2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node
);
63 EXPORT_PER_CPU_SYMBOL(numa_node
);
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
78 * Array of node states.
80 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
81 [N_POSSIBLE
] = NODE_MASK_ALL
,
82 [N_ONLINE
] = { { [0] = 1UL } },
84 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
86 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
88 [N_CPU
] = { { [0] = 1UL } },
91 EXPORT_SYMBOL(node_states
);
93 unsigned long totalram_pages __read_mostly
;
94 unsigned long totalreserve_pages __read_mostly
;
95 int percpu_pagelist_fraction
;
96 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
108 static gfp_t saved_gfp_mask
;
110 void pm_restore_gfp_mask(void)
112 WARN_ON(!mutex_is_locked(&pm_mutex
));
113 if (saved_gfp_mask
) {
114 gfp_allowed_mask
= saved_gfp_mask
;
119 void pm_restrict_gfp_mask(void)
121 WARN_ON(!mutex_is_locked(&pm_mutex
));
122 WARN_ON(saved_gfp_mask
);
123 saved_gfp_mask
= gfp_allowed_mask
;
124 gfp_allowed_mask
&= ~GFP_IOFS
;
126 #endif /* CONFIG_PM_SLEEP */
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly
;
132 static void __free_pages_ok(struct page
*page
, unsigned int order
);
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
145 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
146 #ifdef CONFIG_ZONE_DMA
149 #ifdef CONFIG_ZONE_DMA32
152 #ifdef CONFIG_HIGHMEM
158 EXPORT_SYMBOL(totalram_pages
);
160 static char * const zone_names
[MAX_NR_ZONES
] = {
161 #ifdef CONFIG_ZONE_DMA
164 #ifdef CONFIG_ZONE_DMA32
168 #ifdef CONFIG_HIGHMEM
174 int min_free_kbytes
= 1024;
176 static unsigned long __meminitdata nr_kernel_pages
;
177 static unsigned long __meminitdata nr_all_pages
;
178 static unsigned long __meminitdata dma_reserve
;
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
201 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
202 static int __meminitdata nr_nodemap_entries
;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
205 static unsigned long __initdata required_kernelcore
;
206 static unsigned long __initdata required_movablecore
;
207 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 EXPORT_SYMBOL(movable_zone
);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
215 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
216 int nr_online_nodes __read_mostly
= 1;
217 EXPORT_SYMBOL(nr_node_ids
);
218 EXPORT_SYMBOL(nr_online_nodes
);
221 int page_group_by_mobility_disabled __read_mostly
;
223 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
226 if (unlikely(page_group_by_mobility_disabled
))
227 migratetype
= MIGRATE_UNMOVABLE
;
229 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
230 PB_migrate
, PB_migrate_end
);
233 bool oom_killer_disabled __read_mostly
;
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
240 unsigned long pfn
= page_to_pfn(page
);
243 seq
= zone_span_seqbegin(zone
);
244 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
246 else if (pfn
< zone
->zone_start_pfn
)
248 } while (zone_span_seqretry(zone
, seq
));
253 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
255 if (!pfn_valid_within(page_to_pfn(page
)))
257 if (zone
!= page_zone(page
))
263 * Temporary debugging check for pages not lying within a given zone.
265 static int bad_range(struct zone
*zone
, struct page
*page
)
267 if (page_outside_zone_boundaries(zone
, page
))
269 if (!page_is_consistent(zone
, page
))
275 static inline int bad_range(struct zone
*zone
, struct page
*page
)
281 static void bad_page(struct page
*page
)
283 static unsigned long resume
;
284 static unsigned long nr_shown
;
285 static unsigned long nr_unshown
;
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page
)) {
289 reset_page_mapcount(page
); /* remove PageBuddy */
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
297 if (nr_shown
== 60) {
298 if (time_before(jiffies
, resume
)) {
304 "BUG: Bad page state: %lu messages suppressed\n",
311 resume
= jiffies
+ 60 * HZ
;
313 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
314 current
->comm
, page_to_pfn(page
));
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 reset_page_mapcount(page
); /* remove PageBuddy */
321 add_taint(TAINT_BAD_PAGE
);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page
*page
)
341 __free_pages_ok(page
, compound_order(page
));
344 void prep_compound_page(struct page
*page
, unsigned long order
)
347 int nr_pages
= 1 << order
;
349 set_compound_page_dtor(page
, free_compound_page
);
350 set_compound_order(page
, order
);
352 for (i
= 1; i
< nr_pages
; i
++) {
353 struct page
*p
= page
+ i
;
356 p
->first_page
= page
;
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page
*page
, unsigned long order
)
364 int nr_pages
= 1 << order
;
367 if (unlikely(compound_order(page
) != order
) ||
368 unlikely(!PageHead(page
))) {
373 __ClearPageHead(page
);
375 for (i
= 1; i
< nr_pages
; i
++) {
376 struct page
*p
= page
+ i
;
378 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
388 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
397 for (i
= 0; i
< (1 << order
); i
++)
398 clear_highpage(page
+ i
);
401 static inline void set_page_order(struct page
*page
, int order
)
403 set_page_private(page
, order
);
404 __SetPageBuddy(page
);
407 static inline void rmv_page_order(struct page
*page
)
409 __ClearPageBuddy(page
);
410 set_page_private(page
, 0);
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
420 * For example, if the starting buddy (buddy2) is #8 its order
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
433 return page_idx
^ (1 << order
);
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
439 * (a) the buddy is not in a hole &&
440 * (b) the buddy is in the buddy system &&
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
447 * For recording page's order, we use page_private(page).
449 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
452 if (!pfn_valid_within(page_to_pfn(buddy
)))
455 if (page_zone_id(page
) != page_zone_id(buddy
))
458 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
459 VM_BUG_ON(page_count(buddy
) != 0);
466 * Freeing function for a buddy system allocator.
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479 * order is recorded in page_private(page) field.
