked_super(old
);
476 spin_unlock(&sb_lock
);
477 s
= alloc_super(type
, flags
);
479 return ERR_PTR(-ENOMEM
);
485 spin_unlock(&sb_lock
);
486 up_write(&s
->s_umount
);
491 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
492 list_add_tail(&s
->s_list
, &super_blocks
);
493 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
494 spin_unlock(&sb_lock
);
495 get_filesystem(type
);
496 register_shrinker(&s
->s_shrink
);
502 void drop_super(struct super_block
*sb
)
504 up_read(&sb
->s_umount
);
508 EXPORT_SYMBOL(drop_super
);
511 * iterate_supers - call function for all active superblocks
512 * @f: function to call
513 * @arg: argument to pass to it
515 * Scans the superblock list and calls given function, passing it
516 * locked superblock and given argument.
518 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
520 struct super_block
*sb
, *p
= NULL
;
523 list_for_each_entry(sb
, &super_blocks
, s_list
) {
524 if (hlist_unhashed(&sb
->s_instances
))
527 spin_unlock(&sb_lock
);
529 down_read(&sb
->s_umount
);
530 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
532 up_read(&sb
->s_umount
);
541 spin_unlock(&sb_lock
);
545 * iterate_supers_type - call function for superblocks of given type
547 * @f: function to call
548 * @arg: argument to pass to it
550 * Scans the superblock list and calls given function, passing it
551 * locked superblock and given argument.
553 void iterate_supers_type(struct file_system_type
*type
,
554 void (*f
)(struct super_block
*, void *), void *arg
)
556 struct super_block
*sb
, *p
= NULL
;
557 struct hlist_node
*node
;
560 hlist_for_each_entry(sb
, node
, &type
->fs_supers
, s_instances
) {
562 spin_unlock(&sb_lock
);
564 down_read(&sb
->s_umount
);
565 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
567 up_read(&sb
->s_umount
);
576 spin_unlock(&sb_lock
);
579 EXPORT_SYMBOL(iterate_supers_type
);
582 * get_super - get the superblock of a device
583 * @bdev: device to get the superblock for
585 * Scans the superblock list and finds the superblock of the file system
586 * mounted on the device given. %NULL is returned if no match is found.
589 struct super_block
*get_super(struct block_device
*bdev
)
591 struct super_block
*sb
;
598 list_for_each_entry(sb
, &super_blocks
, s_list
) {
599 if (hlist_unhashed(&sb
->s_instances
))
601 if (sb
->s_bdev
== bdev
) {
603 spin_unlock(&sb_lock
);
604 down_read(&sb
->s_umount
);
606 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
608 up_read(&sb
->s_umount
);
609 /* nope, got unmounted */
615 spin_unlock(&sb_lock
);
619 EXPORT_SYMBOL(get_super
);
622 * get_super_thawed - get thawed superblock of a device
623 * @bdev: device to get the superblock for
625 * Scans the superblock list and finds the superblock of the file system
626 * mounted on the device. The superblock is returned once it is thawed
627 * (or immediately if it was not frozen). %NULL is returned if no match
630 struct super_block
*get_super_thawed(struct block_device
*bdev
)
633 struct super_block
*s
= get_super(bdev
);
634 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
636 up_read(&s
->s_umount
);
637 wait_event(s
->s_writers
.wait_unfrozen
,
638 s
->s_writers
.frozen
== SB_UNFROZEN
);
642 EXPORT_SYMBOL(get_super_thawed
);
645 * get_active_super - get an active reference to the superblock of a device
646 * @bdev: device to get the superblock for
648 * Scans the superblock list and finds the superblock of the file system
649 * mounted on the device given. Returns the superblock with an active
650 * reference or %NULL if none was found.
