net/fec: clean suspend/resume
[linux-2.6/libata-dev.git] / drivers / net / fec.c
blobb4afd7a6ee29adfcddfc64ad3c2664afff79a0ef
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/clk.h>
42 #include <linux/platform_device.h>
43 #include <linux/phy.h>
44 #include <linux/fec.h>
46 #include <asm/cacheflush.h>
48 #ifndef CONFIG_ARCH_MXC
49 #include <asm/coldfire.h>
50 #include <asm/mcfsim.h>
51 #endif
53 #include "fec.h"
55 #ifdef CONFIG_ARCH_MXC
56 #include <mach/hardware.h>
57 #define FEC_ALIGNMENT 0xf
58 #else
59 #define FEC_ALIGNMENT 0x3
60 #endif
63 * Define the fixed address of the FEC hardware.
65 #if defined(CONFIG_M5272)
67 static unsigned char fec_mac_default[] = {
68 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
72 * Some hardware gets it MAC address out of local flash memory.
73 * if this is non-zero then assume it is the address to get MAC from.
75 #if defined(CONFIG_NETtel)
76 #define FEC_FLASHMAC 0xf0006006
77 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
78 #define FEC_FLASHMAC 0xf0006000
79 #elif defined(CONFIG_CANCam)
80 #define FEC_FLASHMAC 0xf0020000
81 #elif defined (CONFIG_M5272C3)
82 #define FEC_FLASHMAC (0xffe04000 + 4)
83 #elif defined(CONFIG_MOD5272)
84 #define FEC_FLASHMAC 0xffc0406b
85 #else
86 #define FEC_FLASHMAC 0
87 #endif
88 #endif /* CONFIG_M5272 */
90 /* The number of Tx and Rx buffers. These are allocated from the page
91 * pool. The code may assume these are power of two, so it it best
92 * to keep them that size.
93 * We don't need to allocate pages for the transmitter. We just use
94 * the skbuffer directly.
96 #define FEC_ENET_RX_PAGES 8
97 #define FEC_ENET_RX_FRSIZE 2048
98 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
99 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
100 #define FEC_ENET_TX_FRSIZE 2048
101 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
102 #define TX_RING_SIZE 16 /* Must be power of two */
103 #define TX_RING_MOD_MASK 15 /* for this to work */
105 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
106 #error "FEC: descriptor ring size constants too large"
107 #endif
109 /* Interrupt events/masks. */
110 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
111 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
112 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
113 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
114 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
115 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
116 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
117 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
118 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
119 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
121 /* The FEC stores dest/src/type, data, and checksum for receive packets.
123 #define PKT_MAXBUF_SIZE 1518
124 #define PKT_MINBUF_SIZE 64
125 #define PKT_MAXBLR_SIZE 1520
129 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
130 * size bits. Other FEC hardware does not, so we need to take that into
131 * account when setting it.
133 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
134 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
135 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
136 #else
137 #define OPT_FRAME_SIZE 0
138 #endif
140 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
141 * tx_bd_base always point to the base of the buffer descriptors. The
142 * cur_rx and cur_tx point to the currently available buffer.
143 * The dirty_tx tracks the current buffer that is being sent by the
144 * controller. The cur_tx and dirty_tx are equal under both completely
145 * empty and completely full conditions. The empty/ready indicator in
146 * the buffer descriptor determines the actual condition.
148 struct fec_enet_private {
149 /* Hardware registers of the FEC device */
150 void __iomem *hwp;
152 struct net_device *netdev;
154 struct clk *clk;
156 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
157 unsigned char *tx_bounce[TX_RING_SIZE];
158 struct sk_buff* tx_skbuff[TX_RING_SIZE];
159 struct sk_buff* rx_skbuff[RX_RING_SIZE];
160 ushort skb_cur;
161 ushort skb_dirty;
163 /* CPM dual port RAM relative addresses */
164 dma_addr_t bd_dma;
165 /* Address of Rx and Tx buffers */
166 struct bufdesc *rx_bd_base;
167 struct bufdesc *tx_bd_base;
168 /* The next free ring entry */
169 struct bufdesc *cur_rx, *cur_tx;
170 /* The ring entries to be free()ed */
171 struct bufdesc *dirty_tx;
173 uint tx_full;
174 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
175 spinlock_t hw_lock;
177 struct platform_device *pdev;
179 int opened;
181 /* Phylib and MDIO interface */
182 struct mii_bus *mii_bus;
183 struct phy_device *phy_dev;
184 int mii_timeout;
185 uint phy_speed;
186 phy_interface_t phy_interface;
187 int index;
188 int link;
189 int full_duplex;
192 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
193 static void fec_enet_tx(struct net_device *dev);
194 static void fec_enet_rx(struct net_device *dev);
195 static int fec_enet_close(struct net_device *dev);
196 static void fec_restart(struct net_device *dev, int duplex);
197 static void fec_stop(struct net_device *dev);
199 /* FEC MII MMFR bits definition */
200 #define FEC_MMFR_ST (1 << 30)
201 #define FEC_MMFR_OP_READ (2 << 28)
202 #define FEC_MMFR_OP_WRITE (1 << 28)
203 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
204 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
205 #define FEC_MMFR_TA (2 << 16)
206 #define FEC_MMFR_DATA(v) (v & 0xffff)
208 #define FEC_MII_TIMEOUT 10000
210 /* Transmitter timeout */
211 #define TX_TIMEOUT (2 * HZ)
213 static netdev_tx_t
214 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
216 struct fec_enet_private *fep = netdev_priv(dev);
217 struct bufdesc *bdp;
218 void *bufaddr;
219 unsigned short status;
220 unsigned long flags;
222 if (!fep->link) {
223 /* Link is down or autonegotiation is in progress. */
224 return NETDEV_TX_BUSY;
227 spin_lock_irqsave(&fep->hw_lock, flags);
228 /* Fill in a Tx ring entry */
229 bdp = fep->cur_tx;
231 status = bdp->cbd_sc;
233 if (status & BD_ENET_TX_READY) {
234 /* Ooops. All transmit buffers are full. Bail out.