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
489 static inline void __free_one_page(struct page
*page
,
490 struct zone
*zone
, unsigned int order
,
493 unsigned long page_idx
;
494 unsigned long combined_idx
;
495 unsigned long uninitialized_var(buddy_idx
);
498 if (unlikely(PageCompound(page
)))
499 if (unlikely(destroy_compound_page(page
, order
)))
502 VM_BUG_ON(migratetype
== -1);
504 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
506 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
507 VM_BUG_ON(bad_range(zone
, page
));
509 while (order
< MAX_ORDER
-1) {
510 buddy_idx
= __find_buddy_index(page_idx
, order
);
511 buddy
= page
+ (buddy_idx
- page_idx
);
512 if (!page_is_buddy(page
, buddy
, order
))
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy
->lru
);
517 zone
->free_area
[order
].nr_free
--;
518 rmv_page_order(buddy
);
519 combined_idx
= buddy_idx
& page_idx
;
520 page
= page
+ (combined_idx
- page_idx
);
521 page_idx
= combined_idx
;
524 set_page_order(page
, order
);
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
534 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
535 struct page
*higher_page
, *higher_buddy
;
536 combined_idx
= buddy_idx
& page_idx
;
537 higher_page
= page
+ (combined_idx
- page_idx
);
538 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
539 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
540 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
541 list_add_tail(&page
->lru
,
542 &zone
->free_area
[order
].free_list
[migratetype
]);
547 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
549 zone
->free_area
[order
].nr_free
++;
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
557 static inline void free_page_mlock(struct page
*page
)
559 __dec_zone_page_state(page
, NR_MLOCK
);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
563 static inline int free_pages_check(struct page
*page
)
565 if (unlikely(page_mapcount(page
) |
566 (page
->mapping
!= NULL
) |
567 (atomic_read(&page
->_count
) != 0) |
568 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
572 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
573 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
578 * Frees a number of pages from the PCP lists
579 * Assumes all pages on list are in same zone, and of same order.
580 * count is the number of pages to free.
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
588 static void free_pcppages_bulk(struct zone
*zone
, int count
,
589 struct per_cpu_pages
*pcp
)
595 spin_lock(&zone
->lock
);
596 zone
->all_unreclaimable
= 0;
597 zone
->pages_scanned
= 0;
601 struct list_head
*list
;
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
612 if (++migratetype
== MIGRATE_PCPTYPES
)
614 list
= &pcp
->lists
[migratetype
];
615 } while (list_empty(list
));
618 page
= list_entry(list
->prev
, struct page
, lru
);
619 /* must delete as __free_one_page list manipulates */
620 list_del(&page
->lru
);
621 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 __free_one_page(page
, zone
, 0, page_private(page
));
623 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
624 } while (--to_free
&& --batch_free
&& !list_empty(list
));
626 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
627 spin_unlock(&zone
->lock
);
630 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
633 spin_lock(&zone
->lock
);
634 zone
->all_unreclaimable
= 0;
635 zone
->pages_scanned
= 0;
637 __free_one_page(page
, zone
, order
, migratetype
);
638 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
639 spin_unlock(&zone
->lock
);
642 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
647 trace_mm_page_free_direct(page
, order
);
648 kmemcheck_free_shadow(page
, order
);
651 page
->mapping
= NULL
;
652 for (i
= 0; i
< (1 << order
); i
++)
653 bad
+= free_pages_check(page
+ i
);
657 if (!PageHighMem(page
)) {
658 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
659 debug_check_no_obj_freed(page_address(page
),
662 arch_free_page(page
, order
);
663 kernel_map_pages(page
, 1 << order
, 0);
668 static void __free_pages_ok(struct page
*page
, unsigned int order
)
671 int wasMlocked
= __TestClearPageMlocked(page
);
673 if (!free_pages_prepare(page
, order
))
676 local_irq_save(flags
);
677 if (unlikely(wasMlocked
))
678 free_page_mlock(page
);
679 __count_vm_events(PGFREE
, 1 << order
);
680 free_one_page(page_zone(page
), page
, order
,
681 get_pageblock_migratetype(page
));
682 local_irq_restore(flags
);
686 * permit the bootmem allocator to evade page validation on high-order frees
688 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
691 __ClearPageReserved(page
);
692 set_page_count(page
, 0);
693 set_page_refcounted(page
);
699 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
700 struct page
*p
= &page
[loop
];
702 if (loop
+ 1 < BITS_PER_LONG
)
704 __ClearPageReserved(p
);
705 set_page_count(p
, 0);
708 set_page_refcounted(page
);
709 __free_pages(page
, order
);
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
728 static inline void expand(struct zone
*zone
, struct page
*page
,
729 int low
, int high
, struct free_area
*area
,
732 unsigned long size
= 1 << high
;
738 VM_BUG_ON(bad_range(zone
, &page
[size
]));
739 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
741 set_page_order(&page
[size
], high
);
746 * This page is about to be returned from the page allocator
748 static inline int check_new_page(struct page
*page
)
750 if (unlikely(page_mapcount(page
) |
751 (page
->mapping
!= NULL
) |
752 (atomic_read(&page
->_count
) != 0) |
753 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
760 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
764 for (i
= 0; i
< (1 << order
); i
++) {
765 struct page
*p
= page
+ i
;
766 if (unlikely(check_new_page(p
)))
770 set_page_private(page
, 0);
771 set_page_refcounted(page
);
773 arch_alloc_page(page
, order
);
774 kernel_map_pages(page
, 1 << order
, 1);
776 if (gfp_flags
& __GFP_ZERO
)
777 prep_zero_page(page
, order
, gfp_flags
);
779 if (order
&& (gfp_flags
& __GFP_COMP
))
780 prep_compound_page(page
, order
);
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
790 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
793 unsigned int current_order
;
794 struct free_area
* area
;
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
799 area
= &(zone
->free_area
[current_order
]);
800 if (list_empty(&area
->free_list
[migratetype
]))
803 page
= list_entry(area
->free_list
[migratetype
].next
,
805 list_del(&page
->lru
);
806 rmv_page_order(page
);
808 expand(zone
, page
, order
, current_order
, area
, migratetype
);
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
820 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
821 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
