2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
31 #include "print-tree.h"
32 #include "transaction.h"
35 #include "free-space-cache.h"
37 #undef SCRAMBLE_DELAYED_REFS
40 * control flags for do_chunk_alloc's force field
41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
42 * if we really need one.
44 * CHUNK_ALLOC_LIMITED means to only try and allocate one
45 * if we have very few chunks already allocated. This is
46 * used as part of the clustering code to help make sure
47 * we have a good pool of storage to cluster in, without
48 * filling the FS with empty chunks
50 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 CHUNK_ALLOC_NO_FORCE
= 0,
55 CHUNK_ALLOC_LIMITED
= 1,
56 CHUNK_ALLOC_FORCE
= 2,
60 * Control how reservations are dealt with.
62 * RESERVE_FREE - freeing a reservation.
63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
66 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 RESERVE_ALLOC_NO_ACCOUNT
= 2,
74 static int update_block_group(struct btrfs_trans_handle
*trans
,
75 struct btrfs_root
*root
,
76 u64 bytenr
, u64 num_bytes
, int alloc
);
77 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
78 struct btrfs_root
*root
,
79 u64 bytenr
, u64 num_bytes
, u64 parent
,
80 u64 root_objectid
, u64 owner_objectid
,
81 u64 owner_offset
, int refs_to_drop
,
82 struct btrfs_delayed_extent_op
*extra_op
);
83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
84 struct extent_buffer
*leaf
,
85 struct btrfs_extent_item
*ei
);
86 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
87 struct btrfs_root
*root
,
88 u64 parent
, u64 root_objectid
,
89 u64 flags
, u64 owner
, u64 offset
,
90 struct btrfs_key
*ins
, int ref_mod
);
91 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
92 struct btrfs_root
*root
,
93 u64 parent
, u64 root_objectid
,
94 u64 flags
, struct btrfs_disk_key
*key
,
95 int level
, struct btrfs_key
*ins
);
96 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*extent_root
, u64 flags
,
99 static int find_next_key(struct btrfs_path
*path
, int level
,
100 struct btrfs_key
*key
);
101 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
102 int dump_block_groups
);
103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
104 u64 num_bytes
, int reserve
);
107 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
110 return cache
->cached
== BTRFS_CACHE_FINISHED
;
113 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
115 return (cache
->flags
& bits
) == bits
;
118 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
120 atomic_inc(&cache
->count
);
123 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
125 if (atomic_dec_and_test(&cache
->count
)) {
126 WARN_ON(cache
->pinned
> 0);
127 WARN_ON(cache
->reserved
> 0);
128 kfree(cache
->free_space_ctl
);
134 * this adds the block group to the fs_info rb tree for the block group
137 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
138 struct btrfs_block_group_cache
*block_group
)
141 struct rb_node
*parent
= NULL
;
142 struct btrfs_block_group_cache
*cache
;
144 spin_lock(&info
->block_group_cache_lock
);
145 p
= &info
->block_group_cache_tree
.rb_node
;
149 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
151 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
153 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
156 spin_unlock(&info
->block_group_cache_lock
);
161 rb_link_node(&block_group
->cache_node
, parent
, p
);
162 rb_insert_color(&block_group
->cache_node
,
163 &info
->block_group_cache_tree
);
164 spin_unlock(&info
->block_group_cache_lock
);
170 * This will return the block group at or after bytenr if contains is 0, else
171 * it will return the block group that contains the bytenr
173 static struct btrfs_block_group_cache
*
174 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
177 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
181 spin_lock(&info
->block_group_cache_lock
);
182 n
= info
->block_group_cache_tree
.rb_node
;
185 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
187 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
188 start
= cache
->key
.objectid
;
190 if (bytenr
< start
) {
191 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
194 } else if (bytenr
> start
) {
195 if (contains
&& bytenr
<= end
) {
206 btrfs_get_block_group(ret
);
207 spin_unlock(&info
->block_group_cache_lock
);
212 static int add_excluded_extent(struct btrfs_root
*root
,
213 u64 start
, u64 num_bytes
)
215 u64 end
= start
+ num_bytes
- 1;
216 set_extent_bits(&root
->fs_info
->freed_extents
[0],
217 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
218 set_extent_bits(&root
->fs_info
->freed_extents
[1],
219 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
223 static void free_excluded_extents(struct btrfs_root
*root
,
224 struct btrfs_block_group_cache
*cache
)
228 start
= cache
->key
.objectid
;
229 end
= start
+ cache
->key
.offset
- 1;
231 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
232 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
233 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
234 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
237 static int exclude_super_stripes(struct btrfs_root
*root
,
238 struct btrfs_block_group_cache
*cache
)
245 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
246 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
247 cache
->bytes_super
+= stripe_len
;
248 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
250 BUG_ON(ret
); /* -ENOMEM */
253 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
254 bytenr
= btrfs_sb_offset(i
);
255 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
256 cache
->key
.objectid
, bytenr
,
257 0, &logical
, &nr
, &stripe_len
);
258 BUG_ON(ret
); /* -ENOMEM */
261 cache
->bytes_super
+= stripe_len
;
262 ret
= add_excluded_extent(root
, logical
[nr
],
264 BUG_ON(ret
); /* -ENOMEM */
272 static struct btrfs_caching_control
*
273 get_caching_control(struct btrfs_block_group_cache
*cache
)
275 struct btrfs_caching_control
*ctl
;
277 spin_lock(&cache
->lock
);
278 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
279 spin_unlock(&cache
->lock
);
283 /* We're loading it the fast way, so we don't have a caching_ctl. */
284 if (!cache
->caching_ctl
) {
285 spin_unlock(&cache
->lock
);
289 ctl
= cache
->caching_ctl
;
290 atomic_inc(&ctl
->count
);
291 spin_unlock(&cache
->lock
);
295 static void put_caching_control(struct btrfs_caching_control
*ctl
)
297 if (atomic_dec_and_test(&ctl
->count
))
302 * this is only called by cache_block_group, since we could have freed extents
303 * we need to check the pinned_extents for any extents that can't be used yet
304 * since their free space will be released as soon as the transaction commits.
306 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
307 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
309 u64 extent_start
, extent_end
, size
, total_added
= 0;
312 while (start
< end
) {
313 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
314 &extent_start
, &extent_end
,
315 EXTENT_DIRTY
| EXTENT_UPTODATE
,
320 if (extent_start
<= start
) {
321 start
= extent_end
+ 1;
322 } else if (extent_start
> start
&& extent_start
< end
) {
323 size
= extent_start
- start
;
325 ret
= btrfs_add_free_space(block_group
, start
,
327 BUG_ON(ret
); /* -ENOMEM or logic error */
328 start
= extent_end
+ 1;
337 ret
= btrfs_add_free_space(block_group
, start
, size
);
338 BUG_ON(ret
); /* -ENOMEM or logic error */
344 static noinline
void caching_thread(struct btrfs_work
*work
)
346 struct btrfs_block_group_cache
*block_group
;
347 struct btrfs_fs_info
*fs_info
;
348 struct btrfs_caching_control
*caching_ctl
;
349 struct btrfs_root
*extent_root
;
350 struct btrfs_path
*path
;
351 struct extent_buffer
*leaf
;
352 struct btrfs_key key
;
358 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
359 block_group
= caching_ctl
->block_group
;
360 fs_info
= block_group
->fs_info
;
361 extent_root
= fs_info
->extent_root
;
363 path
= btrfs_alloc_path();
367 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
370 * We don't want to deadlock with somebody trying to allocate a new
371 * extent for the extent root while also trying to search the extent
372 * root to add free space. So we skip locking and search the commit
373 * root, since its read-only
375 path
->skip_locking
= 1;
376 path
->search_commit_root
= 1;
381 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
383 mutex_lock(&caching_ctl
->mutex
);
384 /* need to make sure the commit_root doesn't disappear */
385 down_read(&fs_info
->extent_commit_sem
);
387 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
391 leaf
= path
->nodes
[0];
392 nritems
= btrfs_header_nritems(leaf
);
395 if (btrfs_fs_closing(fs_info
) > 1) {
400 if (path
->slots
[0] < nritems
) {
401 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
403 ret
= find_next_key(path
, 0, &key
);
407 if (need_resched() ||
408 btrfs_next_leaf(extent_root
, path
)) {
409 caching_ctl
->progress
= last
;
410 btrfs_release_path(path
);
411 up_read(&fs_info
->extent_commit_sem
);
412 mutex_unlock(&caching_ctl
->mutex
);
416 leaf
= path
->nodes
[0];
417 nritems
= btrfs_header_nritems(leaf
);
421 if (key
.objectid
< block_group
->key
.objectid
) {
426 if (key
.objectid
>= block_group
->key
.objectid
+
427 block_group
->key
.offset
)
430 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
431 total_found
+= add_new_free_space(block_group
,
434 last
= key
.objectid
+ key
.offset
;
436 if (total_found
> (1024 * 1024 * 2)) {
438 wake_up(&caching_ctl
->wait
);
445 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
446 block_group
->key
.objectid
+
447 block_group
->key
.offset
);
448 caching_ctl
->progress
= (u64
)-1;
450 spin_lock(&block_group
->lock
);
451 block_group
->caching_ctl
= NULL
;
452 block_group
->cached
= BTRFS_CACHE_FINISHED
;
453 spin_unlock(&block_group
->lock
);
456 btrfs_free_path(path
);
457 up_read(&fs_info
->extent_commit_sem
);
459 free_excluded_extents(extent_root
, block_group
);
461 mutex_unlock(&caching_ctl
->mutex
);
463 wake_up(&caching_ctl
->wait
);
465 put_caching_control(caching_ctl
);
466 btrfs_put_block_group(block_group
);
469 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
470 struct btrfs_trans_handle
*trans
,
471 struct btrfs_root
*root
,
475 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
476 struct btrfs_caching_control
*caching_ctl
;
479 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
483 INIT_LIST_HEAD(&caching_ctl
->list
);
484 mutex_init(&caching_ctl
->mutex
);
485 init_waitqueue_head(&caching_ctl
->wait
);
486 caching_ctl
->block_group
= cache
;
487 caching_ctl
->progress
= cache
->key
.objectid
;
488 atomic_set(&caching_ctl
->count
, 1);
489 caching_ctl
->work
.func
= caching_thread
;
491 spin_lock(&cache
->lock
);
493 * This should be a rare occasion, but this could happen I think in the
494 * case where one thread starts to load the space cache info, and then
495 * some other thread starts a transaction commit which tries to do an
496 * allocation while the other thread is still loading the space cache
497 * info. The previous loop should have kept us from choosing this block
498 * group, but if we've moved to the state where we will wait on caching
499 * block groups we need to first check if we're doing a fast load here,
500 * so we can wait for it to finish, otherwise we could end up allocating
501 * from a block group who's cache gets evicted for one reason or
504 while (cache
->cached
== BTRFS_CACHE_FAST
) {
505 struct btrfs_caching_control
*ctl
;
507 ctl
= cache
->caching_ctl
;
508 atomic_inc(&ctl
->count
);
509 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
510 spin_unlock(&cache
->lock
);
514 finish_wait(&ctl
->wait
, &wait
);
515 put_caching_control(ctl
);
516 spin_lock(&cache
->lock
);
519 if (cache
->cached
!= BTRFS_CACHE_NO
) {
520 spin_unlock(&cache
->lock
);
524 WARN_ON(cache
->caching_ctl
);
525 cache
->caching_ctl
= caching_ctl
;
526 cache
->cached
= BTRFS_CACHE_FAST
;
527 spin_unlock(&cache
->lock
);
530 * We can't do the read from on-disk cache during a commit since we need
531 * to have the normal tree locking. Also if we are currently trying to
532 * allocate blocks for the tree root we can't do the fast caching since
533 * we likely hold important locks.
535 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
536 ret
= load_free_space_cache(fs_info
, cache
);
538 spin_lock(&cache
->lock
);
540 cache
->caching_ctl
= NULL
;
541 cache
->cached
= BTRFS_CACHE_FINISHED
;
542 cache
->last_byte_to_unpin
= (u64
)-1;
544 if (load_cache_only
) {
545 cache
->caching_ctl
= NULL
;
546 cache
->cached
= BTRFS_CACHE_NO
;
548 cache
->cached
= BTRFS_CACHE_STARTED
;
551 spin_unlock(&cache
->lock
);
552 wake_up(&caching_ctl
->wait
);
554 put_caching_control(caching_ctl
);
555 free_excluded_extents(fs_info
->extent_root
, cache
);
560 * We are not going to do the fast caching, set cached to the
561 * appropriate value and wakeup any waiters.
563 spin_lock(&cache
->lock
);
564 if (load_cache_only
) {
565 cache
->caching_ctl
= NULL
;
566 cache
->cached
= BTRFS_CACHE_NO
;
568 cache
->cached
= BTRFS_CACHE_STARTED
;
570 spin_unlock(&cache
->lock
);
571 wake_up(&caching_ctl
->wait
);
574 if (load_cache_only
) {
575 put_caching_control(caching_ctl
);
579 down_write(&fs_info
->extent_commit_sem
);
580 atomic_inc(&caching_ctl
->count
);
581 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
582 up_write(&fs_info
->extent_commit_sem
);
584 btrfs_get_block_group(cache
);
586 btrfs_queue_worker(&fs_info
->caching_workers
, &caching_ctl
->work
);
592 * return the block group that starts at or after bytenr
594 static struct btrfs_block_group_cache
*
595 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
597 struct btrfs_block_group_cache
*cache
;
599 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
605 * return the block group that contains the given bytenr
607 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
608 struct btrfs_fs_info
*info
,
611 struct btrfs_block_group_cache
*cache
;
613 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
618 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
621 struct list_head
*head
= &info
->space_info
;
622 struct btrfs_space_info
*found
;
624 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
627 list_for_each_entry_rcu(found
, head
, list
) {
628 if (found
->flags
& flags
) {
638 * after adding space to the filesystem, we need to clear the full flags
639 * on all the space infos.
641 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
643 struct list_head
*head
= &info
->space_info
;
644 struct btrfs_space_info
*found
;
647 list_for_each_entry_rcu(found
, head
, list
)
652 static u64
div_factor(u64 num
, int factor
)
661 static u64
div_factor_fine(u64 num
, int factor
)
670 u64
btrfs_find_block_group(struct btrfs_root
*root
,
671 u64 search_start
, u64 search_hint
, int owner
)
673 struct btrfs_block_group_cache
*cache
;
675 u64 last
= max(search_hint
, search_start
);
682 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
686 spin_lock(&cache
->lock
);
687 last
= cache
->key
.objectid
+ cache
->key
.offset
;
688 used
= btrfs_block_group_used(&cache
->item
);
690 if ((full_search
|| !cache
->ro
) &&
691 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
692 if (used
+ cache
->pinned
+ cache
->reserved
<
693 div_factor(cache
->key
.offset
, factor
)) {
694 group_start
= cache
->key
.objectid
;
695 spin_unlock(&cache
->lock
);
696 btrfs_put_block_group(cache
);
700 spin_unlock(&cache
->lock
);
701 btrfs_put_block_group(cache
);
709 if (!full_search
&& factor
< 10) {
719 /* simple helper to search for an existing extent at a given offset */
720 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
723 struct btrfs_key key
;
724 struct btrfs_path
*path
;
726 path
= btrfs_alloc_path();
730 key
.objectid
= start
;
732 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
733 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
735 btrfs_free_path(path
);
740 * helper function to lookup reference count and flags of extent.
742 * the head node for delayed ref is used to store the sum of all the
743 * reference count modifications queued up in the rbtree. the head
744 * node may also store the extent flags to set. This way you can check
745 * to see what the reference count and extent flags would be if all of
746 * the delayed refs are not processed.
748 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
749 struct btrfs_root
*root
, u64 bytenr
,
750 u64 num_bytes
, u64
*refs
, u64
*flags
)
752 struct btrfs_delayed_ref_head
*head
;
753 struct btrfs_delayed_ref_root
*delayed_refs
;
754 struct btrfs_path
*path
;
755 struct btrfs_extent_item
*ei
;
756 struct extent_buffer
*leaf
;
757 struct btrfs_key key
;
763 path
= btrfs_alloc_path();
767 key
.objectid
= bytenr
;
768 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
769 key
.offset
= num_bytes
;
771 path
->skip_locking
= 1;
772 path
->search_commit_root
= 1;
775 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
781 leaf
= path
->nodes
[0];
782 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
783 if (item_size
>= sizeof(*ei
)) {
784 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
785 struct btrfs_extent_item
);
786 num_refs
= btrfs_extent_refs(leaf
, ei
);
787 extent_flags
= btrfs_extent_flags(leaf
, ei
);
789 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
790 struct btrfs_extent_item_v0
*ei0
;
791 BUG_ON(item_size
!= sizeof(*ei0
));
792 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
793 struct btrfs_extent_item_v0
);
794 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
795 /* FIXME: this isn't correct for data */
796 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
801 BUG_ON(num_refs
== 0);
811 delayed_refs
= &trans
->transaction
->delayed_refs
;
812 spin_lock(&delayed_refs
->lock
);
813 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
815 if (!mutex_trylock(&head
->mutex
)) {
816 atomic_inc(&head
->node
.refs
);
817 spin_unlock(&delayed_refs
->lock
);
819 btrfs_release_path(path
);
822 * Mutex was contended, block until it's released and try
825 mutex_lock(&head
->mutex
);
826 mutex_unlock(&head
->mutex
);
827 btrfs_put_delayed_ref(&head
->node
);
830 if (head
->extent_op
&& head
->extent_op
->update_flags
)
831 extent_flags
|= head
->extent_op
->flags_to_set
;
833 BUG_ON(num_refs
== 0);
835 num_refs
+= head
->node
.ref_mod
;
836 mutex_unlock(&head
->mutex
);
838 spin_unlock(&delayed_refs
->lock
);
840 WARN_ON(num_refs
== 0);
844 *flags
= extent_flags
;
846 btrfs_free_path(path
);
851 * Back reference rules. Back refs have three main goals:
853 * 1) differentiate between all holders of references to an extent so that
854 * when a reference is dropped we can make sure it was a valid reference
855 * before freeing the extent.
857 * 2) Provide enough information to quickly find the holders of an extent
858 * if we notice a given block is corrupted or bad.
860 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
861 * maintenance. This is actually the same as #2, but with a slightly
862 * different use case.
864 * There are two kinds of back refs. The implicit back refs is optimized
865 * for pointers in non-shared tree blocks. For a given pointer in a block,
866 * back refs of this kind provide information about the block's owner tree
867 * and the pointer's key. These information allow us to find the block by
868 * b-tree searching. The full back refs is for pointers in tree blocks not
869 * referenced by their owner trees. The location of tree block is recorded
870 * in the back refs. Actually the full back refs is generic, and can be
871 * used in all cases the implicit back refs is used. The major shortcoming
872 * of the full back refs is its overhead. Every time a tree block gets
873 * COWed, we have to update back refs entry for all pointers in it.
875 * For a newly allocated tree block, we use implicit back refs for
876 * pointers in it. This means most tree related operations only involve
877 * implicit back refs. For a tree block created in old transaction, the
878 * only way to drop a reference to it is COW it. So we can detect the
879 * event that tree block loses its owner tree's reference and do the
880 * back refs conversion.
882 * When a tree block is COW'd through a tree, there are four cases:
884 * The reference count of the block is one and the tree is the block's
885 * owner tree. Nothing to do in this case.
887 * The reference count of the block is one and the tree is not the
888 * block's owner tree. In this case, full back refs is used for pointers
889 * in the block. Remove these full back refs, add implicit back refs for
890 * every pointers in the new block.
892 * The reference count of the block is greater than one and the tree is
893 * the block's owner tree. In this case, implicit back refs is used for
894 * pointers in the block. Add full back refs for every pointers in the
895 * block, increase lower level extents' reference counts. The original
896 * implicit back refs are entailed to the new block.
898 * The reference count of the block is greater than one and the tree is
899 * not the block's owner tree. Add implicit back refs for every pointer in
900 * the new block, increase lower level extents' reference count.
902 * Back Reference Key composing:
904 * The key objectid corresponds to the first byte in the extent,
905 * The key type is used to differentiate between types of back refs.
906 * There are different meanings of the key offset for different types
909 * File extents can be referenced by:
911 * - multiple snapshots, subvolumes, or different generations in one subvol
912 * - different files inside a single subvolume
913 * - different offsets inside a file (bookend extents in file.c)
915 * The extent ref structure for the implicit back refs has fields for:
917 * - Objectid of the subvolume root
918 * - objectid of the file holding the reference
919 * - original offset in the file
920 * - how many bookend extents
922 * The key offset for the implicit back refs is hash of the first
925 * The extent ref structure for the full back refs has field for:
927 * - number of pointers in the tree leaf
929 * The key offset for the implicit back refs is the first byte of
932 * When a file extent is allocated, The implicit back refs is used.
933 * the fields are filled in:
935 * (root_key.objectid, inode objectid, offset in file, 1)
937 * When a file extent is removed file truncation, we find the
938 * corresponding implicit back refs and check the following fields:
940 * (btrfs_header_owner(leaf), inode objectid, offset in file)
942 * Btree extents can be referenced by:
944 * - Different subvolumes
946 * Both the implicit back refs and the full back refs for tree blocks
947 * only consist of key. The key offset for the implicit back refs is
948 * objectid of block's owner tree. The key offset for the full back refs
949 * is the first byte of parent block.
951 * When implicit back refs is used, information about the lowest key and
952 * level of the tree block are required. These information are stored in
953 * tree block info structure.