235 * This should not happen, since dev->tbusy should be set.
237 printk("%s: tx queue full!.\n", dev->name);
238 spin_unlock_irqrestore(&fep->hw_lock, flags);
239 return NETDEV_TX_BUSY;
242 /* Clear all of the status flags */
243 status &= ~BD_ENET_TX_STATS;
245 /* Set buffer length and buffer pointer */
246 bufaddr = skb->data;
247 bdp->cbd_datlen = skb->len;
250 * On some FEC implementations data must be aligned on
251 * 4-byte boundaries. Use bounce buffers to copy data
252 * and get it aligned. Ugh.
254 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
255 unsigned int index;
256 index = bdp - fep->tx_bd_base;
257 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
258 bufaddr = fep->tx_bounce[index];
261 /* Save skb pointer */
262 fep->tx_skbuff[fep->skb_cur] = skb;
264 dev->stats.tx_bytes += skb->len;
265 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
267 /* Push the data cache so the CPM does not get stale memory
268 * data.
270 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
271 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
273 /* Send it on its way. Tell FEC it's ready, interrupt when done,
274 * it's the last BD of the frame, and to put the CRC on the end.
276 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
277 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
278 bdp->cbd_sc = status;
280 /* Trigger transmission start */
281 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
283 /* If this was the last BD in the ring, start at the beginning again. */
284 if (status & BD_ENET_TX_WRAP)
285 bdp = fep->tx_bd_base;
286 else
287 bdp++;
289 if (bdp == fep->dirty_tx) {
290 fep->tx_full = 1;
291 netif_stop_queue(dev);
294 fep->cur_tx = bdp;
296 spin_unlock_irqrestore(&fep->hw_lock, flags);
298 return NETDEV_TX_OK;
301 static void
302 fec_timeout(struct net_device *dev)
304 struct fec_enet_private *fep = netdev_priv(dev);
306 dev->stats.tx_errors++;
308 fec_restart(dev, fep->full_duplex);
309 netif_wake_queue(dev);
312 static irqreturn_t
313 fec_enet_interrupt(int irq, void * dev_id)
315 struct net_device *dev = dev_id;
316 struct fec_enet_private *fep = netdev_priv(dev);
317 uint int_events;
318 irqreturn_t ret = IRQ_NONE;
320 do {
321 int_events = readl(fep->hwp + FEC_IEVENT);
322 writel(int_events, fep->hwp + FEC_IEVENT);
324 if (int_events & FEC_ENET_RXF) {
325 ret = IRQ_HANDLED;
326 fec_enet_rx(dev);
329 /* Transmit OK, or non-fatal error. Update the buffer
330 * descriptors. FEC handles all errors, we just discover
331 * them as part of the transmit process.
333 if (int_events & FEC_ENET_TXF) {
334 ret = IRQ_HANDLED;
335 fec_enet_tx(dev);
337 } while (int_events);
339 return ret;
343 static void
344 fec_enet_tx(struct net_device *dev)
346 struct fec_enet_private *fep;
347 struct bufdesc *bdp;
348 unsigned short status;
349 struct sk_buff *skb;
351 fep = netdev_priv(dev);
352 spin_lock(&fep->hw_lock);
353 bdp = fep->dirty_tx;
355 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
356 if (bdp == fep->cur_tx && fep->tx_full == 0)
357 break;
359 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
360 bdp->cbd_bufaddr = 0;
362 skb = fep->tx_skbuff[fep->skb_dirty];
363 /* Check for errors. */
364 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
365 BD_ENET_TX_RL | BD_ENET_TX_UN |
366 BD_ENET_TX_CSL)) {
367 dev->stats.tx_errors++;
368 if (status & BD_ENET_TX_HB) /* No heartbeat */
369 dev->stats.tx_heartbeat_errors++;
370 if (status & BD_ENET_TX_LC) /* Late collision */
371 dev->stats.tx_window_errors++;
372 if (status & BD_ENET_TX_RL) /* Retrans limit */
373 dev->stats.tx_aborted_errors++;
374 if (status & BD_ENET_TX_UN) /* Underrun */
375 dev->stats.tx_fifo_errors++;
376 if (status & BD_ENET_TX_CSL) /* Carrier lost */
377 dev->stats.tx_carrier_errors++;
378 } else {
379 dev->stats.tx_packets++;
382 if (status & BD_ENET_TX_READY)
383 printk("HEY! Enet xmit interrupt and TX_READY.\n");
385 /* Deferred means some collisions occurred during transmit,
386 * but we eventually sent the packet OK.
