thp: avoid dumping huge zero page
[linux-2.6/libata-dev.git] / drivers / edac / edac_mc.c
blobd1e9eb191f2bd77ff72614c0819885d31dcf473d
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
45 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
63 return count;
66 #ifdef CONFIG_EDAC_DEBUG
68 static void edac_mc_dump_channel(struct rank_info *chan)
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
76 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
78 char location[80];
80 edac_dimm_info_location(dimm, location, sizeof(location));
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
92 static void edac_mc_dump_csrow(struct csrow_info *csrow)
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
104 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
121 #endif /* CONFIG_EDAC_DEBUG */
124 * keep those in sync with the enum mem_type
126 const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
145 EXPORT_SYMBOL_GPL(edac_mem_types);
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
154 * If 'size' is a constant, the compiler will optimize this whole function
155 * down to either a no-op or the addition of a constant to the value of '*p'.
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
165 void *edac_align_ptr(void **p, unsigned size, int n_elems)
167 unsigned align, r;
168 void *ptr = *p;
170 *p += size * n_elems;
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
190 return (char *)ptr;
192 r = (unsigned long)p % align;
194 if (r == 0)
195 return (char *)ptr;
197 *p += align - r;
199 return (void *)(((unsigned long)ptr) + align - r);
202 static void _edac_mc_free(struct mem_ctl_info *mci)
204 int i, chn, row;
205 struct csrow_info *csr;
206 const unsigned int tot_dimms = mci->tot_dimms;
207 const unsigned int tot_channels = mci->num_cschannel;
208 const unsigned int tot_csrows = mci->nr_csrows;
210 if (mci->dimms) {
211 for (i = 0; i < tot_dimms; i++)
212 kfree(mci->dimms[i]);
213 kfree(mci->dimms);
215 if (mci->csrows) {
216 for (row = 0; row < tot_csrows; row++) {
217 csr = mci->csrows[row];
218 if (csr) {
219 if (csr->channels) {
220 for (chn = 0; chn < tot_channels; chn++)
221 kfree(csr->channels[chn]);
222 kfree(csr->channels);
224 kfree(csr);
227 kfree(mci->csrows);
229 kfree(mci);
233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
234 * @mc_num: Memory controller number
235 * @n_layers: Number of MC hierarchy layers
236 * layers: Describes each layer as seen by the Memory Controller
237 * @size_pvt: size of private storage needed
240 * Everything is kmalloc'ed as one big chunk - more efficient.
241 * Only can be used if all structures have the same lifetime - otherwise
242 * you have to allocate and initialize your own structures.
244 * Use edac_mc_free() to free mc structures allocated by this function.
246 * NOTE: drivers handle multi-rank memories in different ways: in some
247 * drivers, one multi-rank memory stick is mapped as one entry, while, in
248 * others, a single multi-rank memory stick would be mapped into several
249 * entries. Currently, this function will allocate multiple struct dimm_info
250 * on such scenarios, as grouping the multiple ranks require drivers change.
252 * Returns:
253 * On failure: NULL
254 * On success: struct mem_ctl_info pointer
256 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
257 unsigned n_layers,
258 struct edac_mc_layer *layers,
259 unsigned sz_pvt)
261 struct mem_ctl_info *mci;
262 struct edac_mc_layer *layer;
263 struct csrow_info *csr;
264 struct rank_info *chan;
265 struct dimm_info *dimm;
266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
267 unsigned pos[EDAC_MAX_LAYERS];
268 unsigned size, tot_dimms = 1, count = 1;
269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
270 void *pvt, *p, *ptr = NULL;
271 int i, j, row, chn, n, len, off;
272 bool per_rank = false;
274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
276 * Calculate the total amount of dimms and csrows/cschannels while
277 * in the old API emulation mode
279 for (i = 0; i < n_layers; i++) {
280 tot_dimms *= layers[i].size;
281 if (layers[i].is_virt_csrow)
282 tot_csrows *= layers[i].size;
283 else
284 tot_channels *= layers[i].size;
286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
287 per_rank = true;
290 /* Figure out the offsets of the various items from the start of an mc
291 * structure. We want the alignment of each item to be at least as
292 * stringent as what the compiler would provide if we could simply
293 * hardcode everything into a single struct.
