ARM: 7447/1: rwlocks: remove unused branch labels from trylock routines
[linux-2.6/libata-dev.git] / fs / ceph / mds_client.c
blob200bc87eceb1cc417a1caa1a73e264cde79dda78
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
10 #include "super.h"
11 #include "mds_client.h"
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
20 * A cluster of MDS (metadata server) daemons is responsible for
21 * managing the file system namespace (the directory hierarchy and
22 * inodes) and for coordinating shared access to storage. Metadata is
23 * partitioning hierarchically across a number of servers, and that
24 * partition varies over time as the cluster adjusts the distribution
25 * in order to balance load.
27 * The MDS client is primarily responsible to managing synchronous
28 * metadata requests for operations like open, unlink, and so forth.
29 * If there is a MDS failure, we find out about it when we (possibly
30 * request and) receive a new MDS map, and can resubmit affected
31 * requests.
33 * For the most part, though, we take advantage of a lossless
34 * communications channel to the MDS, and do not need to worry about
35 * timing out or resubmitting requests.
37 * We maintain a stateful "session" with each MDS we interact with.
38 * Within each session, we sent periodic heartbeat messages to ensure
39 * any capabilities or leases we have been issues remain valid. If
40 * the session times out and goes stale, our leases and capabilities
41 * are no longer valid.
44 struct ceph_reconnect_state {
45 struct ceph_pagelist *pagelist;
46 bool flock;
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 struct list_head *head);
52 static const struct ceph_connection_operations mds_con_ops;
56 * mds reply parsing
60 * parse individual inode info
62 static int parse_reply_info_in(void **p, void *end,
63 struct ceph_mds_reply_info_in *info,
64 int features)
66 int err = -EIO;
68 info->in = *p;
69 *p += sizeof(struct ceph_mds_reply_inode) +
70 sizeof(*info->in->fragtree.splits) *
71 le32_to_cpu(info->in->fragtree.nsplits);
73 ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 ceph_decode_need(p, end, info->symlink_len, bad);
75 info->symlink = *p;
76 *p += info->symlink_len;
78 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 ceph_decode_copy_safe(p, end, &info->dir_layout,
80 sizeof(info->dir_layout), bad);
81 else
82 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84 ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 ceph_decode_need(p, end, info->xattr_len, bad);
86 info->xattr_data = *p;
87 *p += info->xattr_len;
88 return 0;
89 bad:
90 return err;
94 * parse a normal reply, which may contain a (dir+)dentry and/or a
95 * target inode.
97 static int parse_reply_info_trace(void **p, void *end,
98 struct ceph_mds_reply_info_parsed *info,
99 int features)
101 int err;
103 if (info->head->is_dentry) {
104 err = parse_reply_info_in(p, end, &info->diri, features);
105 if (err < 0)
106 goto out_bad;
108 if (unlikely(*p + sizeof(*info->dirfrag) > end))
109 goto bad;
110 info->dirfrag = *p;
111 *p += sizeof(*info->dirfrag) +
112 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 if (unlikely(*p > end))
114 goto bad;
116 ceph_decode_32_safe(p, end, info->dname_len, bad);
117 ceph_decode_need(p, end, info->dname_len, bad);
118 info->dname = *p;
119 *p += info->dname_len;
120 info->dlease = *p;
121 *p += sizeof(*info->dlease);
124 if (info->head->is_target) {
125 err = parse_reply_info_in(p, end, &info->targeti, features);
126 if (err < 0)
127 goto out_bad;
130 if (unlikely(*p != end))
131 goto bad;
132 return 0;
134 bad:
135 err = -EIO;
136 out_bad:
137 pr_err("problem parsing mds trace %d\n", err);
138 return err;
142 * parse readdir results
144 static int parse_reply_info_dir(void **p, void *end,
145 struct ceph_mds_reply_info_parsed *info,
146 int features)
148 u32 num, i = 0;
149 int err;
151 info->dir_dir = *p;
152 if (*p + sizeof(*info->dir_dir) > end)
153 goto bad;
154 *p += sizeof(*info->dir_dir) +
155 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
156 if (*p > end)
157 goto bad;
159 ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 num = ceph_decode_32(p);
161 info->dir_end = ceph_decode_8(p);
162 info->dir_complete = ceph_decode_8(p);
163 if (num == 0)
164 goto done;
166 /* alloc large array */
167 info->dir_nr = num;
168 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 sizeof(*info->dir_dname) +
170 sizeof(*info->dir_dname_len) +
171 sizeof(*info->dir_dlease),
172 GFP_NOFS);
173 if (info->dir_in == NULL) {
174 err = -ENOMEM;
175 goto out_bad;
177 info->dir_dname = (void *)(info->dir_in + num);
178 info->dir_dname_len = (void *)(info->dir_dname + num);
179 info->dir_dlease = (void *)(info->dir_dname_len + num);
181 while (num) {
182 /* dentry */
183 ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 info->dir_dname_len[i] = ceph_decode_32(p);
185 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 info->dir_dname[i] = *p;
187 *p += info->dir_dname_len[i];
188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
189 info->dir_dname[i]);
190 info->dir_dlease[i] = *p;
191 *p += sizeof(struct ceph_mds_reply_lease);
193 /* inode */
194 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
195 if (err < 0)
196 goto out_bad;
197 i++;
198 num--;
201 done:
202 if (*p != end)
203 goto bad;
204 return 0;
206 bad:
207 err = -EIO;
208 out_bad:
209 pr_err("problem parsing dir contents %d\n", err);
210 return err;
214 * parse fcntl F_GETLK results
216 static int parse_reply_info_filelock(void **p, void *end,
217 struct ceph_mds_reply_info_parsed *info,
218 int features)
220 if (*p + sizeof(*info->filelock_reply) > end)
221 goto bad;
223 info->filelock_reply = *p;
224 *p += sizeof(*info->filelock_reply);
226 if (unlikely(*p != end))
227 goto bad;
228 return 0;
230 bad:
231 return -EIO;
235 * parse extra results
237 static int parse_reply_info_extra(void **p, void *end,
238 struct ceph_mds_reply_info_parsed *info,
239 int features)
241 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 return parse_reply_info_filelock(p, end, info, features);
243 else
244 return parse_reply_info_dir(p, end, info, features);
248 * parse entire mds reply
250 static int parse_reply_info(struct ceph_msg *msg,
251 struct ceph_mds_reply_info_parsed *info,
252 int features)
254 void *p, *end;
255 u32 len;
256 int err;
258 info->head = msg->front.iov_base;
259 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
262 /* trace */
263 ceph_decode_32_safe(&p, end, len, bad);
264 if (len > 0) {
265 ceph_decode_need(&p, end, len, bad);
266 err = parse_reply_info_trace(&p, p+len, info, features);
267 if (err < 0)
268 goto out_bad;
271 /* extra */
272 ceph_decode_32_safe(&p, end, len, bad);
273 if (len > 0) {
274 ceph_decode_need(&p, end, len, bad);
275 err = parse_reply_info_extra(&p, p+len, info, features);
276 if (err < 0)
277 goto out_bad;
280 /* snap blob */
281 ceph_decode_32_safe(&p, end, len, bad);
282 info->snapblob_len = len;
283 info->snapblob = p;
284 p += len;
286 if (p != end)
287 goto bad;
288 return 0;
290 bad:
291 err = -EIO;
292 out_bad:
293 pr_err("mds parse_reply err %d\n", err);
294 return err;
297 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
299 kfree(info->dir_in);
304 * sessions
306 static const char *session_state_name(int s)
308 switch (s) {
309 case CEPH_MDS_SESSION_NEW: return "new";
310 case CEPH_MDS_SESSION_OPENING: return "opening";
311 case CEPH_MDS_SESSION_OPEN: return "open";
312 case CEPH_MDS_SESSION_HUNG: return "hung";
313 case CEPH_MDS_SESSION_CLOSING: return "closing";
314 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
315 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
316 default: return "???";
320 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
322 if (atomic_inc_not_zero(&s->s_ref)) {
323 dout("mdsc get_session %p %d -> %d\n", s,
324 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
325 return s;
326 } else {
327 dout("mdsc get_session %p 0 -- FAIL", s);
328 return NULL;
332 void ceph_put_mds_session(struct ceph_mds_session *s)
334 dout("mdsc put_session %p %d -> %d\n", s,
335 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
336 if (atomic_dec_and_test(&s->s_ref)) {
337 if (s->s_auth.authorizer)
338 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
339 s->s_mdsc->fsc->client->monc.auth,
340 s->s_auth.authorizer);
341 kfree(s);
346 * called under mdsc->mutex
348 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
349 int mds)
351 struct ceph_mds_session *session;
353 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
354 return NULL;
355 session = mdsc->sessions[mds];
356 dout("lookup_mds_session %p %d\n", session,
357 atomic_read(&session->s_ref));
358 get_session(session);
359 return session;
362 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
364 if (mds >= mdsc->max_sessions)
365 return false;
366 return mdsc->sessions[mds];
369 static int __verify_registered_session(struct ceph_mds_client *mdsc,
370 struct ceph_mds_session *s)
372 if (s->s_mds >= mdsc->max_sessions ||
373 mdsc->sessions[s->s_mds] != s)
374 return -ENOENT;
375 return 0;
379 * create+register a new session for given mds.
380 * called under mdsc->mutex.
382 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
383 int mds)
385 struct ceph_mds_session *s;
387 s = kzalloc(sizeof(*s), GFP_NOFS);
388 if (!s)
389 return ERR_PTR(-ENOMEM);
390 s->s_mdsc = mdsc;
391 s->s_mds = mds;
392 s->s_state = CEPH_MDS_SESSION_NEW;
393 s->s_ttl = 0;
394 s->s_seq = 0;
395 mutex_init(&s->s_mutex);
397 ceph_con_init(mdsc->fsc->client->msgr, &s->s_con);
398 s->s_con.private = s;
399 s->s_con.ops = &mds_con_ops;
400 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
401 s->s_con.peer_name.num = cpu_to_le64(mds);
403 spin_lock_init(&s->s_gen_ttl_lock);
404 s->s_cap_gen = 0;
405 s->s_cap_ttl = jiffies - 1;
407 spin_lock_init(&s->s_cap_lock);
408 s->s_renew_requested = 0;
409 s->s_renew_seq = 0;
410 INIT_LIST_HEAD(&s->s_caps);
411 s->s_nr_caps = 0;
412 s->s_trim_caps = 0;
413 atomic_set(&s->s_ref, 1);
414 INIT_LIST_HEAD(&s->s_waiting);
415 INIT_LIST_HEAD(&s->s_unsafe);
416 s->s_num_cap_releases = 0;
417 s->s_cap_iterator = NULL;
418 INIT_LIST_HEAD(&s->s_cap_releases);
419 INIT_LIST_HEAD(&s->s_cap_releases_done);
420 INIT_LIST_HEAD(&s->s_cap_flushing);
421 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
423 dout("register_session mds%d\n", mds);
424 if (mds >= mdsc->max_sessions) {
425 int newmax = 1 << get_count_order(mds+1);
426 struct ceph_mds_session **sa;
428 dout("register_session realloc to %d\n", newmax);
429 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
430 if (sa == NULL)
431 goto fail_realloc;
432 if (mdsc->sessions) {
433 memcpy(sa, mdsc->sessions,
434 mdsc->max_sessions * sizeof(void *));
435 kfree(mdsc->sessions);
437 mdsc->sessions = sa;
438 mdsc->max_sessions = newmax;
440 mdsc->sessions[mds] = s;
441 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
443 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
445 return s;
447 fail_realloc:
448 kfree(s);
449 return ERR_PTR(-ENOMEM);
453 * called under mdsc->mutex
455 static void __unregister_session(struct ceph_mds_client *mdsc,
456 struct ceph_mds_session *s)
458 dout("__unregister_session mds%d %p\n", s->s_mds, s);
459 BUG_ON(mdsc->sessions[s->s_mds] != s);
460 mdsc->sessions[s->s_mds] = NULL;
461 ceph_con_close(&s->s_con);
462 ceph_put_mds_session(s);
466 * drop session refs in request.