956 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
957 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
958 struct btrfs_root
*root
,
959 struct btrfs_path
*path
,
960 u64 owner
, u32 extra_size
)
962 struct btrfs_extent_item
*item
;
963 struct btrfs_extent_item_v0
*ei0
;
964 struct btrfs_extent_ref_v0
*ref0
;
965 struct btrfs_tree_block_info
*bi
;
966 struct extent_buffer
*leaf
;
967 struct btrfs_key key
;
968 struct btrfs_key found_key
;
969 u32 new_size
= sizeof(*item
);
973 leaf
= path
->nodes
[0];
974 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
976 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
977 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
978 struct btrfs_extent_item_v0
);
979 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
981 if (owner
== (u64
)-1) {
983 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
984 ret
= btrfs_next_leaf(root
, path
);
987 BUG_ON(ret
> 0); /* Corruption */
988 leaf
= path
->nodes
[0];
990 btrfs_item_key_to_cpu(leaf
, &found_key
,
992 BUG_ON(key
.objectid
!= found_key
.objectid
);
993 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
997 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
998 struct btrfs_extent_ref_v0
);
999 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1003 btrfs_release_path(path
);
1005 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1006 new_size
+= sizeof(*bi
);
1008 new_size
-= sizeof(*ei0
);
1009 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1010 new_size
+ extra_size
, 1);
1013 BUG_ON(ret
); /* Corruption */
1015 btrfs_extend_item(trans
, root
, path
, new_size
);
1017 leaf
= path
->nodes
[0];
1018 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1019 btrfs_set_extent_refs(leaf
, item
, refs
);
1020 /* FIXME: get real generation */
1021 btrfs_set_extent_generation(leaf
, item
, 0);
1022 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1023 btrfs_set_extent_flags(leaf
, item
,
1024 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1025 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1026 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1027 /* FIXME: get first key of the block */
1028 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1029 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1031 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1033 btrfs_mark_buffer_dirty(leaf
);
1038 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1040 u32 high_crc
= ~(u32
)0;
1041 u32 low_crc
= ~(u32
)0;
1044 lenum
= cpu_to_le64(root_objectid
);
1045 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
1046 lenum
= cpu_to_le64(owner
);
1047 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1048 lenum
= cpu_to_le64(offset
);
1049 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1051 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1054 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1055 struct btrfs_extent_data_ref
*ref
)
1057 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1058 btrfs_extent_data_ref_objectid(leaf
, ref
),
1059 btrfs_extent_data_ref_offset(leaf
, ref
));
1062 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1063 struct btrfs_extent_data_ref
*ref
,
1064 u64 root_objectid
, u64 owner
, u64 offset
)
1066 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1067 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1068 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1073 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1074 struct btrfs_root
*root
,
1075 struct btrfs_path
*path
,
1076 u64 bytenr
, u64 parent
,
1078 u64 owner
, u64 offset
)
1080 struct btrfs_key key
;
1081 struct btrfs_extent_data_ref
*ref
;
1082 struct extent_buffer
*leaf
;
1088 key
.objectid
= bytenr
;
1090 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1091 key
.offset
= parent
;
1093 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1094 key
.offset
= hash_extent_data_ref(root_objectid
,
1099 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1108 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1109 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1110 btrfs_release_path(path
);
1111 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1122 leaf
= path
->nodes
[0];
1123 nritems
= btrfs_header_nritems(leaf
);
1125 if (path
->slots
[0] >= nritems
) {
1126 ret
= btrfs_next_leaf(root
, path
);
1132 leaf
= path
->nodes
[0];
1133 nritems
= btrfs_header_nritems(leaf
);
1137 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1138 if (key
.objectid
!= bytenr
||
1139 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1142 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1143 struct btrfs_extent_data_ref
);
1145 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1148 btrfs_release_path(path
);
1160 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1161 struct btrfs_root
*root
,
1162 struct btrfs_path
*path
,
1163 u64 bytenr
, u64 parent
,
1164 u64 root_objectid
, u64 owner
,
1165 u64 offset
, int refs_to_add
)
1167 struct btrfs_key key
;
1168 struct extent_buffer
*leaf
;
1173 key
.objectid
= bytenr
;
1175 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1176 key
.offset
= parent
;
1177 size
= sizeof(struct btrfs_shared_data_ref
);
1179 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1180 key
.offset
= hash_extent_data_ref(root_objectid
,
1182 size
= sizeof(struct btrfs_extent_data_ref
);
1185 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1186 if (ret
&& ret
!= -EEXIST
)
1189 leaf
= path
->nodes
[0];
1191 struct btrfs_shared_data_ref
*ref
;
1192 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1193 struct btrfs_shared_data_ref
);
1195 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1197 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1198 num_refs
+= refs_to_add
;
1199 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1202 struct btrfs_extent_data_ref
*ref
;
1203 while (ret
== -EEXIST
) {
1204 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1205 struct btrfs_extent_data_ref
);
1206 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1209 btrfs_release_path(path
);
1211 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1213 if (ret
&& ret
!= -EEXIST
)
1216 leaf
= path
->nodes
[0];
1218 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1219 struct btrfs_extent_data_ref
);
1221 btrfs_set_extent_data_ref_root(leaf
, ref
,
1223 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1224 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1225 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1227 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1228 num_refs
+= refs_to_add
;
1229 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1232 btrfs_mark_buffer_dirty(leaf
);
1235 btrfs_release_path(path
);
1239 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1240 struct btrfs_root
*root
,
1241 struct btrfs_path
*path
,
1244 struct btrfs_key key
;
1245 struct btrfs_extent_data_ref
*ref1
= NULL
;
1246 struct btrfs_shared_data_ref
*ref2
= NULL
;
1247 struct extent_buffer
*leaf
;
1251 leaf
= path
->nodes
[0];
1252 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1254 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1255 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1256 struct btrfs_extent_data_ref
);
1257 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1258 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1259 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1260 struct btrfs_shared_data_ref
);
1261 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1262 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1263 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1264 struct btrfs_extent_ref_v0
*ref0
;
1265 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1266 struct btrfs_extent_ref_v0
);
1267 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1273 BUG_ON(num_refs
< refs_to_drop
);
1274 num_refs
-= refs_to_drop
;
1276 if (num_refs
== 0) {
1277 ret
= btrfs_del_item(trans
, root
, path
);
1279 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1280 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1281 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1282 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1283 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 struct btrfs_extent_ref_v0
*ref0
;
1286 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1287 struct btrfs_extent_ref_v0
);
1288 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1291 btrfs_mark_buffer_dirty(leaf
);
1296 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1297 struct btrfs_path
*path
,
1298 struct btrfs_extent_inline_ref
*iref
)
1300 struct btrfs_key key
;
1301 struct extent_buffer
*leaf
;
1302 struct btrfs_extent_data_ref
*ref1
;
1303 struct btrfs_shared_data_ref
*ref2
;
1306 leaf
= path
->nodes
[0];
1307 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1309 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1310 BTRFS_EXTENT_DATA_REF_KEY
) {
1311 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1312 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1314 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1315 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1317 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1318 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1319 struct btrfs_extent_data_ref
);
1320 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1321 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1322 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1323 struct btrfs_shared_data_ref
);
1324 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1325 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1326 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1327 struct btrfs_extent_ref_v0
*ref0
;
1328 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1329 struct btrfs_extent_ref_v0
);
1330 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1338 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1339 struct btrfs_root
*root
,
1340 struct btrfs_path
*path
,
1341 u64 bytenr
, u64 parent
,
1344 struct btrfs_key key
;
1347 key
.objectid
= bytenr
;
1349 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1350 key
.offset
= parent
;
1352 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1353 key
.offset
= root_objectid
;
1356 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 if (ret
== -ENOENT
&& parent
) {
1361 btrfs_release_path(path
);
1362 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1363 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1371 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1372 struct btrfs_root
*root
,
1373 struct btrfs_path
*path
,
1374 u64 bytenr
, u64 parent
,
1377 struct btrfs_key key
;
1380 key
.objectid
= bytenr
;
1382 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1383 key
.offset
= parent
;
1385 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1386 key
.offset
= root_objectid
;
1389 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1390 btrfs_release_path(path
);
1394 static inline int extent_ref_type(u64 parent
, u64 owner
)
1397 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1399 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1401 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1404 type
= BTRFS_SHARED_DATA_REF_KEY
;
1406 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1411 static int find_next_key(struct btrfs_path
*path
, int level
,
1412 struct btrfs_key
*key
)
1415 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1416 if (!path
->nodes
[level
])
1418 if (path
->slots
[level
] + 1 >=
1419 btrfs_header_nritems(path
->nodes
[level
]))
1422 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1423 path
->slots
[level
] + 1);
1425 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1426 path
->slots
[level
] + 1);
1433 * look for inline back ref. if back ref is found, *ref_ret is set
1434 * to the address of inline back ref, and 0 is returned.
1436 * if back ref isn't found, *ref_ret is set to the address where it
1437 * should be inserted, and -ENOENT is returned.
1439 * if insert is true and there are too many inline back refs, the path
1440 * points to the extent item, and -EAGAIN is returned.
1442 * NOTE: inline back refs are ordered in the same way that back ref
1443 * items in the tree are ordered.
1445 static noinline_for_stack
1446 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1447 struct btrfs_root
*root
,
1448 struct btrfs_path
*path
,
1449 struct btrfs_extent_inline_ref
**ref_ret
,
1450 u64 bytenr
, u64 num_bytes
,
1451 u64 parent
, u64 root_objectid
,
1452 u64 owner
, u64 offset
, int insert
)
1454 struct btrfs_key key
;
1455 struct extent_buffer
*leaf
;
1456 struct btrfs_extent_item
*ei
;
1457 struct btrfs_extent_inline_ref
*iref
;
1468 key
.objectid
= bytenr
;
1469 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1470 key
.offset
= num_bytes
;
1472 want
= extent_ref_type(parent
, owner
);
1474 extra_size
= btrfs_extent_inline_ref_size(want
);
1475 path
->keep_locks
= 1;
1478 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1483 if (ret
&& !insert
) {
1487 BUG_ON(ret
); /* Corruption */
1489 leaf
= path
->nodes
[0];
1490 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1491 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1492 if (item_size
< sizeof(*ei
)) {
1497 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1503 leaf
= path
->nodes
[0];
1504 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1507 BUG_ON(item_size
< sizeof(*ei
));
1509 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1510 flags
= btrfs_extent_flags(leaf
, ei
);
1512 ptr
= (unsigned long)(ei
+ 1);
1513 end
= (unsigned long)ei
+ item_size
;
1515 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1516 ptr
+= sizeof(struct btrfs_tree_block_info
);
1519 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1528 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1529 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1533 ptr
+= btrfs_extent_inline_ref_size(type
);
1537 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1538 struct btrfs_extent_data_ref
*dref
;
1539 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1540 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1545 if (hash_extent_data_ref_item(leaf
, dref
) <
1546 hash_extent_data_ref(root_objectid
, owner
, offset
))
1550 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1552 if (parent
== ref_offset
) {
1556 if (ref_offset
< parent
)
1559 if (root_objectid
== ref_offset
) {
1563 if (ref_offset
< root_objectid
)
1567 ptr
+= btrfs_extent_inline_ref_size(type
);
1569 if (err
== -ENOENT
&& insert
) {
1570 if (item_size
+ extra_size
>=
1571 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1576 * To add new inline back ref, we have to make sure
1577 * there is no corresponding back ref item.
1578 * For simplicity, we just do not add new inline back
1579 * ref if there is any kind of item for this block
1581 if (find_next_key(path
, 0, &key
) == 0 &&
1582 key
.objectid
== bytenr
&&
1583 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1588 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1591 path
->keep_locks
= 0;
1592 btrfs_unlock_up_safe(path
, 1);
1598 * helper to add new inline back ref
1600 static noinline_for_stack
1601 void setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1602 struct btrfs_root
*root
,
1603 struct btrfs_path
*path
,
1604 struct btrfs_extent_inline_ref
*iref
,
1605 u64 parent
, u64 root_objectid
,
1606 u64 owner
, u64 offset
, int refs_to_add
,
1607 struct btrfs_delayed_extent_op
*extent_op
)
1609 struct extent_buffer
*leaf
;
1610 struct btrfs_extent_item
*ei
;
1613 unsigned long item_offset
;
1618 leaf
= path
->nodes
[0];
1619 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1620 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1622 type
= extent_ref_type(parent
, owner
);
1623 size
= btrfs_extent_inline_ref_size(type
);
1625 btrfs_extend_item(trans
, root
, path
, size
);
1627 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1628 refs
= btrfs_extent_refs(leaf
, ei
);
1629 refs
+= refs_to_add
;
1630 btrfs_set_extent_refs(leaf
, ei
, refs
);
1632 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1634 ptr
= (unsigned long)ei
+ item_offset
;
1635 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1636 if (ptr
< end
- size
)
1637 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1640 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1641 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1642 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1643 struct btrfs_extent_data_ref
*dref
;
1644 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1645 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1646 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1647 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1648 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1649 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1650 struct btrfs_shared_data_ref
*sref
;
1651 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1652 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1653 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1654 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1655 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1657 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1659 btrfs_mark_buffer_dirty(leaf
);
1662 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1663 struct btrfs_root
*root
,
1664 struct btrfs_path
*path
,
1665 struct btrfs_extent_inline_ref
**ref_ret
,
1666 u64 bytenr
, u64 num_bytes
, u64 parent
,
1667 u64 root_objectid
, u64 owner
, u64 offset
)
1671 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1672 bytenr
, num_bytes
, parent
,
1673 root_objectid
, owner
, offset
, 0);
1677 btrfs_release_path(path
);
1680 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1681 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1684 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1685 root_objectid
, owner
, offset
);
1691 * helper to update/remove inline back ref
1693 static noinline_for_stack
1694 void update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1695 struct btrfs_root
*root
,
1696 struct btrfs_path
*path
,
1697 struct btrfs_extent_inline_ref
*iref
,
1699 struct btrfs_delayed_extent_op
*extent_op
)
1701 struct extent_buffer
*leaf
;
1702 struct btrfs_extent_item
*ei
;
1703 struct btrfs_extent_data_ref
*dref
= NULL
;
1704 struct btrfs_shared_data_ref
*sref
= NULL
;
1712 leaf
= path
->nodes
[0];
1713 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1714 refs
= btrfs_extent_refs(leaf
, ei
);
1715 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1716 refs
+= refs_to_mod
;
1717 btrfs_set_extent_refs(leaf
, ei
, refs
);
1719 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1721 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1723 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1724 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1725 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1726 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1727 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1728 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1731 BUG_ON(refs_to_mod
!= -1);
1734 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1735 refs
+= refs_to_mod
;
1738 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1739 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1741 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1743 size
= btrfs_extent_inline_ref_size(type
);
1744 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1745 ptr
= (unsigned long)iref
;
1746 end
= (unsigned long)ei
+ item_size
;
1747 if (ptr
+ size
< end
)
1748 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1751 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1753 btrfs_mark_buffer_dirty(leaf
);
1756 static noinline_for_stack
1757 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1758 struct btrfs_root
*root
,
1759 struct btrfs_path
*path
,
1760 u64 bytenr
, u64 num_bytes
, u64 parent
,
1761 u64 root_objectid
, u64 owner
,
1762 u64 offset
, int refs_to_add
,
1763 struct btrfs_delayed_extent_op
*extent_op
)
1765 struct btrfs_extent_inline_ref
*iref
;
1768 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1769 bytenr
, num_bytes
, parent
,
1770 root_objectid
, owner
, offset
, 1);
1772 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1773 update_inline_extent_backref(trans
, root
, path
, iref
,
1774 refs_to_add
, extent_op
);
1775 } else if (ret
== -ENOENT
) {
1776 setup_inline_extent_backref(trans
, root
, path
, iref
, parent
,
1777 root_objectid
, owner
, offset
,
1778 refs_to_add
, extent_op
);
1784 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1785 struct btrfs_root
*root
,
1786 struct btrfs_path
*path
,
1787 u64 bytenr
, u64 parent
, u64 root_objectid
,
1788 u64 owner
, u64 offset
, int refs_to_add
)
1791 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1792 BUG_ON(refs_to_add
!= 1);
1793 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1794 parent
, root_objectid
);
1796 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1797 parent
, root_objectid
,
1798 owner
, offset
, refs_to_add
);
1803 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1804 struct btrfs_root
*root
,
1805 struct btrfs_path
*path
,
1806 struct btrfs_extent_inline_ref
*iref
,
1807 int refs_to_drop
, int is_data
)
1811 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1813 update_inline_extent_backref(trans
, root
, path
, iref
,
1814 -refs_to_drop
, NULL
);
1815 } else if (is_data
) {
1816 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1818 ret
= btrfs_del_item(trans
, root
, path
);
1823 static int btrfs_issue_discard(struct block_device
*bdev
,
1826 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1829 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1830 u64 num_bytes
, u64
*actual_bytes
)
1833 u64 discarded_bytes
= 0;
1834 struct btrfs_bio
*bbio
= NULL
;
1837 /* Tell the block device(s) that the sectors can be discarded */
1838 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, REQ_DISCARD
,
1839 bytenr
, &num_bytes
, &bbio
, 0);
1840 /* Error condition is -ENOMEM */
1842 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1846 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1847 if (!stripe
->dev
->can_discard
)
1850 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1854 discarded_bytes
+= stripe
->length
;
1855 else if (ret
!= -EOPNOTSUPP
)
1856 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1859 * Just in case we get back EOPNOTSUPP for some reason,
1860 * just ignore the return value so we don't screw up
1861 * people calling discard_extent.
1869 *actual_bytes
= discarded_bytes
;
1875 /* Can return -ENOMEM */
1876 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1877 struct btrfs_root
*root
,
1878 u64 bytenr
, u64 num_bytes
, u64 parent
,
1879 u64 root_objectid
, u64 owner
, u64 offset
, int for_cow
)
1882 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1884 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1885 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1887 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1888 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1890 parent
, root_objectid
, (int)owner
,
1891 BTRFS_ADD_DELAYED_REF
, NULL
, for_cow
);
1893 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1895 parent
, root_objectid
, owner
, offset
,
1896 BTRFS_ADD_DELAYED_REF
, NULL
, for_cow
);
1901 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1902 struct btrfs_root
*root
,
1903 u64 bytenr
, u64 num_bytes
,
1904 u64 parent
, u64 root_objectid
,
1905 u64 owner
, u64 offset
, int refs_to_add
,
1906 struct btrfs_delayed_extent_op
*extent_op
)
1908 struct btrfs_path
*path
;
1909 struct extent_buffer
*leaf
;
1910 struct btrfs_extent_item
*item
;
1915 path
= btrfs_alloc_path();
1920 path
->leave_spinning
= 1;
1921 /* this will setup the path even if it fails to insert the back ref */
1922 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1923 path
, bytenr
, num_bytes
, parent
,
1924 root_objectid
, owner
, offset
,
1925 refs_to_add
, extent_op
);
1929 if (ret
!= -EAGAIN
) {
1934 leaf
= path
->nodes
[0];
1935 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1936 refs
= btrfs_extent_refs(leaf
, item
);
1937 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1939 __run_delayed_extent_op(extent_op
, leaf
, item
);
1941 btrfs_mark_buffer_dirty(leaf
);
1942 btrfs_release_path(path
);
1945 path
->leave_spinning
= 1;
1947 /* now insert the actual backref */
1948 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1949 path
, bytenr
, parent
, root_objectid
,
1950 owner
, offset
, refs_to_add
);
1952 btrfs_abort_transaction(trans
, root
, ret
);
1954 btrfs_free_path(path
);
1958 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1959 struct btrfs_root
*root
,
1960 struct btrfs_delayed_ref_node
*node
,
1961 struct btrfs_delayed_extent_op
*extent_op
,
1962 int insert_reserved
)
1965 struct btrfs_delayed_data_ref
*ref
;
1966 struct btrfs_key ins
;
1971 ins
.objectid
= node
->bytenr
;
1972 ins
.offset
= node
->num_bytes
;
1973 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1975 ref
= btrfs_delayed_node_to_data_ref(node
);
1976 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1977 parent
= ref
->parent
;
1979 ref_root
= ref
->root
;
1981 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1983 BUG_ON(extent_op
->update_key
);
1984 flags
|= extent_op
->flags_to_set
;
1986 ret
= alloc_reserved_file_extent(trans
, root
,
1987 parent
, ref_root
, flags
,
1988 ref
->objectid
, ref
->offset
,
1989 &ins
, node
->ref_mod
);
1990 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1991 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1992 node
->num_bytes
, parent
,
1993 ref_root
, ref
->objectid
,
1994 ref
->offset
, node
->ref_mod
,
1996 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1997 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1998 node
->num_bytes
, parent
,
1999 ref_root
, ref
->objectid
,
2000 ref
->offset
, node
->ref_mod
,
2008 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2009 struct extent_buffer
*leaf
,
2010 struct btrfs_extent_item
*ei
)
2012 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2013 if (extent_op
->update_flags
) {
2014 flags
|= extent_op
->flags_to_set
;
2015 btrfs_set_extent_flags(leaf
, ei
, flags
);
2018 if (extent_op
->update_key
) {
2019 struct btrfs_tree_block_info
*bi
;
2020 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2021 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2022 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2026 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2027 struct btrfs_root
*root
,
2028 struct btrfs_delayed_ref_node
*node
,
2029 struct btrfs_delayed_extent_op
*extent_op
)
2031 struct btrfs_key key
;
2032 struct btrfs_path
*path
;
2033 struct btrfs_extent_item
*ei
;
2034 struct extent_buffer
*leaf
;
2042 path
= btrfs_alloc_path();
2046 key
.objectid
= node
->bytenr
;
2047 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2048 key
.offset
= node
->num_bytes
;
2051 path
->leave_spinning
= 1;
2052 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2063 leaf
= path
->nodes
[0];
2064 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2065 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2066 if (item_size
< sizeof(*ei
)) {
2067 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2073 leaf
= path
->nodes
[0];
2074 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2077 BUG_ON(item_size
< sizeof(*ei
));
2078 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2079 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2081 btrfs_mark_buffer_dirty(leaf
);
2083 btrfs_free_path(path
);
2087 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2088 struct btrfs_root
*root
,
2089 struct btrfs_delayed_ref_node
*node
,
2090 struct btrfs_delayed_extent_op
*extent_op
,
2091 int insert_reserved
)
2094 struct btrfs_delayed_tree_ref
*ref
;
2095 struct btrfs_key ins
;
2099 ins
.objectid
= node
->bytenr
;
2100 ins
.offset
= node
->num_bytes
;
2101 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2103 ref
= btrfs_delayed_node_to_tree_ref(node
);
2104 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2105 parent
= ref
->parent
;
2107 ref_root
= ref
->root
;
2109 BUG_ON(node
->ref_mod
!= 1);
2110 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2111 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2112 !extent_op
->update_key
);
2113 ret
= alloc_reserved_tree_block(trans
, root
,
2115 extent_op
->flags_to_set
,
2118 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2119 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2120 node
->num_bytes
, parent
, ref_root
,
2121 ref
->level
, 0, 1, extent_op
);
2122 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2123 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2124 node
->num_bytes
, parent
, ref_root
,
2125 ref
->level
, 0, 1, extent_op
);
2132 /* helper function to actually process a single delayed ref entry */
2133 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2134 struct btrfs_root
*root
,
2135 struct btrfs_delayed_ref_node
*node
,
2136 struct btrfs_delayed_extent_op
*extent_op
,
2137 int insert_reserved
)
2144 if (btrfs_delayed_ref_is_head(node
)) {
2145 struct btrfs_delayed_ref_head
*head
;
2147 * we've hit the end of the chain and we were supposed
2148 * to insert this extent into the tree. But, it got
2149 * deleted before we ever needed to insert it, so all
2150 * we have to do is clean up the accounting
2153 head
= btrfs_delayed_node_to_head(node
);
2154 if (insert_reserved
) {
2155 btrfs_pin_extent(root
, node
->bytenr
,
2156 node
->num_bytes
, 1);
2157 if (head
->is_data
) {
2158 ret
= btrfs_del_csums(trans
, root
,
2163 mutex_unlock(&head
->mutex
);
2167 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2168 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2169 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2171 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2172 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2173 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2180 static noinline
struct btrfs_delayed_ref_node
*
2181 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2183 struct rb_node
*node
;
2184 struct btrfs_delayed_ref_node
*ref
;
2185 int action
= BTRFS_ADD_DELAYED_REF
;
2188 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2189 * this prevents ref count from going down to zero when
2190 * there still are pending delayed ref.