822 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
823 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
824 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
832 static int move_freepages(struct zone
*zone
,
833 struct page
*start_page
, struct page
*end_page
,
840 #ifndef CONFIG_HOLES_IN_ZONE
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
848 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
851 for (page
= start_page
; page
<= end_page
;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
855 if (!pfn_valid_within(page_to_pfn(page
))) {
860 if (!PageBuddy(page
)) {
865 order
= page_order(page
);
866 list_del(&page
->lru
);
868 &zone
->free_area
[order
].free_list
[migratetype
]);
870 pages_moved
+= 1 << order
;
876 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
879 unsigned long start_pfn
, end_pfn
;
880 struct page
*start_page
, *end_page
;
882 start_pfn
= page_to_pfn(page
);
883 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
884 start_page
= pfn_to_page(start_pfn
);
885 end_page
= start_page
+ pageblock_nr_pages
- 1;
886 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
888 /* Do not cross zone boundaries */
889 if (start_pfn
< zone
->zone_start_pfn
)
891 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
894 return move_freepages(zone
, start_page
, end_page
, migratetype
);
897 static void change_pageblock_range(struct page
*pageblock_page
,
898 int start_order
, int migratetype
)
900 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
902 while (nr_pageblocks
--) {
903 set_pageblock_migratetype(pageblock_page
, migratetype
);
904 pageblock_page
+= pageblock_nr_pages
;
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page
*
910 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
912 struct free_area
* area
;
917 /* Find the largest possible block of pages in the other list */
918 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
920 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
921 migratetype
= fallbacks
[start_migratetype
][i
];
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype
== MIGRATE_RESERVE
)
927 area
= &(zone
->free_area
[current_order
]);
928 if (list_empty(&area
->free_list
[migratetype
]))
931 page
= list_entry(area
->free_list
[migratetype
].next
,
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
941 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
942 start_migratetype
== MIGRATE_RECLAIMABLE
||
943 page_group_by_mobility_disabled
) {
945 pages
= move_freepages_block(zone
, page
,
948 /* Claim the whole block if over half of it is free */
949 if (pages
>= (1 << (pageblock_order
-1)) ||
950 page_group_by_mobility_disabled
)
951 set_pageblock_migratetype(page
,
954 migratetype
= start_migratetype
;
957 /* Remove the page from the freelists */
958 list_del(&page
->lru
);
959 rmv_page_order(page
);
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order
>= pageblock_order
)
963 change_pageblock_range(page
, current_order
,
966 expand(zone
, page
, order
, current_order
, area
, migratetype
);
968 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
969 start_migratetype
, migratetype
);
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
982 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
988 page
= __rmqueue_smallest(zone
, order
, migratetype
);
990 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
991 page
= __rmqueue_fallback(zone
, order
, migratetype
);
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
999 migratetype
= MIGRATE_RESERVE
;
1004 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1013 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1014 unsigned long count
, struct list_head
*list
,
1015 int migratetype
, int cold
)
1019 spin_lock(&zone
->lock
);
1020 for (i
= 0; i
< count
; ++i
) {
1021 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1022 if (unlikely(page
== NULL
))
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1034 if (likely(cold
== 0))
1035 list_add(&page
->lru
, list
);
1037 list_add_tail(&page
->lru
, list
);
1038 set_page_private(page
, migratetype
);
1041 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1042 spin_unlock(&zone
->lock
);
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1055 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1057 unsigned long flags
;
1060 local_irq_save(flags
);
1061 if (pcp
->count
>= pcp
->batch
)
1062 to_drain
= pcp
->batch
;
1064 to_drain
= pcp
->count
;
1065 free_pcppages_bulk(zone
, to_drain
, pcp
);
1066 pcp
->count
-= to_drain
;
1067 local_irq_restore(flags
);
1072 * Drain pages of the indicated processor.
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1078 static void drain_pages(unsigned int cpu
)
1080 unsigned long flags
;
1083 for_each_populated_zone(zone
) {
1084 struct per_cpu_pageset
*pset
;
1085 struct per_cpu_pages
*pcp
;
1087 local_irq_save(flags
);
1088 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1092 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1095 local_irq_restore(flags
);
1100 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1102 void drain_local_pages(void *arg
)
1104 drain_pages(smp_processor_id());
1108 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1110 void drain_all_pages(void)
1112 on_each_cpu(drain_local_pages
, NULL
, 1);
1115 #ifdef CONFIG_HIBERNATION
1117 void mark_free_pages(struct zone
*zone
)
1119 unsigned long pfn
, max_zone_pfn
;
1120 unsigned long flags
;
1122 struct list_head
*curr
;
1124 if (!zone
->spanned_pages
)
1127 spin_lock_irqsave(&zone
->lock
, flags
);
1129 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1130 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1131 if (pfn_valid(pfn
)) {
1132 struct page
*page
= pfn_to_page(pfn
);
1134 if (!swsusp_page_is_forbidden(page
))
1135 swsusp_unset_page_free(page
);
1138 for_each_migratetype_order(order
, t
) {
1139 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1142 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1143 for (i
= 0; i
< (1UL << order
); i
++)
1144 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1147 spin_unlock_irqrestore(&zone
->lock
, flags
);
1149 #endif /* CONFIG_PM */
1152 * Free a 0-order page
1153 * cold == 1 ? free a cold page : free a hot page
1155 void free_hot_cold_page(struct page
*page
, int cold
)
1157 struct zone
*zone
= page_zone(page
);
1158 struct per_cpu_pages
*pcp
;
1159 unsigned long flags
;
1161 int wasMlocked
= __TestClearPageMlocked(page
);
1163 if (!free_pages_prepare(page
, 0))
1166 migratetype
= get_pageblock_migratetype(page
);
1167 set_page_private(page
, migratetype
);
1168 local_irq_save(flags
);
1169 if (unlikely(wasMlocked
))
1170 free_page_mlock(page
);
1171 __count_vm_event(PGFREE
);
1174 * We only track unmovable, reclaimable and movable on pcp lists.