468 * should be last request ref, or hold mdsc->mutex
470 static void put_request_session(struct ceph_mds_request *req)
472 if (req->r_session) {
473 ceph_put_mds_session(req->r_session);
474 req->r_session = NULL;
478 void ceph_mdsc_release_request(struct kref *kref)
480 struct ceph_mds_request *req = container_of(kref,
481 struct ceph_mds_request,
482 r_kref);
483 if (req->r_request)
484 ceph_msg_put(req->r_request);
485 if (req->r_reply) {
486 ceph_msg_put(req->r_reply);
487 destroy_reply_info(&req->r_reply_info);
489 if (req->r_inode) {
490 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
491 iput(req->r_inode);
493 if (req->r_locked_dir)
494 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
495 if (req->r_target_inode)
496 iput(req->r_target_inode);
497 if (req->r_dentry)
498 dput(req->r_dentry);
499 if (req->r_old_dentry) {
501 * track (and drop pins for) r_old_dentry_dir
502 * separately, since r_old_dentry's d_parent may have
503 * changed between the dir mutex being dropped and
504 * this request being freed.
506 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
507 CEPH_CAP_PIN);
508 dput(req->r_old_dentry);
509 iput(req->r_old_dentry_dir);
511 kfree(req->r_path1);
512 kfree(req->r_path2);
513 put_request_session(req);
514 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
515 kfree(req);
519 * lookup session, bump ref if found.
521 * called under mdsc->mutex.
523 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
524 u64 tid)
526 struct ceph_mds_request *req;
527 struct rb_node *n = mdsc->request_tree.rb_node;
529 while (n) {
530 req = rb_entry(n, struct ceph_mds_request, r_node);
531 if (tid < req->r_tid)
532 n = n->rb_left;
533 else if (tid > req->r_tid)
534 n = n->rb_right;
535 else {
536 ceph_mdsc_get_request(req);
537 return req;
540 return NULL;
543 static void __insert_request(struct ceph_mds_client *mdsc,
544 struct ceph_mds_request *new)
546 struct rb_node **p = &mdsc->request_tree.rb_node;
547 struct rb_node *parent = NULL;
548 struct ceph_mds_request *req = NULL;
550 while (*p) {
551 parent = *p;
552 req = rb_entry(parent, struct ceph_mds_request, r_node);
553 if (new->r_tid < req->r_tid)
554 p = &(*p)->rb_left;
555 else if (new->r_tid > req->r_tid)
556 p = &(*p)->rb_right;
557 else
558 BUG();
561 rb_link_node(&new->r_node, parent, p);
562 rb_insert_color(&new->r_node, &mdsc->request_tree);
566 * Register an in-flight request, and assign a tid. Link to directory
567 * are modifying (if any).
569 * Called under mdsc->mutex.
571 static void __register_request(struct ceph_mds_client *mdsc,
572 struct ceph_mds_request *req,
573 struct inode *dir)
575 req->r_tid = ++mdsc->last_tid;
576 if (req->r_num_caps)
577 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
578 req->r_num_caps);
579 dout("__register_request %p tid %lld\n", req, req->r_tid);
580 ceph_mdsc_get_request(req);
581 __insert_request(mdsc, req);
583 req->r_uid = current_fsuid();
584 req->r_gid = current_fsgid();
586 if (dir) {
587 struct ceph_inode_info *ci = ceph_inode(dir);
589 ihold(dir);
590 spin_lock(&ci->i_unsafe_lock);
591 req->r_unsafe_dir = dir;
592 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
593 spin_unlock(&ci->i_unsafe_lock);
597 static void __unregister_request(struct ceph_mds_client *mdsc,
598 struct ceph_mds_request *req)
600 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
601 rb_erase(&req->r_node, &mdsc->request_tree);
602 RB_CLEAR_NODE(&req->r_node);
604 if (req->r_unsafe_dir) {
605 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
607 spin_lock(&ci->i_unsafe_lock);
608 list_del_init(&req->r_unsafe_dir_item);
609 spin_unlock(&ci->i_unsafe_lock);
611 iput(req->r_unsafe_dir);
612 req->r_unsafe_dir = NULL;
615 ceph_mdsc_put_request(req);
619 * Choose mds to send request to next. If there is a hint set in the
620 * request (e.g., due to a prior forward hint from the mds), use that.
621 * Otherwise, consult frag tree and/or caps to identify the
622 * appropriate mds. If all else fails, choose randomly.
624 * Called under mdsc->mutex.
626 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
629 * we don't need to worry about protecting the d_parent access
630 * here because we never renaming inside the snapped namespace
631 * except to resplice to another snapdir, and either the old or new
632 * result is a valid result.
634 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
635 dentry = dentry->d_parent;
636 return dentry;
639 static int __choose_mds(struct ceph_mds_client *mdsc,
640 struct ceph_mds_request *req)
642 struct inode *inode;
643 struct ceph_inode_info *ci;
644 struct ceph_cap *cap;
645 int mode = req->r_direct_mode;
646 int mds = -1;
647 u32 hash = req->r_direct_hash;
648 bool is_hash = req->r_direct_is_hash;
651 * is there a specific mds we should try? ignore hint if we have
652 * no session and the mds is not up (active or recovering).
654 if (req->r_resend_mds >= 0 &&
655 (__have_session(mdsc, req->r_resend_mds) ||
656 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
657 dout("choose_mds using resend_mds mds%d\n",
658 req->r_resend_mds);
659 return req->r_resend_mds;
662 if (mode == USE_RANDOM_MDS)
663 goto random;
665 inode = NULL;
666 if (req->r_inode) {
667 inode = req->r_inode;
668 } else if (req->r_dentry) {
669 /* ignore race with rename; old or new d_parent is okay */
670 struct dentry *parent = req->r_dentry->d_parent;
671 struct inode *dir = parent->d_inode;
673 if (dir->i_sb != mdsc->fsc->sb) {
674 /* not this fs! */
675 inode = req->r_dentry->d_inode;
676 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
677 /* direct snapped/virtual snapdir requests
678 * based on parent dir inode */
679 struct dentry *dn = get_nonsnap_parent(parent);
680 inode = dn->d_inode;
681 dout("__choose_mds using nonsnap parent %p\n", inode);
682 } else if (req->r_dentry->d_inode) {
683 /* dentry target */
684 inode = req->r_dentry->d_inode;
685 } else {
686 /* dir + name */
687 inode = dir;
688 hash = ceph_dentry_hash(dir, req->r_dentry);
689 is_hash = true;
693 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
694 (int)hash, mode);
695 if (!inode)
696 goto random;
697 ci = ceph_inode(inode);
699 if (is_hash && S_ISDIR(inode->i_mode)) {
700 struct ceph_inode_frag frag;
701 int found;
703 ceph_choose_frag(ci, hash, &frag, &found);
704 if (found) {
705 if (mode == USE_ANY_MDS && frag.ndist > 0) {
706 u8 r;
708 /* choose a random replica */
709 get_random_bytes(&r, 1);
710 r %= frag.ndist;
711 mds = frag.dist[r];
712 dout("choose_mds %p %llx.%llx "
713 "frag %u mds%d (%d/%d)\n",
714 inode, ceph_vinop(inode),
715 frag.frag, mds,
716 (int)r, frag.ndist);
717 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
718 CEPH_MDS_STATE_ACTIVE)
719 return mds;
722 /* since this file/dir wasn't known to be
723 * replicated, then we want to look for the
724 * authoritative mds. */
725 mode = USE_AUTH_MDS;
726 if (frag.mds >= 0) {
727 /* choose auth mds */
728 mds = frag.mds;
729 dout("choose_mds %p %llx.%llx "
730 "frag %u mds%d (auth)\n",
731 inode, ceph_vinop(inode), frag.frag, mds);
732 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
733 CEPH_MDS_STATE_ACTIVE)
734 return mds;
739 spin_lock(&ci->i_ceph_lock);
740 cap = NULL;
741 if (mode == USE_AUTH_MDS)
742 cap = ci->i_auth_cap;
743 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
744 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
745 if (!cap) {
746 spin_unlock(&ci->i_ceph_lock);
747 goto random;
749 mds = cap->session->s_mds;
750 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
751 inode, ceph_vinop(inode), mds,
752 cap == ci->i_auth_cap ? "auth " : "", cap);
753 spin_unlock(&ci->i_ceph_lock);
754 return mds;
756 random:
757 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
758 dout("choose_mds chose random mds%d\n", mds);
759 return mds;
764 * session messages
766 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
768 struct ceph_msg *msg;
769 struct ceph_mds_session_head *h;
771 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
772 false);
773 if (!msg) {
774 pr_err("create_session_msg ENOMEM creating msg\n");
775 return NULL;
777 h = msg->front.iov_base;
778 h->op = cpu_to_le32(op);
779 h->seq = cpu_to_le64(seq);
780 return msg;
784 * send session open request.
786 * called under mdsc->mutex
788 static int __open_session(struct ceph_mds_client *mdsc,
789 struct ceph_mds_session *session)
791 struct ceph_msg *msg;
792 int mstate;
793 int mds = session->s_mds;
795 /* wait for mds to go active? */
796 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
797 dout("open_session to mds%d (%s)\n", mds,
798 ceph_mds_state_name(mstate));
799 session->s_state = CEPH_MDS_SESSION_OPENING;
800 session->s_renew_requested = jiffies;
802 /* send connect message */
803 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
804 if (!msg)
805 return -ENOMEM;
806 ceph_con_send(&session->s_con, msg);
807 return 0;
811 * open sessions for any export targets for the given mds
813 * called under mdsc->mutex
815 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
816 struct ceph_mds_session *session)
818 struct ceph_mds_info *mi;
819 struct ceph_mds_session *ts;
820 int i, mds = session->s_mds;
821 int target;
823 if (mds >= mdsc->mdsmap->m_max_mds)
824 return;
825 mi = &mdsc->mdsmap->m_info[mds];
826 dout("open_export_target_sessions for mds%d (%d targets)\n",
827 session->s_mds, mi->num_export_targets);
829 for (i = 0; i < mi->num_export_targets; i++) {
830 target = mi->export_targets[i];
831 ts = __ceph_lookup_mds_session(mdsc, target);
832 if (!ts) {
833 ts = register_session(mdsc, target);
834 if (IS_ERR(ts))
835 return;
837 if (session->s_state == CEPH_MDS_SESSION_NEW ||
838 session->s_state == CEPH_MDS_SESSION_CLOSING)
839 __open_session(mdsc, session);
840 else
841 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
842 i, ts, session_state_name(ts->s_state));
843 ceph_put_mds_session(ts);
847 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
848 struct ceph_mds_session *session)
850 mutex_lock(&mdsc->mutex);
851 __open_export_target_sessions(mdsc, session);
852 mutex_unlock(&mdsc->mutex);
856 * session caps
860 * Free preallocated cap messages assigned to this session
862 static void cleanup_cap_releases(struct ceph_mds_session *session)
864 struct ceph_msg *msg;
866 spin_lock(&session->s_cap_lock);
867 while (!list_empty(&session->s_cap_releases)) {
868 msg = list_first_entry(&session->s_cap_releases,
869 struct ceph_msg, list_head);
870 list_del_init(&msg->list_head);
871 ceph_msg_put(msg);
873 while (!list_empty(&session->s_cap_releases_done)) {
874 msg = list_first_entry(&session->s_cap_releases_done,
875 struct ceph_msg, list_head);
876 list_del_init(&msg->list_head);
877 ceph_msg_put(msg);
879 spin_unlock(&session->s_cap_lock);
883 * Helper to safely iterate over all caps associated with a session, with
884 * special care taken to handle a racing __ceph_remove_cap().
886 * Caller must hold session s_mutex.