2192 node
= rb_prev(&head
->node
.rb_node
);
2196 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2198 if (ref
->bytenr
!= head
->node
.bytenr
)
2200 if (ref
->action
== action
)
2202 node
= rb_prev(node
);
2204 if (action
== BTRFS_ADD_DELAYED_REF
) {
2205 action
= BTRFS_DROP_DELAYED_REF
;
2212 * Returns 0 on success or if called with an already aborted transaction.
2213 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2215 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2216 struct btrfs_root
*root
,
2217 struct list_head
*cluster
)
2219 struct btrfs_delayed_ref_root
*delayed_refs
;
2220 struct btrfs_delayed_ref_node
*ref
;
2221 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2222 struct btrfs_delayed_extent_op
*extent_op
;
2223 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2226 int must_insert_reserved
= 0;
2228 delayed_refs
= &trans
->transaction
->delayed_refs
;
2231 /* pick a new head ref from the cluster list */
2232 if (list_empty(cluster
))
2235 locked_ref
= list_entry(cluster
->next
,
2236 struct btrfs_delayed_ref_head
, cluster
);
2238 /* grab the lock that says we are going to process
2239 * all the refs for this head */
2240 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2243 * we may have dropped the spin lock to get the head
2244 * mutex lock, and that might have given someone else
2245 * time to free the head. If that's true, it has been
2246 * removed from our list and we can move on.
2248 if (ret
== -EAGAIN
) {
2256 * We need to try and merge add/drops of the same ref since we
2257 * can run into issues with relocate dropping the implicit ref
2258 * and then it being added back again before the drop can
2259 * finish. If we merged anything we need to re-loop so we can
2262 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2266 * locked_ref is the head node, so we have to go one
2267 * node back for any delayed ref updates
2269 ref
= select_delayed_ref(locked_ref
);
2271 if (ref
&& ref
->seq
&&
2272 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2274 * there are still refs with lower seq numbers in the
2275 * process of being added. Don't run this ref yet.
2277 list_del_init(&locked_ref
->cluster
);
2278 mutex_unlock(&locked_ref
->mutex
);
2280 delayed_refs
->num_heads_ready
++;
2281 spin_unlock(&delayed_refs
->lock
);
2283 spin_lock(&delayed_refs
->lock
);
2288 * record the must insert reserved flag before we
2289 * drop the spin lock.
2291 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2292 locked_ref
->must_insert_reserved
= 0;
2294 extent_op
= locked_ref
->extent_op
;
2295 locked_ref
->extent_op
= NULL
;
2298 /* All delayed refs have been processed, Go ahead
2299 * and send the head node to run_one_delayed_ref,
2300 * so that any accounting fixes can happen
2302 ref
= &locked_ref
->node
;
2304 if (extent_op
&& must_insert_reserved
) {
2310 spin_unlock(&delayed_refs
->lock
);
2312 ret
= run_delayed_extent_op(trans
, root
,
2317 printk(KERN_DEBUG
"btrfs: run_delayed_extent_op returned %d\n", ret
);
2318 spin_lock(&delayed_refs
->lock
);
2325 list_del_init(&locked_ref
->cluster
);
2330 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2331 delayed_refs
->num_entries
--;
2334 * when we play the delayed ref, also correct the
2337 switch (ref
->action
) {
2338 case BTRFS_ADD_DELAYED_REF
:
2339 case BTRFS_ADD_DELAYED_EXTENT
:
2340 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2342 case BTRFS_DROP_DELAYED_REF
:
2343 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2349 spin_unlock(&delayed_refs
->lock
);
2351 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2352 must_insert_reserved
);
2354 btrfs_put_delayed_ref(ref
);
2359 printk(KERN_DEBUG
"btrfs: run_one_delayed_ref returned %d\n", ret
);
2360 spin_lock(&delayed_refs
->lock
);
2366 spin_lock(&delayed_refs
->lock
);
2371 #ifdef SCRAMBLE_DELAYED_REFS
2373 * Normally delayed refs get processed in ascending bytenr order. This
2374 * correlates in most cases to the order added. To expose dependencies on this
2375 * order, we start to process the tree in the middle instead of the beginning
2377 static u64
find_middle(struct rb_root
*root
)
2379 struct rb_node
*n
= root
->rb_node
;
2380 struct btrfs_delayed_ref_node
*entry
;
2383 u64 first
= 0, last
= 0;
2387 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2388 first
= entry
->bytenr
;
2392 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2393 last
= entry
->bytenr
;
2398 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2399 WARN_ON(!entry
->in_tree
);
2401 middle
= entry
->bytenr
;
2414 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle
*trans
,
2415 struct btrfs_fs_info
*fs_info
)
2417 struct qgroup_update
*qgroup_update
;
2420 if (list_empty(&trans
->qgroup_ref_list
) !=
2421 !trans
->delayed_ref_elem
.seq
) {
2422 /* list without seq or seq without list */
2423 printk(KERN_ERR
"btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2424 list_empty(&trans
->qgroup_ref_list
) ? "" : " not",
2425 trans
->delayed_ref_elem
.seq
);
2429 if (!trans
->delayed_ref_elem
.seq
)
2432 while (!list_empty(&trans
->qgroup_ref_list
)) {
2433 qgroup_update
= list_first_entry(&trans
->qgroup_ref_list
,
2434 struct qgroup_update
, list
);
2435 list_del(&qgroup_update
->list
);
2437 ret
= btrfs_qgroup_account_ref(
2438 trans
, fs_info
, qgroup_update
->node
,
2439 qgroup_update
->extent_op
);
2440 kfree(qgroup_update
);
2443 btrfs_put_tree_mod_seq(fs_info
, &trans
->delayed_ref_elem
);
2449 * this starts processing the delayed reference count updates and
2450 * extent insertions we have queued up so far. count can be
2451 * 0, which means to process everything in the tree at the start
2452 * of the run (but not newly added entries), or it can be some target
2453 * number you'd like to process.
2455 * Returns 0 on success or if called with an aborted transaction
2456 * Returns <0 on error and aborts the transaction
2458 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2459 struct btrfs_root
*root
, unsigned long count
)
2461 struct rb_node
*node
;
2462 struct btrfs_delayed_ref_root
*delayed_refs
;
2463 struct btrfs_delayed_ref_node
*ref
;
2464 struct list_head cluster
;
2467 int run_all
= count
== (unsigned long)-1;
2471 /* We'll clean this up in btrfs_cleanup_transaction */
2475 if (root
== root
->fs_info
->extent_root
)
2476 root
= root
->fs_info
->tree_root
;
2478 btrfs_delayed_refs_qgroup_accounting(trans
, root
->fs_info
);
2480 delayed_refs
= &trans
->transaction
->delayed_refs
;
2481 INIT_LIST_HEAD(&cluster
);
2484 spin_lock(&delayed_refs
->lock
);
2486 #ifdef SCRAMBLE_DELAYED_REFS
2487 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2491 count
= delayed_refs
->num_entries
* 2;
2495 if (!(run_all
|| run_most
) &&
2496 delayed_refs
->num_heads_ready
< 64)
2500 * go find something we can process in the rbtree. We start at
2501 * the beginning of the tree, and then build a cluster
2502 * of refs to process starting at the first one we are able to
2505 delayed_start
= delayed_refs
->run_delayed_start
;
2506 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2507 delayed_refs
->run_delayed_start
);
2511 ret
= run_clustered_refs(trans
, root
, &cluster
);
2513 spin_unlock(&delayed_refs
->lock
);
2514 btrfs_abort_transaction(trans
, root
, ret
);
2518 count
-= min_t(unsigned long, ret
, count
);
2523 if (delayed_start
>= delayed_refs
->run_delayed_start
) {
2526 * btrfs_find_ref_cluster looped. let's do one
2527 * more cycle. if we don't run any delayed ref
2528 * during that cycle (because we can't because
2529 * all of them are blocked), bail out.
2534 * no runnable refs left, stop trying
2541 /* refs were run, let's reset staleness detection */
2547 if (!list_empty(&trans
->new_bgs
)) {
2548 spin_unlock(&delayed_refs
->lock
);
2549 btrfs_create_pending_block_groups(trans
, root
);
2550 spin_lock(&delayed_refs
->lock
);
2553 node
= rb_first(&delayed_refs
->root
);
2556 count
= (unsigned long)-1;
2559 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2561 if (btrfs_delayed_ref_is_head(ref
)) {
2562 struct btrfs_delayed_ref_head
*head
;
2564 head
= btrfs_delayed_node_to_head(ref
);
2565 atomic_inc(&ref
->refs
);
2567 spin_unlock(&delayed_refs
->lock
);
2569 * Mutex was contended, block until it's
2570 * released and try again
2572 mutex_lock(&head
->mutex
);
2573 mutex_unlock(&head
->mutex
);
2575 btrfs_put_delayed_ref(ref
);
2579 node
= rb_next(node
);
2581 spin_unlock(&delayed_refs
->lock
);
2582 schedule_timeout(1);
2586 spin_unlock(&delayed_refs
->lock
);
2587 assert_qgroups_uptodate(trans
);
2591 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2592 struct btrfs_root
*root
,
2593 u64 bytenr
, u64 num_bytes
, u64 flags
,
2596 struct btrfs_delayed_extent_op
*extent_op
;
2599 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2603 extent_op
->flags_to_set
= flags
;
2604 extent_op
->update_flags
= 1;
2605 extent_op
->update_key
= 0;
2606 extent_op
->is_data
= is_data
? 1 : 0;
2608 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2609 num_bytes
, extent_op
);
2615 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2616 struct btrfs_root
*root
,
2617 struct btrfs_path
*path
,
2618 u64 objectid
, u64 offset
, u64 bytenr
)
2620 struct btrfs_delayed_ref_head
*head
;
2621 struct btrfs_delayed_ref_node
*ref
;
2622 struct btrfs_delayed_data_ref
*data_ref
;
2623 struct btrfs_delayed_ref_root
*delayed_refs
;
2624 struct rb_node
*node
;
2628 delayed_refs
= &trans
->transaction
->delayed_refs
;
2629 spin_lock(&delayed_refs
->lock
);
2630 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2634 if (!mutex_trylock(&head
->mutex
)) {
2635 atomic_inc(&head
->node
.refs
);
2636 spin_unlock(&delayed_refs
->lock
);
2638 btrfs_release_path(path
);
2641 * Mutex was contended, block until it's released and let
2644 mutex_lock(&head
->mutex
);
2645 mutex_unlock(&head
->mutex
);
2646 btrfs_put_delayed_ref(&head
->node
);
2650 node
= rb_prev(&head
->node
.rb_node
);
2654 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2656 if (ref
->bytenr
!= bytenr
)
2660 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2663 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2665 node
= rb_prev(node
);
2669 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2670 if (ref
->bytenr
== bytenr
&& ref
->seq
== seq
)
2674 if (data_ref
->root
!= root
->root_key
.objectid
||
2675 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2680 mutex_unlock(&head
->mutex
);
2682 spin_unlock(&delayed_refs
->lock
);
2686 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2687 struct btrfs_root
*root
,
2688 struct btrfs_path
*path
,
2689 u64 objectid
, u64 offset
, u64 bytenr
)
2691 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2692 struct extent_buffer
*leaf
;
2693 struct btrfs_extent_data_ref
*ref
;
2694 struct btrfs_extent_inline_ref
*iref
;
2695 struct btrfs_extent_item
*ei
;
2696 struct btrfs_key key
;
2700 key
.objectid
= bytenr
;
2701 key
.offset
= (u64
)-1;
2702 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2704 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2707 BUG_ON(ret
== 0); /* Corruption */
2710 if (path
->slots
[0] == 0)
2714 leaf
= path
->nodes
[0];
2715 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2717 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2721 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2722 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2723 if (item_size
< sizeof(*ei
)) {
2724 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2728 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2730 if (item_size
!= sizeof(*ei
) +
2731 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2734 if (btrfs_extent_generation(leaf
, ei
) <=
2735 btrfs_root_last_snapshot(&root
->root_item
))
2738 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2739 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2740 BTRFS_EXTENT_DATA_REF_KEY
)
2743 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2744 if (btrfs_extent_refs(leaf
, ei
) !=
2745 btrfs_extent_data_ref_count(leaf
, ref
) ||
2746 btrfs_extent_data_ref_root(leaf
, ref
) !=
2747 root
->root_key
.objectid
||
2748 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2749 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2757 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2758 struct btrfs_root
*root
,
2759 u64 objectid
, u64 offset
, u64 bytenr
)
2761 struct btrfs_path
*path
;
2765 path
= btrfs_alloc_path();
2770 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2772 if (ret
&& ret
!= -ENOENT
)
2775 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2777 } while (ret2
== -EAGAIN
);
2779 if (ret2
&& ret2
!= -ENOENT
) {
2784 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2787 btrfs_free_path(path
);
2788 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2793 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2794 struct btrfs_root
*root
,
2795 struct extent_buffer
*buf
,
2796 int full_backref
, int inc
, int for_cow
)
2803 struct btrfs_key key
;
2804 struct btrfs_file_extent_item
*fi
;
2808 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2809 u64
, u64
, u64
, u64
, u64
, u64
, int);
2811 ref_root
= btrfs_header_owner(buf
);
2812 nritems
= btrfs_header_nritems(buf
);
2813 level
= btrfs_header_level(buf
);
2815 if (!root
->ref_cows
&& level
== 0)
2819 process_func
= btrfs_inc_extent_ref
;
2821 process_func
= btrfs_free_extent
;
2824 parent
= buf
->start
;
2828 for (i
= 0; i
< nritems
; i
++) {
2830 btrfs_item_key_to_cpu(buf
, &key
, i
);
2831 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2833 fi
= btrfs_item_ptr(buf
, i
,
2834 struct btrfs_file_extent_item
);
2835 if (btrfs_file_extent_type(buf
, fi
) ==
2836 BTRFS_FILE_EXTENT_INLINE
)
2838 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2842 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2843 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2844 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2845 parent
, ref_root
, key
.objectid
,
2846 key
.offset
, for_cow
);
2850 bytenr
= btrfs_node_blockptr(buf
, i
);
2851 num_bytes
= btrfs_level_size(root
, level
- 1);
2852 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2853 parent
, ref_root
, level
- 1, 0,
2864 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2865 struct extent_buffer
*buf
, int full_backref
, int for_cow
)
2867 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1, for_cow
);
2870 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2871 struct extent_buffer
*buf
, int full_backref
, int for_cow
)
2873 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0, for_cow
);
2876 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2877 struct btrfs_root
*root
,
2878 struct btrfs_path
*path
,
2879 struct btrfs_block_group_cache
*cache
)
2882 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2884 struct extent_buffer
*leaf
;
2886 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2889 BUG_ON(ret
); /* Corruption */
2891 leaf
= path
->nodes
[0];
2892 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2893 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2894 btrfs_mark_buffer_dirty(leaf
);
2895 btrfs_release_path(path
);
2898 btrfs_abort_transaction(trans
, root
, ret
);
2905 static struct btrfs_block_group_cache
*
2906 next_block_group(struct btrfs_root
*root
,
2907 struct btrfs_block_group_cache
*cache
)
2909 struct rb_node
*node
;
2910 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2911 node
= rb_next(&cache
->cache_node
);
2912 btrfs_put_block_group(cache
);
2914 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2916 btrfs_get_block_group(cache
);
2919 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2923 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2924 struct btrfs_trans_handle
*trans
,
2925 struct btrfs_path
*path
)
2927 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2928 struct inode
*inode
= NULL
;
2930 int dcs
= BTRFS_DC_ERROR
;
2936 * If this block group is smaller than 100 megs don't bother caching the
2939 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2940 spin_lock(&block_group
->lock
);
2941 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2942 spin_unlock(&block_group
->lock
);
2947 inode
= lookup_free_space_inode(root
, block_group
, path
);
2948 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2949 ret
= PTR_ERR(inode
);
2950 btrfs_release_path(path
);
2954 if (IS_ERR(inode
)) {
2958 if (block_group
->ro
)
2961 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2967 /* We've already setup this transaction, go ahead and exit */
2968 if (block_group
->cache_generation
== trans
->transid
&&
2969 i_size_read(inode
)) {
2970 dcs
= BTRFS_DC_SETUP
;
2975 * We want to set the generation to 0, that way if anything goes wrong
2976 * from here on out we know not to trust this cache when we load up next
2979 BTRFS_I(inode
)->generation
= 0;
2980 ret
= btrfs_update_inode(trans
, root
, inode
);
2983 if (i_size_read(inode
) > 0) {
2984 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2990 spin_lock(&block_group
->lock
);
2991 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
2992 !btrfs_test_opt(root
, SPACE_CACHE
)) {
2994 * don't bother trying to write stuff out _if_
2995 * a) we're not cached,
2996 * b) we're with nospace_cache mount option.
2998 dcs
= BTRFS_DC_WRITTEN
;
2999 spin_unlock(&block_group
->lock
);
3002 spin_unlock(&block_group
->lock
);
3005 * Try to preallocate enough space based on how big the block group is.
3006 * Keep in mind this has to include any pinned space which could end up
3007 * taking up quite a bit since it's not folded into the other space
3010 num_pages
= (int)div64_u64(block_group
->key
.offset
, 256 * 1024 * 1024);
3015 num_pages
*= PAGE_CACHE_SIZE
;
3017 ret
= btrfs_check_data_free_space(inode
, num_pages
);
3021 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3022 num_pages
, num_pages
,
3025 dcs
= BTRFS_DC_SETUP
;
3026 btrfs_free_reserved_data_space(inode
, num_pages
);
3031 btrfs_release_path(path
);
3033 spin_lock(&block_group
->lock
);
3034 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3035 block_group
->cache_generation
= trans
->transid
;
3036 block_group
->disk_cache_state
= dcs
;
3037 spin_unlock(&block_group
->lock
);
3042 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3043 struct btrfs_root
*root
)
3045 struct btrfs_block_group_cache
*cache
;
3047 struct btrfs_path
*path
;
3050 path
= btrfs_alloc_path();
3056 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3058 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3060 cache
= next_block_group(root
, cache
);
3068 err
= cache_save_setup(cache
, trans
, path
);
3069 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3070 btrfs_put_block_group(cache
);
3075 err
= btrfs_run_delayed_refs(trans
, root
,
3077 if (err
) /* File system offline */
3081 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3083 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
3084 btrfs_put_block_group(cache
);
3090 cache
= next_block_group(root
, cache
);
3099 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
3100 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
3102 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3104 err
= write_one_cache_group(trans
, root
, path
, cache
);
3105 if (err
) /* File system offline */
3108 btrfs_put_block_group(cache
);
3113 * I don't think this is needed since we're just marking our
3114 * preallocated extent as written, but just in case it can't
3118 err
= btrfs_run_delayed_refs(trans
, root
,
3120 if (err
) /* File system offline */
3124 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3127 * Really this shouldn't happen, but it could if we
3128 * couldn't write the entire preallocated extent and
3129 * splitting the extent resulted in a new block.
3132 btrfs_put_block_group(cache
);
3135 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3137 cache
= next_block_group(root
, cache
);
3146 err
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3149 * If we didn't have an error then the cache state is still
3150 * NEED_WRITE, so we can set it to WRITTEN.
3152 if (!err
&& cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3153 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3154 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3155 btrfs_put_block_group(cache
);
3159 btrfs_free_path(path
);
3163 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3165 struct btrfs_block_group_cache
*block_group
;
3168 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3169 if (!block_group
|| block_group
->ro
)
3172 btrfs_put_block_group(block_group
);
3176 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3177 u64 total_bytes
, u64 bytes_used
,
3178 struct btrfs_space_info
**space_info
)
3180 struct btrfs_space_info
*found
;
3184 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3185 BTRFS_BLOCK_GROUP_RAID10
))
3190 found
= __find_space_info(info
, flags
);
3192 spin_lock(&found
->lock
);
3193 found
->total_bytes
+= total_bytes
;
3194 found
->disk_total
+= total_bytes
* factor
;
3195 found
->bytes_used
+= bytes_used
;
3196 found
->disk_used
+= bytes_used
* factor
;
3198 spin_unlock(&found
->lock
);
3199 *space_info
= found
;
3202 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3206 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3207 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3208 init_rwsem(&found
->groups_sem
);
3209 spin_lock_init(&found
->lock
);
3210 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3211 found
->total_bytes
= total_bytes
;
3212 found
->disk_total
= total_bytes
* factor
;
3213 found
->bytes_used
= bytes_used
;
3214 found
->disk_used
= bytes_used
* factor
;
3215 found
->bytes_pinned
= 0;
3216 found
->bytes_reserved
= 0;
3217 found
->bytes_readonly
= 0;
3218 found
->bytes_may_use
= 0;
3220 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3221 found
->chunk_alloc
= 0;
3223 init_waitqueue_head(&found
->wait
);
3224 *space_info
= found
;
3225 list_add_rcu(&found
->list
, &info
->space_info
);
3226 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3227 info
->data_sinfo
= found
;
3231 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3233 u64 extra_flags
= chunk_to_extended(flags
) &
3234 BTRFS_EXTENDED_PROFILE_MASK
;
3236 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3237 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3238 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3239 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3240 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3241 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3245 * returns target flags in extended format or 0 if restripe for this
3246 * chunk_type is not in progress
3248 * should be called with either volume_mutex or balance_lock held
3250 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3252 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3258 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3259 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3260 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3261 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3262 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3263 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3264 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3265 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3266 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3273 * @flags: available profiles in extended format (see ctree.h)
3275 * Returns reduced profile in chunk format. If profile changing is in
3276 * progress (either running or paused) picks the target profile (if it's
3277 * already available), otherwise falls back to plain reducing.