652 struct super_block
*get_active_super(struct block_device
*bdev
)
654 struct super_block
*sb
;
661 list_for_each_entry(sb
, &super_blocks
, s_list
) {
662 if (hlist_unhashed(&sb
->s_instances
))
664 if (sb
->s_bdev
== bdev
) {
665 if (grab_super(sb
)) /* drops sb_lock */
671 spin_unlock(&sb_lock
);
675 struct super_block
*user_get_super(dev_t dev
)
677 struct super_block
*sb
;
681 list_for_each_entry(sb
, &super_blocks
, s_list
) {
682 if (hlist_unhashed(&sb
->s_instances
))
684 if (sb
->s_dev
== dev
) {
686 spin_unlock(&sb_lock
);
687 down_read(&sb
->s_umount
);
689 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
691 up_read(&sb
->s_umount
);
692 /* nope, got unmounted */
698 spin_unlock(&sb_lock
);
703 * do_remount_sb - asks filesystem to change mount options.
704 * @sb: superblock in question
705 * @flags: numeric part of options
706 * @data: the rest of options
707 * @force: whether or not to force the change
709 * Alters the mount options of a mounted file system.
711 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
716 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
720 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
724 if (flags
& MS_RDONLY
)
726 shrink_dcache_sb(sb
);
729 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
731 /* If we are remounting RDONLY and current sb is read/write,
732 make sure there are no rw files opened */
737 retval
= sb_prepare_remount_readonly(sb
);
743 if (sb
->s_op
->remount_fs
) {
744 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
747 goto cancel_readonly
;
748 /* If forced remount, go ahead despite any errors */
749 WARN(1, "forced remount of a %s fs returned %i\n",
750 sb
->s_type
->name
, retval
);
753 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
754 /* Needs to be ordered wrt mnt_is_readonly() */
756 sb
->s_readonly_remount
= 0;
759 * Some filesystems modify their metadata via some other path than the
760 * bdev buffer cache (eg. use a private mapping, or directories in
761 * pagecache, etc). Also file data modifications go via their own
762 * mappings. So If we try to mount readonly then copy the filesystem
763 * from bdev, we could get stale data, so invalidate it to give a best
764 * effort at coherency.
766 if (remount_ro
&& sb
->s_bdev
)
767 invalidate_bdev(sb
->s_bdev
);
771 sb
->s_readonly_remount
= 0;
775 static void do_emergency_remount(struct work_struct
*work
)
777 struct super_block
*sb
, *p
= NULL
;
780 list_for_each_entry(sb
, &super_blocks
, s_list
) {
781 if (hlist_unhashed(&sb
->s_instances
))
784 spin_unlock(&sb_lock
);
785 down_write(&sb
->s_umount
);
786 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
787 !(sb
->s_flags
& MS_RDONLY
)) {
789 * What lock protects sb->s_flags??
791 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
793 up_write(&sb
->s_umount
);
801 spin_unlock(&sb_lock
);
803 printk("Emergency Remount complete\n");
806 void emergency_remount(void)
808 struct work_struct
*work
;
810 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
812 INIT_WORK(work
, do_emergency_remount
);
818 * Unnamed block devices are dummy devices used by virtual
819 * filesystems which don't use real block-devices. -- jrs
822 static DEFINE_IDA(unnamed_dev_ida
);
823 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
824 static int unnamed_dev_start
= 0; /* don't bother trying below it */
826 int get_anon_bdev(dev_t
*p
)
832 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
834 spin_lock(&unnamed_dev_lock
);
835 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
837 unnamed_dev_start
= dev
+ 1;
838 spin_unlock(&unnamed_dev_lock
);
839 if (error
== -EAGAIN
)
840 /* We raced and lost with another CPU. */
845 if ((dev
& MAX_IDR_MASK
) == (1 << MINORBITS
)) {
846 spin_lock(&unnamed_dev_lock
);
847 ida_remove(&unnamed_dev_ida
, dev
);
848 if (unnamed_dev_start
> dev
)
849 unnamed_dev_start
= dev
;
850 spin_unlock(&unnamed_dev_lock