888 static int iterate_session_caps(struct ceph_mds_session *session,
889 int (*cb)(struct inode *, struct ceph_cap *,
890 void *), void *arg)
892 struct list_head *p;
893 struct ceph_cap *cap;
894 struct inode *inode, *last_inode = NULL;
895 struct ceph_cap *old_cap = NULL;
896 int ret;
898 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
899 spin_lock(&session->s_cap_lock);
900 p = session->s_caps.next;
901 while (p != &session->s_caps) {
902 cap = list_entry(p, struct ceph_cap, session_caps);
903 inode = igrab(&cap->ci->vfs_inode);
904 if (!inode) {
905 p = p->next;
906 continue;
908 session->s_cap_iterator = cap;
909 spin_unlock(&session->s_cap_lock);
911 if (last_inode) {
912 iput(last_inode);
913 last_inode = NULL;
915 if (old_cap) {
916 ceph_put_cap(session->s_mdsc, old_cap);
917 old_cap = NULL;
920 ret = cb(inode, cap, arg);
921 last_inode = inode;
923 spin_lock(&session->s_cap_lock);
924 p = p->next;
925 if (cap->ci == NULL) {
926 dout("iterate_session_caps finishing cap %p removal\n",
927 cap);
928 BUG_ON(cap->session != session);
929 list_del_init(&cap->session_caps);
930 session->s_nr_caps--;
931 cap->session = NULL;
932 old_cap = cap; /* put_cap it w/o locks held */
934 if (ret < 0)
935 goto out;
937 ret = 0;
938 out:
939 session->s_cap_iterator = NULL;
940 spin_unlock(&session->s_cap_lock);
942 if (last_inode)
943 iput(last_inode);
944 if (old_cap)
945 ceph_put_cap(session->s_mdsc, old_cap);
947 return ret;
950 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
951 void *arg)
953 struct ceph_inode_info *ci = ceph_inode(inode);
954 int drop = 0;
956 dout("removing cap %p, ci is %p, inode is %p\n",
957 cap, ci, &ci->vfs_inode);
958 spin_lock(&ci->i_ceph_lock);
959 __ceph_remove_cap(cap);
960 if (!__ceph_is_any_real_caps(ci)) {
961 struct ceph_mds_client *mdsc =
962 ceph_sb_to_client(inode->i_sb)->mdsc;
964 spin_lock(&mdsc->cap_dirty_lock);
965 if (!list_empty(&ci->i_dirty_item)) {
966 pr_info(" dropping dirty %s state for %p %lld\n",
967 ceph_cap_string(ci->i_dirty_caps),
968 inode, ceph_ino(inode));
969 ci->i_dirty_caps = 0;
970 list_del_init(&ci->i_dirty_item);
971 drop = 1;
973 if (!list_empty(&ci->i_flushing_item)) {
974 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
975 ceph_cap_string(ci->i_flushing_caps),
976 inode, ceph_ino(inode));
977 ci->i_flushing_caps = 0;
978 list_del_init(&ci->i_flushing_item);
979 mdsc->num_cap_flushing--;
980 drop = 1;
982 if (drop && ci->i_wrbuffer_ref) {
983 pr_info(" dropping dirty data for %p %lld\n",
984 inode, ceph_ino(inode));
985 ci->i_wrbuffer_ref = 0;
986 ci->i_wrbuffer_ref_head = 0;
987 drop++;
989 spin_unlock(&mdsc->cap_dirty_lock);
991 spin_unlock(&ci->i_ceph_lock);
992 while (drop--)
993 iput(inode);
994 return 0;
998 * caller must hold session s_mutex
1000 static void remove_session_caps(struct ceph_mds_session *session)
1002 dout("remove_session_caps on %p\n", session);
1003 iterate_session_caps(session, remove_session_caps_cb, NULL);
1004 BUG_ON(session->s_nr_caps > 0);
1005 BUG_ON(!list_empty(&session->s_cap_flushing));
1006 cleanup_cap_releases(session);
1010 * wake up any threads waiting on this session's caps. if the cap is
1011 * old (didn't get renewed on the client reconnect), remove it now.
1013 * caller must hold s_mutex.
1015 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1016 void *arg)
1018 struct ceph_inode_info *ci = ceph_inode(inode);
1020 wake_up_all(&ci->i_cap_wq);
1021 if (arg) {
1022 spin_lock(&ci->i_ceph_lock);
1023 ci->i_wanted_max_size = 0;
1024 ci->i_requested_max_size = 0;
1025 spin_unlock(&ci->i_ceph_lock);
1027 return 0;
1030 static void wake_up_session_caps(struct ceph_mds_session *session,
1031 int reconnect)
1033 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1034 iterate_session_caps(session, wake_up_session_cb,
1035 (void *)(unsigned long)reconnect);
1039 * Send periodic message to MDS renewing all currently held caps. The
1040 * ack will reset the expiration for all caps from this session.
1042 * caller holds s_mutex
1044 static int send_renew_caps(struct ceph_mds_client *mdsc,
1045 struct ceph_mds_session *session)
1047 struct ceph_msg *msg;
1048 int state;
1050 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1051 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1052 pr_info("mds%d caps stale\n", session->s_mds);
1053 session->s_renew_requested = jiffies;
1055 /* do not try to renew caps until a recovering mds has reconnected
1056 * with its clients. */
1057 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1058 if (state < CEPH_MDS_STATE_RECONNECT) {
1059 dout("send_renew_caps ignoring mds%d (%s)\n",
1060 session->s_mds, ceph_mds_state_name(state));
1061 return 0;
1064 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1065 ceph_mds_state_name(state));
1066 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1067 ++session->s_renew_seq);
1068 if (!msg)
1069 return -ENOMEM;
1070 ceph_con_send(&session->s_con, msg);
1071 return 0;
1075 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1077 * Called under session->s_mutex
1079 static void renewed_caps(struct ceph_mds_client *mdsc,
1080 struct ceph_mds_session *session, int is_renew)
1082 int was_stale;
1083 int wake = 0;
1085 spin_lock(&session->s_cap_lock);
1086 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1088 session->s_cap_ttl = session->s_renew_requested +
1089 mdsc->mdsmap->m_session_timeout*HZ;
1091 if (was_stale) {
1092 if (time_before(jiffies, session->s_cap_ttl)) {
1093 pr_info("mds%d caps renewed\n", session->s_mds);
1094 wake = 1;
1095 } else {
1096 pr_info("mds%d caps still stale\n", session->s_mds);
1099 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1100 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1101 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1102 spin_unlock(&session->s_cap_lock);
1104 if (wake)
1105 wake_up_session_caps(session, 0);
1109 * send a session close request
1111 static int request_close_session(struct ceph_mds_client *mdsc,
1112 struct ceph_mds_session *session)
1114 struct ceph_msg *msg;
1116 dout("request_close_session mds%d state %s seq %lld\n",
1117 session->s_mds, session_state_name(session->s_state),
1118 session->s_seq);
1119 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1120 if (!msg)
1121 return -ENOMEM;
1122 ceph_con_send(&session->s_con, msg);
1123 return 0;
1127 * Called with s_mutex held.
1129 static int __close_session(struct ceph_mds_client *mdsc,
1130 struct ceph_mds_session *session)
1132 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1133 return 0;
1134 session->s_state = CEPH_MDS_SESSION_CLOSING;
1135 return request_close_session(mdsc, session);
1139 * Trim old(er) caps.
1141 * Because we can't cache an inode without one or more caps, we do
1142 * this indirectly: if a cap is unused, we prune its aliases, at which
1143 * point the inode will hopefully get dropped to.
1145 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1146 * memory pressure from the MDS, though, so it needn't be perfect.
1148 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1150 struct ceph_mds_session *session = arg;
1151 struct ceph_inode_info *ci = ceph_inode(inode);
1152 int used, oissued, mine;
1154 if (session->s_trim_caps <= 0)
1155 return -1;
1157 spin_lock(&ci->i_ceph_lock);
1158 mine = cap->issued | cap->implemented;
1159 used = __ceph_caps_used(ci);
1160 oissued = __ceph_caps_issued_other(ci, cap);
1162 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1163 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1164 ceph_cap_string(used));
1165 if (ci->i_dirty_caps)
1166 goto out; /* dirty caps */
1167 if ((used & ~oissued) & mine)
1168 goto out; /* we need these caps */
1170 session->s_trim_caps--;
1171 if (oissued) {
1172 /* we aren't the only cap.. just remove us */
1173 __ceph_remove_cap(cap);
1174 } else {
1175 /* try to drop referring dentries */
1176 spin_unlock(&ci->i_ceph_lock);
1177 d_prune_aliases(inode);
1178 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1179 inode, cap, atomic_read(&inode->i_count));
1180 return 0;
1183 out:
1184 spin_unlock(&ci->i_ceph_lock);
1185 return 0;
1189 * Trim session cap count down to some max number.
1191 static int trim_caps(struct ceph_mds_client *mdsc,
1192 struct ceph_mds_session *session,
1193 int max_caps)
1195 int trim_caps = session->s_nr_caps - max_caps;
1197 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1198 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1199 if (trim_caps > 0) {
1200 session->s_trim_caps = trim_caps;
1201 iterate_session_caps(session, trim_caps_cb, session);
1202 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1203 session->s_mds, session->s_nr_caps, max_caps,
1204 trim_caps - session->s_trim_caps);
1205 session->s_trim_caps = 0;
1207 return 0;
1211 * Allocate cap_release messages. If there is a partially full message
1212 * in the queue, try to allocate enough to cover it's remainder, so that
1213 * we can send it immediately.
1215 * Called under s_mutex.
1217 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1218 struct ceph_mds_session *session)
1220 struct ceph_msg *msg, *partial = NULL;
1221 struct ceph_mds_cap_release *head;
1222 int err = -ENOMEM;
1223 int extra = mdsc->fsc->mount_options->cap_release_safety;
1224 int num;
1226 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1227 extra);
1229 spin_lock(&session->s_cap_lock);
1231 if (!list_empty(&session->s_cap_releases)) {
1232 msg = list_first_entry(&session->s_cap_releases,
1233 struct ceph_msg,
1234 list_head);
1235 head = msg->front.iov_base;
1236 num = le32_to_cpu(head->num);
1237 if (num) {
1238 dout(" partial %p with (%d/%d)\n", msg, num,
1239 (int)CEPH_CAPS_PER_RELEASE);
1240 extra += CEPH_CAPS_PER_RELEASE - num;
1241 partial = msg;
1244 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1245 spin_unlock(&session->s_cap_lock);
1246 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1247 GFP_NOFS, false);
1248 if (!msg)
1249 goto out_unlocked;
1250 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1251 (int)msg->front.iov_len);
1252 head = msg->front.iov_base;
1253 head->num = cpu_to_le32(0);
1254 msg->front.iov_len = sizeof(*head);
1255 spin_lock(&session->s_cap_lock);
1256 list_add(&msg->list_head, &session->s_cap_releases);
1257 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1260 if (partial) {
1261 head = partial->front.iov_base;
1262 num = le32_to_cpu(head->num);
1263 dout(" queueing partial %p with %d/%d\n", partial, num,
1264 (int)CEPH_CAPS_PER_RELEASE);
1265 list_move_tail(&partial->list_head,
1266 &session->s_cap_releases_done);
1267 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1269 err = 0;
1270 spin_unlock(&session->s_cap_lock);
1271 out_unlocked:
1272 return err;
1276 * flush all dirty inode data to disk.
1278 * returns true if we've flushed through want_flush_seq
1280 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1282 int mds, ret = 1;
1284 dout("check_cap_flush want %lld\n", want_flush_seq);
1285 mutex_lock(&mdsc->mutex);
1286 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1287 struct ceph_mds_session *session = mdsc->sessions[mds];
1289 if (!session)
1290 continue;
1291 get_session(session);
1292 mutex_unlock(&mdsc->mutex);
1294 mutex_lock(&session->s_mutex);
1295 if (!list_empty(&session->s_cap_flushing)) {
1296 struct ceph_inode_info *ci =
1297 list_entry(session->s_cap_flushing.next,
1298 struct ceph_inode_info,
1299 i_flushing_item);
1300 struct inode *inode = &ci->vfs_inode;
1302 spin_lock(&ci->i_ceph_lock);
1303 if (ci->i_cap_flush_seq <= want_flush_seq) {
1304 dout("check_cap_flush still flushing %p "
1305 "seq %lld <= %lld to mds%d\n", inode,
1306 ci->i_cap_flush_seq, want_flush_seq,
1307 session->s_mds);
1308 ret = 0;
1310 spin_unlock(&ci->i_ceph_lock);
1312 mutex_unlock(&session->s_mutex);
1313 ceph_put_mds_session(session);
1315 if (!ret)
1316 return ret;
1317 mutex_lock(&mdsc->mutex);
1320 mutex_unlock(&mdsc->mutex);
1321 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1322 return ret;
1326 * called under s_mutex
1328 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1329 struct ceph_mds_session *session)
1331 struct ceph_msg *msg;
1333 dout("send_cap_releases mds%d\n", session->s_mds);
1334 spin_lock(&session->s_cap_lock);
1335 while (!list_empty(&session->s_cap_releases_done)) {
1336 msg = list_first_entry(&session->s_cap_releases_done,
1337 struct ceph_msg, list_head);
1338 list_del_init(&msg->list_head);
1339 spin_unlock(&session->s_cap_lock);
1340 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1341 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1342 ceph_con_send(&session->s_con, msg);
1343 spin_lock(&session->s_cap_lock);
1345 spin_unlock(&session->s_cap_lock);
1348 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1349 struct ceph_mds_session *session)
1351 struct ceph_msg *msg;
1352 struct ceph_mds_cap_release *head;
1353 unsigned num;
1355 dout("discard_cap_releases mds%d\n", session->s_mds);
1356 spin_lock(&session->s_cap_lock);
1358 /* zero out the in-progress message */
1359 msg = list_first_entry(&session->s_cap_releases,
1360 struct ceph_msg, list_head);
1361 head = msg->front.iov_base;
1362 num = le32_to_cpu(head->num);
1363 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1364 head->num = cpu_to_le32(0);
1365 session->s_num_cap_releases += num;
1367 /* requeue completed messages */
1368 while (!list_empty(&session->s_cap_releases_done)) {
1369 msg = list_first_entry(&session->s_cap_releases_done,
1370 struct ceph_msg, list_head);
1371 list_del_init(&msg->list_head);
1373 head = msg->front.iov_base;
1374 num = le32_to_cpu(head->num);
1375 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1376 num);
1377 session->s_num_cap_releases += num;
1378 head->num = cpu_to_le32(0);
1379 msg->front.iov_len = sizeof(*head);
1380 list_add(&msg->list_head, &session->s_cap_releases);
1383 spin_unlock(&session->s_cap_lock);
1387 * requests
1391 * Create an mds request.