1175 * Free ISOLATE pages back to the allocator because they are being
1176 * offlined but treat RESERVE as movable pages so we can get those
1177 * areas back if necessary. Otherwise, we may have to free
1178 * excessively into the page allocator
1180 if (migratetype
>= MIGRATE_PCPTYPES
) {
1181 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1182 free_one_page(zone
, page
, 0, migratetype
);
1185 migratetype
= MIGRATE_MOVABLE
;
1188 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1190 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1192 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1194 if (pcp
->count
>= pcp
->high
) {
1195 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1196 pcp
->count
-= pcp
->batch
;
1200 local_irq_restore(flags
);
1204 * split_page takes a non-compound higher-order page, and splits it into
1205 * n (1<<order) sub-pages: page[0..n]
1206 * Each sub-page must be freed individually.
1208 * Note: this is probably too low level an operation for use in drivers.
1209 * Please consult with lkml before using this in your driver.
1211 void split_page(struct page
*page
, unsigned int order
)
1215 VM_BUG_ON(PageCompound(page
));
1216 VM_BUG_ON(!page_count(page
));
1218 #ifdef CONFIG_KMEMCHECK
1220 * Split shadow pages too, because free(page[0]) would
1221 * otherwise free the whole shadow.
1223 if (kmemcheck_page_is_tracked(page
))
1224 split_page(virt_to_page(page
[0].shadow
), order
);
1227 for (i
= 1; i
< (1 << order
); i
++)
1228 set_page_refcounted(page
+ i
);
1232 * Similar to split_page except the page is already free. As this is only
1233 * being used for migration, the migratetype of the block also changes.
1234 * As this is called with interrupts disabled, the caller is responsible
1235 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1238 * Note: this is probably too low level an operation for use in drivers.
1239 * Please consult with lkml before using this in your driver.
1241 int split_free_page(struct page
*page
)
1244 unsigned long watermark
;
1247 BUG_ON(!PageBuddy(page
));
1249 zone
= page_zone(page
);
1250 order
= page_order(page
);
1252 /* Obey watermarks as if the page was being allocated */
1253 watermark
= low_wmark_pages(zone
) + (1 << order
);
1254 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1257 /* Remove page from free list */
1258 list_del(&page
->lru
);
1259 zone
->free_area
[order
].nr_free
--;
1260 rmv_page_order(page
);
1261 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1263 /* Split into individual pages */
1264 set_page_refcounted(page
);
1265 split_page(page
, order
);
1267 if (order
>= pageblock_order
- 1) {
1268 struct page
*endpage
= page
+ (1 << order
) - 1;
1269 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1270 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1277 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1278 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1282 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1283 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1286 unsigned long flags
;
1288 int cold
= !!(gfp_flags
& __GFP_COLD
);
1291 if (likely(order
== 0)) {
1292 struct per_cpu_pages
*pcp
;
1293 struct list_head
*list
;
1295 local_irq_save(flags
);
1296 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1297 list
= &pcp
->lists
[migratetype
];
1298 if (list_empty(list
)) {
1299 pcp
->count
+= rmqueue_bulk(zone
, 0,
1302 if (unlikely(list_empty(list
)))
1307 page
= list_entry(list
->prev
, struct page
, lru
);
1309 page
= list_entry(list
->next
, struct page
, lru
);
1311 list_del(&page
->lru
);
1314 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1316 * __GFP_NOFAIL is not to be used in new code.
1318 * All __GFP_NOFAIL callers should be fixed so that they
1319 * properly detect and handle allocation failures.
1321 * We most definitely don't want callers attempting to
1322 * allocate greater than order-1 page units with
1325 WARN_ON_ONCE(order
> 1);
1327 spin_lock_irqsave(&zone
->lock
, flags
);
1328 page
= __rmqueue(zone
, order
, migratetype
);
1329 spin_unlock(&zone
->lock
);
1332 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1335 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1336 zone_statistics(preferred_zone
, zone
);
1337 local_irq_restore(flags
);
1339 VM_BUG_ON(bad_range(zone
, page
));
1340 if (prep_new_page(page
, order
, gfp_flags
))
1345 local_irq_restore(flags
);
1349 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1350 #define ALLOC_WMARK_MIN WMARK_MIN
1351 #define ALLOC_WMARK_LOW WMARK_LOW
1352 #define ALLOC_WMARK_HIGH WMARK_HIGH
1353 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1355 /* Mask to get the watermark bits */
1356 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1358 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1359 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1360 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1362 #ifdef CONFIG_FAIL_PAGE_ALLOC
1364 static struct fail_page_alloc_attr
{
1365 struct fault_attr attr
;
1367 u32 ignore_gfp_highmem
;
1368 u32 ignore_gfp_wait
;
1371 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1373 struct dentry
*ignore_gfp_highmem_file
;
1374 struct dentry
*ignore_gfp_wait_file
;
1375 struct dentry
*min_order_file
;
1377 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1379 } fail_page_alloc
= {
1380 .attr
= FAULT_ATTR_INITIALIZER
,
1381 .ignore_gfp_wait
= 1,
1382 .ignore_gfp_highmem
= 1,
1386 static int __init
setup_fail_page_alloc(char *str
)
1388 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1390 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1392 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1394 if (order
< fail_page_alloc
.min_order
)
1396 if (gfp_mask
& __GFP_NOFAIL
)
1398 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1400 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1403 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1408 static int __init
fail_page_alloc_debugfs(void)
1410 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1414 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1418 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1420 fail_page_alloc
.ignore_gfp_wait_file
=
1421 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1422 &fail_page_alloc
.ignore_gfp_wait
);
1424 fail_page_alloc
.ignore_gfp_highmem_file
=
1425 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1426 &fail_page_alloc
.ignore_gfp_highmem
);
1427 fail_page_alloc
.min_order_file
=
1428 debugfs_create_u32("min-order", mode
, dir
,
1429 &fail_page_alloc
.min_order
);
1431 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1432 !fail_page_alloc
.ignore_gfp_highmem_file
||
1433 !fail_page_alloc
.min_order_file
) {
1435 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1436 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1437 debugfs_remove(fail_page_alloc
.min_order_file
);
1438 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1444 late_initcall(fail_page_alloc_debugfs
);
1446 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1448 #else /* CONFIG_FAIL_PAGE_ALLOC */
1450 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1455 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1458 * Return true if free pages are above 'mark'. This takes into account the order
1459 * of the allocation.