295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
297 for (i = 0; i < n_layers; i++) {
298 count *= layers[i].size;
299 edac_dbg(4, "errcount layer %d size %d\n", i, count);
300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
302 tot_errcount += 2 * count;
305 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
306 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
307 size = ((unsigned long)pvt) + sz_pvt;
309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
310 size,
311 tot_dimms,
312 per_rank ? "ranks" : "dimms",
313 tot_csrows * tot_channels);
315 mci = kzalloc(size, GFP_KERNEL);
316 if (mci == NULL)
317 return NULL;
319 /* Adjust pointers so they point within the memory we just allocated
320 * rather than an imaginary chunk of memory located at address 0.
322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
323 for (i = 0; i < n_layers; i++) {
324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
329 /* setup index and various internal pointers */
330 mci->mc_idx = mc_num;
331 mci->tot_dimms = tot_dimms;
332 mci->pvt_info = pvt;
333 mci->n_layers = n_layers;
334 mci->layers = layer;
335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
336 mci->nr_csrows = tot_csrows;
337 mci->num_cschannel = tot_channels;
338 mci->mem_is_per_rank = per_rank;
341 * Alocate and fill the csrow/channels structs
343 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
344 if (!mci->csrows)
345 goto error;
346 for (row = 0; row < tot_csrows; row++) {
347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
348 if (!csr)
349 goto error;
350 mci->csrows[row] = csr;
351 csr->csrow_idx = row;
352 csr->mci = mci;
353 csr->nr_channels = tot_channels;
354 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
355 GFP_KERNEL);
356 if (!csr->channels)
357 goto error;
359 for (chn = 0; chn < tot_channels; chn++) {
360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
361 if (!chan)
362 goto error;
363 csr->channels[chn] = chan;
364 chan->chan_idx = chn;
365 chan->csrow = csr;
370 * Allocate and fill the dimm structs
372 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
373 if (!mci->dimms)
374 goto error;
376 memset(&pos, 0, sizeof(pos));
377 row = 0;
378 chn = 0;
379 for (i = 0; i < tot_dimms; i++) {
380 chan = mci->csrows[row]->channels[chn];
381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
382 if (off < 0 || off >= tot_dimms) {
383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
384 goto error;
387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
388 if (!dimm)
389 goto error;
390 mci->dimms[off] = dimm;
391 dimm->mci = mci;
394 * Copy DIMM location and initialize it.
396 len = sizeof(dimm->label);
397 p = dimm->label;
398 n = snprintf(p, len, "mc#%u", mc_num);
399 p += n;
400 len -= n;
401 for (j = 0; j < n_layers; j++) {
402 n = snprintf(p, len, "%s#%u",
403 edac_layer_name[layers[j].type],
404 pos[j]);
405 p += n;
406 len -= n;
407 dimm->location[j] = pos[j];
409 if (len <= 0)
410 break;
413 /* Link it to the csrows old API data */
414 chan->dimm = dimm;
415 dimm->csrow = row;
416 dimm->cschannel = chn;
418 /* Increment csrow location */
419 if (layers[0].is_virt_csrow) {
420 chn++;
421 if (chn == tot_channels) {
422 chn = 0;
423 row++;
425 } else {
426 row++;
427 if (row == tot_csrows) {
428 row = 0;
429 chn++;
433 /* Increment dimm location */
434 for (j = n_layers - 1; j >= 0; j--) {
435 pos[j]++;
436 if (pos[j] < layers[j].size)
437 break;
438 pos[j] = 0;
442 mci->op_state = OP_ALLOC;
444 /* at this point, the root kobj is valid, and in order to
445 * 'free' the object, then the function:
446 * edac_mc_unregister_sysfs_main_kobj() must be called
447 * which will perform kobj unregistration and the actual free
448 * will occur during the kobject callback operation
451 return mci;
453 error:
454 _edac_mc_free(mci);
456 return NULL;
458 EXPORT_SYMBOL_GPL(edac_mc_alloc);
461 * edac_mc_free
462 * 'Free' a previously allocated 'mci' structure
463 * @mci: pointer to a struct mem_ctl_info structure
465 void edac_mc_free(struct mem_ctl_info *mci)
467 edac_dbg(1, "\n");
469 /* If we're not yet registered with sysfs free only what was allocated
470 * in edac_mc_alloc().