3279 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3282 * we add in the count of missing devices because we want
3283 * to make sure that any RAID levels on a degraded FS
3284 * continue to be honored.
3286 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3287 root
->fs_info
->fs_devices
->missing_devices
;
3291 * see if restripe for this chunk_type is in progress, if so
3292 * try to reduce to the target profile
3294 spin_lock(&root
->fs_info
->balance_lock
);
3295 target
= get_restripe_target(root
->fs_info
, flags
);
3297 /* pick target profile only if it's already available */
3298 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3299 spin_unlock(&root
->fs_info
->balance_lock
);
3300 return extended_to_chunk(target
);
3303 spin_unlock(&root
->fs_info
->balance_lock
);
3305 if (num_devices
== 1)
3306 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
3307 if (num_devices
< 4)
3308 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3310 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
3311 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3312 BTRFS_BLOCK_GROUP_RAID10
))) {
3313 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
3316 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
3317 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
3318 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
3321 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
3322 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
3323 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
3324 (flags
& BTRFS_BLOCK_GROUP_DUP
))) {
3325 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
3328 return extended_to_chunk(flags
);
3331 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3333 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3334 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3335 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3336 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3337 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3338 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3340 return btrfs_reduce_alloc_profile(root
, flags
);
3343 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3348 flags
= BTRFS_BLOCK_GROUP_DATA
;
3349 else if (root
== root
->fs_info
->chunk_root
)
3350 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3352 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3354 return get_alloc_profile(root
, flags
);
3358 * This will check the space that the inode allocates from to make sure we have
3359 * enough space for bytes.
3361 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3363 struct btrfs_space_info
*data_sinfo
;
3364 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3365 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3367 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3369 /* make sure bytes are sectorsize aligned */
3370 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3372 if (root
== root
->fs_info
->tree_root
||
3373 BTRFS_I(inode
)->location
.objectid
== BTRFS_FREE_INO_OBJECTID
) {
3378 data_sinfo
= fs_info
->data_sinfo
;
3383 /* make sure we have enough space to handle the data first */
3384 spin_lock(&data_sinfo
->lock
);
3385 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3386 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3387 data_sinfo
->bytes_may_use
;
3389 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3390 struct btrfs_trans_handle
*trans
;
3393 * if we don't have enough free bytes in this space then we need
3394 * to alloc a new chunk.
3396 if (!data_sinfo
->full
&& alloc_chunk
) {
3399 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3400 spin_unlock(&data_sinfo
->lock
);
3402 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3403 trans
= btrfs_join_transaction(root
);
3405 return PTR_ERR(trans
);
3407 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3409 CHUNK_ALLOC_NO_FORCE
);
3410 btrfs_end_transaction(trans
, root
);
3419 data_sinfo
= fs_info
->data_sinfo
;
3425 * If we have less pinned bytes than we want to allocate then
3426 * don't bother committing the transaction, it won't help us.
3428 if (data_sinfo
->bytes_pinned
< bytes
)
3430 spin_unlock(&data_sinfo
->lock
);
3432 /* commit the current transaction and try again */
3435 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3437 trans
= btrfs_join_transaction(root
);
3439 return PTR_ERR(trans
);
3440 ret
= btrfs_commit_transaction(trans
, root
);
3448 data_sinfo
->bytes_may_use
+= bytes
;
3449 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3450 data_sinfo
->flags
, bytes
, 1);
3451 spin_unlock(&data_sinfo
->lock
);
3457 * Called if we need to clear a data reservation for this inode.
3459 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3461 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3462 struct btrfs_space_info
*data_sinfo
;
3464 /* make sure bytes are sectorsize aligned */
3465 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3467 data_sinfo
= root
->fs_info
->data_sinfo
;
3468 spin_lock(&data_sinfo
->lock
);
3469 data_sinfo
->bytes_may_use
-= bytes
;
3470 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3471 data_sinfo
->flags
, bytes
, 0);
3472 spin_unlock(&data_sinfo
->lock
);
3475 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3477 struct list_head
*head
= &info
->space_info
;
3478 struct btrfs_space_info
*found
;
3481 list_for_each_entry_rcu(found
, head
, list
) {
3482 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3483 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3488 static int should_alloc_chunk(struct btrfs_root
*root
,
3489 struct btrfs_space_info
*sinfo
, int force
)
3491 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3492 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3493 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3496 if (force
== CHUNK_ALLOC_FORCE
)
3500 * We need to take into account the global rsv because for all intents
3501 * and purposes it's used space. Don't worry about locking the
3502 * global_rsv, it doesn't change except when the transaction commits.
3504 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3505 num_allocated
+= global_rsv
->size
;
3508 * in limited mode, we want to have some free space up to
3509 * about 1% of the FS size.
3511 if (force
== CHUNK_ALLOC_LIMITED
) {
3512 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3513 thresh
= max_t(u64
, 64 * 1024 * 1024,
3514 div_factor_fine(thresh
, 1));
3516 if (num_bytes
- num_allocated
< thresh
)
3520 if (num_allocated
+ 2 * 1024 * 1024 < div_factor(num_bytes
, 8))
3525 static u64
get_system_chunk_thresh(struct btrfs_root
*root
, u64 type
)
3529 if (type
& BTRFS_BLOCK_GROUP_RAID10
||
3530 type
& BTRFS_BLOCK_GROUP_RAID0
)
3531 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
3532 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
3535 num_dev
= 1; /* DUP or single */
3537 /* metadata for updaing devices and chunk tree */
3538 return btrfs_calc_trans_metadata_size(root
, num_dev
+ 1);
3541 static void check_system_chunk(struct btrfs_trans_handle
*trans
,
3542 struct btrfs_root
*root
, u64 type
)
3544 struct btrfs_space_info
*info
;
3548 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3549 spin_lock(&info
->lock
);
3550 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
3551 info
->bytes_reserved
- info
->bytes_readonly
;
3552 spin_unlock(&info
->lock
);
3554 thresh
= get_system_chunk_thresh(root
, type
);
3555 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
3556 printk(KERN_INFO
"left=%llu, need=%llu, flags=%llu\n",
3557 left
, thresh
, type
);
3558 dump_space_info(info
, 0, 0);
3561 if (left
< thresh
) {
3564 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
3565 btrfs_alloc_chunk(trans
, root
, flags
);
3569 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3570 struct btrfs_root
*extent_root
, u64 flags
, int force
)
3572 struct btrfs_space_info
*space_info
;
3573 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3574 int wait_for_alloc
= 0;
3577 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3579 ret
= update_space_info(extent_root
->fs_info
, flags
,
3581 BUG_ON(ret
); /* -ENOMEM */
3583 BUG_ON(!space_info
); /* Logic error */
3586 spin_lock(&space_info
->lock
);
3587 if (force
< space_info
->force_alloc
)
3588 force
= space_info
->force_alloc
;
3589 if (space_info
->full
) {
3590 spin_unlock(&space_info
->lock
);
3594 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
3595 spin_unlock(&space_info
->lock
);
3597 } else if (space_info
->chunk_alloc
) {
3600 space_info
->chunk_alloc
= 1;
3603 spin_unlock(&space_info
->lock
);
3605 mutex_lock(&fs_info
->chunk_mutex
);
3608 * The chunk_mutex is held throughout the entirety of a chunk
3609 * allocation, so once we've acquired the chunk_mutex we know that the
3610 * other guy is done and we need to recheck and see if we should
3613 if (wait_for_alloc
) {
3614 mutex_unlock(&fs_info
->chunk_mutex
);
3620 * If we have mixed data/metadata chunks we want to make sure we keep
3621 * allocating mixed chunks instead of individual chunks.
3623 if (btrfs_mixed_space_info(space_info
))
3624 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3627 * if we're doing a data chunk, go ahead and make sure that
3628 * we keep a reasonable number of metadata chunks allocated in the
3631 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3632 fs_info
->data_chunk_allocations
++;
3633 if (!(fs_info
->data_chunk_allocations
%
3634 fs_info
->metadata_ratio
))
3635 force_metadata_allocation(fs_info
);
3639 * Check if we have enough space in SYSTEM chunk because we may need
3640 * to update devices.
3642 check_system_chunk(trans
, extent_root
, flags
);
3644 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3645 if (ret
< 0 && ret
!= -ENOSPC
)
3648 spin_lock(&space_info
->lock
);
3650 space_info
->full
= 1;
3654 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3655 space_info
->chunk_alloc
= 0;
3656 spin_unlock(&space_info
->lock
);
3658 mutex_unlock(&fs_info
->chunk_mutex
);
3662 static int can_overcommit(struct btrfs_root
*root
,
3663 struct btrfs_space_info
*space_info
, u64 bytes
,
3666 u64 profile
= btrfs_get_alloc_profile(root
, 0);
3670 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3671 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3672 space_info
->bytes_may_use
;
3674 spin_lock(&root
->fs_info
->free_chunk_lock
);
3675 avail
= root
->fs_info
->free_chunk_space
;
3676 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3679 * If we have dup, raid1 or raid10 then only half of the free
3680 * space is actually useable.
3682 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
3683 BTRFS_BLOCK_GROUP_RAID1
|
3684 BTRFS_BLOCK_GROUP_RAID10
))
3688 * If we aren't flushing don't let us overcommit too much, say
3689 * 1/8th of the space. If we can flush, let it overcommit up to
3697 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
3703 * shrink metadata reservation for delalloc
3705 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
3708 struct btrfs_block_rsv
*block_rsv
;
3709 struct btrfs_space_info
*space_info
;
3710 struct btrfs_trans_handle
*trans
;
3714 unsigned long nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3717 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
3718 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3719 space_info
= block_rsv
->space_info
;
3722 delalloc_bytes
= root
->fs_info
->delalloc_bytes
;
3723 if (delalloc_bytes
== 0) {
3726 btrfs_wait_ordered_extents(root
, 0);
3730 while (delalloc_bytes
&& loops
< 3) {
3731 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
3732 nr_pages
= max_reclaim
>> PAGE_CACHE_SHIFT
;
3733 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
,
3734 WB_REASON_FS_FREE_SPACE
);
3737 * We need to wait for the async pages to actually start before
3740 wait_event(root
->fs_info
->async_submit_wait
,
3741 !atomic_read(&root
->fs_info
->async_delalloc_pages
));
3743 spin_lock(&space_info
->lock
);
3744 if (can_overcommit(root
, space_info
, orig
, !trans
)) {
3745 spin_unlock(&space_info
->lock
);
3748 spin_unlock(&space_info
->lock
);
3751 if (wait_ordered
&& !trans
) {
3752 btrfs_wait_ordered_extents(root
, 0);
3754 time_left
= schedule_timeout_killable(1);
3759 delalloc_bytes
= root
->fs_info
->delalloc_bytes
;
3764 * maybe_commit_transaction - possibly commit the transaction if its ok to
3765 * @root - the root we're allocating for
3766 * @bytes - the number of bytes we want to reserve
3767 * @force - force the commit
3769 * This will check to make sure that committing the transaction will actually
3770 * get us somewhere and then commit the transaction if it does. Otherwise it
3771 * will return -ENOSPC.
3773 static int may_commit_transaction(struct btrfs_root
*root
,
3774 struct btrfs_space_info
*space_info
,
3775 u64 bytes
, int force
)
3777 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
3778 struct btrfs_trans_handle
*trans
;
3780 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
3787 /* See if there is enough pinned space to make this reservation */
3788 spin_lock(&space_info
->lock
);
3789 if (space_info
->bytes_pinned
>= bytes
) {
3790 spin_unlock(&space_info
->lock
);
3793 spin_unlock(&space_info
->lock
);
3796 * See if there is some space in the delayed insertion reservation for
3799 if (space_info
!= delayed_rsv
->space_info
)
3802 spin_lock(&space_info
->lock
);
3803 spin_lock(&delayed_rsv
->lock
);
3804 if (space_info
->bytes_pinned
+ delayed_rsv
->size
< bytes
) {
3805 spin_unlock(&delayed_rsv
->lock
);
3806 spin_unlock(&space_info
->lock
);
3809 spin_unlock(&delayed_rsv
->lock
);
3810 spin_unlock(&space_info
->lock
);
3813 trans
= btrfs_join_transaction(root
);
3817 return btrfs_commit_transaction(trans
, root
);
3821 FLUSH_DELAYED_ITEMS_NR
= 1,
3822 FLUSH_DELAYED_ITEMS
= 2,
3824 FLUSH_DELALLOC_WAIT
= 4,
3829 static int flush_space(struct btrfs_root
*root
,
3830 struct btrfs_space_info
*space_info
, u64 num_bytes
,
3831 u64 orig_bytes
, int state
)
3833 struct btrfs_trans_handle
*trans
;
3838 case FLUSH_DELAYED_ITEMS_NR
:
3839 case FLUSH_DELAYED_ITEMS
:
3840 if (state
== FLUSH_DELAYED_ITEMS_NR
) {
3841 u64 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
3843 nr
= (int)div64_u64(num_bytes
, bytes
);
3850 trans
= btrfs_join_transaction(root
);
3851 if (IS_ERR(trans
)) {
3852 ret
= PTR_ERR(trans
);
3855 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
3856 btrfs_end_transaction(trans
, root
);
3858 case FLUSH_DELALLOC
:
3859 case FLUSH_DELALLOC_WAIT
:
3860 shrink_delalloc(root
, num_bytes
, orig_bytes
,
3861 state
== FLUSH_DELALLOC_WAIT
);
3864 trans
= btrfs_join_transaction(root
);
3865 if (IS_ERR(trans
)) {
3866 ret
= PTR_ERR(trans
);
3869 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3870 btrfs_get_alloc_profile(root
, 0),
3871 CHUNK_ALLOC_NO_FORCE
);
3872 btrfs_end_transaction(trans
, root
);
3877 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
3887 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3888 * @root - the root we're allocating for
3889 * @block_rsv - the block_rsv we're allocating for
3890 * @orig_bytes - the number of bytes we want
3891 * @flush - whether or not we can flush to make our reservation
3893 * This will reserve orgi_bytes number of bytes from the space info associated
3894 * with the block_rsv. If there is not enough space it will make an attempt to
3895 * flush out space to make room. It will do this by flushing delalloc if
3896 * possible or committing the transaction. If flush is 0 then no attempts to
3897 * regain reservations will be made and this will fail if there is not enough
3900 static int reserve_metadata_bytes(struct btrfs_root
*root
,
3901 struct btrfs_block_rsv
*block_rsv
,
3902 u64 orig_bytes
, int flush
)
3904 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3906 u64 num_bytes
= orig_bytes
;
3907 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
3909 bool flushing
= false;
3913 spin_lock(&space_info
->lock
);
3915 * We only want to wait if somebody other than us is flushing and we are
3916 * actually alloed to flush.
3918 while (flush
&& !flushing
&& space_info
->flush
) {
3919 spin_unlock(&space_info
->lock
);
3921 * If we have a trans handle we can't wait because the flusher
3922 * may have to commit the transaction, which would mean we would
3923 * deadlock since we are waiting for the flusher to finish, but
3924 * hold the current transaction open.
3926 if (current
->journal_info
)
3928 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
3929 /* Must have been killed, return */
3933 spin_lock(&space_info
->lock
);
3937 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3938 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3939 space_info
->bytes_may_use
;
3942 * The idea here is that we've not already over-reserved the block group
3943 * then we can go ahead and save our reservation first and then start
3944 * flushing if we need to. Otherwise if we've already overcommitted
3945 * lets start flushing stuff first and then come back and try to make
3948 if (used
<= space_info
->total_bytes
) {
3949 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
3950 space_info
->bytes_may_use
+= orig_bytes
;
3951 trace_btrfs_space_reservation(root
->fs_info
,
3952 "space_info", space_info
->flags
, orig_bytes
, 1);
3956 * Ok set num_bytes to orig_bytes since we aren't
3957 * overocmmitted, this way we only try and reclaim what
3960 num_bytes
= orig_bytes
;
3964 * Ok we're over committed, set num_bytes to the overcommitted
3965 * amount plus the amount of bytes that we need for this
3968 num_bytes
= used
- space_info
->total_bytes
+
3972 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
3973 space_info
->bytes_may_use
+= orig_bytes
;
3974 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3975 space_info
->flags
, orig_bytes
,
3981 * Couldn't make our reservation, save our place so while we're trying
3982 * to reclaim space we can actually use it instead of somebody else
3983 * stealing it from us.
3987 space_info
->flush
= 1;
3990 spin_unlock(&space_info
->lock
);
3995 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
4000 else if (flush_state
<= COMMIT_TRANS
)
4005 spin_lock(&space_info
->lock
);
4006 space_info
->flush
= 0;
4007 wake_up_all(&space_info
->wait
);
4008 spin_unlock(&space_info
->lock
);
4013 static struct btrfs_block_rsv
*get_block_rsv(
4014 const struct btrfs_trans_handle
*trans
,
4015 const struct btrfs_root
*root
)
4017 struct btrfs_block_rsv
*block_rsv
= NULL
;
4020 block_rsv
= trans
->block_rsv
;
4022 if (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
)
4023 block_rsv
= trans
->block_rsv
;
4026 block_rsv
= root
->block_rsv
;
4029 block_rsv
= &root
->fs_info
->empty_block_rsv
;
4034 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
4038 spin_lock(&block_rsv
->lock
);
4039 if (block_rsv
->reserved
>= num_bytes
) {
4040 block_rsv
->reserved
-= num_bytes
;
4041 if (block_rsv
->reserved
< block_rsv
->size
)
4042 block_rsv
->full
= 0;
4045 spin_unlock(&block_rsv
->lock
);
4049 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
4050 u64 num_bytes
, int update_size
)
4052 spin_lock(&block_rsv
->lock
);
4053 block_rsv
->reserved
+= num_bytes
;
4055 block_rsv
->size
+= num_bytes
;
4056 else if (block_rsv
->reserved
>= block_rsv
->size
)
4057 block_rsv
->full
= 1;
4058 spin_unlock(&block_rsv
->lock
);
4061 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
4062 struct btrfs_block_rsv
*block_rsv
,
4063 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
4065 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4067 spin_lock(&block_rsv
->lock
);
4068 if (num_bytes
== (u64
)-1)
4069 num_bytes
= block_rsv
->size
;
4070 block_rsv
->size
-= num_bytes
;
4071 if (block_rsv
->reserved
>= block_rsv
->size
) {
4072 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4073 block_rsv
->reserved
= block_rsv
->size
;
4074 block_rsv
->full
= 1;
4078 spin_unlock(&block_rsv
->lock
);
4080 if (num_bytes
> 0) {
4082 spin_lock(&dest
->lock
);
4086 bytes_to_add
= dest
->size
- dest
->reserved
;
4087 bytes_to_add
= min(num_bytes
, bytes_to_add
);
4088 dest
->reserved
+= bytes_to_add
;
4089 if (dest
->reserved
>= dest
->size
)
4091 num_bytes
-= bytes_to_add
;
4093 spin_unlock(&dest
->lock
);
4096 spin_lock(&space_info
->lock
);
4097 space_info
->bytes_may_use
-= num_bytes
;
4098 trace_btrfs_space_reservation(fs_info
, "space_info",
4099 space_info
->flags
, num_bytes
, 0);
4100 space_info
->reservation_progress
++;
4101 spin_unlock(&space_info
->lock
);
4106 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
4107 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
4111 ret
= block_rsv_use_bytes(src
, num_bytes
);
4115 block_rsv_add_bytes(dst
, num_bytes
, 1);
4119 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
4121 memset(rsv
, 0, sizeof(*rsv
));
4122 spin_lock_init(&rsv
->lock
);
4126 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
4127 unsigned short type
)
4129 struct btrfs_block_rsv
*block_rsv
;
4130 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4132 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
4136 btrfs_init_block_rsv(block_rsv
, type
);
4137 block_rsv
->space_info
= __find_space_info(fs_info
,
4138 BTRFS_BLOCK_GROUP_METADATA
);
4142 void btrfs_free_block_rsv(struct btrfs_root
*root
,
4143 struct btrfs_block_rsv
*rsv
)
4147 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4151 static inline int __block_rsv_add(struct btrfs_root
*root
,
4152 struct btrfs_block_rsv
*block_rsv
,
4153 u64 num_bytes
, int flush
)
4160 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4162 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
4169 int btrfs_block_rsv_add(struct btrfs_root
*root
,
4170 struct btrfs_block_rsv
*block_rsv
,
4173 return __block_rsv_add(root
, block_rsv
, num_bytes
, 1);
4176 int btrfs_block_rsv_add_noflush(struct btrfs_root
*root
,
4177 struct btrfs_block_rsv
*block_rsv
,
4180 return __block_rsv_add(root
, block_rsv
, num_bytes
, 0);
4183 int btrfs_block_rsv_check(struct btrfs_root
*root
,
4184 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
4192 spin_lock(&block_rsv
->lock
);
4193 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
4194 if (block_rsv
->reserved
>= num_bytes
)
4196 spin_unlock(&block_rsv
->lock
);
4201 static inline int __btrfs_block_rsv_refill(struct btrfs_root
*root
,
4202 struct btrfs_block_rsv
*block_rsv
,
4203 u64 min_reserved
, int flush
)
4211 spin_lock(&block_rsv
->lock
);
4212 num_bytes
= min_reserved
;
4213 if (block_rsv
->reserved
>= num_bytes
)
4216 num_bytes
-= block_rsv
->reserved
;
4217 spin_unlock(&block_rsv
->lock
);
4222 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4224 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
4231 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
4232 struct btrfs_block_rsv
*block_rsv
,
4235 return __btrfs_block_rsv_refill(root
, block_rsv
, min_reserved
, 1);
4238 int btrfs_block_rsv_refill_noflush(struct btrfs_root
*root
,
4239 struct btrfs_block_rsv
*block_rsv
,
4242 return __btrfs_block_rsv_refill(root
, block_rsv
, min_reserved
, 0);
4245 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
4246 struct btrfs_block_rsv
*dst_rsv
,
4249 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4252 void btrfs_block_rsv_release(struct btrfs_root
*root
,
4253 struct btrfs_block_rsv
*block_rsv
,
4256 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4257 if (global_rsv
->full
|| global_rsv
== block_rsv
||
4258 block_rsv
->space_info
!= global_rsv
->space_info
)
4260 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
4265 * helper to calculate size of global block reservation.