);
853 *p
= MKDEV(0, dev
& MINORMASK
);
856 EXPORT_SYMBOL(get_anon_bdev
);
858 void free_anon_bdev(dev_t dev
)
860 int slot
= MINOR(dev
);
861 spin_lock(&unnamed_dev_lock
);
862 ida_remove(&unnamed_dev_ida
, slot
);
863 if (slot
< unnamed_dev_start
)
864 unnamed_dev_start
= slot
;
865 spin_unlock(&unnamed_dev_lock
);
867 EXPORT_SYMBOL(free_anon_bdev
);
869 int set_anon_super(struct super_block
*s
, void *data
)
871 int error
= get_anon_bdev(&s
->s_dev
);
873 s
->s_bdi
= &noop_backing_dev_info
;
877 EXPORT_SYMBOL(set_anon_super
);
879 void kill_anon_super(struct super_block
*sb
)
881 dev_t dev
= sb
->s_dev
;
882 generic_shutdown_super(sb
);
886 EXPORT_SYMBOL(kill_anon_super
);
888 void kill_litter_super(struct super_block
*sb
)
891 d_genocide(sb
->s_root
);
895 EXPORT_SYMBOL(kill_litter_super
);
897 static int ns_test_super(struct super_block
*sb
, void *data
)
899 return sb
->s_fs_info
== data
;
902 static int ns_set_super(struct super_block
*sb
, void *data
)
904 sb
->s_fs_info
= data
;
905 return set_anon_super(sb
, NULL
);
908 struct dentry
*mount_ns(struct file_system_type
*fs_type
, int flags
,
909 void *data
, int (*fill_super
)(struct super_block
*, void *, int))
911 struct super_block
*sb
;
913 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, flags
, data
);
919 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
921 deactivate_locked_super(sb
);
925 sb
->s_flags
|= MS_ACTIVE
;
928 return dget(sb
->s_root
);
931 EXPORT_SYMBOL(mount_ns
);
934 static int set_bdev_super(struct super_block
*s
, void *data
)
937 s
->s_dev
= s
->s_bdev
->bd_dev
;
940 * We set the bdi here to the queue backing, file systems can
941 * overwrite this in ->fill_super()
943 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
947 static int test_bdev_super(struct super_block
*s
, void *data
)
949 return (void *)s
->s_bdev
== data
;
952 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
953 int flags
, const char *dev_name
, void *data
,
954 int (*fill_super
)(struct super_block
*, void *, int))
956 struct block_device
*bdev
;
957 struct super_block
*s
;
958 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
961 if (!(flags
& MS_RDONLY
))
964 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
966 return ERR_CAST(bdev
);
969 * once the super is inserted into the list by sget, s_umount
970 * will protect the lockfs code from trying to start a snapshot
971 * while we are mounting
973 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
974 if (bdev
->bd_fsfreeze_count
> 0) {
975 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
979 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
981 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
986 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
987 deactivate_locked_super(s
);
993 * s_umount nests inside bd_mutex during
994 * __invalidate_device(). blkdev_put() acquires
995 * bd_mutex and can't be called under s_umount. Drop
996 * s_umount temporarily. This is safe as we're
997 * holding an active reference.
999 up_write(&s
->s_umount
);
1000 blkdev_put(bdev
, mode
);
1001 down_write(&s
->s_umount
);
1003 char b
[BDEVNAME_SIZE
];
1006 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
1007 sb_set_blocksize(s
, block_size(bdev
));
1008 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1010 deactivate_locked_super(s
);
1014 s
->s_flags
|= MS_ACTIVE
;
1018 return dget(s
->s_root
);
1023 blkdev_put(bdev
, mode
);
1025 return ERR_PTR(error
);
1027 EXPORT_SYMBOL(mount_bdev
);
1029 void kill_block_super(struct super_block
*sb
)
1031 struct block_device
*bdev
= sb
->s_bdev
;
1032 fmode_t mode
= sb
->s_mode
;
1034 bdev
->bd_super
= NULL
;
1035 generic_shutdown_super(sb
);
1036 sync_blockdev(bdev
);
1037 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1038 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1041 EXPORT_SYMBOL(kill_block_super
);