1461 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1462 int classzone_idx
, int alloc_flags
, long free_pages
)
1464 /* free_pages my go negative - that's OK */
1468 free_pages
-= (1 << order
) + 1;
1469 if (alloc_flags
& ALLOC_HIGH
)
1471 if (alloc_flags
& ALLOC_HARDER
)
1474 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1476 for (o
= 0; o
< order
; o
++) {
1477 /* At the next order, this order's pages become unavailable */
1478 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1480 /* Require fewer higher order pages to be free */
1483 if (free_pages
<= min
)
1489 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1490 int classzone_idx
, int alloc_flags
)
1492 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1493 zone_page_state(z
, NR_FREE_PAGES
));
1496 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1497 int classzone_idx
, int alloc_flags
)
1499 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1501 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1502 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1504 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1510 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1511 * skip over zones that are not allowed by the cpuset, or that have
1512 * been recently (in last second) found to be nearly full. See further
1513 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1514 * that have to skip over a lot of full or unallowed zones.
1516 * If the zonelist cache is present in the passed in zonelist, then
1517 * returns a pointer to the allowed node mask (either the current
1518 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1520 * If the zonelist cache is not available for this zonelist, does
1521 * nothing and returns NULL.
1523 * If the fullzones BITMAP in the zonelist cache is stale (more than
1524 * a second since last zap'd) then we zap it out (clear its bits.)
1526 * We hold off even calling zlc_setup, until after we've checked the
1527 * first zone in the zonelist, on the theory that most allocations will
1528 * be satisfied from that first zone, so best to examine that zone as
1529 * quickly as we can.
1531 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1533 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1534 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1536 zlc
= zonelist
->zlcache_ptr
;
1540 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1541 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1542 zlc
->last_full_zap
= jiffies
;
1545 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1546 &cpuset_current_mems_allowed
:
1547 &node_states
[N_HIGH_MEMORY
];
1548 return allowednodes
;
1552 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1553 * if it is worth looking at further for free memory:
1554 * 1) Check that the zone isn't thought to be full (doesn't have its
1555 * bit set in the zonelist_cache fullzones BITMAP).
1556 * 2) Check that the zones node (obtained from the zonelist_cache
1557 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1558 * Return true (non-zero) if zone is worth looking at further, or
1559 * else return false (zero) if it is not.
1561 * This check -ignores- the distinction between various watermarks,
1562 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1563 * found to be full for any variation of these watermarks, it will
1564 * be considered full for up to one second by all requests, unless
1565 * we are so low on memory on all allowed nodes that we are forced
1566 * into the second scan of the zonelist.
1568 * In the second scan we ignore this zonelist cache and exactly
1569 * apply the watermarks to all zones, even it is slower to do so.
1570 * We are low on memory in the second scan, and should leave no stone
1571 * unturned looking for a free page.
1573 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1574 nodemask_t
*allowednodes
)
1576 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1577 int i
; /* index of *z in zonelist zones */
1578 int n
; /* node that zone *z is on */
1580 zlc
= zonelist
->zlcache_ptr
;
1584 i
= z
- zonelist
->_zonerefs
;
1587 /* This zone is worth trying if it is allowed but not full */
1588 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1592 * Given 'z' scanning a zonelist, set the corresponding bit in
1593 * zlc->fullzones, so that subsequent attempts to allocate a page
1594 * from that zone don't waste time re-examining it.
1596 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1598 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1599 int i
; /* index of *z in zonelist zones */
1601 zlc
= zonelist
->zlcache_ptr
;
1605 i
= z
- zonelist
->_zonerefs
;
1607 set_bit(i
, zlc
->fullzones
);
1610 #else /* CONFIG_NUMA */
1612 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1617 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1618 nodemask_t
*allowednodes
)
1623 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1626 #endif /* CONFIG_NUMA */
1629 * get_page_from_freelist goes through the zonelist trying to allocate
1632 static struct page
*
1633 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1634 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1635 struct zone
*preferred_zone
, int migratetype
)
1638 struct page
*page
= NULL
;
1641 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1642 int zlc_active
= 0; /* set if using zonelist_cache */
1643 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1645 classzone_idx
= zone_idx(preferred_zone
);
1648 * Scan zonelist, looking for a zone with enough free.