388 if (status & BD_ENET_TX_DEF)
389 dev->stats.collisions++;
391 /* Free the sk buffer associated with this last transmit */
392 dev_kfree_skb_any(skb);
393 fep->tx_skbuff[fep->skb_dirty] = NULL;
394 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
396 /* Update pointer to next buffer descriptor to be transmitted */
397 if (status & BD_ENET_TX_WRAP)
398 bdp = fep->tx_bd_base;
399 else
400 bdp++;
402 /* Since we have freed up a buffer, the ring is no longer full
404 if (fep->tx_full) {
405 fep->tx_full = 0;
406 if (netif_queue_stopped(dev))
407 netif_wake_queue(dev);
410 fep->dirty_tx = bdp;
411 spin_unlock(&fep->hw_lock);
415 /* During a receive, the cur_rx points to the current incoming buffer.
416 * When we update through the ring, if the next incoming buffer has
417 * not been given to the system, we just set the empty indicator,
418 * effectively tossing the packet.
420 static void
421 fec_enet_rx(struct net_device *dev)
423 struct fec_enet_private *fep = netdev_priv(dev);
424 struct bufdesc *bdp;
425 unsigned short status;
426 struct sk_buff *skb;
427 ushort pkt_len;
428 __u8 *data;
430 #ifdef CONFIG_M532x
431 flush_cache_all();
432 #endif
434 spin_lock(&fep->hw_lock);
436 /* First, grab all of the stats for the incoming packet.
437 * These get messed up if we get called due to a busy condition.
439 bdp = fep->cur_rx;
441 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
443 /* Since we have allocated space to hold a complete frame,
444 * the last indicator should be set.
446 if ((status & BD_ENET_RX_LAST) == 0)
447 printk("FEC ENET: rcv is not +last\n");
449 if (!fep->opened)
450 goto rx_processing_done;
452 /* Check for errors. */
453 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
454 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
455 dev->stats.rx_errors++;
456 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
457 /* Frame too long or too short. */
458 dev->stats.rx_length_errors++;
460 if (status & BD_ENET_RX_NO) /* Frame alignment */
461 dev->stats.rx_frame_errors++;
462 if (status & BD_ENET_RX_CR) /* CRC Error */
463 dev->stats.rx_crc_errors++;
464 if (status & BD_ENET_RX_OV) /* FIFO overrun */
465 dev->stats.rx_fifo_errors++;
468 /* Report late collisions as a frame error.
469 * On this error, the BD is closed, but we don't know what we
470 * have in the buffer. So, just drop this frame on the floor.
472 if (status & BD_ENET_RX_CL) {
473 dev->stats.rx_errors++;
474 dev->stats.rx_frame_errors++;
475 goto rx_processing_done;
478 /* Process the incoming frame. */
479 dev->stats.rx_packets++;
480 pkt_len = bdp->cbd_datlen;
481 dev->stats.rx_bytes += pkt_len;
482 data = (__u8*)__va(bdp->cbd_bufaddr);
484 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
485 DMA_FROM_DEVICE);
487 /* This does 16 byte alignment, exactly what we need.
488 * The packet length includes FCS, but we don't want to
489 * include that when passing upstream as it messes up
490 * bridging applications.
492 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
494 if (unlikely(!skb)) {
495 printk("%s: Memory squeeze, dropping packet.\n",
496 dev->name);
497 dev->stats.rx_dropped++;
498 } else {
499 skb_reserve(skb, NET_IP_ALIGN);
500 skb_put(skb, pkt_len - 4); /* Make room */
501 skb_copy_to_linear_data(skb, data, pkt_len - 4);
502 skb->protocol = eth_type_trans(skb, dev);
503 netif_rx(skb);
506 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
507 DMA_FROM_DEVICE);
508 rx_processing_done:
509 /* Clear the status flags for this buffer */
510 status &= ~BD_ENET_RX_STATS;
512 /* Mark the buffer empty */
513 status |= BD_ENET_RX_EMPTY;
514 bdp->cbd_sc = status;
516 /* Update BD pointer to next entry */
517 if (status & BD_ENET_RX_WRAP)
518 bdp = fep->rx_bd_base;
519 else
520 bdp++;
521 /* Doing this here will keep the FEC running while we process
522 * incoming frames. On a heavily loaded network, we should be
523 * able to keep up at the expense of system resources.