1393 struct ceph_mds_request *
1394 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1396 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1398 if (!req)
1399 return ERR_PTR(-ENOMEM);
1401 mutex_init(&req->r_fill_mutex);
1402 req->r_mdsc = mdsc;
1403 req->r_started = jiffies;
1404 req->r_resend_mds = -1;
1405 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1406 req->r_fmode = -1;
1407 kref_init(&req->r_kref);
1408 INIT_LIST_HEAD(&req->r_wait);
1409 init_completion(&req->r_completion);
1410 init_completion(&req->r_safe_completion);
1411 INIT_LIST_HEAD(&req->r_unsafe_item);
1413 req->r_op = op;
1414 req->r_direct_mode = mode;
1415 return req;
1419 * return oldest (lowest) request, tid in request tree, 0 if none.
1421 * called under mdsc->mutex.
1423 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1425 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1426 return NULL;
1427 return rb_entry(rb_first(&mdsc->request_tree),
1428 struct ceph_mds_request, r_node);
1431 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1433 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1435 if (req)
1436 return req->r_tid;
1437 return 0;
1441 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1442 * on build_path_from_dentry in fs/cifs/dir.c.
1444 * If @stop_on_nosnap, generate path relative to the first non-snapped
1445 * inode.
1447 * Encode hidden .snap dirs as a double /, i.e.
1448 * foo/.snap/bar -> foo//bar
1450 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1451 int stop_on_nosnap)
1453 struct dentry *temp;
1454 char *path;
1455 int len, pos;
1456 unsigned seq;
1458 if (dentry == NULL)
1459 return ERR_PTR(-EINVAL);
1461 retry:
1462 len = 0;
1463 seq = read_seqbegin(&rename_lock);
1464 rcu_read_lock();
1465 for (temp = dentry; !IS_ROOT(temp);) {
1466 struct inode *inode = temp->d_inode;
1467 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1468 len++; /* slash only */
1469 else if (stop_on_nosnap && inode &&
1470 ceph_snap(inode) == CEPH_NOSNAP)
1471 break;
1472 else
1473 len += 1 + temp->d_name.len;
1474 temp = temp->d_parent;
1475 if (temp == NULL) {
1476 rcu_read_unlock();
1477 pr_err("build_path corrupt dentry %p\n", dentry);
1478 return ERR_PTR(-EINVAL);
1481 rcu_read_unlock();
1482 if (len)
1483 len--; /* no leading '/' */
1485 path = kmalloc(len+1, GFP_NOFS);
1486 if (path == NULL)
1487 return ERR_PTR(-ENOMEM);
1488 pos = len;
1489 path[pos] = 0; /* trailing null */
1490 rcu_read_lock();
1491 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1492 struct inode *inode;
1494 spin_lock(&temp->d_lock);
1495 inode = temp->d_inode;
1496 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1497 dout("build_path path+%d: %p SNAPDIR\n",
1498 pos, temp);
1499 } else if (stop_on_nosnap && inode &&
1500 ceph_snap(inode) == CEPH_NOSNAP) {
1501 spin_unlock(&temp->d_lock);
1502 break;
1503 } else {
1504 pos -= temp->d_name.len;
1505 if (pos < 0) {
1506 spin_unlock(&temp->d_lock);
1507 break;
1509 strncpy(path + pos, temp->d_name.name,
1510 temp->d_name.len);
1512 spin_unlock(&temp->d_lock);
1513 if (pos)
1514 path[--pos] = '/';
1515 temp = temp->d_parent;
1516 if (temp == NULL) {
1517 rcu_read_unlock();
1518 pr_err("build_path corrupt dentry\n");
1519 kfree(path);
1520 return ERR_PTR(-EINVAL);
1523 rcu_read_unlock();
1524 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1525 pr_err("build_path did not end path lookup where "
1526 "expected, namelen is %d, pos is %d\n", len, pos);
1527 /* presumably this is only possible if racing with a
1528 rename of one of the parent directories (we can not
1529 lock the dentries above us to prevent this, but
1530 retrying should be harmless) */
1531 kfree(path);
1532 goto retry;
1535 *base = ceph_ino(temp->d_inode);
1536 *plen = len;
1537 dout("build_path on %p %d built %llx '%.*s'\n",
1538 dentry, dentry->d_count, *base, len, path);
1539 return path;
1542 static int build_dentry_path(struct dentry *dentry,
1543 const char **ppath, int *ppathlen, u64 *pino,
1544 int *pfreepath)
1546 char *path;
1548 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1549 *pino = ceph_ino(dentry->d_parent->d_inode);
1550 *ppath = dentry->d_name.name;
1551 *ppathlen = dentry->d_name.len;
1552 return 0;
1554 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1555 if (IS_ERR(path))
1556 return PTR_ERR(path);
1557 *ppath = path;
1558 *pfreepath = 1;
1559 return 0;
1562 static int build_inode_path(struct inode *inode,
1563 const char **ppath, int *ppathlen, u64 *pino,
1564 int *pfreepath)
1566 struct dentry *dentry;
1567 char *path;
1569 if (ceph_snap(inode) == CEPH_NOSNAP) {
1570 *pino = ceph_ino(inode);
1571 *ppathlen = 0;
1572 return 0;
1574 dentry = d_find_alias(inode);
1575 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1576 dput(dentry);
1577 if (IS_ERR(path))
1578 return PTR_ERR(path);
1579 *ppath = path;
1580 *pfreepath = 1;
1581 return 0;
1585 * request arguments may be specified via an inode *, a dentry *, or
1586 * an explicit ino+path.
1588 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1589 const char *rpath, u64 rino,
1590 const char **ppath, int *pathlen,
1591 u64 *ino, int *freepath)
1593 int r = 0;
1595 if (rinode) {
1596 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1597 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1598 ceph_snap(rinode));
1599 } else if (rdentry) {
1600 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1601 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1602 *ppath);
1603 } else if (rpath || rino) {
1604 *ino = rino;
1605 *ppath = rpath;
1606 *pathlen = strlen(rpath);
1607 dout(" path %.*s\n", *pathlen, rpath);
1610 return r;
1614 * called under mdsc->mutex
1616 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1617 struct ceph_mds_request *req,
1618 int mds)
1620 struct ceph_msg *msg;
1621 struct ceph_mds_request_head *head;
1622 const char *path1 = NULL;
1623 const char *path2 = NULL;
1624 u64 ino1 = 0, ino2 = 0;
1625 int pathlen1 = 0, pathlen2 = 0;
1626 int freepath1 = 0, freepath2 = 0;
1627 int len;
1628 u16 releases;
1629 void *p, *end;
1630 int ret;
1632 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1633 req->r_path1, req->r_ino1.ino,
1634 &path1, &pathlen1, &ino1, &freepath1);
1635 if (ret < 0) {
1636 msg = ERR_PTR(ret);
1637 goto out;
1640 ret = set_request_path_attr(NULL, req->r_old_dentry,
1641 req->r_path2, req->r_ino2.ino,
1642 &path2, &pathlen2, &ino2, &freepath2);
1643 if (ret < 0) {
1644 msg = ERR_PTR(ret);
1645 goto out_free1;
1648 len = sizeof(*head) +
1649 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1651 /* calculate (max) length for cap releases */
1652 len += sizeof(struct ceph_mds_request_release) *
1653 (!!req->r_inode_drop + !!req->r_dentry_drop +
1654 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1655 if (req->r_dentry_drop)
1656 len += req->r_dentry->d_name.len;
1657 if (req->r_old_dentry_drop)
1658 len += req->r_old_dentry->d_name.len;
1660 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1661 if (!msg) {
1662 msg = ERR_PTR(-ENOMEM);
1663 goto out_free2;
1666 msg->hdr.tid = cpu_to_le64(req->r_tid);
1668 head = msg->front.iov_base;
1669 p = msg->front.iov_base + sizeof(*head);
1670 end = msg->front.iov_base + msg->front.iov_len;
1672 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1673 head->op = cpu_to_le32(req->r_op);
1674 head->caller_uid = cpu_to_le32(req->r_uid);
1675 head->caller_gid = cpu_to_le32(req->r_gid);
1676 head->args = req->r_args;
1678 ceph_encode_filepath(&p, end, ino1, path1);
1679 ceph_encode_filepath(&p, end, ino2, path2);
1681 /* make note of release offset, in case we need to replay */
1682 req->r_request_release_offset = p - msg->front.iov_base;
1684 /* cap releases */
1685 releases = 0;
1686 if (req->r_inode_drop)
1687 releases += ceph_encode_inode_release(&p,
1688 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1689 mds, req->r_inode_drop, req->r_inode_unless, 0);
1690 if (req->r_dentry_drop)
1691 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1692 mds, req->r_dentry_drop, req->r_dentry_unless);
1693 if (req->r_old_dentry_drop)
1694 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1695 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1696 if (req->r_old_inode_drop)
1697 releases += ceph_encode_inode_release(&p,
1698 req->r_old_dentry->d_inode,
1699 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1700 head->num_releases = cpu_to_le16(releases);
1702 BUG_ON(p > end);
1703 msg->front.iov_len = p - msg->front.iov_base;
1704 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1706 msg->pages = req->r_pages;
1707 msg->nr_pages = req->r_num_pages;
1708 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1709 msg->hdr.data_off = cpu_to_le16(0);
1711 out_free2:
1712 if (freepath2)
1713 kfree((char *)path2);
1714 out_free1:
1715 if (freepath1)
1716 kfree((char *)path1);
1717 out:
1718 return msg;
1722 * called under mdsc->mutex if error, under no mutex if
1723 * success.
1725 static void complete_request(struct ceph_mds_client *mdsc,
1726 struct ceph_mds_request *req)
1728 if (req->r_callback)
1729 req->r_callback(mdsc, req);
1730 else
1731 complete_all(&req->r_completion);
1735 * called under mdsc->mutex
1737 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1738 struct ceph_mds_request *req,
1739 int mds)
1741 struct ceph_mds_request_head *rhead;
1742 struct ceph_msg *msg;
1743 int flags = 0;
1745 req->r_attempts++;
1746 if (req->r_inode) {
1747 struct ceph_cap *cap =
1748 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1750 if (cap)
1751 req->r_sent_on_mseq = cap->mseq;
1752 else
1753 req->r_sent_on_mseq = -1;
1755 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1756 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1758 if (req->r_got_unsafe) {
1760 * Replay. Do not regenerate message (and rebuild
1761 * paths, etc.); just use the original message.
1762 * Rebuilding paths will break for renames because
1763 * d_move mangles the src name.