472 if (!device_is_registered(&mci->dev)) {
473 _edac_mc_free(mci);
474 return;
477 /* the mci instance is freed here, when the sysfs object is dropped */
478 edac_unregister_sysfs(mci);
480 EXPORT_SYMBOL_GPL(edac_mc_free);
484 * find_mci_by_dev
486 * scan list of controllers looking for the one that manages
487 * the 'dev' device
488 * @dev: pointer to a struct device related with the MCI
490 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
492 struct mem_ctl_info *mci;
493 struct list_head *item;
495 edac_dbg(3, "\n");
497 list_for_each(item, &mc_devices) {
498 mci = list_entry(item, struct mem_ctl_info, link);
500 if (mci->pdev == dev)
501 return mci;
504 return NULL;
506 EXPORT_SYMBOL_GPL(find_mci_by_dev);
509 * handler for EDAC to check if NMI type handler has asserted interrupt
511 static int edac_mc_assert_error_check_and_clear(void)
513 int old_state;
515 if (edac_op_state == EDAC_OPSTATE_POLL)
516 return 1;
518 old_state = edac_err_assert;
519 edac_err_assert = 0;
521 return old_state;
525 * edac_mc_workq_function
526 * performs the operation scheduled by a workq request
528 static void edac_mc_workq_function(struct work_struct *work_req)
530 struct delayed_work *d_work = to_delayed_work(work_req);
531 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
533 mutex_lock(&mem_ctls_mutex);
535 /* if this control struct has movd to offline state, we are done */
536 if (mci->op_state == OP_OFFLINE) {
537 mutex_unlock(&mem_ctls_mutex);
538 return;
541 /* Only poll controllers that are running polled and have a check */
542 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
543 mci->edac_check(mci);
545 mutex_unlock(&mem_ctls_mutex);
547 /* Reschedule */
548 queue_delayed_work(edac_workqueue, &mci->work,
549 msecs_to_jiffies(edac_mc_get_poll_msec()));
553 * edac_mc_workq_setup
554 * initialize a workq item for this mci
555 * passing in the new delay period in msec
557 * locking model:
559 * called with the mem_ctls_mutex held
561 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
563 edac_dbg(0, "\n");
565 /* if this instance is not in the POLL state, then simply return */
566 if (mci->op_state != OP_RUNNING_POLL)
567 return;
569 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
570 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
574 * edac_mc_workq_teardown
575 * stop the workq processing on this mci
577 * locking model:
579 * called WITHOUT lock held
581 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 int status;
585 if (mci->op_state != OP_RUNNING_POLL)
586 return;
588 status = cancel_delayed_work(&mci->work);
589 if (status == 0) {
590 edac_dbg(0, "not canceled, flush the queue\n");
592 /* workq instance might be running, wait for it */
593 flush_workqueue(edac_workqueue);
598 * edac_mc_reset_delay_period(unsigned long value)
600 * user space has updated our poll period value, need to
601 * reset our workq delays
603 void edac_mc_reset_delay_period(int value)
605 struct mem_ctl_info *mci;
606 struct list_head *item;
608 mutex_lock(&mem_ctls_mutex);
610 list_for_each(item, &mc_devices) {
611 mci = list_entry(item, struct mem_ctl_info, link);
613 edac_mc_workq_setup(mci, (unsigned long) value);
616 mutex_unlock(&mem_ctls_mutex);
621 /* Return 0 on success, 1 on failure.
622 * Before calling this function, caller must
623 * assign a unique value to mci->mc_idx.
625 * locking model:
627 * called with the mem_ctls_mutex lock held
629 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 struct list_head *item, *insert_before;
632 struct mem_ctl_info *p;
634 insert_before = &mc_devices;
636 p = find_mci_by_dev(mci->pdev);
637 if (unlikely(p != NULL))
638 goto fail0;
640 list_for_each(item, &mc_devices) {
641 p = list_entry(item, struct mem_ctl_info, link);
643 if (p->mc_idx >= mci->mc_idx) {
644 if (unlikely(p->mc_idx == mci->mc_idx))
645 goto fail1;
647 insert_before = item;
648 break;
652 list_add_tail_rcu(&mci->link, insert_before);
653 atomic_inc(&edac_handlers);
654 return 0;
656 fail0:
657 edac_printk(KERN_WARNING, EDAC_MC,
658 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
659 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
660 return 1;
662 fail1:
663 edac_printk(KERN_WARNING, EDAC_MC,
664 "bug in low-level driver: attempt to assign\n"
665 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
666 return 1;
669 static void del_mc_from_global_list(struct mem_ctl_info *mci)
671 atomic_dec(&edac_handlers);
672 list_del_rcu(&mci->link);
674 /* these are for safe removal of devices from global list while
675 * NMI handlers may be traversing list
677 synchronize_rcu();
678 INIT_LIST_HEAD(&mci->link);
682 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
684 * If found, return a pointer to the structure.