525 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
527 fep->cur_rx = bdp;
529 spin_unlock(&fep->hw_lock);
532 /* ------------------------------------------------------------------------- */
533 #ifdef CONFIG_M5272
534 static void __inline__ fec_get_mac(struct net_device *dev)
536 struct fec_enet_private *fep = netdev_priv(dev);
537 unsigned char *iap, tmpaddr[ETH_ALEN];
539 if (FEC_FLASHMAC) {
541 * Get MAC address from FLASH.
542 * If it is all 1's or 0's, use the default.
544 iap = (unsigned char *)FEC_FLASHMAC;
545 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
546 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
547 iap = fec_mac_default;
548 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
549 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
550 iap = fec_mac_default;
551 } else {
552 *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
553 *((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
554 iap = &tmpaddr[0];
557 memcpy(dev->dev_addr, iap, ETH_ALEN);
559 /* Adjust MAC if using default MAC address */
560 if (iap == fec_mac_default)
561 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
563 #endif
565 /* ------------------------------------------------------------------------- */
568 * Phy section
570 static void fec_enet_adjust_link(struct net_device *dev)
572 struct fec_enet_private *fep = netdev_priv(dev);
573 struct phy_device *phy_dev = fep->phy_dev;
574 unsigned long flags;
576 int status_change = 0;
578 spin_lock_irqsave(&fep->hw_lock, flags);
580 /* Prevent a state halted on mii error */
581 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
582 phy_dev->state = PHY_RESUMING;
583 goto spin_unlock;
586 /* Duplex link change */
587 if (phy_dev->link) {
588 if (fep->full_duplex != phy_dev->duplex) {
589 fec_restart(dev, phy_dev->duplex);
590 status_change = 1;
594 /* Link on or off change */
595 if (phy_dev->link != fep->link) {
596 fep->link = phy_dev->link;
597 if (phy_dev->link)
598 fec_restart(dev, phy_dev->duplex);
599 else
600 fec_stop(dev);
601 status_change = 1;
604 spin_unlock:
605 spin_unlock_irqrestore(&fep->hw_lock, flags);
607 if (status_change)
608 phy_print_status(phy_dev);
612 * NOTE: a MII transaction is during around 25 us, so polling it...
614 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
616 struct fec_enet_private *fep = bus->priv;
617 int timeout = FEC_MII_TIMEOUT;
619 fep->mii_timeout = 0;
621 /* clear MII end of transfer bit*/
622 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
624 /* start a read op */
625 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
626 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
627 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
629 /* wait for end of transfer */
630 while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) {
631 cpu_relax();
632 if (timeout-- < 0) {
633 fep->mii_timeout = 1;
634 printk(KERN_ERR "FEC: MDIO read timeout\n");
635 return -ETIMEDOUT;
639 /* return value */
640 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
643 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
644 u16 value)
646 struct fec_enet_private *fep = bus->priv;
647 int timeout = FEC_MII_TIMEOUT;
649 fep->mii_timeout = 0;
651 /* clear MII end of transfer bit*/
652 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
654 /* start a read op */
655 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
656 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
657 FEC_MMFR_TA | FEC_MMFR_DATA(value),
658 fep->hwp + FEC_MII_DATA);
660 /* wait for end of transfer */
661 while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) {
662 cpu_relax();
663 if (timeout-- < 0) {
664 fep->mii_timeout = 1;
665 printk(KERN_ERR "FEC: MDIO write timeout\n");
666 return -ETIMEDOUT;
670 return 0;
673 static int fec_enet_mdio_reset(struct mii_bus *bus)
675 return 0;
678 static int fec_enet_mii_probe(struct net_device *dev)
680 struct fec_enet_private *fep = netdev_priv(dev);
681 struct phy_device *phy_dev = NULL;
682 int ret;
684 fep->phy_dev = NULL;
686 /* find the first phy */
687 phy_dev = phy_find_first(fep->mii_bus);
688 if (!phy_dev) {
689 printk(KERN_ERR "%s: no PHY found\n", dev->name);
690 return -ENODEV;
693 /* attach the mac to the phy */
694 ret = phy_connect_direct(dev, phy_dev,
695 &fec_enet_adjust_link, 0,
696 PHY_INTERFACE_MODE_MII);
697 if (ret) {
698 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
699 return ret;
702 /* mask with MAC supported features */
703 phy_dev->supported &= PHY_BASIC_FEATURES;
704 phy_dev->advertising = phy_dev->supported;
706 fep->phy_dev = phy_dev;
707 fep->link = 0;
708 fep->full_duplex = 0;
710 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