1765 msg = req->r_request;
1766 rhead = msg->front.iov_base;
1768 flags = le32_to_cpu(rhead->flags);
1769 flags |= CEPH_MDS_FLAG_REPLAY;
1770 rhead->flags = cpu_to_le32(flags);
1772 if (req->r_target_inode)
1773 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1775 rhead->num_retry = req->r_attempts - 1;
1777 /* remove cap/dentry releases from message */
1778 rhead->num_releases = 0;
1779 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1780 msg->front.iov_len = req->r_request_release_offset;
1781 return 0;
1784 if (req->r_request) {
1785 ceph_msg_put(req->r_request);
1786 req->r_request = NULL;
1788 msg = create_request_message(mdsc, req, mds);
1789 if (IS_ERR(msg)) {
1790 req->r_err = PTR_ERR(msg);
1791 complete_request(mdsc, req);
1792 return PTR_ERR(msg);
1794 req->r_request = msg;
1796 rhead = msg->front.iov_base;
1797 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1798 if (req->r_got_unsafe)
1799 flags |= CEPH_MDS_FLAG_REPLAY;
1800 if (req->r_locked_dir)
1801 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1802 rhead->flags = cpu_to_le32(flags);
1803 rhead->num_fwd = req->r_num_fwd;
1804 rhead->num_retry = req->r_attempts - 1;
1805 rhead->ino = 0;
1807 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1808 return 0;
1812 * send request, or put it on the appropriate wait list.
1814 static int __do_request(struct ceph_mds_client *mdsc,
1815 struct ceph_mds_request *req)
1817 struct ceph_mds_session *session = NULL;
1818 int mds = -1;
1819 int err = -EAGAIN;
1821 if (req->r_err || req->r_got_result)
1822 goto out;
1824 if (req->r_timeout &&
1825 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1826 dout("do_request timed out\n");
1827 err = -EIO;
1828 goto finish;
1831 put_request_session(req);
1833 mds = __choose_mds(mdsc, req);
1834 if (mds < 0 ||
1835 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1836 dout("do_request no mds or not active, waiting for map\n");
1837 list_add(&req->r_wait, &mdsc->waiting_for_map);
1838 goto out;
1841 /* get, open session */
1842 session = __ceph_lookup_mds_session(mdsc, mds);
1843 if (!session) {
1844 session = register_session(mdsc, mds);
1845 if (IS_ERR(session)) {
1846 err = PTR_ERR(session);
1847 goto finish;
1850 req->r_session = get_session(session);
1852 dout("do_request mds%d session %p state %s\n", mds, session,
1853 session_state_name(session->s_state));
1854 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1855 session->s_state != CEPH_MDS_SESSION_HUNG) {
1856 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1857 session->s_state == CEPH_MDS_SESSION_CLOSING)
1858 __open_session(mdsc, session);
1859 list_add(&req->r_wait, &session->s_waiting);
1860 goto out_session;
1863 /* send request */
1864 req->r_resend_mds = -1; /* forget any previous mds hint */
1866 if (req->r_request_started == 0) /* note request start time */
1867 req->r_request_started = jiffies;
1869 err = __prepare_send_request(mdsc, req, mds);
1870 if (!err) {
1871 ceph_msg_get(req->r_request);
1872 ceph_con_send(&session->s_con, req->r_request);
1875 out_session:
1876 ceph_put_mds_session(session);
1877 out:
1878 return err;
1880 finish:
1881 req->r_err = err;
1882 complete_request(mdsc, req);
1883 goto out;
1887 * called under mdsc->mutex
1889 static void __wake_requests(struct ceph_mds_client *mdsc,
1890 struct list_head *head)
1892 struct ceph_mds_request *req, *nreq;
1894 list_for_each_entry_safe(req, nreq, head, r_wait) {
1895 list_del_init(&req->r_wait);
1896 __do_request(mdsc, req);
1901 * Wake up threads with requests pending for @mds, so that they can
1902 * resubmit their requests to a possibly different mds.
1904 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1906 struct ceph_mds_request *req;
1907 struct rb_node *p;
1909 dout("kick_requests mds%d\n", mds);
1910 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1911 req = rb_entry(p, struct ceph_mds_request, r_node);
1912 if (req->r_got_unsafe)
1913 continue;
1914 if (req->r_session &&
1915 req->r_session->s_mds == mds) {
1916 dout(" kicking tid %llu\n", req->r_tid);
1917 __do_request(mdsc, req);
1922 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1923 struct ceph_mds_request *req)
1925 dout("submit_request on %p\n", req);
1926 mutex_lock(&mdsc->mutex);
1927 __register_request(mdsc, req, NULL);
1928 __do_request(mdsc, req);
1929 mutex_unlock(&mdsc->mutex);
1933 * Synchrously perform an mds request. Take care of all of the
1934 * session setup, forwarding, retry details.
1936 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1937 struct inode *dir,
1938 struct ceph_mds_request *req)
1940 int err;
1942 dout("do_request on %p\n", req);
1944 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1945 if (req->r_inode)
1946 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1947 if (req->r_locked_dir)
1948 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1949 if (req->r_old_dentry)
1950 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1951 CEPH_CAP_PIN);
1953 /* issue */
1954 mutex_lock(&mdsc->mutex);
1955 __register_request(mdsc, req, dir);
1956 __do_request(mdsc, req);
1958 if (req->r_err) {
1959 err = req->r_err;
1960 __unregister_request(mdsc, req);
1961 dout("do_request early error %d\n", err);
1962 goto out;
1965 /* wait */
1966 mutex_unlock(&mdsc->mutex);
1967 dout("do_request waiting\n");
1968 if (req->r_timeout) {
1969 err = (long)wait_for_completion_killable_timeout(
1970 &req->r_completion, req->r_timeout);
1971 if (err == 0)
1972 err = -EIO;
1973 } else {
1974 err = wait_for_completion_killable(&req->r_completion);
1976 dout("do_request waited, got %d\n", err);
1977 mutex_lock(&mdsc->mutex);
1979 /* only abort if we didn't race with a real reply */
1980 if (req->r_got_result) {
1981 err = le32_to_cpu(req->r_reply_info.head->result);
1982 } else if (err < 0) {
1983 dout("aborted request %lld with %d\n", req->r_tid, err);
1986 * ensure we aren't running concurrently with
1987 * ceph_fill_trace or ceph_readdir_prepopulate, which
1988 * rely on locks (dir mutex) held by our caller.
1990 mutex_lock(&req->r_fill_mutex);
1991 req->r_err = err;
1992 req->r_aborted = true;
1993 mutex_unlock(&req->r_fill_mutex);
1995 if (req->r_locked_dir &&
1996 (req->r_op & CEPH_MDS_OP_WRITE))
1997 ceph_invalidate_dir_request(req);
1998 } else {
1999 err = req->r_err;
2002 out:
2003 mutex_unlock(&mdsc->mutex);
2004 dout("do_request %p done, result %d\n", req, err);
2005 return err;
2009 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
2010 * namespace request.
2012 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2014 struct inode *inode = req->r_locked_dir;
2015 struct ceph_inode_info *ci = ceph_inode(inode);
2017 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2018 spin_lock(&ci->i_ceph_lock);
2019 ceph_dir_clear_complete(inode);
2020 ci->i_release_count++;
2021 spin_unlock(&ci->i_ceph_lock);
2023 if (req->r_dentry)
2024 ceph_invalidate_dentry_lease(req->r_dentry);
2025 if (req->r_old_dentry)
2026 ceph_invalidate_dentry_lease(req->r_old_dentry);
2030 * Handle mds reply.
2032 * We take the session mutex and parse and process the reply immediately.
2033 * This preserves the logical ordering of replies, capabilities, etc., sent
2034 * by the MDS as they are applied to our local cache.
2036 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2038 struct ceph_mds_client *mdsc = session->s_mdsc;
2039 struct ceph_mds_request *req;
2040 struct ceph_mds_reply_head *head = msg->front.iov_base;
2041 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2042 u64 tid;
2043 int err, result;
2044 int mds = session->s_mds;
2046 if (msg->front.iov_len < sizeof(*head)) {
2047 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2048 ceph_msg_dump(msg);
2049 return;
2052 /* get request, session */
2053 tid = le64_to_cpu(msg->hdr.tid);
2054 mutex_lock(&mdsc->mutex);
2055 req = __lookup_request(mdsc, tid);
2056 if (!req) {
2057 dout("handle_reply on unknown tid %llu\n", tid);
2058 mutex_unlock(&mdsc->mutex);
2059 return;
2061 dout("handle_reply %p\n", req);
2063 /* correct session? */
2064 if (req->r_session != session) {
2065 pr_err("mdsc_handle_reply got %llu on session mds%d"
2066 " not mds%d\n", tid, session->s_mds,
2067 req->r_session ? req->r_session->s_mds : -1);
2068 mutex_unlock(&mdsc->mutex);
2069 goto out;
2072 /* dup? */
2073 if ((req->r_got_unsafe && !head->safe) ||
2074 (req->r_got_safe && head->safe)) {
2075 pr_warning("got a dup %s reply on %llu from mds%d\n",
2076 head->safe ? "safe" : "unsafe", tid, mds);
2077 mutex_unlock(&mdsc->mutex);
2078 goto out;
2080 if (req->r_got_safe && !head->safe) {
2081 pr_warning("got unsafe after safe on %llu from mds%d\n",
2082 tid, mds);
2083 mutex_unlock(&mdsc->mutex);
2084 goto out;
2087 result = le32_to_cpu(head->result);
2090 * Handle an ESTALE
2091 * if we're not talking to the authority, send to them
2092 * if the authority has changed while we weren't looking,
2093 * send to new authority
2094 * Otherwise we just have to return an ESTALE
2096 if (result == -ESTALE) {
2097 dout("got ESTALE on request %llu", req->r_tid);
2098 if (!req->r_inode) {
2099 /* do nothing; not an authority problem */
2100 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2101 dout("not using auth, setting for that now");
2102 req->r_direct_mode = USE_AUTH_MDS;
2103 __do_request(mdsc, req);
2104 mutex_unlock(&mdsc->mutex);
2105 goto out;
2106 } else {
2107 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2108 struct ceph_cap *cap = NULL;
2110 if (req->r_session)
2111 cap = ceph_get_cap_for_mds(ci,
2112 req->r_session->s_mds);
2114 dout("already using auth");
2115 if ((!cap || cap != ci->i_auth_cap) ||
2116 (cap->mseq != req->r_sent_on_mseq)) {
2117 dout("but cap changed, so resending");
2118 __do_request(mdsc, req);
2119 mutex_unlock(&mdsc->mutex);
2120 goto out;
2123 dout("have to return ESTALE on request %llu", req->r_tid);
2127 if (head->safe) {
2128 req->r_got_safe = true;
2129 __unregister_request(mdsc, req);
2130 complete_all(&req->r_safe_completion);
2132 if (req->r_got_unsafe) {
2134 * We already handled the unsafe response, now do the
2135 * cleanup. No need to examine the response; the MDS
2136 * doesn't include any result info in the safe
2137 * response. And even if it did, there is nothing
2138 * useful we could do with a revised return value.
2140 dout("got safe reply %llu, mds%d\n", tid, mds);
2141 list_del_init(&req->r_unsafe_item);
2143 /* last unsafe request during umount? */
2144 if (mdsc->stopping && !__get_oldest_req(mdsc))
2145 complete_all(&mdsc->safe_umount_waiters);
2146 mutex_unlock(&mdsc->mutex);
2147 goto out;
2149 } else {
2150 req->r_got_unsafe = true;
2151 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2154 dout("handle_reply tid %lld result %d\n", tid, result);
2155 rinfo = &req->r_reply_info;
2156 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2157 mutex_unlock(&mdsc->mutex);
2159 mutex_lock(&session->s_mutex);
2160 if (err < 0) {
2161 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2162 ceph_msg_dump(msg);
2163 goto out_err;
2166 /* snap trace */
2167 if (rinfo->snapblob_len) {
2168 down_write(&mdsc->snap_rwsem);
2169 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2170 rinfo->snapblob + rinfo->snapblob_len,
2171 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2172 downgrade_write(&mdsc->snap_rwsem);
2173 } else {
2174 down_read(&mdsc->snap_rwsem);
2177 /* insert trace into our cache */
2178 mutex_lock(&req->r_fill_mutex);
2179 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2180 if (err == 0) {
2181 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2182 rinfo->dir_nr)
2183 ceph_readdir_prepopulate(req, req->r_session);
2184 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2186 mutex_unlock(&req->r_fill_mutex);
2188 up_read(&mdsc->snap_rwsem);
2189 out_err:
2190 mutex_lock(&mdsc->mutex);
2191 if (!req->r_aborted) {
2192 if (err) {
2193 req->r_err = err;
2194 } else {
2195 req->r_reply = msg;
2196 ceph_msg_get(msg);
2197 req->r_got_result = true;
2199 } else {
2200 dout("reply arrived after request %lld was aborted\n", tid);
2202 mutex_unlock(&mdsc->mutex);
2204 ceph_add_cap_releases(mdsc, req->r_session);
2205 mutex_unlock(&session->s_mutex);
2207 /* kick calling process */
2208 complete_request(mdsc, req);
2209 out:
2210 ceph_mdsc_put_request(req);
2211 return;
2217 * handle mds notification that our request has been forwarded.