4266 * the desired value is sum of space used by extent tree,
4267 * checksum tree and root tree
4269 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
4271 struct btrfs_space_info
*sinfo
;
4275 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
4277 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4278 spin_lock(&sinfo
->lock
);
4279 data_used
= sinfo
->bytes_used
;
4280 spin_unlock(&sinfo
->lock
);
4282 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4283 spin_lock(&sinfo
->lock
);
4284 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4286 meta_used
= sinfo
->bytes_used
;
4287 spin_unlock(&sinfo
->lock
);
4289 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
4291 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
4293 if (num_bytes
* 3 > meta_used
)
4294 num_bytes
= div64_u64(meta_used
, 3);
4296 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
4299 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4301 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4302 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
4305 num_bytes
= calc_global_metadata_size(fs_info
);
4307 spin_lock(&sinfo
->lock
);
4308 spin_lock(&block_rsv
->lock
);
4310 block_rsv
->size
= num_bytes
;
4312 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
4313 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
4314 sinfo
->bytes_may_use
;
4316 if (sinfo
->total_bytes
> num_bytes
) {
4317 num_bytes
= sinfo
->total_bytes
- num_bytes
;
4318 block_rsv
->reserved
+= num_bytes
;
4319 sinfo
->bytes_may_use
+= num_bytes
;
4320 trace_btrfs_space_reservation(fs_info
, "space_info",
4321 sinfo
->flags
, num_bytes
, 1);
4324 if (block_rsv
->reserved
>= block_rsv
->size
) {
4325 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4326 sinfo
->bytes_may_use
-= num_bytes
;
4327 trace_btrfs_space_reservation(fs_info
, "space_info",
4328 sinfo
->flags
, num_bytes
, 0);
4329 sinfo
->reservation_progress
++;
4330 block_rsv
->reserved
= block_rsv
->size
;
4331 block_rsv
->full
= 1;
4334 spin_unlock(&block_rsv
->lock
);
4335 spin_unlock(&sinfo
->lock
);
4338 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4340 struct btrfs_space_info
*space_info
;
4342 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4343 fs_info
->chunk_block_rsv
.space_info
= space_info
;
4345 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4346 fs_info
->global_block_rsv
.space_info
= space_info
;
4347 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
4348 fs_info
->trans_block_rsv
.space_info
= space_info
;
4349 fs_info
->empty_block_rsv
.space_info
= space_info
;
4350 fs_info
->delayed_block_rsv
.space_info
= space_info
;
4352 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
4353 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
4354 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
4355 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
4356 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
4358 update_global_block_rsv(fs_info
);
4361 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4363 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
4365 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
4366 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
4367 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
4368 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
4369 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
4370 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
4371 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
4372 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
4375 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4376 struct btrfs_root
*root
)
4378 if (!trans
->block_rsv
)
4381 if (!trans
->bytes_reserved
)
4384 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4385 trans
->transid
, trans
->bytes_reserved
, 0);
4386 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
4387 trans
->bytes_reserved
= 0;
4390 /* Can only return 0 or -ENOSPC */
4391 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4392 struct inode
*inode
)
4394 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4395 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4396 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4399 * We need to hold space in order to delete our orphan item once we've
4400 * added it, so this takes the reservation so we can release it later
4401 * when we are truly done with the orphan item.
4403 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4404 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4405 btrfs_ino(inode
), num_bytes
, 1);
4406 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4409 void btrfs_orphan_release_metadata(struct inode
*inode
)
4411 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4412 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4413 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4414 btrfs_ino(inode
), num_bytes
, 0);
4415 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4418 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
4419 struct btrfs_pending_snapshot
*pending
)
4421 struct btrfs_root
*root
= pending
->root
;
4422 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4423 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
4425 * two for root back/forward refs, two for directory entries,
4426 * one for root of the snapshot and one for parent inode.
4428 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 6);
4429 dst_rsv
->space_info
= src_rsv
->space_info
;
4430 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4434 * drop_outstanding_extent - drop an outstanding extent
4435 * @inode: the inode we're dropping the extent for
4437 * This is called when we are freeing up an outstanding extent, either called
4438 * after an error or after an extent is written. This will return the number of
4439 * reserved extents that need to be freed. This must be called with
4440 * BTRFS_I(inode)->lock held.
4442 static unsigned drop_outstanding_extent(struct inode
*inode
)
4444 unsigned drop_inode_space
= 0;
4445 unsigned dropped_extents
= 0;
4447 BUG_ON(!BTRFS_I(inode
)->outstanding_extents
);
4448 BTRFS_I(inode
)->outstanding_extents
--;
4450 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
4451 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4452 &BTRFS_I(inode
)->runtime_flags
))
4453 drop_inode_space
= 1;
4456 * If we have more or the same amount of outsanding extents than we have
4457 * reserved then we need to leave the reserved extents count alone.
4459 if (BTRFS_I(inode
)->outstanding_extents
>=
4460 BTRFS_I(inode
)->reserved_extents
)
4461 return drop_inode_space
;
4463 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
4464 BTRFS_I(inode
)->outstanding_extents
;
4465 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
4466 return dropped_extents
+ drop_inode_space
;
4470 * calc_csum_metadata_size - return the amount of metada space that must be
4471 * reserved/free'd for the given bytes.
4472 * @inode: the inode we're manipulating
4473 * @num_bytes: the number of bytes in question
4474 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4476 * This adjusts the number of csum_bytes in the inode and then returns the
4477 * correct amount of metadata that must either be reserved or freed. We
4478 * calculate how many checksums we can fit into one leaf and then divide the
4479 * number of bytes that will need to be checksumed by this value to figure out
4480 * how many checksums will be required. If we are adding bytes then the number
4481 * may go up and we will return the number of additional bytes that must be
4482 * reserved. If it is going down we will return the number of bytes that must
4485 * This must be called with BTRFS_I(inode)->lock held.
4487 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
4490 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4492 int num_csums_per_leaf
;
4496 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
4497 BTRFS_I(inode
)->csum_bytes
== 0)
4500 old_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4502 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
4504 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
4505 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
4506 num_csums_per_leaf
= (int)div64_u64(csum_size
,
4507 sizeof(struct btrfs_csum_item
) +
4508 sizeof(struct btrfs_disk_key
));
4509 num_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4510 num_csums
= num_csums
+ num_csums_per_leaf
- 1;
4511 num_csums
= num_csums
/ num_csums_per_leaf
;
4513 old_csums
= old_csums
+ num_csums_per_leaf
- 1;
4514 old_csums
= old_csums
/ num_csums_per_leaf
;
4516 /* No change, no need to reserve more */
4517 if (old_csums
== num_csums
)
4521 return btrfs_calc_trans_metadata_size(root
,
4522 num_csums
- old_csums
);
4524 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
4527 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
4529 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4530 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4533 unsigned nr_extents
= 0;
4534 int extra_reserve
= 0;
4538 /* Need to be holding the i_mutex here if we aren't free space cache */
4539 if (btrfs_is_free_space_inode(inode
))
4542 if (flush
&& btrfs_transaction_in_commit(root
->fs_info
))
4543 schedule_timeout(1);
4545 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
4546 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4548 spin_lock(&BTRFS_I(inode
)->lock
);
4549 BTRFS_I(inode
)->outstanding_extents
++;
4551 if (BTRFS_I(inode
)->outstanding_extents
>
4552 BTRFS_I(inode
)->reserved_extents
)
4553 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
4554 BTRFS_I(inode
)->reserved_extents
;
4557 * Add an item to reserve for updating the inode when we complete the
4560 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4561 &BTRFS_I(inode
)->runtime_flags
)) {
4566 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
4567 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
4568 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
4569 spin_unlock(&BTRFS_I(inode
)->lock
);
4571 if (root
->fs_info
->quota_enabled
) {
4572 ret
= btrfs_qgroup_reserve(root
, num_bytes
+
4573 nr_extents
* root
->leafsize
);
4575 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
4580 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
4585 spin_lock(&BTRFS_I(inode
)->lock
);
4586 dropped
= drop_outstanding_extent(inode
);
4588 * If the inodes csum_bytes is the same as the original
4589 * csum_bytes then we know we haven't raced with any free()ers
4590 * so we can just reduce our inodes csum bytes and carry on.
4591 * Otherwise we have to do the normal free thing to account for
4592 * the case that the free side didn't free up its reserve
4593 * because of this outstanding reservation.
4595 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
)
4596 calc_csum_metadata_size(inode
, num_bytes
, 0);
4598 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
4599 spin_unlock(&BTRFS_I(inode
)->lock
);
4601 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4604 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
4605 trace_btrfs_space_reservation(root
->fs_info
,
4610 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
4614 spin_lock(&BTRFS_I(inode
)->lock
);
4615 if (extra_reserve
) {
4616 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4617 &BTRFS_I(inode
)->runtime_flags
);
4620 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
4621 spin_unlock(&BTRFS_I(inode
)->lock
);
4622 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
4625 trace_btrfs_space_reservation(root
->fs_info
,"delalloc",
4626 btrfs_ino(inode
), to_reserve
, 1);
4627 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4633 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4634 * @inode: the inode to release the reservation for
4635 * @num_bytes: the number of bytes we're releasing
4637 * This will release the metadata reservation for an inode. This can be called
4638 * once we complete IO for a given set of bytes to release their metadata
4641 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
4643 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4647 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4648 spin_lock(&BTRFS_I(inode
)->lock
);
4649 dropped
= drop_outstanding_extent(inode
);
4651 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
4652 spin_unlock(&BTRFS_I(inode
)->lock
);
4654 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4656 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
4657 btrfs_ino(inode
), to_free
, 0);
4658 if (root
->fs_info
->quota_enabled
) {
4659 btrfs_qgroup_free(root
, num_bytes
+
4660 dropped
* root
->leafsize
);
4663 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4668 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4669 * @inode: inode we're writing to
4670 * @num_bytes: the number of bytes we want to allocate
4672 * This will do the following things
4674 * o reserve space in the data space info for num_bytes
4675 * o reserve space in the metadata space info based on number of outstanding
4676 * extents and how much csums will be needed
4677 * o add to the inodes ->delalloc_bytes
4678 * o add it to the fs_info's delalloc inodes list.
4680 * This will return 0 for success and -ENOSPC if there is no space left.
4682 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4686 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4690 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4692 btrfs_free_reserved_data_space(inode
, num_bytes
);
4700 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4701 * @inode: inode we're releasing space for
4702 * @num_bytes: the number of bytes we want to free up
4704 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4705 * called in the case that we don't need the metadata AND data reservations
4706 * anymore. So if there is an error or we insert an inline extent.
4708 * This function will release the metadata space that was not used and will
4709 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4710 * list if there are no delalloc bytes left.
4712 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4714 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4715 btrfs_free_reserved_data_space(inode
, num_bytes
);
4718 static int update_block_group(struct btrfs_trans_handle
*trans
,
4719 struct btrfs_root
*root
,
4720 u64 bytenr
, u64 num_bytes
, int alloc
)
4722 struct btrfs_block_group_cache
*cache
= NULL
;
4723 struct btrfs_fs_info
*info
= root
->fs_info
;
4724 u64 total
= num_bytes
;
4729 /* block accounting for super block */
4730 spin_lock(&info
->delalloc_lock
);
4731 old_val
= btrfs_super_bytes_used(info
->super_copy
);
4733 old_val
+= num_bytes
;
4735 old_val
-= num_bytes
;
4736 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
4737 spin_unlock(&info
->delalloc_lock
);
4740 cache
= btrfs_lookup_block_group(info
, bytenr
);
4743 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4744 BTRFS_BLOCK_GROUP_RAID1
|
4745 BTRFS_BLOCK_GROUP_RAID10
))
4750 * If this block group has free space cache written out, we
4751 * need to make sure to load it if we are removing space. This
4752 * is because we need the unpinning stage to actually add the
4753 * space back to the block group, otherwise we will leak space.
4755 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4756 cache_block_group(cache
, trans
, NULL
, 1);
4758 byte_in_group
= bytenr
- cache
->key
.objectid
;
4759 WARN_ON(byte_in_group
> cache
->key
.offset
);
4761 spin_lock(&cache
->space_info
->lock
);
4762 spin_lock(&cache
->lock
);
4764 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
4765 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4766 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4769 old_val
= btrfs_block_group_used(&cache
->item
);
4770 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4772 old_val
+= num_bytes
;
4773 btrfs_set_block_group_used(&cache
->item
, old_val
);
4774 cache
->reserved
-= num_bytes
;
4775 cache
->space_info
->bytes_reserved
-= num_bytes
;
4776 cache
->space_info
->bytes_used
+= num_bytes
;
4777 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4778 spin_unlock(&cache
->lock
);
4779 spin_unlock(&cache
->space_info
->lock
);
4781 old_val
-= num_bytes
;
4782 btrfs_set_block_group_used(&cache
->item
, old_val
);
4783 cache
->pinned
+= num_bytes
;
4784 cache
->space_info
->bytes_pinned
+= num_bytes
;
4785 cache
->space_info
->bytes_used
-= num_bytes
;
4786 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4787 spin_unlock(&cache
->lock
);
4788 spin_unlock(&cache
->space_info
->lock
);
4790 set_extent_dirty(info
->pinned_extents
,
4791 bytenr
, bytenr
+ num_bytes
- 1,
4792 GFP_NOFS
| __GFP_NOFAIL
);
4794 btrfs_put_block_group(cache
);
4796 bytenr
+= num_bytes
;
4801 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4803 struct btrfs_block_group_cache
*cache
;
4806 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4810 bytenr
= cache
->key
.objectid
;
4811 btrfs_put_block_group(cache
);
4816 static int pin_down_extent(struct btrfs_root
*root
,
4817 struct btrfs_block_group_cache
*cache
,
4818 u64 bytenr
, u64 num_bytes
, int reserved
)
4820 spin_lock(&cache
->space_info
->lock
);
4821 spin_lock(&cache
->lock
);
4822 cache
->pinned
+= num_bytes
;
4823 cache
->space_info
->bytes_pinned
+= num_bytes
;
4825 cache
->reserved
-= num_bytes
;
4826 cache
->space_info
->bytes_reserved
-= num_bytes
;
4828 spin_unlock(&cache
->lock
);
4829 spin_unlock(&cache
->space_info
->lock
);
4831 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4832 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4837 * this function must be called within transaction
4839 int btrfs_pin_extent(struct btrfs_root
*root
,
4840 u64 bytenr
, u64 num_bytes
, int reserved
)
4842 struct btrfs_block_group_cache
*cache
;
4844 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4845 BUG_ON(!cache
); /* Logic error */
4847 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4849 btrfs_put_block_group(cache
);
4854 * this function must be called within transaction
4856 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle
*trans
,
4857 struct btrfs_root
*root
,
4858 u64 bytenr
, u64 num_bytes
)
4860 struct btrfs_block_group_cache
*cache
;
4862 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4863 BUG_ON(!cache
); /* Logic error */
4866 * pull in the free space cache (if any) so that our pin
4867 * removes the free space from the cache. We have load_only set
4868 * to one because the slow code to read in the free extents does check
4869 * the pinned extents.
4871 cache_block_group(cache
, trans
, root
, 1);
4873 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
4875 /* remove us from the free space cache (if we're there at all) */
4876 btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
4877 btrfs_put_block_group(cache
);
4882 * btrfs_update_reserved_bytes - update the block_group and space info counters
4883 * @cache: The cache we are manipulating
4884 * @num_bytes: The number of bytes in question
4885 * @reserve: One of the reservation enums
4887 * This is called by the allocator when it reserves space, or by somebody who is
4888 * freeing space that was never actually used on disk. For example if you
4889 * reserve some space for a new leaf in transaction A and before transaction A
4890 * commits you free that leaf, you call this with reserve set to 0 in order to
4891 * clear the reservation.
4893 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4894 * ENOSPC accounting. For data we handle the reservation through clearing the
4895 * delalloc bits in the io_tree. We have to do this since we could end up
4896 * allocating less disk space for the amount of data we have reserved in the
4897 * case of compression.
4899 * If this is a reservation and the block group has become read only we cannot
4900 * make the reservation and return -EAGAIN, otherwise this function always
4903 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4904 u64 num_bytes
, int reserve
)
4906 struct btrfs_space_info
*space_info
= cache
->space_info
;
4909 spin_lock(&space_info
->lock
);
4910 spin_lock(&cache
->lock
);
4911 if (reserve
!= RESERVE_FREE
) {
4915 cache
->reserved
+= num_bytes
;
4916 space_info
->bytes_reserved
+= num_bytes
;
4917 if (reserve
== RESERVE_ALLOC
) {
4918 trace_btrfs_space_reservation(cache
->fs_info
,
4919 "space_info", space_info
->flags
,
4921 space_info
->bytes_may_use
-= num_bytes
;
4926 space_info
->bytes_readonly
+= num_bytes
;
4927 cache
->reserved
-= num_bytes
;
4928 space_info
->bytes_reserved
-= num_bytes
;
4929 space_info
->reservation_progress
++;
4931 spin_unlock(&cache
->lock
);
4932 spin_unlock(&space_info
->lock
);
4936 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4937 struct btrfs_root
*root
)
4939 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4940 struct btrfs_caching_control
*next
;
4941 struct btrfs_caching_control
*caching_ctl
;
4942 struct btrfs_block_group_cache
*cache
;
4944 down_write(&fs_info
->extent_commit_sem
);
4946 list_for_each_entry_safe(caching_ctl
, next
,
4947 &fs_info
->caching_block_groups
, list
) {
4948 cache
= caching_ctl
->block_group
;
4949 if (block_group_cache_done(cache
)) {
4950 cache
->last_byte_to_unpin
= (u64
)-1;
4951 list_del_init(&caching_ctl
->list
);
4952 put_caching_control(caching_ctl
);
4954 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4958 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4959 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4961 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4963 up_write(&fs_info
->extent_commit_sem
);
4965 update_global_block_rsv(fs_info
);
4968 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4970 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4971 struct btrfs_block_group_cache
*cache
= NULL
;
4974 while (start
<= end
) {
4976 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4978 btrfs_put_block_group(cache
);
4979 cache
= btrfs_lookup_block_group(fs_info
, start
);
4980 BUG_ON(!cache
); /* Logic error */
4983 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4984 len
= min(len
, end
+ 1 - start
);
4986 if (start
< cache
->last_byte_to_unpin
) {
4987 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4988 btrfs_add_free_space(cache
, start
, len
);
4993 spin_lock(&cache
->space_info
->lock
);
4994 spin_lock(&cache
->lock
);
4995 cache
->pinned
-= len
;
4996 cache
->space_info
->bytes_pinned
-= len
;
4998 cache
->space_info
->bytes_readonly
+= len
;
4999 spin_unlock(&cache
->lock
);
5000 spin_unlock(&cache
->space_info
->lock
);
5004 btrfs_put_block_group(cache
);
5008 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
5009 struct btrfs_root
*root
)
5011 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5012 struct extent_io_tree
*unpin
;
5020 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5021 unpin
= &fs_info
->freed_extents
[1];
5023 unpin
= &fs_info
->freed_extents
[0];
5026 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
5027 EXTENT_DIRTY
, NULL
);
5031 if (btrfs_test_opt(root
, DISCARD
))
5032 ret
= btrfs_discard_extent(root
, start
,
5033 end
+ 1 - start
, NULL
);
5035 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
5036 unpin_extent_range(root
, start
, end
);
5043 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
5044 struct btrfs_root
*root
,
5045 u64 bytenr
, u64 num_bytes
, u64 parent
,
5046 u64 root_objectid
, u64 owner_objectid
,
5047 u64 owner_offset
, int refs_to_drop
,
5048 struct btrfs_delayed_extent_op
*extent_op
)
5050 struct btrfs_key key
;
5051 struct btrfs_path
*path
;
5052 struct btrfs_fs_info
*info
= root
->fs_info
;
5053 struct btrfs_root
*extent_root
= info
->extent_root
;
5054 struct extent_buffer
*leaf
;
5055 struct btrfs_extent_item
*ei
;
5056 struct btrfs_extent_inline_ref
*iref
;
5059 int extent_slot
= 0;
5060 int found_extent
= 0;
5065 path
= btrfs_alloc_path();
5070 path
->leave_spinning
= 1;
5072 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
5073 BUG_ON(!is_data
&& refs_to_drop
!= 1);
5075 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
5076 bytenr
, num_bytes
, parent
,
5077 root_objectid
, owner_objectid
,
5080 extent_slot
= path
->slots
[0];
5081 while (extent_slot
>= 0) {
5082 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5084 if (key
.objectid
!= bytenr
)
5086 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5087 key
.offset
== num_bytes
) {
5091 if (path
->slots
[0] - extent_slot
> 5)
5095 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5096 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
5097 if (found_extent
&& item_size
< sizeof(*ei
))
5100 if (!found_extent
) {
5102 ret
= remove_extent_backref(trans
, extent_root
, path
,
5106 btrfs_abort_transaction(trans
, extent_root
, ret
);
5109 btrfs_release_path(path
);
5110 path
->leave_spinning
= 1;
5112 key
.objectid
= bytenr
;
5113 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5114 key
.offset
= num_bytes
;
5116 ret
= btrfs_search_slot(trans
, extent_root
,
5119 printk(KERN_ERR
"umm, got %d back from search"
5120 ", was looking for %llu\n", ret
,
5121 (unsigned long long)bytenr
);
5123 btrfs_print_leaf(extent_root
,
5127 btrfs_abort_transaction(trans
, extent_root
, ret
);
5130 extent_slot
= path
->slots
[0];
5132 } else if (ret
== -ENOENT
) {
5133 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5135 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
5136 "parent %llu root %llu owner %llu offset %llu\n",
5137 (unsigned long long)bytenr
,
5138 (unsigned long long)parent
,
5139 (unsigned long long)root_objectid
,
5140 (unsigned long long)owner_objectid
,
5141 (unsigned long long)owner_offset
);
5143 btrfs_abort_transaction(trans
, extent_root
, ret
);
5147 leaf
= path
->nodes
[0];
5148 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5149 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5150 if (item_size
< sizeof(*ei
)) {
5151 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
5152 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
5155 btrfs_abort_transaction(trans
, extent_root
, ret
);
5159 btrfs_release_path(path
);
5160 path
->leave_spinning
= 1;
5162 key
.objectid
= bytenr
;
5163 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5164 key
.offset
= num_bytes
;
5166 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
5169 printk(KERN_ERR
"umm, got %d back from search"
5170 ", was looking for %llu\n", ret
,
5171 (unsigned long long)bytenr
);
5172 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5175 btrfs_abort_transaction(trans
, extent_root
, ret
);
5179 extent_slot
= path
->slots
[0];
5180 leaf
= path
->nodes
[0];
5181 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5184 BUG_ON(item_size
< sizeof(*ei
));
5185 ei
= btrfs_item_ptr(leaf
, extent_slot
,
5186 struct btrfs_extent_item
);
5187 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
5188 struct btrfs_tree_block_info
*bi
;
5189 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
5190 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
5191 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
5194 refs
= btrfs_extent_refs(leaf
, ei
);
5195 BUG_ON(refs
< refs_to_drop
);
5196 refs
-= refs_to_drop
;
5200 __run_delayed_extent_op(extent_op
, leaf
, ei
);
5202 * In the case of inline back ref, reference count will
5203 * be updated by remove_extent_backref
5206 BUG_ON(!found_extent
);
5208 btrfs_set_extent_refs(leaf
, ei
, refs
);
5209 btrfs_mark_buffer_dirty(leaf
);
5212 ret
= remove_extent_backref(trans
, extent_root
, path
,
5216 btrfs_abort_transaction(trans
, extent_root
, ret
);
5222 BUG_ON(is_data
&& refs_to_drop
!=
5223 extent_data_ref_count(root
, path
, iref
));
5225 BUG_ON(path
->slots
[0] != extent_slot
);
5227 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
5228 path
->slots
[0] = extent_slot
;
5233 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
5236 btrfs_abort_transaction(trans
, extent_root
, ret
);
5239 btrfs_release_path(path
);
5242 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
5244 btrfs_abort_transaction(trans
, extent_root
, ret
);
5249 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
5251 btrfs_abort_transaction(trans
, extent_root
, ret
);
5256 btrfs_free_path(path
);
5261 * when we free an block, it is possible (and likely) that we free the last
5262 * delayed ref for that extent as well. This searches the delayed ref tree for
5263 * a given extent, and if there are no other delayed refs to be processed, it
5264 * removes it from the tree.