711 "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
712 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
713 fep->phy_dev->irq);
715 return 0;
718 static int fec_enet_mii_init(struct platform_device *pdev)
720 struct net_device *dev = platform_get_drvdata(pdev);
721 struct fec_enet_private *fep = netdev_priv(dev);
722 int err = -ENXIO, i;
724 fep->mii_timeout = 0;
727 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
729 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
730 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
732 fep->mii_bus = mdiobus_alloc();
733 if (fep->mii_bus == NULL) {
734 err = -ENOMEM;
735 goto err_out;
738 fep->mii_bus->name = "fec_enet_mii_bus";
739 fep->mii_bus->read = fec_enet_mdio_read;
740 fep->mii_bus->write = fec_enet_mdio_write;
741 fep->mii_bus->reset = fec_enet_mdio_reset;
742 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id);
743 fep->mii_bus->priv = fep;
744 fep->mii_bus->parent = &pdev->dev;
746 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
747 if (!fep->mii_bus->irq) {
748 err = -ENOMEM;
749 goto err_out_free_mdiobus;
752 for (i = 0; i < PHY_MAX_ADDR; i++)
753 fep->mii_bus->irq[i] = PHY_POLL;
755 platform_set_drvdata(dev, fep->mii_bus);
757 if (mdiobus_register(fep->mii_bus))
758 goto err_out_free_mdio_irq;
760 return 0;
762 err_out_free_mdio_irq:
763 kfree(fep->mii_bus->irq);
764 err_out_free_mdiobus:
765 mdiobus_free(fep->mii_bus);
766 err_out:
767 return err;
770 static void fec_enet_mii_remove(struct fec_enet_private *fep)
772 if (fep->phy_dev)
773 phy_disconnect(fep->phy_dev);
774 mdiobus_unregister(fep->mii_bus);
775 kfree(fep->mii_bus->irq);
776 mdiobus_free(fep->mii_bus);
779 static int fec_enet_get_settings(struct net_device *dev,
780 struct ethtool_cmd *cmd)
782 struct fec_enet_private *fep = netdev_priv(dev);
783 struct phy_device *phydev = fep->phy_dev;
785 if (!phydev)
786 return -ENODEV;
788 return phy_ethtool_gset(phydev, cmd);
791 static int fec_enet_set_settings(struct net_device *dev,
792 struct ethtool_cmd *cmd)
794 struct fec_enet_private *fep = netdev_priv(dev);
795 struct phy_device *phydev = fep->phy_dev;
797 if (!phydev)
798 return -ENODEV;
800 return phy_ethtool_sset(phydev, cmd);
803 static void fec_enet_get_drvinfo(struct net_device *dev,
804 struct ethtool_drvinfo *info)
806 struct fec_enet_private *fep = netdev_priv(dev);
808 strcpy(info->driver, fep->pdev->dev.driver->name);
809 strcpy(info->version, "Revision: 1.0");
810 strcpy(info->bus_info, dev_name(&dev->dev));
813 static struct ethtool_ops fec_enet_ethtool_ops = {
814 .get_settings = fec_enet_get_settings,
815 .set_settings = fec_enet_set_settings,
816 .get_drvinfo = fec_enet_get_drvinfo,
817 .get_link = ethtool_op_get_link,
820 static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
822 struct fec_enet_private *fep = netdev_priv(dev);
823 struct phy_device *phydev = fep->phy_dev;
825 if (!netif_running(dev))
826 return -EINVAL;
828 if (!phydev)
829 return -ENODEV;
831 return phy_mii_ioctl(phydev, if_mii(rq), cmd);
834 static void fec_enet_free_buffers(struct net_device *dev)
836 struct fec_enet_private *fep = netdev_priv(dev);
837 int i;
838 struct sk_buff *skb;
839 struct bufdesc *bdp;
841 bdp = fep->rx_bd_base;
842 for (i = 0; i < RX_RING_SIZE; i++) {
843 skb = fep->rx_skbuff[i];
845 if (bdp->cbd_bufaddr)
846 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
847 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
848 if (skb)
849 dev_kfree_skb(skb);
850 bdp++;
853 bdp = fep->tx_bd_base;
854 for (i = 0; i < TX_RING_SIZE; i++)
855 kfree(fep->tx_bounce[i]);
858 static int fec_enet_alloc_buffers(struct net_device *dev)
860 struct fec_enet_private *fep = netdev_priv(dev);
861 int i;
862 struct sk_buff *skb;
863 struct bufdesc *bdp;
865 bdp = fep->rx_bd_base;
866 for (i = 0; i < RX_RING_SIZE; i++) {
867 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
868 if (!skb) {
869 fec_enet_free_buffers(dev);
870 return -ENOMEM;
872 fep->rx_skbuff[i] = skb;
874 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
875 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
876 bdp->cbd_sc = BD_ENET_RX_EMPTY;
877 bdp++;
880 /* Set the last buffer to wrap. */
881 bdp--;
882 bdp->cbd_sc |= BD_SC_WRAP;
884 bdp = fep->tx_bd_base;
885 for (i = 0; i < TX_RING_SIZE; i++) {
886 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
888 bdp->cbd_sc = 0;
889 bdp->cbd_bufaddr = 0;
890 bdp++;
893 /* Set the last buffer to wrap. */
894 bdp--;
895 bdp->cbd_sc |= BD_SC_WRAP;
897 return 0;
900 static int
901 fec_enet_open(struct net_device *dev)
903 struct fec_enet_private *fep = netdev_priv(dev);
904 int ret;
906 /* I should reset the ring buffers here, but I don't yet know
907 * a simple way to do that.