2219 static void handle_forward(struct ceph_mds_client *mdsc,
2220 struct ceph_mds_session *session,
2221 struct ceph_msg *msg)
2223 struct ceph_mds_request *req;
2224 u64 tid = le64_to_cpu(msg->hdr.tid);
2225 u32 next_mds;
2226 u32 fwd_seq;
2227 int err = -EINVAL;
2228 void *p = msg->front.iov_base;
2229 void *end = p + msg->front.iov_len;
2231 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2232 next_mds = ceph_decode_32(&p);
2233 fwd_seq = ceph_decode_32(&p);
2235 mutex_lock(&mdsc->mutex);
2236 req = __lookup_request(mdsc, tid);
2237 if (!req) {
2238 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2239 goto out; /* dup reply? */
2242 if (req->r_aborted) {
2243 dout("forward tid %llu aborted, unregistering\n", tid);
2244 __unregister_request(mdsc, req);
2245 } else if (fwd_seq <= req->r_num_fwd) {
2246 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2247 tid, next_mds, req->r_num_fwd, fwd_seq);
2248 } else {
2249 /* resend. forward race not possible; mds would drop */
2250 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2251 BUG_ON(req->r_err);
2252 BUG_ON(req->r_got_result);
2253 req->r_num_fwd = fwd_seq;
2254 req->r_resend_mds = next_mds;
2255 put_request_session(req);
2256 __do_request(mdsc, req);
2258 ceph_mdsc_put_request(req);
2259 out:
2260 mutex_unlock(&mdsc->mutex);
2261 return;
2263 bad:
2264 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2268 * handle a mds session control message
2270 static void handle_session(struct ceph_mds_session *session,
2271 struct ceph_msg *msg)
2273 struct ceph_mds_client *mdsc = session->s_mdsc;
2274 u32 op;
2275 u64 seq;
2276 int mds = session->s_mds;
2277 struct ceph_mds_session_head *h = msg->front.iov_base;
2278 int wake = 0;
2280 /* decode */
2281 if (msg->front.iov_len != sizeof(*h))
2282 goto bad;
2283 op = le32_to_cpu(h->op);
2284 seq = le64_to_cpu(h->seq);
2286 mutex_lock(&mdsc->mutex);
2287 if (op == CEPH_SESSION_CLOSE)
2288 __unregister_session(mdsc, session);
2289 /* FIXME: this ttl calculation is generous */
2290 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2291 mutex_unlock(&mdsc->mutex);
2293 mutex_lock(&session->s_mutex);
2295 dout("handle_session mds%d %s %p state %s seq %llu\n",
2296 mds, ceph_session_op_name(op), session,
2297 session_state_name(session->s_state), seq);
2299 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2300 session->s_state = CEPH_MDS_SESSION_OPEN;
2301 pr_info("mds%d came back\n", session->s_mds);
2304 switch (op) {
2305 case CEPH_SESSION_OPEN:
2306 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2307 pr_info("mds%d reconnect success\n", session->s_mds);
2308 session->s_state = CEPH_MDS_SESSION_OPEN;
2309 renewed_caps(mdsc, session, 0);
2310 wake = 1;
2311 if (mdsc->stopping)
2312 __close_session(mdsc, session);
2313 break;
2315 case CEPH_SESSION_RENEWCAPS:
2316 if (session->s_renew_seq == seq)
2317 renewed_caps(mdsc, session, 1);
2318 break;
2320 case CEPH_SESSION_CLOSE:
2321 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2322 pr_info("mds%d reconnect denied\n", session->s_mds);
2323 remove_session_caps(session);
2324 wake = 1; /* for good measure */
2325 wake_up_all(&mdsc->session_close_wq);
2326 kick_requests(mdsc, mds);
2327 break;
2329 case CEPH_SESSION_STALE:
2330 pr_info("mds%d caps went stale, renewing\n",
2331 session->s_mds);
2332 spin_lock(&session->s_gen_ttl_lock);
2333 session->s_cap_gen++;
2334 session->s_cap_ttl = jiffies - 1;
2335 spin_unlock(&session->s_gen_ttl_lock);
2336 send_renew_caps(mdsc, session);
2337 break;
2339 case CEPH_SESSION_RECALL_STATE:
2340 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2341 break;
2343 default:
2344 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2345 WARN_ON(1);
2348 mutex_unlock(&session->s_mutex);
2349 if (wake) {
2350 mutex_lock(&mdsc->mutex);
2351 __wake_requests(mdsc, &session->s_waiting);
2352 mutex_unlock(&mdsc->mutex);
2354 return;
2356 bad:
2357 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2358 (int)msg->front.iov_len);
2359 ceph_msg_dump(msg);
2360 return;
2365 * called under session->mutex.
2367 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2368 struct ceph_mds_session *session)
2370 struct ceph_mds_request *req, *nreq;
2371 int err;
2373 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2375 mutex_lock(&mdsc->mutex);
2376 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2377 err = __prepare_send_request(mdsc, req, session->s_mds);
2378 if (!err) {
2379 ceph_msg_get(req->r_request);
2380 ceph_con_send(&session->s_con, req->r_request);
2383 mutex_unlock(&mdsc->mutex);
2387 * Encode information about a cap for a reconnect with the MDS.
2389 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2390 void *arg)
2392 union {
2393 struct ceph_mds_cap_reconnect v2;
2394 struct ceph_mds_cap_reconnect_v1 v1;
2395 } rec;
2396 size_t reclen;
2397 struct ceph_inode_info *ci;
2398 struct ceph_reconnect_state *recon_state = arg;
2399 struct ceph_pagelist *pagelist = recon_state->pagelist;
2400 char *path;
2401 int pathlen, err;
2402 u64 pathbase;
2403 struct dentry *dentry;
2405 ci = cap->ci;
2407 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2408 inode, ceph_vinop(inode), cap, cap->cap_id,
2409 ceph_cap_string(cap->issued));
2410 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2411 if (err)
2412 return err;
2414 dentry = d_find_alias(inode);
2415 if (dentry) {
2416 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2417 if (IS_ERR(path)) {
2418 err = PTR_ERR(path);
2419 goto out_dput;
2421 } else {
2422 path = NULL;
2423 pathlen = 0;
2425 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2426 if (err)
2427 goto out_free;
2429 spin_lock(&ci->i_ceph_lock);
2430 cap->seq = 0; /* reset cap seq */
2431 cap->issue_seq = 0; /* and issue_seq */
2433 if (recon_state->flock) {
2434 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2435 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2436 rec.v2.issued = cpu_to_le32(cap->issued);
2437 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2438 rec.v2.pathbase = cpu_to_le64(pathbase);
2439 rec.v2.flock_len = 0;
2440 reclen = sizeof(rec.v2);
2441 } else {
2442 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2443 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2444 rec.v1.issued = cpu_to_le32(cap->issued);
2445 rec.v1.size = cpu_to_le64(inode->i_size);
2446 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2447 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2448 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2449 rec.v1.pathbase = cpu_to_le64(pathbase);
2450 reclen = sizeof(rec.v1);
2452 spin_unlock(&ci->i_ceph_lock);
2454 if (recon_state->flock) {
2455 int num_fcntl_locks, num_flock_locks;
2456 struct ceph_pagelist_cursor trunc_point;
2458 ceph_pagelist_set_cursor(pagelist, &trunc_point);
2459 do {
2460 lock_flocks();
2461 ceph_count_locks(inode, &num_fcntl_locks,
2462 &num_flock_locks);
2463 rec.v2.flock_len = (2*sizeof(u32) +
2464 (num_fcntl_locks+num_flock_locks) *
2465 sizeof(struct ceph_filelock));
2466 unlock_flocks();
2468 /* pre-alloc pagelist */
2469 ceph_pagelist_truncate(pagelist, &trunc_point);
2470 err = ceph_pagelist_append(pagelist, &rec, reclen);
2471 if (!err)
2472 err = ceph_pagelist_reserve(pagelist,
2473 rec.v2.flock_len);
2475 /* encode locks */
2476 if (!err) {
2477 lock_flocks();
2478 err = ceph_encode_locks(inode,
2479 pagelist,
2480 num_fcntl_locks,
2481 num_flock_locks);
2482 unlock_flocks();
2484 } while (err == -ENOSPC);
2485 } else {
2486 err = ceph_pagelist_append(pagelist, &rec, reclen);
2489 out_free:
2490 kfree(path);
2491 out_dput:
2492 dput(dentry);
2493 return err;
2498 * If an MDS fails and recovers, clients need to reconnect in order to
2499 * reestablish shared state. This includes all caps issued through
2500 * this session _and_ the snap_realm hierarchy. Because it's not
2501 * clear which snap realms the mds cares about, we send everything we
2502 * know about.. that ensures we'll then get any new info the
2503 * recovering MDS might have.
2505 * This is a relatively heavyweight operation, but it's rare.
2507 * called with mdsc->mutex held.
2509 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2510 struct ceph_mds_session *session)
2512 struct ceph_msg *reply;
2513 struct rb_node *p;
2514 int mds = session->s_mds;
2515 int err = -ENOMEM;
2516 struct ceph_pagelist *pagelist;
2517 struct ceph_reconnect_state recon_state;
2519 pr_info("mds%d reconnect start\n", mds);
2521 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2522 if (!pagelist)
2523 goto fail_nopagelist;
2524 ceph_pagelist_init(pagelist);
2526 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2527 if (!reply)
2528 goto fail_nomsg;
2530 mutex_lock(&session->s_mutex);
2531 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2532 session->s_seq = 0;
2534 ceph_con_open(&session->s_con,
2535 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2537 /* replay unsafe requests */
2538 replay_unsafe_requests(mdsc, session);
2540 down_read(&mdsc->snap_rwsem);
2542 dout("session %p state %s\n", session,
2543 session_state_name(session->s_state));
2545 /* drop old cap expires; we're about to reestablish that state */
2546 discard_cap_releases(mdsc, session);
2548 /* traverse this session's caps */
2549 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2550 if (err)
2551 goto fail;
2553 recon_state.pagelist = pagelist;
2554 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2555 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2556 if (err < 0)
2557 goto fail;
2560 * snaprealms. we provide mds with the ino, seq (version), and
2561 * parent for all of our realms. If the mds has any newer info,
2562 * it will tell us.
2564 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2565 struct ceph_snap_realm *realm =
2566 rb_entry(p, struct ceph_snap_realm, node);
2567 struct ceph_mds_snaprealm_reconnect sr_rec;
2569 dout(" adding snap realm %llx seq %lld parent %llx\n",
2570 realm->ino, realm->seq, realm->parent_ino);
2571 sr_rec.ino = cpu_to_le64(realm->ino);
2572 sr_rec.seq = cpu_to_le64(realm->seq);
2573 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2574 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2575 if (err)
2576 goto fail;
2579 reply->pagelist = pagelist;
2580 if (recon_state.flock)
2581 reply->hdr.version = cpu_to_le16(2);
2582 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2583 reply->nr_pages = calc_pages_for(0, pagelist->length);
2584 ceph_con_send(&session->s_con, reply);
2586 mutex_unlock(&session->s_mutex);
2588 mutex_lock(&mdsc->mutex);
2589 __wake_requests(mdsc, &session->s_waiting);
2590 mutex_unlock(&mdsc->mutex);
2592 up_read(&mdsc->snap_rwsem);
2593 return;
2595 fail:
2596 ceph_msg_put(reply);
2597 up_read(&mdsc->snap_rwsem);
2598 mutex_unlock(&session->s_mutex);
2599 fail_nomsg:
2600 ceph_pagelist_release(pagelist);
2601 kfree(pagelist);
2602 fail_nopagelist:
2603 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2604 return;
2609 * compare old and new mdsmaps, kicking requests
2610 * and closing out old connections as necessary
2612 * called under mdsc->mutex.