685 * Else return NULL.
687 * Caller must hold mem_ctls_mutex.
689 struct mem_ctl_info *edac_mc_find(int idx)
691 struct list_head *item;
692 struct mem_ctl_info *mci;
694 list_for_each(item, &mc_devices) {
695 mci = list_entry(item, struct mem_ctl_info, link);
697 if (mci->mc_idx >= idx) {
698 if (mci->mc_idx == idx)
699 return mci;
701 break;
705 return NULL;
707 EXPORT_SYMBOL(edac_mc_find);
710 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
711 * create sysfs entries associated with mci structure
712 * @mci: pointer to the mci structure to be added to the list
714 * Return:
715 * 0 Success
716 * !0 Failure
719 /* FIXME - should a warning be printed if no error detection? correction? */
720 int edac_mc_add_mc(struct mem_ctl_info *mci)
722 edac_dbg(0, "\n");
724 #ifdef CONFIG_EDAC_DEBUG
725 if (edac_debug_level >= 3)
726 edac_mc_dump_mci(mci);
728 if (edac_debug_level >= 4) {
729 int i;
731 for (i = 0; i < mci->nr_csrows; i++) {
732 struct csrow_info *csrow = mci->csrows[i];
733 u32 nr_pages = 0;
734 int j;
736 for (j = 0; j < csrow->nr_channels; j++)
737 nr_pages += csrow->channels[j]->dimm->nr_pages;
738 if (!nr_pages)
739 continue;
740 edac_mc_dump_csrow(csrow);
741 for (j = 0; j < csrow->nr_channels; j++)
742 if (csrow->channels[j]->dimm->nr_pages)
743 edac_mc_dump_channel(csrow->channels[j]);
745 for (i = 0; i < mci->tot_dimms; i++)
746 if (mci->dimms[i]->nr_pages)
747 edac_mc_dump_dimm(mci->dimms[i], i);
749 #endif
750 mutex_lock(&mem_ctls_mutex);
752 if (add_mc_to_global_list(mci))
753 goto fail0;
755 /* set load time so that error rate can be tracked */
756 mci->start_time = jiffies;
758 if (edac_create_sysfs_mci_device(mci)) {
759 edac_mc_printk(mci, KERN_WARNING,
760 "failed to create sysfs device\n");
761 goto fail1;
764 /* If there IS a check routine, then we are running POLLED */
765 if (mci->edac_check != NULL) {
766 /* This instance is NOW RUNNING */
767 mci->op_state = OP_RUNNING_POLL;
769 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
770 } else {
771 mci->op_state = OP_RUNNING_INTERRUPT;
774 /* Report action taken */
775 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
776 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
778 mutex_unlock(&mem_ctls_mutex);
779 return 0;
781 fail1:
782 del_mc_from_global_list(mci);
784 fail0:
785 mutex_unlock(&mem_ctls_mutex);
786 return 1;
788 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
791 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
792 * remove mci structure from global list
793 * @pdev: Pointer to 'struct device' representing mci structure to remove.
795 * Return pointer to removed mci structure, or NULL if device not found.