910 ret = fec_enet_alloc_buffers(dev);
911 if (ret)
912 return ret;
914 /* Probe and connect to PHY when open the interface */
915 ret = fec_enet_mii_probe(dev);
916 if (ret) {
917 fec_enet_free_buffers(dev);
918 return ret;
920 phy_start(fep->phy_dev);
921 netif_start_queue(dev);
922 fep->opened = 1;
923 return 0;
926 static int
927 fec_enet_close(struct net_device *dev)
929 struct fec_enet_private *fep = netdev_priv(dev);
931 /* Don't know what to do yet. */
932 fep->opened = 0;
933 netif_stop_queue(dev);
934 fec_stop(dev);
936 if (fep->phy_dev)
937 phy_disconnect(fep->phy_dev);
939 fec_enet_free_buffers(dev);
941 return 0;
944 /* Set or clear the multicast filter for this adaptor.
945 * Skeleton taken from sunlance driver.
946 * The CPM Ethernet implementation allows Multicast as well as individual
947 * MAC address filtering. Some of the drivers check to make sure it is
948 * a group multicast address, and discard those that are not. I guess I
949 * will do the same for now, but just remove the test if you want
950 * individual filtering as well (do the upper net layers want or support
951 * this kind of feature?).
954 #define HASH_BITS 6 /* #bits in hash */
955 #define CRC32_POLY 0xEDB88320
957 static void set_multicast_list(struct net_device *dev)
959 struct fec_enet_private *fep = netdev_priv(dev);
960 struct netdev_hw_addr *ha;
961 unsigned int i, bit, data, crc, tmp;
962 unsigned char hash;
964 if (dev->flags & IFF_PROMISC) {
965 tmp = readl(fep->hwp + FEC_R_CNTRL);
966 tmp |= 0x8;
967 writel(tmp, fep->hwp + FEC_R_CNTRL);
968 return;
971 tmp = readl(fep->hwp + FEC_R_CNTRL);
972 tmp &= ~0x8;
973 writel(tmp, fep->hwp + FEC_R_CNTRL);
975 if (dev->flags & IFF_ALLMULTI) {
976 /* Catch all multicast addresses, so set the
977 * filter to all 1's
979 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
980 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
982 return;
985 /* Clear filter and add the addresses in hash register
987 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
988 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
990 netdev_for_each_mc_addr(ha, dev) {
991 /* Only support group multicast for now */
992 if (!(ha->addr[0] & 1))
993 continue;
995 /* calculate crc32 value of mac address */
996 crc = 0xffffffff;
998 for (i = 0; i < dev->addr_len; i++) {
999 data = ha->addr[i];
1000 for (bit = 0; bit < 8; bit++, data >>= 1) {
1001 crc = (crc >> 1) ^
1002 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1006 /* only upper 6 bits (HASH_BITS) are used
1007 * which point to specific bit in he hash registers
1009 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1011 if (hash > 31) {
1012 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1013 tmp |= 1 << (hash - 32);
1014 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1015 } else {
1016 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1017 tmp |= 1 << hash;
1018 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1023 /* Set a MAC change in hardware. */
1024 static int
1025 fec_set_mac_address(struct net_device *dev, void *p)
1027 struct fec_enet_private *fep = netdev_priv(dev);
1028 struct sockaddr *addr = p;
1030 if (!is_valid_ether_addr(addr->sa_data))
1031 return -EADDRNOTAVAIL;
1033 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1035 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1036 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1037 fep->hwp + FEC_ADDR_LOW);
1038 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1039 fep->hwp + FEC_ADDR_HIGH);
1040 return 0;
1043 static const struct net_device_ops fec_netdev_ops = {
1044 .ndo_open = fec_enet_open,
1045 .ndo_stop = fec_enet_close,
1046 .ndo_start_xmit = fec_enet_start_xmit,
1047 .ndo_set_multicast_list = set_multicast_list,
1048 .ndo_change_mtu = eth_change_mtu,
1049 .ndo_validate_addr = eth_validate_addr,
1050 .ndo_tx_timeout = fec_timeout,
1051 .ndo_set_mac_address = fec_set_mac_address,
1052 .ndo_do_ioctl = fec_enet_ioctl,
1056 * XXX: We need to clean up on failure exits here.