5266 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
5267 struct btrfs_root
*root
, u64 bytenr
)
5269 struct btrfs_delayed_ref_head
*head
;
5270 struct btrfs_delayed_ref_root
*delayed_refs
;
5271 struct btrfs_delayed_ref_node
*ref
;
5272 struct rb_node
*node
;
5275 delayed_refs
= &trans
->transaction
->delayed_refs
;
5276 spin_lock(&delayed_refs
->lock
);
5277 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
5281 node
= rb_prev(&head
->node
.rb_node
);
5285 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
5287 /* there are still entries for this ref, we can't drop it */
5288 if (ref
->bytenr
== bytenr
)
5291 if (head
->extent_op
) {
5292 if (!head
->must_insert_reserved
)
5294 kfree(head
->extent_op
);
5295 head
->extent_op
= NULL
;
5299 * waiting for the lock here would deadlock. If someone else has it
5300 * locked they are already in the process of dropping it anyway
5302 if (!mutex_trylock(&head
->mutex
))
5306 * at this point we have a head with no other entries. Go
5307 * ahead and process it.
5309 head
->node
.in_tree
= 0;
5310 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
5312 delayed_refs
->num_entries
--;
5315 * we don't take a ref on the node because we're removing it from the
5316 * tree, so we just steal the ref the tree was holding.
5318 delayed_refs
->num_heads
--;
5319 if (list_empty(&head
->cluster
))
5320 delayed_refs
->num_heads_ready
--;
5322 list_del_init(&head
->cluster
);
5323 spin_unlock(&delayed_refs
->lock
);
5325 BUG_ON(head
->extent_op
);
5326 if (head
->must_insert_reserved
)
5329 mutex_unlock(&head
->mutex
);
5330 btrfs_put_delayed_ref(&head
->node
);
5333 spin_unlock(&delayed_refs
->lock
);
5337 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
5338 struct btrfs_root
*root
,
5339 struct extent_buffer
*buf
,
5340 u64 parent
, int last_ref
)
5342 struct btrfs_block_group_cache
*cache
= NULL
;
5345 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5346 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
5347 buf
->start
, buf
->len
,
5348 parent
, root
->root_key
.objectid
,
5349 btrfs_header_level(buf
),
5350 BTRFS_DROP_DELAYED_REF
, NULL
, 0);
5351 BUG_ON(ret
); /* -ENOMEM */
5357 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
5359 if (btrfs_header_generation(buf
) == trans
->transid
) {
5360 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5361 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
5366 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
5367 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
5371 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
5373 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
5374 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
);
5378 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5381 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
5382 btrfs_put_block_group(cache
);
5385 /* Can return -ENOMEM */
5386 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
5387 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
5388 u64 owner
, u64 offset
, int for_cow
)
5391 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5394 * tree log blocks never actually go into the extent allocation
5395 * tree, just update pinning info and exit early.
5397 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5398 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
5399 /* unlocks the pinned mutex */
5400 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
5402 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
5403 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
5405 parent
, root_objectid
, (int)owner
,
5406 BTRFS_DROP_DELAYED_REF
, NULL
, for_cow
);
5408 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
5410 parent
, root_objectid
, owner
,
5411 offset
, BTRFS_DROP_DELAYED_REF
,
5417 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
5419 u64 mask
= ((u64
)root
->stripesize
- 1);
5420 u64 ret
= (val
+ mask
) & ~mask
;
5425 * when we wait for progress in the block group caching, its because
5426 * our allocation attempt failed at least once. So, we must sleep
5427 * and let some progress happen before we try again.
5429 * This function will sleep at least once waiting for new free space to
5430 * show up, and then it will check the block group free space numbers
5431 * for our min num_bytes. Another option is to have it go ahead
5432 * and look in the rbtree for a free extent of a given size, but this
5436 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
5439 struct btrfs_caching_control
*caching_ctl
;
5442 caching_ctl
= get_caching_control(cache
);
5446 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
5447 (cache
->free_space_ctl
->free_space
>= num_bytes
));
5449 put_caching_control(caching_ctl
);
5454 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
5456 struct btrfs_caching_control
*caching_ctl
;
5459 caching_ctl
= get_caching_control(cache
);
5463 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
5465 put_caching_control(caching_ctl
);
5469 static int __get_block_group_index(u64 flags
)
5473 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
5475 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
5477 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
5479 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
5487 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
5489 return __get_block_group_index(cache
->flags
);
5492 enum btrfs_loop_type
{
5493 LOOP_CACHING_NOWAIT
= 0,
5494 LOOP_CACHING_WAIT
= 1,
5495 LOOP_ALLOC_CHUNK
= 2,
5496 LOOP_NO_EMPTY_SIZE
= 3,
5500 * walks the btree of allocated extents and find a hole of a given size.
5501 * The key ins is changed to record the hole:
5502 * ins->objectid == block start
5503 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5504 * ins->offset == number of blocks
5505 * Any available blocks before search_start are skipped.
5507 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
5508 struct btrfs_root
*orig_root
,
5509 u64 num_bytes
, u64 empty_size
,
5510 u64 hint_byte
, struct btrfs_key
*ins
,
5514 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
5515 struct btrfs_free_cluster
*last_ptr
= NULL
;
5516 struct btrfs_block_group_cache
*block_group
= NULL
;
5517 struct btrfs_block_group_cache
*used_block_group
;
5518 u64 search_start
= 0;
5519 int empty_cluster
= 2 * 1024 * 1024;
5520 struct btrfs_space_info
*space_info
;
5523 int alloc_type
= (data
& BTRFS_BLOCK_GROUP_DATA
) ?
5524 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
5525 bool found_uncached_bg
= false;
5526 bool failed_cluster_refill
= false;
5527 bool failed_alloc
= false;
5528 bool use_cluster
= true;
5529 bool have_caching_bg
= false;
5531 WARN_ON(num_bytes
< root
->sectorsize
);
5532 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
5536 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, data
);
5538 space_info
= __find_space_info(root
->fs_info
, data
);
5540 printk(KERN_ERR
"No space info for %llu\n", data
);
5545 * If the space info is for both data and metadata it means we have a
5546 * small filesystem and we can't use the clustering stuff.
5548 if (btrfs_mixed_space_info(space_info
))
5549 use_cluster
= false;
5551 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
5552 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
5553 if (!btrfs_test_opt(root
, SSD
))
5554 empty_cluster
= 64 * 1024;
5557 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
5558 btrfs_test_opt(root
, SSD
)) {
5559 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
5563 spin_lock(&last_ptr
->lock
);
5564 if (last_ptr
->block_group
)
5565 hint_byte
= last_ptr
->window_start
;
5566 spin_unlock(&last_ptr
->lock
);
5569 search_start
= max(search_start
, first_logical_byte(root
, 0));
5570 search_start
= max(search_start
, hint_byte
);
5575 if (search_start
== hint_byte
) {
5576 block_group
= btrfs_lookup_block_group(root
->fs_info
,
5578 used_block_group
= block_group
;
5580 * we don't want to use the block group if it doesn't match our
5581 * allocation bits, or if its not cached.
5583 * However if we are re-searching with an ideal block group
5584 * picked out then we don't care that the block group is cached.
5586 if (block_group
&& block_group_bits(block_group
, data
) &&
5587 block_group
->cached
!= BTRFS_CACHE_NO
) {
5588 down_read(&space_info
->groups_sem
);
5589 if (list_empty(&block_group
->list
) ||
5592 * someone is removing this block group,
5593 * we can't jump into the have_block_group
5594 * target because our list pointers are not
5597 btrfs_put_block_group(block_group
);
5598 up_read(&space_info
->groups_sem
);
5600 index
= get_block_group_index(block_group
);
5601 goto have_block_group
;
5603 } else if (block_group
) {
5604 btrfs_put_block_group(block_group
);
5608 have_caching_bg
= false;
5609 down_read(&space_info
->groups_sem
);
5610 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
5615 used_block_group
= block_group
;
5616 btrfs_get_block_group(block_group
);
5617 search_start
= block_group
->key
.objectid
;
5620 * this can happen if we end up cycling through all the
5621 * raid types, but we want to make sure we only allocate
5622 * for the proper type.
5624 if (!block_group_bits(block_group
, data
)) {
5625 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
5626 BTRFS_BLOCK_GROUP_RAID1
|
5627 BTRFS_BLOCK_GROUP_RAID10
;
5630 * if they asked for extra copies and this block group
5631 * doesn't provide them, bail. This does allow us to
5632 * fill raid0 from raid1.
5634 if ((data
& extra
) && !(block_group
->flags
& extra
))
5639 cached
= block_group_cache_done(block_group
);
5640 if (unlikely(!cached
)) {
5641 found_uncached_bg
= true;
5642 ret
= cache_block_group(block_group
, trans
,
5648 if (unlikely(block_group
->ro
))
5652 * Ok we want to try and use the cluster allocator, so
5657 * the refill lock keeps out other
5658 * people trying to start a new cluster
5660 spin_lock(&last_ptr
->refill_lock
);
5661 used_block_group
= last_ptr
->block_group
;
5662 if (used_block_group
!= block_group
&&
5663 (!used_block_group
||
5664 used_block_group
->ro
||
5665 !block_group_bits(used_block_group
, data
))) {
5666 used_block_group
= block_group
;
5667 goto refill_cluster
;
5670 if (used_block_group
!= block_group
)
5671 btrfs_get_block_group(used_block_group
);
5673 offset
= btrfs_alloc_from_cluster(used_block_group
,
5674 last_ptr
, num_bytes
, used_block_group
->key
.objectid
);
5676 /* we have a block, we're done */
5677 spin_unlock(&last_ptr
->refill_lock
);
5678 trace_btrfs_reserve_extent_cluster(root
,
5679 block_group
, search_start
, num_bytes
);
5683 WARN_ON(last_ptr
->block_group
!= used_block_group
);
5684 if (used_block_group
!= block_group
) {
5685 btrfs_put_block_group(used_block_group
);
5686 used_block_group
= block_group
;
5689 BUG_ON(used_block_group
!= block_group
);
5690 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5691 * set up a new clusters, so lets just skip it
5692 * and let the allocator find whatever block
5693 * it can find. If we reach this point, we
5694 * will have tried the cluster allocator
5695 * plenty of times and not have found
5696 * anything, so we are likely way too
5697 * fragmented for the clustering stuff to find
5700 * However, if the cluster is taken from the
5701 * current block group, release the cluster
5702 * first, so that we stand a better chance of
5703 * succeeding in the unclustered
5705 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
5706 last_ptr
->block_group
!= block_group
) {
5707 spin_unlock(&last_ptr
->refill_lock
);
5708 goto unclustered_alloc
;
5712 * this cluster didn't work out, free it and
5715 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5717 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
5718 spin_unlock(&last_ptr
->refill_lock
);
5719 goto unclustered_alloc
;
5722 /* allocate a cluster in this block group */
5723 ret
= btrfs_find_space_cluster(trans
, root
,
5724 block_group
, last_ptr
,
5725 search_start
, num_bytes
,
5726 empty_cluster
+ empty_size
);
5729 * now pull our allocation out of this
5732 offset
= btrfs_alloc_from_cluster(block_group
,
5733 last_ptr
, num_bytes
,
5736 /* we found one, proceed */
5737 spin_unlock(&last_ptr
->refill_lock
);
5738 trace_btrfs_reserve_extent_cluster(root
,
5739 block_group
, search_start
,
5743 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5744 && !failed_cluster_refill
) {
5745 spin_unlock(&last_ptr
->refill_lock
);
5747 failed_cluster_refill
= true;
5748 wait_block_group_cache_progress(block_group
,
5749 num_bytes
+ empty_cluster
+ empty_size
);
5750 goto have_block_group
;
5754 * at this point we either didn't find a cluster
5755 * or we weren't able to allocate a block from our
5756 * cluster. Free the cluster we've been trying
5757 * to use, and go to the next block group
5759 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5760 spin_unlock(&last_ptr
->refill_lock
);
5765 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
5767 block_group
->free_space_ctl
->free_space
<
5768 num_bytes
+ empty_cluster
+ empty_size
) {
5769 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5772 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5774 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5775 num_bytes
, empty_size
);
5777 * If we didn't find a chunk, and we haven't failed on this
5778 * block group before, and this block group is in the middle of
5779 * caching and we are ok with waiting, then go ahead and wait
5780 * for progress to be made, and set failed_alloc to true.
5782 * If failed_alloc is true then we've already waited on this
5783 * block group once and should move on to the next block group.
5785 if (!offset
&& !failed_alloc
&& !cached
&&
5786 loop
> LOOP_CACHING_NOWAIT
) {
5787 wait_block_group_cache_progress(block_group
,
5788 num_bytes
+ empty_size
);
5789 failed_alloc
= true;
5790 goto have_block_group
;
5791 } else if (!offset
) {
5793 have_caching_bg
= true;
5797 search_start
= stripe_align(root
, offset
);
5799 /* move on to the next group */
5800 if (search_start
+ num_bytes
>
5801 used_block_group
->key
.objectid
+ used_block_group
->key
.offset
) {
5802 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5806 if (offset
< search_start
)
5807 btrfs_add_free_space(used_block_group
, offset
,
5808 search_start
- offset
);
5809 BUG_ON(offset
> search_start
);
5811 ret
= btrfs_update_reserved_bytes(used_block_group
, num_bytes
,
5813 if (ret
== -EAGAIN
) {
5814 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5818 /* we are all good, lets return */
5819 ins
->objectid
= search_start
;
5820 ins
->offset
= num_bytes
;
5822 trace_btrfs_reserve_extent(orig_root
, block_group
,
5823 search_start
, num_bytes
);
5824 if (used_block_group
!= block_group
)
5825 btrfs_put_block_group(used_block_group
);
5826 btrfs_put_block_group(block_group
);
5829 failed_cluster_refill
= false;
5830 failed_alloc
= false;
5831 BUG_ON(index
!= get_block_group_index(block_group
));
5832 if (used_block_group
!= block_group
)
5833 btrfs_put_block_group(used_block_group
);
5834 btrfs_put_block_group(block_group
);
5836 up_read(&space_info
->groups_sem
);
5838 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
5841 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5845 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5846 * caching kthreads as we move along
5847 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5848 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5849 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5852 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5855 if (loop
== LOOP_ALLOC_CHUNK
) {
5856 ret
= do_chunk_alloc(trans
, root
, data
,
5859 * Do not bail out on ENOSPC since we
5860 * can do more things.
5862 if (ret
< 0 && ret
!= -ENOSPC
) {
5863 btrfs_abort_transaction(trans
,
5869 if (loop
== LOOP_NO_EMPTY_SIZE
) {
5875 } else if (!ins
->objectid
) {
5877 } else if (ins
->objectid
) {
5885 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5886 int dump_block_groups
)
5888 struct btrfs_block_group_cache
*cache
;
5891 spin_lock(&info
->lock
);
5892 printk(KERN_INFO
"space_info %llu has %llu free, is %sfull\n",
5893 (unsigned long long)info
->flags
,
5894 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5895 info
->bytes_pinned
- info
->bytes_reserved
-
5896 info
->bytes_readonly
),
5897 (info
->full
) ? "" : "not ");
5898 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5899 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5900 (unsigned long long)info
->total_bytes
,
5901 (unsigned long long)info
->bytes_used
,
5902 (unsigned long long)info
->bytes_pinned
,
5903 (unsigned long long)info
->bytes_reserved
,
5904 (unsigned long long)info
->bytes_may_use
,
5905 (unsigned long long)info
->bytes_readonly
);
5906 spin_unlock(&info
->lock
);
5908 if (!dump_block_groups
)
5911 down_read(&info
->groups_sem
);
5913 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5914 spin_lock(&cache
->lock
);
5915 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5916 (unsigned long long)cache
->key
.objectid
,
5917 (unsigned long long)cache
->key
.offset
,
5918 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5919 (unsigned long long)cache
->pinned
,
5920 (unsigned long long)cache
->reserved
,
5921 cache
->ro
? "[readonly]" : "");
5922 btrfs_dump_free_space(cache
, bytes
);
5923 spin_unlock(&cache
->lock
);
5925 if (++index
< BTRFS_NR_RAID_TYPES
)
5927 up_read(&info
->groups_sem
);
5930 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5931 struct btrfs_root
*root
,
5932 u64 num_bytes
, u64 min_alloc_size
,
5933 u64 empty_size
, u64 hint_byte
,
5934 struct btrfs_key
*ins
, u64 data
)
5936 bool final_tried
= false;
5939 data
= btrfs_get_alloc_profile(root
, data
);
5941 WARN_ON(num_bytes
< root
->sectorsize
);
5942 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5943 hint_byte
, ins
, data
);
5945 if (ret
== -ENOSPC
) {
5947 num_bytes
= num_bytes
>> 1;
5948 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5949 num_bytes
= max(num_bytes
, min_alloc_size
);
5950 if (num_bytes
== min_alloc_size
)
5953 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
5954 struct btrfs_space_info
*sinfo
;
5956 sinfo
= __find_space_info(root
->fs_info
, data
);
5957 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5958 "wanted %llu\n", (unsigned long long)data
,
5959 (unsigned long long)num_bytes
);
5961 dump_space_info(sinfo
, num_bytes
, 1);
5965 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
5970 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
5971 u64 start
, u64 len
, int pin
)
5973 struct btrfs_block_group_cache
*cache
;
5976 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5978 printk(KERN_ERR
"Unable to find block group for %llu\n",
5979 (unsigned long long)start
);
5983 if (btrfs_test_opt(root
, DISCARD
))
5984 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
5987 pin_down_extent(root
, cache
, start
, len
, 1);
5989 btrfs_add_free_space(cache
, start
, len
);
5990 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
);
5992 btrfs_put_block_group(cache
);
5994 trace_btrfs_reserved_extent_free(root
, start
, len
);
5999 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
6002 return __btrfs_free_reserved_extent(root
, start
, len
, 0);
6005 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
6008 return __btrfs_free_reserved_extent(root
, start
, len
, 1);
6011 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
6012 struct btrfs_root
*root
,
6013 u64 parent
, u64 root_objectid
,
6014 u64 flags
, u64 owner
, u64 offset
,
6015 struct btrfs_key
*ins
, int ref_mod
)
6018 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6019 struct btrfs_extent_item
*extent_item
;
6020 struct btrfs_extent_inline_ref
*iref
;
6021 struct btrfs_path
*path
;
6022 struct extent_buffer
*leaf
;
6027 type
= BTRFS_SHARED_DATA_REF_KEY
;
6029 type
= BTRFS_EXTENT_DATA_REF_KEY
;
6031 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
6033 path
= btrfs_alloc_path();
6037 path
->leave_spinning
= 1;
6038 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
6041 btrfs_free_path(path
);
6045 leaf
= path
->nodes
[0];
6046 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6047 struct btrfs_extent_item
);
6048 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
6049 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
6050 btrfs_set_extent_flags(leaf
, extent_item
,
6051 flags
| BTRFS_EXTENT_FLAG_DATA
);
6053 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
6054 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
6056 struct btrfs_shared_data_ref
*ref
;
6057 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
6058 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
6059 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
6061 struct btrfs_extent_data_ref
*ref
;
6062 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
6063 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
6064 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
6065 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
6066 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
6069 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6070 btrfs_free_path(path
);
6072 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
6073 if (ret
) { /* -ENOENT, logic error */
6074 printk(KERN_ERR
"btrfs update block group failed for %llu "
6075 "%llu\n", (unsigned long long)ins
->objectid
,
6076 (unsigned long long)ins
->offset
);
6082 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
6083 struct btrfs_root
*root
,
6084 u64 parent
, u64 root_objectid
,
6085 u64 flags
, struct btrfs_disk_key
*key
,
6086 int level
, struct btrfs_key
*ins
)
6089 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6090 struct btrfs_extent_item
*extent_item
;
6091 struct btrfs_tree_block_info
*block_info
;
6092 struct btrfs_extent_inline_ref
*iref
;
6093 struct btrfs_path
*path
;
6094 struct extent_buffer
*leaf
;
6095 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
6097 path
= btrfs_alloc_path();
6101 path
->leave_spinning
= 1;
6102 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
6105 btrfs_free_path(path
);
6109 leaf
= path
->nodes
[0];
6110 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6111 struct btrfs_extent_item
);
6112 btrfs_set_extent_refs(leaf
, extent_item
, 1);
6113 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
6114 btrfs_set_extent_flags(leaf
, extent_item
,
6115 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
6116 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
6118 btrfs_set_tree_block_key(leaf
, block_info
, key
);
6119 btrfs_set_tree_block_level(leaf
, block_info
, level
);
6121 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
6123 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
6124 btrfs_set_extent_inline_ref_type(leaf
, iref
,
6125 BTRFS_SHARED_BLOCK_REF_KEY
);
6126 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
6128 btrfs_set_extent_inline_ref_type(leaf
, iref
,
6129 BTRFS_TREE_BLOCK_REF_KEY
);
6130 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
6133 btrfs_mark_buffer_dirty(leaf
);
6134 btrfs_free_path(path
);
6136 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
6137 if (ret
) { /* -ENOENT, logic error */
6138 printk(KERN_ERR
"btrfs update block group failed for %llu "
6139 "%llu\n", (unsigned long long)ins
->objectid
,
6140 (unsigned long long)ins
->offset
);
6146 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
6147 struct btrfs_root
*root
,
6148 u64 root_objectid
, u64 owner
,
6149 u64 offset
, struct btrfs_key
*ins
)
6153 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
6155 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
6157 root_objectid
, owner
, offset
,
6158 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
6163 * this is used by the tree logging recovery code. It records that
6164 * an extent has been allocated and makes sure to clear the free
6165 * space cache bits as well
6167 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
6168 struct btrfs_root
*root
,
6169 u64 root_objectid
, u64 owner
, u64 offset
,
6170 struct btrfs_key
*ins
)
6173 struct btrfs_block_group_cache
*block_group
;
6174 struct btrfs_caching_control
*caching_ctl
;
6175 u64 start
= ins
->objectid
;
6176 u64 num_bytes
= ins
->offset
;
6178 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
6179 cache_block_group(block_group
, trans
, NULL
, 0);
6180 caching_ctl
= get_caching_control(block_group
);
6183 BUG_ON(!block_group_cache_done(block_group
));
6184 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6185 BUG_ON(ret
); /* -ENOMEM */
6187 mutex_lock(&caching_ctl
->mutex
);
6189 if (start
>= caching_ctl
->progress
) {
6190 ret
= add_excluded_extent(root
, start
, num_bytes
);
6191 BUG_ON(ret
); /* -ENOMEM */
6192 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6193 ret
= btrfs_remove_free_space(block_group
,
6195 BUG_ON(ret
); /* -ENOMEM */
6197 num_bytes
= caching_ctl
->progress
- start
;
6198 ret
= btrfs_remove_free_space(block_group
,
6200 BUG_ON(ret
); /* -ENOMEM */
6202 start
= caching_ctl
->progress
;
6203 num_bytes
= ins
->objectid
+ ins
->offset
-
6204 caching_ctl
->progress
;
6205 ret
= add_excluded_extent(root
, start
, num_bytes
);
6206 BUG_ON(ret
); /* -ENOMEM */
6209 mutex_unlock(&caching_ctl
->mutex
);
6210 put_caching_control(caching_ctl
);
6213 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
6214 RESERVE_ALLOC_NO_ACCOUNT
);
6215 BUG_ON(ret
); /* logic error */
6216 btrfs_put_block_group(block_group
);
6217 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
6218 0, owner
, offset
, ins
, 1);
6222 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
6223 struct btrfs_root
*root
,
6224 u64 bytenr
, u32 blocksize
,
6227 struct extent_buffer
*buf
;
6229 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6231 return ERR_PTR(-ENOMEM
);
6232 btrfs_set_header_generation(buf
, trans
->transid
);
6233 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
6234 btrfs_tree_lock(buf
);
6235 clean_tree_block(trans
, root
, buf
);
6236 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
6238 btrfs_set_lock_blocking(buf
);
6239 btrfs_set_buffer_uptodate(buf
);
6241 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6243 * we allow two log transactions at a time, use different
6244 * EXENT bit to differentiate dirty pages.