797 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
799 struct mem_ctl_info *mci;
801 edac_dbg(0, "\n");
803 mutex_lock(&mem_ctls_mutex);
805 /* find the requested mci struct in the global list */
806 mci = find_mci_by_dev(dev);
807 if (mci == NULL) {
808 mutex_unlock(&mem_ctls_mutex);
809 return NULL;
812 del_mc_from_global_list(mci);
813 mutex_unlock(&mem_ctls_mutex);
815 /* flush workq processes */
816 edac_mc_workq_teardown(mci);
818 /* marking MCI offline */
819 mci->op_state = OP_OFFLINE;
821 /* remove from sysfs */
822 edac_remove_sysfs_mci_device(mci);
824 edac_printk(KERN_INFO, EDAC_MC,
825 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
826 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
828 return mci;
830 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
832 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
833 u32 size)
835 struct page *pg;
836 void *virt_addr;
837 unsigned long flags = 0;
839 edac_dbg(3, "\n");
841 /* ECC error page was not in our memory. Ignore it. */
842 if (!pfn_valid(page))
843 return;
845 /* Find the actual page structure then map it and fix */
846 pg = pfn_to_page(page);
848 if (PageHighMem(pg))
849 local_irq_save(flags);
851 virt_addr = kmap_atomic(pg);
853 /* Perform architecture specific atomic scrub operation */
854 atomic_scrub(virt_addr + offset, size);
856 /* Unmap and complete */
857 kunmap_atomic(virt_addr);
859 if (PageHighMem(pg))
860 local_irq_restore(flags);
863 /* FIXME - should return -1 */
864 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
866 struct csrow_info **csrows = mci->csrows;
867 int row, i, j, n;
869 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
870 row = -1;
872 for (i = 0; i < mci->nr_csrows; i++) {
873 struct csrow_info *csrow = csrows[i];
874 n = 0;
875 for (j = 0; j < csrow->nr_channels; j++) {
876 struct dimm_info *dimm = csrow->channels[j]->dimm;
877 n += dimm->nr_pages;
879 if (n == 0)
880 continue;
882 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
883 mci->mc_idx,
884 csrow->first_page, page, csrow->last_page,
885 csrow->page_mask);
887 if ((page >= csrow->first_page) &&
888 (page <= csrow->last_page) &&
889 ((page & csrow->page_mask) ==
890 (csrow->first_page & csrow->page_mask))) {
891 row = i;
892 break;
896 if (row == -1)
897 edac_mc_printk(mci, KERN_ERR,
898 "could not look up page error address %lx\n",
899 (unsigned long)page);
901 return row;
903 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
905 const char *edac_layer_name[] = {
906 [EDAC_MC_LAYER_BRANCH] = "branch",
907 [EDAC_MC_LAYER_CHANNEL] = "channel",
908 [EDAC_MC_LAYER_SLOT] = "slot",
909 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
911 EXPORT_SYMBOL_GPL(edac_layer_name);
913 static void edac_inc_ce_error(struct mem_ctl_info *mci,
914 bool enable_per_layer_report,
915 const int pos[EDAC_MAX_LAYERS],
916 const u16 count)
918 int i, index = 0;
920 mci->ce_mc += count;
922 if (!enable_per_layer_report) {
923 mci->ce_noinfo_count += count;
924 return;
927 for (i = 0; i < mci->n_layers; i++) {
928 if (pos[i] < 0)
929 break;
930 index += pos[i];
931 mci->ce_per_layer[i][index] += count;
933 if (i < mci->n_layers - 1)
934 index *= mci->layers[i + 1].size;
938 static void edac_inc_ue_error(struct mem_ctl_info *mci,
939 bool enable_per_layer_report,
940 const int pos[EDAC_MAX_LAYERS],
941 const u16 count)
943 int i, index = 0;
945 mci->ue_mc += count;
947 if (!enable_per_layer_report) {
948 mci->ce_noinfo_count += count;
949 return;
952 for (i = 0; i < mci->n_layers; i++) {
953 if (pos[i] < 0)
954 break;
955 index += pos[i];
956 mci->ue_per_layer[i][index] += count;
958 if (i < mci->n_layers - 1)
959 index *= mci->layers[i + 1].size;
963 static void edac_ce_error(struct mem_ctl_info *mci,
964 const u16 error_count,
965 const int pos[EDAC_MAX_LAYERS],
966 const char *msg,
967 const char *location,
968 const char *label,
969 const char *detail,
970 const char *other_detail,
971 const bool enable_per_layer_report,
972 const unsigned long page_frame_number,
973 const unsigned long offset_in_page,
974 long grain)
976 unsigned long remapped_page;
977 char *msg_aux = "";
979 if (*msg)
980 msg_aux = " ";
982 if (edac_mc_get_log_ce()) {
983 if (other_detail && *other_detail)
984 edac_mc_printk(mci, KERN_WARNING,
985 "%d CE %s%son %s (%s %s - %s)\n",
986 error_count, msg, msg_aux, label,
987 location, detail, other_detail);
988 else
989 edac_mc_printk(mci, KERN_WARNING,
990 "%d CE %s%son %s (%s %s)\n",
991 error_count, msg, msg_aux, label,
992 location, detail);
994 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
996 if (mci->scrub_mode & SCRUB_SW_SRC) {
998 * Some memory controllers (called MCs below) can remap
999 * memory so that it is still available at a different
1000 * address when PCI devices map into memory.