1044 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1045 int flags
, void *data
,
1046 int (*fill_super
)(struct super_block
*, void *, int))
1049 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1054 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1056 deactivate_locked_super(s
);
1057 return ERR_PTR(error
);
1059 s
->s_flags
|= MS_ACTIVE
;
1060 return dget(s
->s_root
);
1062 EXPORT_SYMBOL(mount_nodev
);
1064 static int compare_single(struct super_block
*s
, void *p
)
1069 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1070 int flags
, void *data
,
1071 int (*fill_super
)(struct super_block
*, void *, int))
1073 struct super_block
*s
;
1076 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1080 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1082 deactivate_locked_super(s
);
1083 return ERR_PTR(error
);
1085 s
->s_flags
|= MS_ACTIVE
;
1087 do_remount_sb(s
, flags
, data
, 0);
1089 return dget(s
->s_root
);
1091 EXPORT_SYMBOL(mount_single
);
1094 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1096 struct dentry
*root
;
1097 struct super_block
*sb
;
1098 char *secdata
= NULL
;
1099 int error
= -ENOMEM
;
1101 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1102 secdata
= alloc_secdata();
1106 error
= security_sb_copy_data(data
, secdata
);
1108 goto out_free_secdata
;
1111 root
= type
->mount(type
, flags
, name
, data
);
1113 error
= PTR_ERR(root
);
1114 goto out_free_secdata
;
1118 WARN_ON(!sb
->s_bdi
);
1119 WARN_ON(sb
->s_bdi
== &default_backing_dev_info
);
1120 sb
->s_flags
|= MS_BORN
;
1122 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1127 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1128 * but s_maxbytes was an unsigned long long for many releases. Throw
1129 * this warning for a little while to try and catch filesystems that
1130 * violate this rule.
1132 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1133 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1135 up_write(&sb
->s_umount
);
1136 free_secdata(secdata
);
1140 deactivate_locked_super(sb
);
1142 free_secdata(secdata
);
1144 return ERR_PTR(error
);
1148 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1151 void __sb_end_write(struct super_block
*sb
, int level
)
1153 percpu_counter_dec(&sb
->s_writers
.counter
[level
-1]);
1155 * Make sure s_writers are updated before we wake up waiters in
1159 if (waitqueue_active(&sb
->s_writers
.wait
))
1160 wake_up(&sb
->s_writers
.wait
);
1161 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _RET_IP_
);
1163 EXPORT_SYMBOL(__sb_end_write
);
1165 #ifdef CONFIG_LOCKDEP
1167 * We want lockdep to tell us about possible deadlocks with freezing but
1168 * it's it bit tricky to properly instrument it. Getting a freeze protection
1169 * works as getting a read lock but there are subtle problems. XFS for example
1170 * gets freeze protection on internal level twice in some cases, which is OK
1171 * only because we already hold a freeze protection also on higher level. Due
1172 * to these cases we have to tell lockdep we are doing trylock when we
1173 * already hold a freeze protection for a higher freeze level.
1175 static void acquire_freeze_lock(struct super_block
*sb
, int level
, bool trylock
,
1181 for (i
= 0; i
< level
- 1; i
++)
1182 if (lock_is_held(&sb
->s_writers
.lock_map
[i
])) {
1187 rwsem_acquire_read(&sb
->s_writers
.lock_map
[level
-1], 0, trylock
, ip
);
1192 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1195 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1198 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1201 wait_event(sb
->s_writers
.wait_unfrozen
,
1202 sb
->s_writers
.frozen
< level
);
1205 #ifdef CONFIG_LOCKDEP
1206 acquire_freeze_lock(sb
, level
, !wait
, _RET_IP_
);
1208 percpu_counter_inc(&sb
->s_writers
.counter
[level
-1]);
1210 * Make sure counter is updated before we check for frozen.
1211 * freeze_super() first sets frozen and then checks the counter.