6246 if (root
->log_transid
% 2 == 0)
6247 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
6248 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6250 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
6251 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6253 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
6254 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6256 trans
->blocks_used
++;
6257 /* this returns a buffer locked for blocking */
6261 static struct btrfs_block_rsv
*
6262 use_block_rsv(struct btrfs_trans_handle
*trans
,
6263 struct btrfs_root
*root
, u32 blocksize
)
6265 struct btrfs_block_rsv
*block_rsv
;
6266 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
6269 block_rsv
= get_block_rsv(trans
, root
);
6271 if (block_rsv
->size
== 0) {
6272 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
, 0);
6274 * If we couldn't reserve metadata bytes try and use some from
6275 * the global reserve.
6277 if (ret
&& block_rsv
!= global_rsv
) {
6278 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
6281 return ERR_PTR(ret
);
6283 return ERR_PTR(ret
);
6288 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
6291 if (ret
&& !block_rsv
->failfast
) {
6292 static DEFINE_RATELIMIT_STATE(_rs
,
6293 DEFAULT_RATELIMIT_INTERVAL
,
6294 /*DEFAULT_RATELIMIT_BURST*/ 2);
6295 if (__ratelimit(&_rs
)) {
6296 printk(KERN_DEBUG
"btrfs: block rsv returned %d\n", ret
);
6299 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
, 0);
6302 } else if (ret
&& block_rsv
!= global_rsv
) {
6303 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
6309 return ERR_PTR(-ENOSPC
);
6312 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
6313 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
6315 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
6316 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
6320 * finds a free extent and does all the dirty work required for allocation
6321 * returns the key for the extent through ins, and a tree buffer for
6322 * the first block of the extent through buf.
6324 * returns the tree buffer or NULL.
6326 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
6327 struct btrfs_root
*root
, u32 blocksize
,
6328 u64 parent
, u64 root_objectid
,
6329 struct btrfs_disk_key
*key
, int level
,
6330 u64 hint
, u64 empty_size
)
6332 struct btrfs_key ins
;
6333 struct btrfs_block_rsv
*block_rsv
;
6334 struct extent_buffer
*buf
;
6339 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
6340 if (IS_ERR(block_rsv
))
6341 return ERR_CAST(block_rsv
);
6343 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
6344 empty_size
, hint
, &ins
, 0);
6346 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
6347 return ERR_PTR(ret
);
6350 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
6352 BUG_ON(IS_ERR(buf
)); /* -ENOMEM */
6354 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
6356 parent
= ins
.objectid
;
6357 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6361 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6362 struct btrfs_delayed_extent_op
*extent_op
;
6363 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
6364 BUG_ON(!extent_op
); /* -ENOMEM */
6366 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
6368 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
6369 extent_op
->flags_to_set
= flags
;
6370 extent_op
->update_key
= 1;
6371 extent_op
->update_flags
= 1;
6372 extent_op
->is_data
= 0;
6374 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6376 ins
.offset
, parent
, root_objectid
,
6377 level
, BTRFS_ADD_DELAYED_EXTENT
,
6379 BUG_ON(ret
); /* -ENOMEM */
6384 struct walk_control
{
6385 u64 refs
[BTRFS_MAX_LEVEL
];
6386 u64 flags
[BTRFS_MAX_LEVEL
];
6387 struct btrfs_key update_progress
;
6398 #define DROP_REFERENCE 1
6399 #define UPDATE_BACKREF 2
6401 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
6402 struct btrfs_root
*root
,
6403 struct walk_control
*wc
,
6404 struct btrfs_path
*path
)
6412 struct btrfs_key key
;
6413 struct extent_buffer
*eb
;
6418 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
6419 wc
->reada_count
= wc
->reada_count
* 2 / 3;
6420 wc
->reada_count
= max(wc
->reada_count
, 2);
6422 wc
->reada_count
= wc
->reada_count
* 3 / 2;
6423 wc
->reada_count
= min_t(int, wc
->reada_count
,
6424 BTRFS_NODEPTRS_PER_BLOCK(root
));
6427 eb
= path
->nodes
[wc
->level
];
6428 nritems
= btrfs_header_nritems(eb
);
6429 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
6431 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
6432 if (nread
>= wc
->reada_count
)
6436 bytenr
= btrfs_node_blockptr(eb
, slot
);
6437 generation
= btrfs_node_ptr_generation(eb
, slot
);
6439 if (slot
== path
->slots
[wc
->level
])
6442 if (wc
->stage
== UPDATE_BACKREF
&&
6443 generation
<= root
->root_key
.offset
)
6446 /* We don't lock the tree block, it's OK to be racy here */
6447 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6449 /* We don't care about errors in readahead. */
6454 if (wc
->stage
== DROP_REFERENCE
) {
6458 if (wc
->level
== 1 &&
6459 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6461 if (!wc
->update_ref
||
6462 generation
<= root
->root_key
.offset
)
6464 btrfs_node_key_to_cpu(eb
, &key
, slot
);
6465 ret
= btrfs_comp_cpu_keys(&key
,
6466 &wc
->update_progress
);
6470 if (wc
->level
== 1 &&
6471 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6475 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
6481 wc
->reada_slot
= slot
;
6485 * hepler to process tree block while walking down the tree.
6487 * when wc->stage == UPDATE_BACKREF, this function updates
6488 * back refs for pointers in the block.
6490 * NOTE: return value 1 means we should stop walking down.
6492 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
6493 struct btrfs_root
*root
,
6494 struct btrfs_path
*path
,
6495 struct walk_control
*wc
, int lookup_info
)
6497 int level
= wc
->level
;
6498 struct extent_buffer
*eb
= path
->nodes
[level
];
6499 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6502 if (wc
->stage
== UPDATE_BACKREF
&&
6503 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
6507 * when reference count of tree block is 1, it won't increase
6508 * again. once full backref flag is set, we never clear it.
6511 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
6512 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
6513 BUG_ON(!path
->locks
[level
]);
6514 ret
= btrfs_lookup_extent_info(trans
, root
,
6518 BUG_ON(ret
== -ENOMEM
);
6521 BUG_ON(wc
->refs
[level
] == 0);
6524 if (wc
->stage
== DROP_REFERENCE
) {
6525 if (wc
->refs
[level
] > 1)
6528 if (path
->locks
[level
] && !wc
->keep_locks
) {
6529 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6530 path
->locks
[level
] = 0;
6535 /* wc->stage == UPDATE_BACKREF */
6536 if (!(wc
->flags
[level
] & flag
)) {
6537 BUG_ON(!path
->locks
[level
]);
6538 ret
= btrfs_inc_ref(trans
, root
, eb
, 1, wc
->for_reloc
);
6539 BUG_ON(ret
); /* -ENOMEM */
6540 ret
= btrfs_dec_ref(trans
, root
, eb
, 0, wc
->for_reloc
);
6541 BUG_ON(ret
); /* -ENOMEM */
6542 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
6544 BUG_ON(ret
); /* -ENOMEM */
6545 wc
->flags
[level
] |= flag
;
6549 * the block is shared by multiple trees, so it's not good to
6550 * keep the tree lock
6552 if (path
->locks
[level
] && level
> 0) {
6553 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6554 path
->locks
[level
] = 0;
6560 * hepler to process tree block pointer.
6562 * when wc->stage == DROP_REFERENCE, this function checks
6563 * reference count of the block pointed to. if the block
6564 * is shared and we need update back refs for the subtree
6565 * rooted at the block, this function changes wc->stage to
6566 * UPDATE_BACKREF. if the block is shared and there is no
6567 * need to update back, this function drops the reference
6570 * NOTE: return value 1 means we should stop walking down.
6572 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
6573 struct btrfs_root
*root
,
6574 struct btrfs_path
*path
,
6575 struct walk_control
*wc
, int *lookup_info
)
6581 struct btrfs_key key
;
6582 struct extent_buffer
*next
;
6583 int level
= wc
->level
;
6587 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
6588 path
->slots
[level
]);
6590 * if the lower level block was created before the snapshot
6591 * was created, we know there is no need to update back refs
6594 if (wc
->stage
== UPDATE_BACKREF
&&
6595 generation
<= root
->root_key
.offset
) {
6600 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
6601 blocksize
= btrfs_level_size(root
, level
- 1);
6603 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
6605 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6610 btrfs_tree_lock(next
);
6611 btrfs_set_lock_blocking(next
);
6613 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6614 &wc
->refs
[level
- 1],
6615 &wc
->flags
[level
- 1]);
6617 btrfs_tree_unlock(next
);
6621 BUG_ON(wc
->refs
[level
- 1] == 0);
6624 if (wc
->stage
== DROP_REFERENCE
) {
6625 if (wc
->refs
[level
- 1] > 1) {
6627 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6630 if (!wc
->update_ref
||
6631 generation
<= root
->root_key
.offset
)
6634 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6635 path
->slots
[level
]);
6636 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6640 wc
->stage
= UPDATE_BACKREF
;
6641 wc
->shared_level
= level
- 1;
6645 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6649 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
6650 btrfs_tree_unlock(next
);
6651 free_extent_buffer(next
);
6657 if (reada
&& level
== 1)
6658 reada_walk_down(trans
, root
, wc
, path
);
6659 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6662 btrfs_tree_lock(next
);
6663 btrfs_set_lock_blocking(next
);
6667 BUG_ON(level
!= btrfs_header_level(next
));
6668 path
->nodes
[level
] = next
;
6669 path
->slots
[level
] = 0;
6670 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6676 wc
->refs
[level
- 1] = 0;
6677 wc
->flags
[level
- 1] = 0;
6678 if (wc
->stage
== DROP_REFERENCE
) {
6679 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6680 parent
= path
->nodes
[level
]->start
;
6682 BUG_ON(root
->root_key
.objectid
!=
6683 btrfs_header_owner(path
->nodes
[level
]));
6687 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6688 root
->root_key
.objectid
, level
- 1, 0, 0);
6689 BUG_ON(ret
); /* -ENOMEM */
6691 btrfs_tree_unlock(next
);
6692 free_extent_buffer(next
);
6698 * hepler to process tree block while walking up the tree.
6700 * when wc->stage == DROP_REFERENCE, this function drops
6701 * reference count on the block.
6703 * when wc->stage == UPDATE_BACKREF, this function changes
6704 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6705 * to UPDATE_BACKREF previously while processing the block.
6707 * NOTE: return value 1 means we should stop walking up.
6709 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6710 struct btrfs_root
*root
,
6711 struct btrfs_path
*path
,
6712 struct walk_control
*wc
)
6715 int level
= wc
->level
;
6716 struct extent_buffer
*eb
= path
->nodes
[level
];
6719 if (wc
->stage
== UPDATE_BACKREF
) {
6720 BUG_ON(wc
->shared_level
< level
);
6721 if (level
< wc
->shared_level
)
6724 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6728 wc
->stage
= DROP_REFERENCE
;
6729 wc
->shared_level
= -1;
6730 path
->slots
[level
] = 0;
6733 * check reference count again if the block isn't locked.
6734 * we should start walking down the tree again if reference
6737 if (!path
->locks
[level
]) {
6739 btrfs_tree_lock(eb
);
6740 btrfs_set_lock_blocking(eb
);
6741 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6743 ret
= btrfs_lookup_extent_info(trans
, root
,
6748 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6751 BUG_ON(wc
->refs
[level
] == 0);
6752 if (wc
->refs
[level
] == 1) {
6753 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6759 /* wc->stage == DROP_REFERENCE */
6760 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6762 if (wc
->refs
[level
] == 1) {
6764 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6765 ret
= btrfs_dec_ref(trans
, root
, eb
, 1,
6768 ret
= btrfs_dec_ref(trans
, root
, eb
, 0,
6770 BUG_ON(ret
); /* -ENOMEM */
6772 /* make block locked assertion in clean_tree_block happy */
6773 if (!path
->locks
[level
] &&
6774 btrfs_header_generation(eb
) == trans
->transid
) {
6775 btrfs_tree_lock(eb
);
6776 btrfs_set_lock_blocking(eb
);
6777 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6779 clean_tree_block(trans
, root
, eb
);
6782 if (eb
== root
->node
) {
6783 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6786 BUG_ON(root
->root_key
.objectid
!=
6787 btrfs_header_owner(eb
));
6789 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6790 parent
= path
->nodes
[level
+ 1]->start
;
6792 BUG_ON(root
->root_key
.objectid
!=
6793 btrfs_header_owner(path
->nodes
[level
+ 1]));
6796 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
6798 wc
->refs
[level
] = 0;
6799 wc
->flags
[level
] = 0;
6803 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6804 struct btrfs_root
*root
,
6805 struct btrfs_path
*path
,
6806 struct walk_control
*wc
)
6808 int level
= wc
->level
;
6809 int lookup_info
= 1;
6812 while (level
>= 0) {
6813 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6820 if (path
->slots
[level
] >=
6821 btrfs_header_nritems(path
->nodes
[level
]))
6824 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6826 path
->slots
[level
]++;
6835 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6836 struct btrfs_root
*root
,
6837 struct btrfs_path
*path
,
6838 struct walk_control
*wc
, int max_level
)
6840 int level
= wc
->level
;
6843 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6844 while (level
< max_level
&& path
->nodes
[level
]) {
6846 if (path
->slots
[level
] + 1 <
6847 btrfs_header_nritems(path
->nodes
[level
])) {
6848 path
->slots
[level
]++;
6851 ret
= walk_up_proc(trans
, root
, path
, wc
);
6855 if (path
->locks
[level
]) {
6856 btrfs_tree_unlock_rw(path
->nodes
[level
],
6857 path
->locks
[level
]);
6858 path
->locks
[level
] = 0;
6860 free_extent_buffer(path
->nodes
[level
]);
6861 path
->nodes
[level
] = NULL
;
6869 * drop a subvolume tree.
6871 * this function traverses the tree freeing any blocks that only
6872 * referenced by the tree.
6874 * when a shared tree block is found. this function decreases its
6875 * reference count by one. if update_ref is true, this function
6876 * also make sure backrefs for the shared block and all lower level
6877 * blocks are properly updated.
6879 int btrfs_drop_snapshot(struct btrfs_root
*root
,
6880 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
6883 struct btrfs_path
*path
;
6884 struct btrfs_trans_handle
*trans
;
6885 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6886 struct btrfs_root_item
*root_item
= &root
->root_item
;
6887 struct walk_control
*wc
;
6888 struct btrfs_key key
;
6893 path
= btrfs_alloc_path();
6899 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6901 btrfs_free_path(path
);
6906 trans
= btrfs_start_transaction(tree_root
, 0);
6907 if (IS_ERR(trans
)) {
6908 err
= PTR_ERR(trans
);
6913 trans
->block_rsv
= block_rsv
;
6915 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6916 level
= btrfs_header_level(root
->node
);
6917 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6918 btrfs_set_lock_blocking(path
->nodes
[level
]);
6919 path
->slots
[level
] = 0;
6920 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6921 memset(&wc
->update_progress
, 0,
6922 sizeof(wc
->update_progress
));
6924 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6925 memcpy(&wc
->update_progress
, &key
,
6926 sizeof(wc
->update_progress
));
6928 level
= root_item
->drop_level
;
6930 path
->lowest_level
= level
;
6931 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6932 path
->lowest_level
= 0;
6940 * unlock our path, this is safe because only this
6941 * function is allowed to delete this snapshot
6943 btrfs_unlock_up_safe(path
, 0);
6945 level
= btrfs_header_level(root
->node
);
6947 btrfs_tree_lock(path
->nodes
[level
]);
6948 btrfs_set_lock_blocking(path
->nodes
[level
]);
6950 ret
= btrfs_lookup_extent_info(trans
, root
,
6951 path
->nodes
[level
]->start
,
6952 path
->nodes
[level
]->len
,
6959 BUG_ON(wc
->refs
[level
] == 0);
6961 if (level
== root_item
->drop_level
)
6964 btrfs_tree_unlock(path
->nodes
[level
]);
6965 WARN_ON(wc
->refs
[level
] != 1);
6971 wc
->shared_level
= -1;
6972 wc
->stage
= DROP_REFERENCE
;
6973 wc
->update_ref
= update_ref
;
6975 wc
->for_reloc
= for_reloc
;
6976 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6979 ret
= walk_down_tree(trans
, root
, path
, wc
);
6985 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6992 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6996 if (wc
->stage
== DROP_REFERENCE
) {
6998 btrfs_node_key(path
->nodes
[level
],
6999 &root_item
->drop_progress
,
7000 path
->slots
[level
]);
7001 root_item
->drop_level
= level
;
7004 BUG_ON(wc
->level
== 0);
7005 if (btrfs_should_end_transaction(trans
, tree_root
)) {
7006 ret
= btrfs_update_root(trans
, tree_root
,
7010 btrfs_abort_transaction(trans
, tree_root
, ret
);
7015 btrfs_end_transaction_throttle(trans
, tree_root
);
7016 trans
= btrfs_start_transaction(tree_root
, 0);
7017 if (IS_ERR(trans
)) {
7018 err
= PTR_ERR(trans
);
7022 trans
->block_rsv
= block_rsv
;
7025 btrfs_release_path(path
);
7029 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
7031 btrfs_abort_transaction(trans
, tree_root
, ret
);
7035 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
7036 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
7039 btrfs_abort_transaction(trans
, tree_root
, ret
);
7042 } else if (ret
> 0) {
7043 /* if we fail to delete the orphan item this time
7044 * around, it'll get picked up the next time.
7046 * The most common failure here is just -ENOENT.
7048 btrfs_del_orphan_item(trans
, tree_root
,
7049 root
->root_key
.objectid
);
7053 if (root
->in_radix
) {
7054 btrfs_free_fs_root(tree_root
->fs_info
, root
);
7056 free_extent_buffer(root
->node
);
7057 free_extent_buffer(root
->commit_root
);
7061 btrfs_end_transaction_throttle(trans
, tree_root
);
7064 btrfs_free_path(path
);
7067 btrfs_std_error(root
->fs_info
, err
);
7072 * drop subtree rooted at tree block 'node'.