2614 static void check_new_map(struct ceph_mds_client *mdsc,
2615 struct ceph_mdsmap *newmap,
2616 struct ceph_mdsmap *oldmap)
2618 int i;
2619 int oldstate, newstate;
2620 struct ceph_mds_session *s;
2622 dout("check_new_map new %u old %u\n",
2623 newmap->m_epoch, oldmap->m_epoch);
2625 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2626 if (mdsc->sessions[i] == NULL)
2627 continue;
2628 s = mdsc->sessions[i];
2629 oldstate = ceph_mdsmap_get_state(oldmap, i);
2630 newstate = ceph_mdsmap_get_state(newmap, i);
2632 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2633 i, ceph_mds_state_name(oldstate),
2634 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2635 ceph_mds_state_name(newstate),
2636 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2637 session_state_name(s->s_state));
2639 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2640 ceph_mdsmap_get_addr(newmap, i),
2641 sizeof(struct ceph_entity_addr))) {
2642 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2643 /* the session never opened, just close it
2644 * out now */
2645 __wake_requests(mdsc, &s->s_waiting);
2646 __unregister_session(mdsc, s);
2647 } else {
2648 /* just close it */
2649 mutex_unlock(&mdsc->mutex);
2650 mutex_lock(&s->s_mutex);
2651 mutex_lock(&mdsc->mutex);
2652 ceph_con_close(&s->s_con);
2653 mutex_unlock(&s->s_mutex);
2654 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2657 /* kick any requests waiting on the recovering mds */
2658 kick_requests(mdsc, i);
2659 } else if (oldstate == newstate) {
2660 continue; /* nothing new with this mds */
2664 * send reconnect?
2666 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2667 newstate >= CEPH_MDS_STATE_RECONNECT) {
2668 mutex_unlock(&mdsc->mutex);
2669 send_mds_reconnect(mdsc, s);
2670 mutex_lock(&mdsc->mutex);
2674 * kick request on any mds that has gone active.
2676 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2677 newstate >= CEPH_MDS_STATE_ACTIVE) {
2678 if (oldstate != CEPH_MDS_STATE_CREATING &&
2679 oldstate != CEPH_MDS_STATE_STARTING)
2680 pr_info("mds%d recovery completed\n", s->s_mds);
2681 kick_requests(mdsc, i);
2682 ceph_kick_flushing_caps(mdsc, s);
2683 wake_up_session_caps(s, 1);
2687 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2688 s = mdsc->sessions[i];
2689 if (!s)
2690 continue;
2691 if (!ceph_mdsmap_is_laggy(newmap, i))
2692 continue;
2693 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2694 s->s_state == CEPH_MDS_SESSION_HUNG ||
2695 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2696 dout(" connecting to export targets of laggy mds%d\n",
2698 __open_export_target_sessions(mdsc, s);
2706 * leases
2710 * caller must hold session s_mutex, dentry->d_lock
2712 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2714 struct ceph_dentry_info *di = ceph_dentry(dentry);
2716 ceph_put_mds_session(di->lease_session);
2717 di->lease_session = NULL;
2720 static void handle_lease(struct ceph_mds_client *mdsc,
2721 struct ceph_mds_session *session,
2722 struct ceph_msg *msg)
2724 struct super_block *sb = mdsc->fsc->sb;
2725 struct inode *inode;
2726 struct dentry *parent, *dentry;
2727 struct ceph_dentry_info *di;
2728 int mds = session->s_mds;
2729 struct ceph_mds_lease *h = msg->front.iov_base;
2730 u32 seq;
2731 struct ceph_vino vino;
2732 struct qstr dname;
2733 int release = 0;
2735 dout("handle_lease from mds%d\n", mds);
2737 /* decode */
2738 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2739 goto bad;
2740 vino.ino = le64_to_cpu(h->ino);
2741 vino.snap = CEPH_NOSNAP;
2742 seq = le32_to_cpu(h->seq);
2743 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2744 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2745 if (dname.len != get_unaligned_le32(h+1))
2746 goto bad;
2748 mutex_lock(&session->s_mutex);
2749 session->s_seq++;
2751 /* lookup inode */
2752 inode = ceph_find_inode(sb, vino);
2753 dout("handle_lease %s, ino %llx %p %.*s\n",
2754 ceph_lease_op_name(h->action), vino.ino, inode,
2755 dname.len, dname.name);
2756 if (inode == NULL) {
2757 dout("handle_lease no inode %llx\n", vino.ino);
2758 goto release;
2761 /* dentry */
2762 parent = d_find_alias(inode);
2763 if (!parent) {
2764 dout("no parent dentry on inode %p\n", inode);
2765 WARN_ON(1);
2766 goto release; /* hrm... */
2768 dname.hash = full_name_hash(dname.name, dname.len);
2769 dentry = d_lookup(parent, &dname);
2770 dput(parent);
2771 if (!dentry)
2772 goto release;
2774 spin_lock(&dentry->d_lock);
2775 di = ceph_dentry(dentry);
2776 switch (h->action) {
2777 case CEPH_MDS_LEASE_REVOKE:
2778 if (di->lease_session == session) {
2779 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2780 h->seq = cpu_to_le32(di->lease_seq);
2781 __ceph_mdsc_drop_dentry_lease(dentry);
2783 release = 1;
2784 break;
2786 case CEPH_MDS_LEASE_RENEW:
2787 if (di->lease_session == session &&
2788 di->lease_gen == session->s_cap_gen &&
2789 di->lease_renew_from &&
2790 di->lease_renew_after == 0) {
2791 unsigned long duration =
2792 le32_to_cpu(h->duration_ms) * HZ / 1000;
2794 di->lease_seq = seq;
2795 dentry->d_time = di->lease_renew_from + duration;
2796 di->lease_renew_after = di->lease_renew_from +
2797 (duration >> 1);
2798 di->lease_renew_from = 0;
2800 break;
2802 spin_unlock(&dentry->d_lock);
2803 dput(dentry);
2805 if (!release)
2806 goto out;
2808 release:
2809 /* let's just reuse the same message */
2810 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2811 ceph_msg_get(msg);
2812 ceph_con_send(&session->s_con, msg);
2814 out:
2815 iput(inode);
2816 mutex_unlock(&session->s_mutex);
2817 return;
2819 bad:
2820 pr_err("corrupt lease message\n");
2821 ceph_msg_dump(msg);
2824 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2825 struct inode *inode,
2826 struct dentry *dentry, char action,
2827 u32 seq)
2829 struct ceph_msg *msg;
2830 struct ceph_mds_lease *lease;
2831 int len = sizeof(*lease) + sizeof(u32);
2832 int dnamelen = 0;
2834 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2835 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2836 dnamelen = dentry->d_name.len;
2837 len += dnamelen;
2839 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2840 if (!msg)
2841 return;
2842 lease = msg->front.iov_base;
2843 lease->action = action;
2844 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2845 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2846 lease->seq = cpu_to_le32(seq);
2847 put_unaligned_le32(dnamelen, lease + 1);
2848 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2851 * if this is a preemptive lease RELEASE, no need to
2852 * flush request stream, since the actual request will
2853 * soon follow.
2855 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2857 ceph_con_send(&session->s_con, msg);
2861 * Preemptively release a lease we expect to invalidate anyway.
2862 * Pass @inode always, @dentry is optional.
2864 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2865 struct dentry *dentry)
2867 struct ceph_dentry_info *di;
2868 struct ceph_mds_session *session;
2869 u32 seq;
2871 BUG_ON(inode == NULL);
2872 BUG_ON(dentry == NULL);
2874 /* is dentry lease valid? */
2875 spin_lock(&dentry->d_lock);
2876 di = ceph_dentry(dentry);
2877 if (!di || !di->lease_session ||
2878 di->lease_session->s_mds < 0 ||
2879 di->lease_gen != di->lease_session->s_cap_gen ||
2880 !time_before(jiffies, dentry->d_time)) {
2881 dout("lease_release inode %p dentry %p -- "
2882 "no lease\n",
2883 inode, dentry);
2884 spin_unlock(&dentry->d_lock);
2885 return;
2888 /* we do have a lease on this dentry; note mds and seq */
2889 session = ceph_get_mds_session(di->lease_session);
2890 seq = di->lease_seq;
2891 __ceph_mdsc_drop_dentry_lease(dentry);
2892 spin_unlock(&dentry->d_lock);
2894 dout("lease_release inode %p dentry %p to mds%d\n",
2895 inode, dentry, session->s_mds);
2896 ceph_mdsc_lease_send_msg(session, inode, dentry,
2897 CEPH_MDS_LEASE_RELEASE, seq);
2898 ceph_put_mds_session(session);
2902 * drop all leases (and dentry refs) in preparation for umount
2904 static void drop_leases(struct ceph_mds_client *mdsc)
2906 int i;
2908 dout("drop_leases\n");
2909 mutex_lock(&mdsc->mutex);
2910 for (i = 0; i < mdsc->max_sessions; i++) {
2911 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2912 if (!s)
2913 continue;
2914 mutex_unlock(&mdsc->mutex);
2915 mutex_lock(&s->s_mutex);
2916 mutex_unlock(&s->s_mutex);
2917 ceph_put_mds_session(s);
2918 mutex_lock(&mdsc->mutex);
2920 mutex_unlock(&mdsc->mutex);
2926 * delayed work -- periodically trim expired leases, renew caps with mds
2928 static void schedule_delayed(struct ceph_mds_client *mdsc)
2930 int delay = 5;
2931 unsigned hz = round_jiffies_relative(HZ * delay);
2932 schedule_delayed_work(&mdsc->delayed_work, hz);
2935 static void delayed_work(struct work_struct *work)
2937 int i;
2938 struct ceph_mds_client *mdsc =
2939 container_of(work, struct ceph_mds_client, delayed_work.work);
2940 int renew_interval;
2941 int renew_caps;
2943 dout("mdsc delayed_work\n");
2944 ceph_check_delayed_caps(mdsc);
2946 mutex_lock(&mdsc->mutex);
2947 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2948 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2949 mdsc->last_renew_caps);
2950 if (renew_caps)
2951 mdsc->last_renew_caps = jiffies;
2953 for (i = 0; i < mdsc->max_sessions; i++) {
2954 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2955 if (s == NULL)
2956 continue;
2957 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2958 dout("resending session close request for mds%d\n",
2959 s->s_mds);
2960 request_close_session(mdsc, s);
2961 ceph_put_mds_session(s);
2962 continue;
2964 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2965 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2966 s->s_state = CEPH_MDS_SESSION_HUNG;
2967 pr_info("mds%d hung\n", s->s_mds);
2970 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2971 /* this mds is failed or recovering, just wait */
2972 ceph_put_mds_session(s);
2973 continue;
2975 mutex_unlock(&mdsc->mutex);
2977 mutex_lock(&s->s_mutex);
2978 if (renew_caps)
2979 send_renew_caps(mdsc, s);
2980 else
2981 ceph_con_keepalive(&s->s_con);
2982 ceph_add_cap_releases(mdsc, s);
2983 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2984 s->s_state == CEPH_MDS_SESSION_HUNG)
2985 ceph_send_cap_releases(mdsc, s);
2986 mutex_unlock(&s->s_mutex);
2987 ceph_put_mds_session(s);
2989 mutex_lock(&mdsc->mutex);
2991 mutex_unlock(&mdsc->mutex);
2993 schedule_delayed(mdsc);
2996 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2999 struct ceph_mds_client *mdsc;
3001 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3002 if (!mdsc)
3003 return -ENOMEM;
3004 mdsc->fsc = fsc;
3005 fsc->mdsc = mdsc;
3006 mutex_init(&mdsc->mutex);
3007 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3008 if (mdsc->mdsmap == NULL)
3009 return -ENOMEM;
3011 init_completion(&mdsc->safe_umount_waiters);
3012 init_waitqueue_head(&mdsc->session_close_wq);
3013 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3014 mdsc->sessions = NULL;
3015 mdsc->max_sessions = 0;
3016 mdsc->stopping = 0;
3017 init_rwsem(&mdsc->snap_rwsem);
3018 mdsc->snap_realms = RB_ROOT;
3019 INIT_LIST_HEAD(&mdsc->snap_empty);
3020 spin_lock_init(&mdsc->snap_empty_lock);
3021 mdsc->last_tid = 0;
3022 mdsc->request_tree = RB_ROOT;
3023 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3024 mdsc->last_renew_caps = jiffies;
3025 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3026 spin_lock_init(&mdsc->cap_delay_lock);
3027 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3028 spin_lock_init(&mdsc->snap_flush_lock);
3029 mdsc->cap_flush_seq = 0;
3030 INIT_LIST_HEAD(&mdsc->cap_dirty);
3031 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3032 mdsc->num_cap_flushing = 0;
3033 spin_lock_init(&mdsc->cap_dirty_lock);
3034 init_waitqueue_head(&mdsc->cap_flushing_wq);
3035 spin_lock_init(&mdsc->dentry_lru_lock);
3036 INIT_LIST_HEAD(&mdsc->dentry_lru);
3038 ceph_caps_init(mdsc);
3039 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3041 return 0;
3045 * Wait for safe replies on open mds requests. If we time out, drop
3046 * all requests from the tree to avoid dangling dentry refs.