1214 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1215 __sb_end_write(sb
, level
);
1220 EXPORT_SYMBOL(__sb_start_write
);
1223 * sb_wait_write - wait until all writers to given file system finish
1224 * @sb: the super for which we wait
1225 * @level: type of writers we wait for (normal vs page fault)
1227 * This function waits until there are no writers of given type to given file
1228 * system. Caller of this function should make sure there can be no new writers
1229 * of type @level before calling this function. Otherwise this function can
1232 static void sb_wait_write(struct super_block
*sb
, int level
)
1237 * We just cycle-through lockdep here so that it does not complain
1238 * about returning with lock to userspace
1240 rwsem_acquire(&sb
->s_writers
.lock_map
[level
-1], 0, 0, _THIS_IP_
);
1241 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _THIS_IP_
);
1247 * We use a barrier in prepare_to_wait() to separate setting
1248 * of frozen and checking of the counter
1250 prepare_to_wait(&sb
->s_writers
.wait
, &wait
,
1251 TASK_UNINTERRUPTIBLE
);
1253 writers
= percpu_counter_sum(&sb
->s_writers
.counter
[level
-1]);
1257 finish_wait(&sb
->s_writers
.wait
, &wait
);
1262 * freeze_super - lock the filesystem and force it into a consistent state
1263 * @sb: the super to lock
1265 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1266 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1269 * During this function, sb->s_writers.frozen goes through these values:
1271 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1273 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1274 * writes should be blocked, though page faults are still allowed. We wait for
1275 * all writes to complete and then proceed to the next stage.
1277 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1278 * but internal fs threads can still modify the filesystem (although they
1279 * should not dirty new pages or inodes), writeback can run etc. After waiting
1280 * for all running page faults we sync the filesystem which will clean all
1281 * dirty pages and inodes (no new dirty pages or inodes can be created when
1284 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1285 * modification are blocked (e.g. XFS preallocation truncation on inode
1286 * reclaim). This is usually implemented by blocking new transactions for
1287 * filesystems that have them and need this additional guard. After all
1288 * internal writers are finished we call ->freeze_fs() to finish filesystem
1289 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1290 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1292 * sb->s_writers.frozen is protected by sb->s_umount.
1294 int freeze_super(struct super_block
*sb
)
1298 atomic_inc(&sb
->s_active
);
1299 down_write(&sb
->s_umount
);
1300 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1301 deactivate_locked_super(sb
);
1305 if (!(sb
->s_flags
& MS_BORN
)) {
1306 up_write(&sb
->s_umount
);
1307 return 0; /* sic - it's "nothing to do" */
1310 if (sb
->s_flags
& MS_RDONLY
) {
1311 /* Nothing to do really... */
1312 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1313 up_write(&sb
->s_umount
);
1317 /* From now on, no new normal writers can start */
1318 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1321 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1322 up_write(&sb
->s_umount
);
1324 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1326 /* Now we go and block page faults... */
1327 down_write(&sb
->s_umount
);
1328 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1331 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1333 /* All writers are done so after syncing there won't be dirty data */
1334 sync_filesystem(sb
);
1336 /* Now wait for internal filesystem counter */
1337 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1339 sb_wait_write(sb
, SB_FREEZE_FS
);
1341 if (sb
->s_op
->freeze_fs
) {
1342 ret
= sb
->s_op
->freeze_fs(sb
);
1345 "VFS:Filesystem freeze failed\n");
1346 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1348 wake_up(&sb
->s_writers
.wait_unfrozen
);
1349 deactivate_locked_super(sb
);
1354 * This is just for debugging purposes so that fs can warn if it
1355 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1357 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1358 up_write(&sb
->s_umount
);
1361 EXPORT_SYMBOL(freeze_super
);
1364 * thaw_super -- unlock filesystem
1365 * @sb: the super to thaw
1367 * Unlocks the filesystem and marks it writeable again after freeze_super().
1369 int thaw_super(struct super_block
*sb
)
1373 down_write(&sb
->s_umount
);
1374 if (sb
->s_writers
.frozen
== SB_UNFROZEN
) {
1375 up_write(&sb
->s_umount
);
1379 if (sb
->s_flags
& MS_RDONLY
)
1382 if (sb
->s_op
->unfreeze_fs
) {
1383 error
= sb
->s_op
->unfreeze_fs(sb
);
1386 "VFS:Filesystem thaw failed\n");
1387 up_write(&sb
->s_umount
);
1393 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1395 wake_up(&sb
->s_writers
.wait_unfrozen
);
1396 deactivate_locked_super(sb
);
1400 EXPORT_SYMBOL(thaw_super
);