1058 * index is only used in legacy code
1060 static int fec_enet_init(struct net_device *dev, int index)
1062 struct fec_enet_private *fep = netdev_priv(dev);
1063 struct bufdesc *cbd_base;
1064 struct bufdesc *bdp;
1065 int i;
1067 /* Allocate memory for buffer descriptors. */
1068 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1069 GFP_KERNEL);
1070 if (!cbd_base) {
1071 printk("FEC: allocate descriptor memory failed?\n");
1072 return -ENOMEM;
1075 spin_lock_init(&fep->hw_lock);
1077 fep->index = index;
1078 fep->hwp = (void __iomem *)dev->base_addr;
1079 fep->netdev = dev;
1081 /* Set the Ethernet address */
1082 #ifdef CONFIG_M5272
1083 fec_get_mac(dev);
1084 #else
1086 unsigned long l;
1087 l = readl(fep->hwp + FEC_ADDR_LOW);
1088 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1089 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1090 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1091 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1092 l = readl(fep->hwp + FEC_ADDR_HIGH);
1093 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1094 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1096 #endif
1098 /* Set receive and transmit descriptor base. */
1099 fep->rx_bd_base = cbd_base;
1100 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1102 /* The FEC Ethernet specific entries in the device structure */
1103 dev->watchdog_timeo = TX_TIMEOUT;
1104 dev->netdev_ops = &fec_netdev_ops;
1105 dev->ethtool_ops = &fec_enet_ethtool_ops;
1107 /* Initialize the receive buffer descriptors. */
1108 bdp = fep->rx_bd_base;
1109 for (i = 0; i < RX_RING_SIZE; i++) {
1111 /* Initialize the BD for every fragment in the page. */
1112 bdp->cbd_sc = 0;
1113 bdp++;
1116 /* Set the last buffer to wrap */
1117 bdp--;
1118 bdp->cbd_sc |= BD_SC_WRAP;
1120 /* ...and the same for transmit */
1121 bdp = fep->tx_bd_base;
1122 for (i = 0; i < TX_RING_SIZE; i++) {
1124 /* Initialize the BD for every fragment in the page. */
1125 bdp->cbd_sc = 0;
1126 bdp->cbd_bufaddr = 0;
1127 bdp++;
1130 /* Set the last buffer to wrap */
1131 bdp--;
1132 bdp->cbd_sc |= BD_SC_WRAP;
1134 fec_restart(dev, 0);
1136 return 0;
1139 /* This function is called to start or restart the FEC during a link
1140 * change. This only happens when switching between half and full
1141 * duplex.
1143 static void
1144 fec_restart(struct net_device *dev, int duplex)
1146 struct fec_enet_private *fep = netdev_priv(dev);
1147 int i;
1149 /* Whack a reset. We should wait for this. */
1150 writel(1, fep->hwp + FEC_ECNTRL);
1151 udelay(10);
1153 /* Clear any outstanding interrupt. */
1154 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1156 /* Reset all multicast. */
1157 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1158 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1159 #ifndef CONFIG_M5272
1160 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1161 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1162 #endif
1164 /* Set maximum receive buffer size. */
1165 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1167 /* Set receive and transmit descriptor base. */
1168 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
1169 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
1170 fep->hwp + FEC_X_DES_START);
1172 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1173 fep->cur_rx = fep->rx_bd_base;
1175 /* Reset SKB transmit buffers. */
1176 fep->skb_cur = fep->skb_dirty = 0;
1177 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1178 if (fep->tx_skbuff[i]) {
1179 dev_kfree_skb_any(fep->tx_skbuff[i]);
1180 fep->tx_skbuff[i] = NULL;
1184 /* Enable MII mode */
1185 if (duplex) {
1186 /* MII enable / FD enable */
1187 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1188 writel(0x04, fep->hwp + FEC_X_CNTRL);
1189 } else {
1190 /* MII enable / No Rcv on Xmit */
1191 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1192 writel(0x0, fep->hwp + FEC_X_CNTRL);
1194 fep->full_duplex = duplex;
1196 /* Set MII speed */
1197 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1199 #ifdef FEC_MIIGSK_ENR
1200 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
1201 /* disable the gasket and wait */
1202 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1203 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1204 udelay(1);
1206 /* configure the gasket: RMII, 50 MHz, no loopback, no echo */
1207 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
1209 /* re-enable the gasket */
1210 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1212 #endif
1214 /* And last, enable the transmit and receive processing */
1215 writel(2, fep->hwp + FEC_ECNTRL);
1216 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1218 /* Enable interrupts we wish to service */