1649 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1651 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1652 high_zoneidx
, nodemask
) {
1653 if (NUMA_BUILD
&& zlc_active
&&
1654 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1656 if ((alloc_flags
& ALLOC_CPUSET
) &&
1657 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1660 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1661 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1665 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1666 if (zone_watermark_ok(zone
, order
, mark
,
1667 classzone_idx
, alloc_flags
))
1670 if (zone_reclaim_mode
== 0)
1671 goto this_zone_full
;
1673 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1675 case ZONE_RECLAIM_NOSCAN
:
1678 case ZONE_RECLAIM_FULL
:
1679 /* scanned but unreclaimable */
1680 goto this_zone_full
;
1682 /* did we reclaim enough */
1683 if (!zone_watermark_ok(zone
, order
, mark
,
1684 classzone_idx
, alloc_flags
))
1685 goto this_zone_full
;
1690 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1691 gfp_mask
, migratetype
);
1696 zlc_mark_zone_full(zonelist
, z
);
1698 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1700 * we do zlc_setup after the first zone is tried but only
1701 * if there are multiple nodes make it worthwhile
1703 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1709 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1710 /* Disable zlc cache for second zonelist scan */
1718 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1719 unsigned long pages_reclaimed
)
1721 /* Do not loop if specifically requested */
1722 if (gfp_mask
& __GFP_NORETRY
)
1726 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1727 * means __GFP_NOFAIL, but that may not be true in other
1730 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1734 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1735 * specified, then we retry until we no longer reclaim any pages
1736 * (above), or we've reclaimed an order of pages at least as
1737 * large as the allocation's order. In both cases, if the
1738 * allocation still fails, we stop retrying.
1740 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1744 * Don't let big-order allocations loop unless the caller
1745 * explicitly requests that.
1747 if (gfp_mask
& __GFP_NOFAIL
)
1753 static inline struct page
*
1754 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1755 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1756 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1761 /* Acquire the OOM killer lock for the zones in zonelist */
1762 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1763 schedule_timeout_uninterruptible(1);
1768 * Go through the zonelist yet one more time, keep very high watermark
1769 * here, this is only to catch a parallel oom killing, we must fail if
1770 * we're still under heavy pressure.
1772 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1773 order
, zonelist
, high_zoneidx
,
1774 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1775 preferred_zone
, migratetype
);
1779 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1780 /* The OOM killer will not help higher order allocs */
1781 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1783 /* The OOM killer does not needlessly kill tasks for lowmem */
1784 if (high_zoneidx
< ZONE_NORMAL
)
1787 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1788 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1789 * The caller should handle page allocation failure by itself if
1790 * it specifies __GFP_THISNODE.
1791 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1793 if (gfp_mask
& __GFP_THISNODE
)
1796 /* Exhausted what can be done so it's blamo time */
1797 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1800 clear_zonelist_oom(zonelist
, gfp_mask
);
1804 #ifdef CONFIG_COMPACTION
1805 /* Try memory compaction for high-order allocations before reclaim */
1806 static struct page
*
1807 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1808 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1809 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1810 int migratetype
, unsigned long *did_some_progress
,
1811 bool sync_migration
)
1815 if (!order
|| compaction_deferred(preferred_zone
))
1818 current
->flags
|= PF_MEMALLOC
;
1819 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1820 nodemask
, sync_migration
);
1821 current
->flags
&= ~PF_MEMALLOC
;
1822 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1824 /* Page migration frees to the PCP lists but we want merging */
1825 drain_pages(get_cpu());
1828 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1829 order
, zonelist
, high_zoneidx
,
1830 alloc_flags
, preferred_zone
,
1833 preferred_zone
->compact_considered
= 0;
1834 preferred_zone
->compact_defer_shift
= 0;
1835 count_vm_event(COMPACTSUCCESS
);
1840 * It's bad if compaction run occurs and fails.
1841 * The most likely reason is that pages exist,
1842 * but not enough to satisfy watermarks.
1844 count_vm_event(COMPACTFAIL
);
1845 defer_compaction(preferred_zone
);
1853 static inline struct page
*
1854 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1855 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1856 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1857 int migratetype
, unsigned long *did_some_progress
,
1858 bool sync_migration
)
1862 #endif /* CONFIG_COMPACTION */
1864 /* The really slow allocator path where we enter direct reclaim */
1865 static inline struct page
*
1866 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1867 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1868 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1869 int migratetype
, unsigned long *did_some_progress
)
1871 struct page
*page
= NULL
;
1872 struct reclaim_state reclaim_state
;
1873 bool drained
= false;
1877 /* We now go into synchronous reclaim */
1878 cpuset_memory_pressure_bump();
1879 current
->flags
|= PF_MEMALLOC
;
1880 lockdep_set_current_reclaim_state(gfp_mask
);
1881 reclaim_state
.reclaimed_slab
= 0;
1882 current
->reclaim_state
= &reclaim_state
;
1884 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1886 current
->reclaim_state
= NULL
;
1887 lockdep_clear_current_reclaim_state();
1888 current
->flags
&= ~PF_MEMALLOC
;
1892 if (unlikely(!(*did_some_progress
)))
1896 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1897 zonelist
, high_zoneidx
,
1898 alloc_flags
, preferred_zone
,
1902 * If an allocation failed after direct reclaim, it could be because
1903 * pages are pinned on the per-cpu lists. Drain them and try again
1905 if (!page
&& !drained
) {
1915 * This is called in the allocator slow-path if the allocation request is of
1916 * sufficient urgency to ignore watermarks and take other desperate measures
1918 static inline struct page
*
1919 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1920 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1921 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1927 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1928 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1929 preferred_zone
, migratetype
);
1931 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1932 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
1933 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1939 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1940 enum zone_type high_zoneidx
,
1941 enum zone_type classzone_idx
)
1946 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1947 wakeup_kswapd(zone
, order
, classzone_idx
);
1951 gfp_to_alloc_flags(gfp_t gfp_mask
)
1953 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1954 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1956 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1957 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
1960 * The caller may dip into page reserves a bit more if the caller
1961 * cannot run direct reclaim, or if the caller has realtime scheduling
1962 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1963 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1965 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
1969 * Not worth trying to allocate harder for
1970 * __GFP_NOMEMALLOC even if it can't schedule.