7074 * NOTE: this function will unlock and release tree block 'node'
7075 * only used by relocation code
7077 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
7078 struct btrfs_root
*root
,
7079 struct extent_buffer
*node
,
7080 struct extent_buffer
*parent
)
7082 struct btrfs_path
*path
;
7083 struct walk_control
*wc
;
7089 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
7091 path
= btrfs_alloc_path();
7095 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
7097 btrfs_free_path(path
);
7101 btrfs_assert_tree_locked(parent
);
7102 parent_level
= btrfs_header_level(parent
);
7103 extent_buffer_get(parent
);
7104 path
->nodes
[parent_level
] = parent
;
7105 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
7107 btrfs_assert_tree_locked(node
);
7108 level
= btrfs_header_level(node
);
7109 path
->nodes
[level
] = node
;
7110 path
->slots
[level
] = 0;
7111 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7113 wc
->refs
[parent_level
] = 1;
7114 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7116 wc
->shared_level
= -1;
7117 wc
->stage
= DROP_REFERENCE
;
7121 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
7124 wret
= walk_down_tree(trans
, root
, path
, wc
);
7130 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
7138 btrfs_free_path(path
);
7142 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7148 * if restripe for this chunk_type is on pick target profile and
7149 * return, otherwise do the usual balance
7151 stripped
= get_restripe_target(root
->fs_info
, flags
);
7153 return extended_to_chunk(stripped
);
7156 * we add in the count of missing devices because we want
7157 * to make sure that any RAID levels on a degraded FS
7158 * continue to be honored.
7160 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
7161 root
->fs_info
->fs_devices
->missing_devices
;
7163 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7164 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7166 if (num_devices
== 1) {
7167 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7168 stripped
= flags
& ~stripped
;
7170 /* turn raid0 into single device chunks */
7171 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7174 /* turn mirroring into duplication */
7175 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7176 BTRFS_BLOCK_GROUP_RAID10
))
7177 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7179 /* they already had raid on here, just return */
7180 if (flags
& stripped
)
7183 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7184 stripped
= flags
& ~stripped
;
7186 /* switch duplicated blocks with raid1 */
7187 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7188 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
7190 /* this is drive concat, leave it alone */
7196 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
7198 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7200 u64 min_allocable_bytes
;
7205 * We need some metadata space and system metadata space for
7206 * allocating chunks in some corner cases until we force to set
7207 * it to be readonly.
7210 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
7212 min_allocable_bytes
= 1 * 1024 * 1024;
7214 min_allocable_bytes
= 0;
7216 spin_lock(&sinfo
->lock
);
7217 spin_lock(&cache
->lock
);
7224 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7225 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7227 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
7228 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
7229 min_allocable_bytes
<= sinfo
->total_bytes
) {
7230 sinfo
->bytes_readonly
+= num_bytes
;
7235 spin_unlock(&cache
->lock
);
7236 spin_unlock(&sinfo
->lock
);
7240 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
7241 struct btrfs_block_group_cache
*cache
)
7244 struct btrfs_trans_handle
*trans
;
7250 trans
= btrfs_join_transaction(root
);
7252 return PTR_ERR(trans
);
7254 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
7255 if (alloc_flags
!= cache
->flags
) {
7256 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
7262 ret
= set_block_group_ro(cache
, 0);
7265 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
7266 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
7270 ret
= set_block_group_ro(cache
, 0);
7272 btrfs_end_transaction(trans
, root
);
7276 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
7277 struct btrfs_root
*root
, u64 type
)
7279 u64 alloc_flags
= get_alloc_profile(root
, type
);
7280 return do_chunk_alloc(trans
, root
, alloc_flags
,
7285 * helper to account the unused space of all the readonly block group in the
7286 * list. takes mirrors into account.
7288 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
7290 struct btrfs_block_group_cache
*block_group
;
7294 list_for_each_entry(block_group
, groups_list
, list
) {
7295 spin_lock(&block_group
->lock
);
7297 if (!block_group
->ro
) {
7298 spin_unlock(&block_group
->lock
);
7302 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7303 BTRFS_BLOCK_GROUP_RAID10
|
7304 BTRFS_BLOCK_GROUP_DUP
))
7309 free_bytes
+= (block_group
->key
.offset
-
7310 btrfs_block_group_used(&block_group
->item
)) *
7313 spin_unlock(&block_group
->lock
);
7320 * helper to account the unused space of all the readonly block group in the
7321 * space_info. takes mirrors into account.
7323 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
7328 spin_lock(&sinfo
->lock
);
7330 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
7331 if (!list_empty(&sinfo
->block_groups
[i
]))
7332 free_bytes
+= __btrfs_get_ro_block_group_free_space(
7333 &sinfo
->block_groups
[i
]);
7335 spin_unlock(&sinfo
->lock
);
7340 void btrfs_set_block_group_rw(struct btrfs_root
*root
,
7341 struct btrfs_block_group_cache
*cache
)
7343 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7348 spin_lock(&sinfo
->lock
);
7349 spin_lock(&cache
->lock
);
7350 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7351 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7352 sinfo
->bytes_readonly
-= num_bytes
;
7354 spin_unlock(&cache
->lock
);
7355 spin_unlock(&sinfo
->lock
);
7359 * checks to see if its even possible to relocate this block group.
7361 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7362 * ok to go ahead and try.
7364 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
7366 struct btrfs_block_group_cache
*block_group
;
7367 struct btrfs_space_info
*space_info
;
7368 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7369 struct btrfs_device
*device
;
7378 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
7380 /* odd, couldn't find the block group, leave it alone */
7384 min_free
= btrfs_block_group_used(&block_group
->item
);
7386 /* no bytes used, we're good */
7390 space_info
= block_group
->space_info
;
7391 spin_lock(&space_info
->lock
);
7393 full
= space_info
->full
;
7396 * if this is the last block group we have in this space, we can't
7397 * relocate it unless we're able to allocate a new chunk below.
7399 * Otherwise, we need to make sure we have room in the space to handle
7400 * all of the extents from this block group. If we can, we're good
7402 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
7403 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
7404 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
7405 min_free
< space_info
->total_bytes
)) {
7406 spin_unlock(&space_info
->lock
);
7409 spin_unlock(&space_info
->lock
);
7412 * ok we don't have enough space, but maybe we have free space on our
7413 * devices to allocate new chunks for relocation, so loop through our
7414 * alloc devices and guess if we have enough space. if this block
7415 * group is going to be restriped, run checks against the target
7416 * profile instead of the current one.
7428 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
7430 index
= __get_block_group_index(extended_to_chunk(target
));
7433 * this is just a balance, so if we were marked as full
7434 * we know there is no space for a new chunk
7439 index
= get_block_group_index(block_group
);
7446 } else if (index
== 1) {
7448 } else if (index
== 2) {
7451 } else if (index
== 3) {
7452 dev_min
= fs_devices
->rw_devices
;
7453 do_div(min_free
, dev_min
);
7456 mutex_lock(&root
->fs_info
->chunk_mutex
);
7457 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
7461 * check to make sure we can actually find a chunk with enough
7462 * space to fit our block group in.
7464 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
7465 ret
= find_free_dev_extent(device
, min_free
,
7470 if (dev_nr
>= dev_min
)
7476 mutex_unlock(&root
->fs_info
->chunk_mutex
);
7478 btrfs_put_block_group(block_group
);
7482 static int find_first_block_group(struct btrfs_root
*root
,
7483 struct btrfs_path
*path
, struct btrfs_key
*key
)
7486 struct btrfs_key found_key
;
7487 struct extent_buffer
*leaf
;
7490 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7495 slot
= path
->slots
[0];
7496 leaf
= path
->nodes
[0];
7497 if (slot
>= btrfs_header_nritems(leaf
)) {
7498 ret
= btrfs_next_leaf(root
, path
);
7505 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7507 if (found_key
.objectid
>= key
->objectid
&&
7508 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7518 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
7520 struct btrfs_block_group_cache
*block_group
;
7524 struct inode
*inode
;
7526 block_group
= btrfs_lookup_first_block_group(info
, last
);
7527 while (block_group
) {
7528 spin_lock(&block_group
->lock
);
7529 if (block_group
->iref
)
7531 spin_unlock(&block_group
->lock
);
7532 block_group
= next_block_group(info
->tree_root
,
7542 inode
= block_group
->inode
;
7543 block_group
->iref
= 0;
7544 block_group
->inode
= NULL
;
7545 spin_unlock(&block_group
->lock
);
7547 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
7548 btrfs_put_block_group(block_group
);
7552 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7554 struct btrfs_block_group_cache
*block_group
;
7555 struct btrfs_space_info
*space_info
;
7556 struct btrfs_caching_control
*caching_ctl
;
7559 down_write(&info
->extent_commit_sem
);
7560 while (!list_empty(&info
->caching_block_groups
)) {
7561 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
7562 struct btrfs_caching_control
, list
);
7563 list_del(&caching_ctl
->list
);
7564 put_caching_control(caching_ctl
);
7566 up_write(&info
->extent_commit_sem
);
7568 spin_lock(&info
->block_group_cache_lock
);
7569 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7570 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7572 rb_erase(&block_group
->cache_node
,
7573 &info
->block_group_cache_tree
);
7574 spin_unlock(&info
->block_group_cache_lock
);
7576 down_write(&block_group
->space_info
->groups_sem
);
7577 list_del(&block_group
->list
);
7578 up_write(&block_group
->space_info
->groups_sem
);
7580 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7581 wait_block_group_cache_done(block_group
);
7584 * We haven't cached this block group, which means we could
7585 * possibly have excluded extents on this block group.
7587 if (block_group
->cached
== BTRFS_CACHE_NO
)
7588 free_excluded_extents(info
->extent_root
, block_group
);
7590 btrfs_remove_free_space_cache(block_group
);
7591 btrfs_put_block_group(block_group
);
7593 spin_lock(&info
->block_group_cache_lock
);
7595 spin_unlock(&info
->block_group_cache_lock
);
7597 /* now that all the block groups are freed, go through and
7598 * free all the space_info structs. This is only called during
7599 * the final stages of unmount, and so we know nobody is
7600 * using them. We call synchronize_rcu() once before we start,
7601 * just to be on the safe side.
7605 release_global_block_rsv(info
);
7607 while(!list_empty(&info
->space_info
)) {
7608 space_info
= list_entry(info
->space_info
.next
,
7609 struct btrfs_space_info
,
7611 if (space_info
->bytes_pinned
> 0 ||
7612 space_info
->bytes_reserved
> 0 ||
7613 space_info
->bytes_may_use
> 0) {
7615 dump_space_info(space_info
, 0, 0);
7617 list_del(&space_info
->list
);
7623 static void __link_block_group(struct btrfs_space_info
*space_info
,
7624 struct btrfs_block_group_cache
*cache
)
7626 int index
= get_block_group_index(cache
);
7628 down_write(&space_info
->groups_sem
);
7629 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
7630 up_write(&space_info
->groups_sem
);
7633 int btrfs_read_block_groups(struct btrfs_root
*root
)
7635 struct btrfs_path
*path
;
7637 struct btrfs_block_group_cache
*cache
;
7638 struct btrfs_fs_info
*info
= root
->fs_info
;
7639 struct btrfs_space_info
*space_info
;
7640 struct btrfs_key key
;
7641 struct btrfs_key found_key
;
7642 struct extent_buffer
*leaf
;
7646 root
= info
->extent_root
;
7649 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7650 path
= btrfs_alloc_path();
7655 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
7656 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
7657 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
7659 if (btrfs_test_opt(root
, CLEAR_CACHE
))
7663 ret
= find_first_block_group(root
, path
, &key
);
7668 leaf
= path
->nodes
[0];
7669 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7670 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7675 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7677 if (!cache
->free_space_ctl
) {
7683 atomic_set(&cache
->count
, 1);
7684 spin_lock_init(&cache
->lock
);
7685 cache
->fs_info
= info
;
7686 INIT_LIST_HEAD(&cache
->list
);
7687 INIT_LIST_HEAD(&cache
->cluster_list
);
7691 * When we mount with old space cache, we need to
7692 * set BTRFS_DC_CLEAR and set dirty flag.
7694 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7695 * truncate the old free space cache inode and
7697 * b) Setting 'dirty flag' makes sure that we flush
7698 * the new space cache info onto disk.
7700 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
7701 if (btrfs_test_opt(root
, SPACE_CACHE
))
7705 read_extent_buffer(leaf
, &cache
->item
,
7706 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7707 sizeof(cache
->item
));
7708 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7710 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7711 btrfs_release_path(path
);
7712 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7713 cache
->sectorsize
= root
->sectorsize
;
7715 btrfs_init_free_space_ctl(cache
);
7718 * We need to exclude the super stripes now so that the space
7719 * info has super bytes accounted for, otherwise we'll think
7720 * we have more space than we actually do.
7722 exclude_super_stripes(root
, cache
);
7725 * check for two cases, either we are full, and therefore
7726 * don't need to bother with the caching work since we won't
7727 * find any space, or we are empty, and we can just add all
7728 * the space in and be done with it. This saves us _alot_ of
7729 * time, particularly in the full case.
7731 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7732 cache
->last_byte_to_unpin
= (u64
)-1;
7733 cache
->cached
= BTRFS_CACHE_FINISHED
;
7734 free_excluded_extents(root
, cache
);
7735 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7736 cache
->last_byte_to_unpin
= (u64
)-1;
7737 cache
->cached
= BTRFS_CACHE_FINISHED
;
7738 add_new_free_space(cache
, root
->fs_info
,
7740 found_key
.objectid
+
7742 free_excluded_extents(root
, cache
);
7745 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7746 btrfs_block_group_used(&cache
->item
),
7748 BUG_ON(ret
); /* -ENOMEM */
7749 cache
->space_info
= space_info
;
7750 spin_lock(&cache
->space_info
->lock
);
7751 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7752 spin_unlock(&cache
->space_info
->lock
);
7754 __link_block_group(space_info
, cache
);
7756 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7757 BUG_ON(ret
); /* Logic error */
7759 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7760 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7761 set_block_group_ro(cache
, 1);
7764 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
7765 if (!(get_alloc_profile(root
, space_info
->flags
) &
7766 (BTRFS_BLOCK_GROUP_RAID10
|
7767 BTRFS_BLOCK_GROUP_RAID1
|
7768 BTRFS_BLOCK_GROUP_DUP
)))
7771 * avoid allocating from un-mirrored block group if there are
7772 * mirrored block groups.
7774 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
7775 set_block_group_ro(cache
, 1);
7776 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
7777 set_block_group_ro(cache
, 1);
7780 init_global_block_rsv(info
);
7783 btrfs_free_path(path
);
7787 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
7788 struct btrfs_root
*root
)
7790 struct btrfs_block_group_cache
*block_group
, *tmp
;
7791 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
7792 struct btrfs_block_group_item item
;
7793 struct btrfs_key key
;
7796 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
,
7798 list_del_init(&block_group
->new_bg_list
);
7803 spin_lock(&block_group
->lock
);
7804 memcpy(&item
, &block_group
->item
, sizeof(item
));
7805 memcpy(&key
, &block_group
->key
, sizeof(key
));
7806 spin_unlock(&block_group
->lock
);
7808 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
7811 btrfs_abort_transaction(trans
, extent_root
, ret
);
7815 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7816 struct btrfs_root
*root
, u64 bytes_used
,
7817 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7821 struct btrfs_root
*extent_root
;
7822 struct btrfs_block_group_cache
*cache
;
7824 extent_root
= root
->fs_info
->extent_root
;
7826 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7828 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7831 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7833 if (!cache
->free_space_ctl
) {
7838 cache
->key
.objectid
= chunk_offset
;
7839 cache
->key
.offset
= size
;
7840 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7841 cache
->sectorsize
= root
->sectorsize
;
7842 cache
->fs_info
= root
->fs_info
;
7844 atomic_set(&cache
->count
, 1);
7845 spin_lock_init(&cache
->lock
);
7846 INIT_LIST_HEAD(&cache
->list
);
7847 INIT_LIST_HEAD(&cache
->cluster_list
);
7848 INIT_LIST_HEAD(&cache
->new_bg_list
);
7850 btrfs_init_free_space_ctl(cache
);
7852 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7853 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7854 cache
->flags
= type
;
7855 btrfs_set_block_group_flags(&cache
->item
, type
);
7857 cache
->last_byte_to_unpin
= (u64
)-1;
7858 cache
->cached
= BTRFS_CACHE_FINISHED
;
7859 exclude_super_stripes(root
, cache
);
7861 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7862 chunk_offset
+ size
);
7864 free_excluded_extents(root
, cache
);
7866 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7867 &cache
->space_info
);
7868 BUG_ON(ret
); /* -ENOMEM */
7869 update_global_block_rsv(root
->fs_info
);
7871 spin_lock(&cache
->space_info
->lock
);
7872 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7873 spin_unlock(&cache
->space_info
->lock
);
7875 __link_block_group(cache
->space_info
, cache
);
7877 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7878 BUG_ON(ret
); /* Logic error */
7880 list_add_tail(&cache
->new_bg_list
, &trans
->new_bgs
);
7882 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7887 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
7889 u64 extra_flags
= chunk_to_extended(flags
) &
7890 BTRFS_EXTENDED_PROFILE_MASK
;
7892 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
7893 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
7894 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
7895 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
7896 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
7897 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
7900 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7901 struct btrfs_root
*root
, u64 group_start
)
7903 struct btrfs_path
*path
;
7904 struct btrfs_block_group_cache
*block_group
;
7905 struct btrfs_free_cluster
*cluster
;
7906 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
7907 struct btrfs_key key
;
7908 struct inode
*inode
;
7913 root
= root
->fs_info
->extent_root
;
7915 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7916 BUG_ON(!block_group
);
7917 BUG_ON(!block_group
->ro
);
7920 * Free the reserved super bytes from this block group before
7923 free_excluded_extents(root
, block_group
);
7925 memcpy(&key
, &block_group
->key
, sizeof(key
));
7926 index
= get_block_group_index(block_group
);
7927 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
7928 BTRFS_BLOCK_GROUP_RAID1
|
7929 BTRFS_BLOCK_GROUP_RAID10
))
7934 /* make sure this block group isn't part of an allocation cluster */
7935 cluster
= &root
->fs_info
->data_alloc_cluster
;
7936 spin_lock(&cluster
->refill_lock
);
7937 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7938 spin_unlock(&cluster
->refill_lock
);
7941 * make sure this block group isn't part of a metadata
7942 * allocation cluster
7944 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7945 spin_lock(&cluster
->refill_lock
);
7946 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7947 spin_unlock(&cluster
->refill_lock
);
7949 path
= btrfs_alloc_path();
7955 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
7956 if (!IS_ERR(inode
)) {
7957 ret
= btrfs_orphan_add(trans
, inode
);
7959 btrfs_add_delayed_iput(inode
);
7963 /* One for the block groups ref */
7964 spin_lock(&block_group
->lock
);
7965 if (block_group
->iref
) {
7966 block_group
->iref
= 0;
7967 block_group
->inode
= NULL
;
7968 spin_unlock(&block_group
->lock
);
7971 spin_unlock(&block_group
->lock
);
7973 /* One for our lookup ref */
7974 btrfs_add_delayed_iput(inode
);
7977 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
7978 key
.offset
= block_group
->key
.objectid
;
7981 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
7985 btrfs_release_path(path
);
7987 ret
= btrfs_del_item(trans
, tree_root
, path
);
7990 btrfs_release_path(path
);
7993 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7994 rb_erase(&block_group
->cache_node
,
7995 &root
->fs_info
->block_group_cache_tree
);
7996 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7998 down_write(&block_group
->space_info
->groups_sem
);
8000 * we must use list_del_init so people can check to see if they
8001 * are still on the list after taking the semaphore
8003 list_del_init(&block_group
->list
);
8004 if (list_empty(&block_group
->space_info
->block_groups
[index
]))
8005 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
8006 up_write(&block_group
->space_info
->groups_sem
);
8008 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8009 wait_block_group_cache_done(block_group
);
8011 btrfs_remove_free_space_cache(block_group
);
8013 spin_lock(&block_group
->space_info
->lock
);
8014 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
8015 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
8016 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
8017 spin_unlock(&block_group
->space_info
->lock
);
8019 memcpy(&key
, &block_group
->key
, sizeof(key
));
8021 btrfs_clear_space_info_full(root
->fs_info
);
8023 btrfs_put_block_group(block_group
);
8024 btrfs_put_block_group(block_group
);
8026 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
8032 ret
= btrfs_del_item(trans
, root
, path
);
8034 btrfs_free_path(path
);
8038 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
8040 struct btrfs_space_info
*space_info
;
8041 struct btrfs_super_block
*disk_super
;
8047 disk_super
= fs_info
->super_copy
;
8048 if (!btrfs_super_root(disk_super
))
8051 features
= btrfs_super_incompat_flags(disk_super
);
8052 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
8055 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
8056 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
8061 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
8062 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
8064 flags
= BTRFS_BLOCK_GROUP_METADATA
;
8065 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
8069 flags
= BTRFS_BLOCK_GROUP_DATA
;
8070 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
8076 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
8078 return unpin_extent_range(root
, start
, end
);
8081 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
8082 u64 num_bytes
, u64
*actual_bytes
)
8084 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
8087 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
8089 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8090 struct btrfs_block_group_cache
*cache
= NULL
;
8095 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
8099 * try to trim all FS space, our block group may start from non-zero.
8101 if (range
->len
== total_bytes
)
8102 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
8104 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
8107 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
8108 btrfs_put_block_group(cache
);
8112 start
= max(range
->start
, cache
->key
.objectid
);
8113 end
= min(range
->start
+ range
->len
,
8114 cache
->key
.objectid
+ cache
->key
.offset
);
8116 if (end
- start
>= range
->minlen
) {
8117 if (!block_group_cache_done(cache
)) {
8118 ret
= cache_block_group(cache
, NULL
, root
, 0);
8120 wait_block_group_cache_done(cache
);
8122 ret
= btrfs_trim_block_group(cache
,
8128 trimmed
+= group_trimmed
;
8130 btrfs_put_block_group(cache
);
8135 cache
= next_block_group(fs_info
->tree_root
, cache
);
8138 range
->len
= trimmed
;