1001 * MC's that can't do this, lose the memory where PCI
1002 * devices are mapped. This mapping is MC-dependent
1003 * and so we call back into the MC driver for it to
1004 * map the MC page to a physical (CPU) page which can
1005 * then be mapped to a virtual page - which can then
1006 * be scrubbed.
1008 remapped_page = mci->ctl_page_to_phys ?
1009 mci->ctl_page_to_phys(mci, page_frame_number) :
1010 page_frame_number;
1012 edac_mc_scrub_block(remapped_page,
1013 offset_in_page, grain);
1017 static void edac_ue_error(struct mem_ctl_info *mci,
1018 const u16 error_count,
1019 const int pos[EDAC_MAX_LAYERS],
1020 const char *msg,
1021 const char *location,
1022 const char *label,
1023 const char *detail,
1024 const char *other_detail,
1025 const bool enable_per_layer_report)
1027 char *msg_aux = "";
1029 if (*msg)
1030 msg_aux = " ";
1032 if (edac_mc_get_log_ue()) {
1033 if (other_detail && *other_detail)
1034 edac_mc_printk(mci, KERN_WARNING,
1035 "%d UE %s%son %s (%s %s - %s)\n",
1036 error_count, msg, msg_aux, label,
1037 location, detail, other_detail);
1038 else
1039 edac_mc_printk(mci, KERN_WARNING,
1040 "%d UE %s%son %s (%s %s)\n",
1041 error_count, msg, msg_aux, label,
1042 location, detail);
1045 if (edac_mc_get_panic_on_ue()) {
1046 if (other_detail && *other_detail)
1047 panic("UE %s%son %s (%s%s - %s)\n",
1048 msg, msg_aux, label, location, detail, other_detail);
1049 else
1050 panic("UE %s%son %s (%s%s)\n",
1051 msg, msg_aux, label, location, detail);
1054 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1057 #define OTHER_LABEL " or "
1060 * edac_mc_handle_error - reports a memory event to userspace
1062 * @type: severity of the error (CE/UE/Fatal)
1063 * @mci: a struct mem_ctl_info pointer
1064 * @error_count: Number of errors of the same type
1065 * @page_frame_number: mem page where the error occurred
1066 * @offset_in_page: offset of the error inside the page
1067 * @syndrome: ECC syndrome
1068 * @top_layer: Memory layer[0] position
1069 * @mid_layer: Memory layer[1] position
1070 * @low_layer: Memory layer[2] position
1071 * @msg: Message meaningful to the end users that
1072 * explains the event
1073 * @other_detail: Technical details about the event that
1074 * may help hardware manufacturers and
1075 * EDAC developers to analyse the event
1077 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1078 struct mem_ctl_info *mci,
1079 const u16 error_count,
1080 const unsigned long page_frame_number,
1081 const unsigned long offset_in_page,
1082 const unsigned long syndrome,
1083 const int top_layer,
1084 const int mid_layer,
1085 const int low_layer,
1086 const char *msg,
1087 const char *other_detail)
1089 /* FIXME: too much for stack: move it to some pre-alocated area */
1090 char detail[80], location[80];
1091 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1092 char *p;
1093 int row = -1, chan = -1;
1094 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1095 int i;
1096 long grain;
1097 bool enable_per_layer_report = false;
1098 u8 grain_bits;
1100 edac_dbg(3, "MC%d\n", mci->mc_idx);
1103 * Check if the event report is consistent and if the memory
1104 * location is known. If it is known, enable_per_layer_report will be
1105 * true, the DIMM(s) label info will be filled and the per-layer
1106 * error counters will be incremented.
1108 for (i = 0; i < mci->n_layers; i++) {
1109 if (pos[i] >= (int)mci->layers[i].size) {
1111 edac_mc_printk(mci, KERN_ERR,
1112 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1113 edac_layer_name[mci->layers[i].type],
1114 pos[i], mci->layers[i].size);
1116 * Instead of just returning it, let's use what's
1117 * known about the error. The increment routines and
1118 * the DIMM filter logic will do the right thing by
1119 * pointing the likely damaged DIMMs.