3048 static void wait_requests(struct ceph_mds_client *mdsc)
3050 struct ceph_mds_request *req;
3051 struct ceph_fs_client *fsc = mdsc->fsc;
3053 mutex_lock(&mdsc->mutex);
3054 if (__get_oldest_req(mdsc)) {
3055 mutex_unlock(&mdsc->mutex);
3057 dout("wait_requests waiting for requests\n");
3058 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3059 fsc->client->options->mount_timeout * HZ);
3061 /* tear down remaining requests */
3062 mutex_lock(&mdsc->mutex);
3063 while ((req = __get_oldest_req(mdsc))) {
3064 dout("wait_requests timed out on tid %llu\n",
3065 req->r_tid);
3066 __unregister_request(mdsc, req);
3069 mutex_unlock(&mdsc->mutex);
3070 dout("wait_requests done\n");
3074 * called before mount is ro, and before dentries are torn down.
3075 * (hmm, does this still race with new lookups?)
3077 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3079 dout("pre_umount\n");
3080 mdsc->stopping = 1;
3082 drop_leases(mdsc);
3083 ceph_flush_dirty_caps(mdsc);
3084 wait_requests(mdsc);
3087 * wait for reply handlers to drop their request refs and
3088 * their inode/dcache refs
3090 ceph_msgr_flush();
3094 * wait for all write mds requests to flush.
3096 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3098 struct ceph_mds_request *req = NULL, *nextreq;
3099 struct rb_node *n;
3101 mutex_lock(&mdsc->mutex);
3102 dout("wait_unsafe_requests want %lld\n", want_tid);
3103 restart:
3104 req = __get_oldest_req(mdsc);
3105 while (req && req->r_tid <= want_tid) {
3106 /* find next request */
3107 n = rb_next(&req->r_node);
3108 if (n)
3109 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3110 else
3111 nextreq = NULL;
3112 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3113 /* write op */
3114 ceph_mdsc_get_request(req);
3115 if (nextreq)
3116 ceph_mdsc_get_request(nextreq);
3117 mutex_unlock(&mdsc->mutex);
3118 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3119 req->r_tid, want_tid);
3120 wait_for_completion(&req->r_safe_completion);
3121 mutex_lock(&mdsc->mutex);
3122 ceph_mdsc_put_request(req);
3123 if (!nextreq)
3124 break; /* next dne before, so we're done! */
3125 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3126 /* next request was removed from tree */
3127 ceph_mdsc_put_request(nextreq);
3128 goto restart;
3130 ceph_mdsc_put_request(nextreq); /* won't go away */
3132 req = nextreq;
3134 mutex_unlock(&mdsc->mutex);
3135 dout("wait_unsafe_requests done\n");
3138 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3140 u64 want_tid, want_flush;
3142 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3143 return;
3145 dout("sync\n");
3146 mutex_lock(&mdsc->mutex);
3147 want_tid = mdsc->last_tid;
3148 want_flush = mdsc->cap_flush_seq;
3149 mutex_unlock(&mdsc->mutex);
3150 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3152 ceph_flush_dirty_caps(mdsc);
3154 wait_unsafe_requests(mdsc, want_tid);
3155 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3159 * true if all sessions are closed, or we force unmount
3161 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3163 int i, n = 0;
3165 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3166 return true;
3168 mutex_lock(&mdsc->mutex);
3169 for (i = 0; i < mdsc->max_sessions; i++)
3170 if (mdsc->sessions[i])
3171 n++;
3172 mutex_unlock(&mdsc->mutex);
3173 return n == 0;
3177 * called after sb is ro.
3179 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3181 struct ceph_mds_session *session;
3182 int i;
3183 struct ceph_fs_client *fsc = mdsc->fsc;
3184 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3186 dout("close_sessions\n");
3188 /* close sessions */
3189 mutex_lock(&mdsc->mutex);
3190 for (i = 0; i < mdsc->max_sessions; i++) {
3191 session = __ceph_lookup_mds_session(mdsc, i);
3192 if (!session)
3193 continue;
3194 mutex_unlock(&mdsc->mutex);
3195 mutex_lock(&session->s_mutex);
3196 __close_session(mdsc, session);
3197 mutex_unlock(&session->s_mutex);
3198 ceph_put_mds_session(session);
3199 mutex_lock(&mdsc->mutex);
3201 mutex_unlock(&mdsc->mutex);
3203 dout("waiting for sessions to close\n");
3204 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3205 timeout);
3207 /* tear down remaining sessions */
3208 mutex_lock(&mdsc->mutex);
3209 for (i = 0; i < mdsc->max_sessions; i++) {
3210 if (mdsc->sessions[i]) {
3211 session = get_session(mdsc->sessions[i]);
3212 __unregister_session(mdsc, session);
3213 mutex_unlock(&mdsc->mutex);
3214 mutex_lock(&session->s_mutex);
3215 remove_session_caps(session);
3216 mutex_unlock(&session->s_mutex);
3217 ceph_put_mds_session(session);
3218 mutex_lock(&mdsc->mutex);
3221 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3222 mutex_unlock(&mdsc->mutex);
3224 ceph_cleanup_empty_realms(mdsc);
3226 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3228 dout("stopped\n");
3231 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3233 dout("stop\n");
3234 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3235 if (mdsc->mdsmap)
3236 ceph_mdsmap_destroy(mdsc->mdsmap);
3237 kfree(mdsc->sessions);
3238 ceph_caps_finalize(mdsc);
3241 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3243 struct ceph_mds_client *mdsc = fsc->mdsc;
3245 dout("mdsc_destroy %p\n", mdsc);
3246 ceph_mdsc_stop(mdsc);
3248 /* flush out any connection work with references to us */
3249 ceph_msgr_flush();
3251 fsc->mdsc = NULL;
3252 kfree(mdsc);
3253 dout("mdsc_destroy %p done\n", mdsc);
3258 * handle mds map update.
3260 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3262 u32 epoch;
3263 u32 maplen;
3264 void *p = msg->front.iov_base;
3265 void *end = p + msg->front.iov_len;
3266 struct ceph_mdsmap *newmap, *oldmap;
3267 struct ceph_fsid fsid;
3268 int err = -EINVAL;
3270 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3271 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3272 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3273 return;
3274 epoch = ceph_decode_32(&p);
3275 maplen = ceph_decode_32(&p);
3276 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3278 /* do we need it? */
3279 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3280 mutex_lock(&mdsc->mutex);
3281 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3282 dout("handle_map epoch %u <= our %u\n",
3283 epoch, mdsc->mdsmap->m_epoch);
3284 mutex_unlock(&mdsc->mutex);
3285 return;
3288 newmap = ceph_mdsmap_decode(&p, end);
3289 if (IS_ERR(newmap)) {
3290 err = PTR_ERR(newmap);
3291 goto bad_unlock;
3294 /* swap into place */
3295 if (mdsc->mdsmap) {
3296 oldmap = mdsc->mdsmap;
3297 mdsc->mdsmap = newmap;
3298 check_new_map(mdsc, newmap, oldmap);
3299 ceph_mdsmap_destroy(oldmap);
3300 } else {
3301 mdsc->mdsmap = newmap; /* first mds map */
3303 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3305 __wake_requests(mdsc, &mdsc->waiting_for_map);
3307 mutex_unlock(&mdsc->mutex);
3308 schedule_delayed(mdsc);
3309 return;
3311 bad_unlock:
3312 mutex_unlock(&mdsc->mutex);
3313 bad:
3314 pr_err("error decoding mdsmap %d\n", err);
3315 return;
3318 static struct ceph_connection *con_get(struct ceph_connection *con)
3320 struct ceph_mds_session *s = con->private;
3322 if (get_session(s)) {
3323 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3324 return con;
3326 dout("mdsc con_get %p FAIL\n", s);
3327 return NULL;
3330 static void con_put(struct ceph_connection *con)
3332 struct ceph_mds_session *s = con->private;
3334 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3335 ceph_put_mds_session(s);
3339 * if the client is unresponsive for long enough, the mds will kill
3340 * the session entirely.
3342 static void peer_reset(struct ceph_connection *con)
3344 struct ceph_mds_session *s = con->private;
3345 struct ceph_mds_client *mdsc = s->s_mdsc;
3347 pr_warning("mds%d closed our session\n", s->s_mds);
3348 send_mds_reconnect(mdsc, s);
3351 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3353 struct ceph_mds_session *s = con->private;
3354 struct ceph_mds_client *mdsc = s->s_mdsc;
3355 int type = le16_to_cpu(msg->hdr.type);
3357 mutex_lock(&mdsc->mutex);
3358 if (__verify_registered_session(mdsc, s) < 0) {
3359 mutex_unlock(&mdsc->mutex);
3360 goto out;
3362 mutex_unlock(&mdsc->mutex);
3364 switch (type) {
3365 case CEPH_MSG_MDS_MAP:
3366 ceph_mdsc_handle_map(mdsc, msg);
3367 break;
3368 case CEPH_MSG_CLIENT_SESSION:
3369 handle_session(s, msg);
3370 break;
3371 case CEPH_MSG_CLIENT_REPLY:
3372 handle_reply(s, msg);
3373 break;
3374 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3375 handle_forward(mdsc, s, msg);
3376 break;
3377 case CEPH_MSG_CLIENT_CAPS:
3378 ceph_handle_caps(s, msg);
3379 break;
3380 case CEPH_MSG_CLIENT_SNAP:
3381 ceph_handle_snap(mdsc, s, msg);
3382 break;
3383 case CEPH_MSG_CLIENT_LEASE:
3384 handle_lease(mdsc, s, msg);
3385 break;
3387 default:
3388 pr_err("received unknown message type %d %s\n", type,
3389 ceph_msg_type_name(type));
3391 out:
3392 ceph_msg_put(msg);
3396 * authentication
3400 * Note: returned pointer is the address of a structure that's
3401 * managed separately. Caller must *not* attempt to free it.
3403 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3404 int *proto, int force_new)
3406 struct ceph_mds_session *s = con->private;
3407 struct ceph_mds_client *mdsc = s->s_mdsc;
3408 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3409 struct ceph_auth_handshake *auth = &s->s_auth;
3411 if (force_new && auth->authorizer) {
3412 if (ac->ops && ac->ops->destroy_authorizer)
3413 ac->ops->destroy_authorizer(ac, auth->authorizer);
3414 auth->authorizer = NULL;
3416 if (!auth->authorizer && ac->ops && ac->ops->create_authorizer) {
3417 int ret = ac->ops->create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3418 auth);
3419 if (ret)
3420 return ERR_PTR(ret);
3422 *proto = ac->protocol;
3424 return auth;
3428 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3430 struct ceph_mds_session *s = con->private;
3431 struct ceph_mds_client *mdsc = s->s_mdsc;
3432 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3434 return ac->ops->verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3437 static int invalidate_authorizer(struct ceph_connection *con)
3439 struct ceph_mds_session *s = con->private;
3440 struct ceph_mds_client *mdsc = s->s_mdsc;
3441 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3443 if (ac->ops->invalidate_authorizer)
3444 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3446 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3449 static const struct ceph_connection_operations mds_con_ops = {
3450 .get = con_get,
3451 .put = con_put,
3452 .dispatch = dispatch,
3453 .get_authorizer = get_authorizer,
3454 .verify_authorizer_reply = verify_authorizer_reply,
3455 .invalidate_authorizer = invalidate_authorizer,
3456 .peer_reset = peer_reset,
3459 /* eof */