1972 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1973 alloc_flags
|= ALLOC_HARDER
;
1975 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1976 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1978 alloc_flags
&= ~ALLOC_CPUSET
;
1979 } else if (unlikely(rt_task(current
)) && !in_interrupt())
1980 alloc_flags
|= ALLOC_HARDER
;
1982 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1983 if (!in_interrupt() &&
1984 ((current
->flags
& PF_MEMALLOC
) ||
1985 unlikely(test_thread_flag(TIF_MEMDIE
))))
1986 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1992 static inline struct page
*
1993 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1994 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1995 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1998 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1999 struct page
*page
= NULL
;
2001 unsigned long pages_reclaimed
= 0;
2002 unsigned long did_some_progress
;
2003 bool sync_migration
= false;
2006 * In the slowpath, we sanity check order to avoid ever trying to
2007 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2008 * be using allocators in order of preference for an area that is
2011 if (order
>= MAX_ORDER
) {
2012 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2017 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2018 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2019 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2020 * using a larger set of nodes after it has established that the
2021 * allowed per node queues are empty and that nodes are
2024 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2028 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2029 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2030 zone_idx(preferred_zone
));
2033 * OK, we're below the kswapd watermark and have kicked background
2034 * reclaim. Now things get more complex, so set up alloc_flags according
2035 * to how we want to proceed.
2037 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2040 * Find the true preferred zone if the allocation is unconstrained by
2043 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2044 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2047 /* This is the last chance, in general, before the goto nopage. */
2048 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2049 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2050 preferred_zone
, migratetype
);
2055 /* Allocate without watermarks if the context allows */
2056 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2057 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2058 zonelist
, high_zoneidx
, nodemask
,
2059 preferred_zone
, migratetype
);
2064 /* Atomic allocations - we can't balance anything */
2068 /* Avoid recursion of direct reclaim */
2069 if (current
->flags
& PF_MEMALLOC
)
2072 /* Avoid allocations with no watermarks from looping endlessly */
2073 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2077 * Try direct compaction. The first pass is asynchronous. Subsequent
2078 * attempts after direct reclaim are synchronous
2080 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2081 zonelist
, high_zoneidx
,
2083 alloc_flags
, preferred_zone
,
2084 migratetype
, &did_some_progress
,
2088 sync_migration
= true;
2090 /* Try direct reclaim and then allocating */
2091 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2092 zonelist
, high_zoneidx
,
2094 alloc_flags
, preferred_zone
,
2095 migratetype
, &did_some_progress
);
2100 * If we failed to make any progress reclaiming, then we are
2101 * running out of options and have to consider going OOM
2103 if (!did_some_progress
) {
2104 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2105 if (oom_killer_disabled
)
2107 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2108 zonelist
, high_zoneidx
,
2109 nodemask
, preferred_zone
,
2114 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2116 * The oom killer is not called for high-order
2117 * allocations that may fail, so if no progress
2118 * is being made, there are no other options and
2119 * retrying is unlikely to help.
2121 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2124 * The oom killer is not called for lowmem
2125 * allocations to prevent needlessly killing
2128 if (high_zoneidx
< ZONE_NORMAL
)
2136 /* Check if we should retry the allocation */
2137 pages_reclaimed
+= did_some_progress
;
2138 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2139 /* Wait for some write requests to complete then retry */
2140 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2144 * High-order allocations do not necessarily loop after
2145 * direct reclaim and reclaim/compaction depends on compaction
2146 * being called after reclaim so call directly if necessary
2148 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2149 zonelist
, high_zoneidx
,
2151 alloc_flags
, preferred_zone
,
2152 migratetype
, &did_some_progress
,
2159 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
2160 printk(KERN_WARNING
"%s: page allocation failure."
2161 " order:%d, mode:0x%x\n",
2162 current
->comm
, order
, gfp_mask
);
2168 if (kmemcheck_enabled
)
2169 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2175 * This is the 'heart' of the zoned buddy allocator.
2178 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2179 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2181 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2182 struct zone
*preferred_zone
;
2184 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2186 gfp_mask
&= gfp_allowed_mask
;
2188 lockdep_trace_alloc(gfp_mask
);
2190 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2192 if (should_fail_alloc_page(gfp_mask
, order
))
2196 * Check the zones suitable for the gfp_mask contain at least one
2197 * valid zone. It's possible to have an empty zonelist as a result
2198 * of GFP_THISNODE and a memoryless node
2200 if (unlikely(!zonelist
->_zonerefs
->zone
))
2204 /* The preferred zone is used for statistics later */
2205 first_zones_zonelist(zonelist
, high_zoneidx
,
2206 nodemask
? : &cpuset_current_mems_allowed
,
2208 if (!preferred_zone
) {
2213 /* First allocation attempt */
2214 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2215 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2216 preferred_zone
, migratetype
);
2217 if (unlikely(!page
))
2218 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2219 zonelist
, high_zoneidx
, nodemask
,
2220 preferred_zone
, migratetype
);
2223 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2226 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2229 * Common helper functions.
2231 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2236 * __get_free_pages() returns a 32-bit address, which cannot represent
2239 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2241 page
= alloc_pages(gfp_mask
, order
);
2244 return (unsigned long) page_address(page
);
2246 EXPORT_SYMBOL(__get_free_pages
);
2248 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2250 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2252 EXPORT_SYMBOL(get_zeroed_page
);
2254 void __pagevec_free(struct pagevec
*pvec
)
2256 int i
= pagevec_count(pvec
);
2259 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2260 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2264 void __free_pages(struct page
*page
, unsigned int order
)
2266 if (put_page_testzero(page
)) {
2268 free_hot_cold_page(page
, 0);
2270 __free_pages_ok(page
, order
);
2274 EXPORT_SYMBOL(__free_pages
);
2276 void free_pages(unsigned long addr
, unsigned int order
)
2279 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2280 __free_pages(virt_to_page((void *)addr
), order
);
2284 EXPORT_SYMBOL(free_pages
);
2287 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2288 * @size: the number of bytes to allocate
2289 * @gfp_mask: GFP flags for the allocation
2291 * This function is similar to alloc_pages(), except that it allocates the
2292 * minimum number of pages to satisfy the request. alloc_pages() can only
2293 * allocate memory in power-of-two pages.