1121 pos[i] = -1;
1123 if (pos[i] >= 0)
1124 enable_per_layer_report = true;
1128 * Get the dimm label/grain that applies to the match criteria.
1129 * As the error algorithm may not be able to point to just one memory
1130 * stick, the logic here will get all possible labels that could
1131 * pottentially be affected by the error.
1132 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1133 * to have only the MC channel and the MC dimm (also called "branch")
1134 * but the channel is not known, as the memory is arranged in pairs,
1135 * where each memory belongs to a separate channel within the same
1136 * branch.
1138 grain = 0;
1139 p = label;
1140 *p = '\0';
1142 for (i = 0; i < mci->tot_dimms; i++) {
1143 struct dimm_info *dimm = mci->dimms[i];
1145 if (top_layer >= 0 && top_layer != dimm->location[0])
1146 continue;
1147 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1148 continue;
1149 if (low_layer >= 0 && low_layer != dimm->location[2])
1150 continue;
1152 /* get the max grain, over the error match range */
1153 if (dimm->grain > grain)
1154 grain = dimm->grain;
1157 * If the error is memory-controller wide, there's no need to
1158 * seek for the affected DIMMs because the whole
1159 * channel/memory controller/... may be affected.
1160 * Also, don't show errors for empty DIMM slots.
1162 if (enable_per_layer_report && dimm->nr_pages) {
1163 if (p != label) {
1164 strcpy(p, OTHER_LABEL);
1165 p += strlen(OTHER_LABEL);
1167 strcpy(p, dimm->label);
1168 p += strlen(p);
1169 *p = '\0';
1172 * get csrow/channel of the DIMM, in order to allow
1173 * incrementing the compat API counters
1175 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1176 mci->mem_is_per_rank ? "rank" : "dimm",
1177 dimm->csrow, dimm->cschannel);
1178 if (row == -1)
1179 row = dimm->csrow;
1180 else if (row >= 0 && row != dimm->csrow)
1181 row = -2;
1183 if (chan == -1)
1184 chan = dimm->cschannel;
1185 else if (chan >= 0 && chan != dimm->cschannel)
1186 chan = -2;
1190 if (!enable_per_layer_report) {
1191 strcpy(label, "any memory");
1192 } else {
1193 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1194 if (p == label)
1195 strcpy(label, "unknown memory");
1196 if (type == HW_EVENT_ERR_CORRECTED) {
1197 if (row >= 0) {
1198 mci->csrows[row]->ce_count += error_count;
1199 if (chan >= 0)
1200 mci->csrows[row]->channels[chan]->ce_count += error_count;
1202 } else
1203 if (row >= 0)
1204 mci->csrows[row]->ue_count += error_count;
1207 /* Fill the RAM location data */
1208 p = location;
1210 for (i = 0; i < mci->n_layers; i++) {
1211 if (pos[i] < 0)
1212 continue;
1214 p += sprintf(p, "%s:%d ",
1215 edac_layer_name[mci->layers[i].type],
1216 pos[i]);
1218 if (p > location)
1219 *(p - 1) = '\0';
1221 /* Report the error via the trace interface */
1222 grain_bits = fls_long(grain) + 1;
1223 trace_mc_event(type, msg, label, error_count,
1224 mci->mc_idx, top_layer, mid_layer, low_layer,
1225 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1226 grain_bits, syndrome, other_detail);
1228 /* Memory type dependent details about the error */
1229 if (type == HW_EVENT_ERR_CORRECTED) {
1230 snprintf(detail, sizeof(detail),
1231 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1232 page_frame_number, offset_in_page,
1233 grain, syndrome);
1234 edac_ce_error(mci, error_count, pos, msg, location, label,
1235 detail, other_detail, enable_per_layer_report,
1236 page_frame_number, offset_in_page, grain);
1237 } else {
1238 snprintf(detail, sizeof(detail),
1239 "page:0x%lx offset:0x%lx grain:%ld",
1240 page_frame_number, offset_in_page, grain);
1242 edac_ue_error(mci, error_count, pos, msg, location, label,
1243 detail, other_detail, enable_per_layer_report);
1246 EXPORT_SYMBOL_GPL(edac_mc_handle_error);