1219 writel(FEC_ENET_TXF | FEC_ENET_RXF, fep->hwp + FEC_IMASK);
1222 static void
1223 fec_stop(struct net_device *dev)
1225 struct fec_enet_private *fep = netdev_priv(dev);
1227 /* We cannot expect a graceful transmit stop without link !!! */
1228 if (fep->link) {
1229 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1230 udelay(10);
1231 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1232 printk("fec_stop : Graceful transmit stop did not complete !\n");
1235 /* Whack a reset. We should wait for this. */
1236 writel(1, fep->hwp + FEC_ECNTRL);
1237 udelay(10);
1239 /* Clear outstanding MII command interrupts. */
1240 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1242 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1245 static int __devinit
1246 fec_probe(struct platform_device *pdev)
1248 struct fec_enet_private *fep;
1249 struct fec_platform_data *pdata;
1250 struct net_device *ndev;
1251 int i, irq, ret = 0;
1252 struct resource *r;
1254 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1255 if (!r)
1256 return -ENXIO;
1258 r = request_mem_region(r->start, resource_size(r), pdev->name);
1259 if (!r)
1260 return -EBUSY;
1262 /* Init network device */
1263 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1264 if (!ndev)
1265 return -ENOMEM;
1267 SET_NETDEV_DEV(ndev, &pdev->dev);
1269 /* setup board info structure */
1270 fep = netdev_priv(ndev);
1271 memset(fep, 0, sizeof(*fep));
1273 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
1274 fep->pdev = pdev;
1276 if (!ndev->base_addr) {
1277 ret = -ENOMEM;
1278 goto failed_ioremap;
1281 platform_set_drvdata(pdev, ndev);
1283 pdata = pdev->dev.platform_data;
1284 if (pdata)
1285 fep->phy_interface = pdata->phy;
1287 /* This device has up to three irqs on some platforms */
1288 for (i = 0; i < 3; i++) {
1289 irq = platform_get_irq(pdev, i);
1290 if (i && irq < 0)
1291 break;
1292 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1293 if (ret) {
1294 while (i >= 0) {
1295 irq = platform_get_irq(pdev, i);
1296 free_irq(irq, ndev);
1297 i--;
1299 goto failed_irq;
1303 fep->clk = clk_get(&pdev->dev, "fec_clk");
1304 if (IS_ERR(fep->clk)) {
1305 ret = PTR_ERR(fep->clk);
1306 goto failed_clk;
1308 clk_enable(fep->clk);
1310 ret = fec_enet_init(ndev, 0);
1311 if (ret)
1312 goto failed_init;
1314 ret = fec_enet_mii_init(pdev);
1315 if (ret)
1316 goto failed_mii_init;
1318 ret = register_netdev(ndev);
1319 if (ret)
1320 goto failed_register;
1322 return 0;
1324 failed_register:
1325 fec_enet_mii_remove(fep);
1326 failed_mii_init:
1327 failed_init:
1328 clk_disable(fep->clk);
1329 clk_put(fep->clk);
1330 failed_clk:
1331 for (i = 0; i < 3; i++) {
1332 irq = platform_get_irq(pdev, i);
1333 if (irq > 0)
1334 free_irq(irq, ndev);
1336 failed_irq:
1337 iounmap((void __iomem *)ndev->base_addr);
1338 failed_ioremap:
1339 free_netdev(ndev);
1341 return ret;
1344 static int __devexit
1345 fec_drv_remove(struct platform_device *pdev)
1347 struct net_device *ndev = platform_get_drvdata(pdev);
1348 struct fec_enet_private *fep = netdev_priv(ndev);
1350 platform_set_drvdata(pdev, NULL);
1352 fec_stop(ndev);
1353 fec_enet_mii_remove(fep);
1354 clk_disable(fep->clk);
1355 clk_put(fep->clk);
1356 iounmap((void __iomem *)ndev->base_addr);
1357 unregister_netdev(ndev);
1358 free_netdev(ndev);
1359 return 0;
1362 #ifdef CONFIG_PM
1363 static int
1364 fec_suspend(struct device *dev)
1366 struct net_device *ndev = dev_get_drvdata(dev);
1367 struct fec_enet_private *fep;
1369 if (ndev) {
1370 fep = netdev_priv(ndev);
1371 if (netif_running(ndev))
1372 fec_enet_close(ndev);
1373 clk_disable(fep->clk);
1375 return 0;
1378 static int
1379 fec_resume(struct device *dev)
1381 struct net_device *ndev = dev_get_drvdata(dev);
1382 struct fec_enet_private *fep;
1384 if (ndev) {
1385 fep = netdev_priv(ndev);
1386 clk_enable(fep->clk);
1387 if (netif_running(ndev))
1388 fec_enet_open(ndev);
1390 return 0;
1393 static const struct dev_pm_ops fec_pm_ops = {
1394 .suspend = fec_suspend,
1395 .resume = fec_resume,
1396 .freeze = fec_suspend,
1397 .thaw = fec_resume,
1398 .poweroff = fec_suspend,
1399 .restore = fec_resume,
1401 #endif
1403 static struct platform_driver fec_driver = {
1404 .driver = {
1405 .name = "fec",
1406 .owner = THIS_MODULE,
1407 #ifdef CONFIG_PM
1408 .pm = &fec_pm_ops,
1409 #endif
1411 .probe = fec_probe,
1412 .remove = __devexit_p(fec_drv_remove),
1415 static int __init
1416 fec_enet_module_init(void)
1418 printk(KERN_INFO "FEC Ethernet Driver\n");
1420 return platform_driver_register(&fec_driver);
1423 static void __exit
1424 fec_enet_cleanup(void)
1426 platform_driver_unregister(&fec_driver);
1429 module_exit(fec_enet_cleanup);
1430 module_init(fec_enet_module_init);
1432 MODULE_LICENSE("GPL");