2295 * This function is also limited by MAX_ORDER.
2297 * Memory allocated by this function must be released by free_pages_exact().
2299 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2301 unsigned int order
= get_order(size
);
2304 addr
= __get_free_pages(gfp_mask
, order
);
2306 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2307 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2309 split_page(virt_to_page((void *)addr
), order
);
2310 while (used
< alloc_end
) {
2316 return (void *)addr
;
2318 EXPORT_SYMBOL(alloc_pages_exact
);
2321 * free_pages_exact - release memory allocated via alloc_pages_exact()
2322 * @virt: the value returned by alloc_pages_exact.
2323 * @size: size of allocation, same value as passed to alloc_pages_exact().
2325 * Release the memory allocated by a previous call to alloc_pages_exact.
2327 void free_pages_exact(void *virt
, size_t size
)
2329 unsigned long addr
= (unsigned long)virt
;
2330 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2332 while (addr
< end
) {
2337 EXPORT_SYMBOL(free_pages_exact
);
2339 static unsigned int nr_free_zone_pages(int offset
)
2344 /* Just pick one node, since fallback list is circular */
2345 unsigned int sum
= 0;
2347 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2349 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2350 unsigned long size
= zone
->present_pages
;
2351 unsigned long high
= high_wmark_pages(zone
);
2360 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2362 unsigned int nr_free_buffer_pages(void)
2364 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2366 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2369 * Amount of free RAM allocatable within all zones
2371 unsigned int nr_free_pagecache_pages(void)
2373 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2376 static inline void show_node(struct zone
*zone
)
2379 printk("Node %d ", zone_to_nid(zone
));
2382 void si_meminfo(struct sysinfo
*val
)
2384 val
->totalram
= totalram_pages
;
2386 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2387 val
->bufferram
= nr_blockdev_pages();
2388 val
->totalhigh
= totalhigh_pages
;
2389 val
->freehigh
= nr_free_highpages();
2390 val
->mem_unit
= PAGE_SIZE
;
2393 EXPORT_SYMBOL(si_meminfo
);
2396 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2398 pg_data_t
*pgdat
= NODE_DATA(nid
);
2400 val
->totalram
= pgdat
->node_present_pages
;
2401 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2402 #ifdef CONFIG_HIGHMEM
2403 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2404 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2410 val
->mem_unit
= PAGE_SIZE
;
2414 #define K(x) ((x) << (PAGE_SHIFT-10))
2417 * Show free area list (used inside shift_scroll-lock stuff)
2418 * We also calculate the percentage fragmentation. We do this by counting the
2419 * memory on each free list with the exception of the first item on the list.
2421 void show_free_areas(void)
2426 for_each_populated_zone(zone
) {
2428 printk("%s per-cpu:\n", zone
->name
);
2430 for_each_online_cpu(cpu
) {
2431 struct per_cpu_pageset
*pageset
;
2433 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2435 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2436 cpu
, pageset
->pcp
.high
,
2437 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2441 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2442 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2444 " dirty:%lu writeback:%lu unstable:%lu\n"
2445 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2446 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2447 global_page_state(NR_ACTIVE_ANON
),
2448 global_page_state(NR_INACTIVE_ANON
),
2449 global_page_state(NR_ISOLATED_ANON
),
2450 global_page_state(NR_ACTIVE_FILE
),
2451 global_page_state(NR_INACTIVE_FILE
),
2452 global_page_state(NR_ISOLATED_FILE
),
2453 global_page_state(NR_UNEVICTABLE
),
2454 global_page_state(NR_FILE_DIRTY
),
2455 global_page_state(NR_WRITEBACK
),
2456 global_page_state(NR_UNSTABLE_NFS
),
2457 global_page_state(NR_FREE_PAGES
),
2458 global_page_state(NR_SLAB_RECLAIMABLE
),
2459 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2460 global_page_state(NR_FILE_MAPPED
),
2461 global_page_state(NR_SHMEM
),
2462 global_page_state(NR_PAGETABLE
),
2463 global_page_state(NR_BOUNCE
));
2465 for_each_populated_zone(zone
) {
2474 " active_anon:%lukB"
2475 " inactive_anon:%lukB"
2476 " active_file:%lukB"
2477 " inactive_file:%lukB"
2478 " unevictable:%lukB"
2479 " isolated(anon):%lukB"
2480 " isolated(file):%lukB"
2487 " slab_reclaimable:%lukB"
2488 " slab_unreclaimable:%lukB"
2489 " kernel_stack:%lukB"
2493 " writeback_tmp:%lukB"
2494 " pages_scanned:%lu"
2495 " all_unreclaimable? %s"
2498 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2499 K(min_wmark_pages(zone
)),
2500 K(low_wmark_pages(zone
)),
2501 K(high_wmark_pages(zone
)),
2502 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2503 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2504 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2505 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2506 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2507 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2508 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2509 K(zone
->present_pages
),
2510 K(zone_page_state(zone
, NR_MLOCK
)),
2511 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2512 K(zone_page_state(zone
, NR_WRITEBACK
)),
2513 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2514 K(zone_page_state(zone
, NR_SHMEM
)),
2515 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2516 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2517 zone_page_state(zone
, NR_KERNEL_STACK
) *
2519 K(zone_page_state(zone
, NR_PAGETABLE
)),
2520 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2521 K(zone_page_state(zone
, NR_BOUNCE
)),
2522 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2523 zone
->pages_scanned
,
2524 (zone
->all_unreclaimable
? "yes" : "no")
2526 printk("lowmem_reserve[]:");
2527 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2528 printk(" %lu", zone
->lowmem_reserve
[i
]);
2532 for_each_populated_zone(zone
) {
2533 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2536 printk("%s: ", zone
->name
);
2538 spin_lock_irqsave(&zone
->lock
, flags
);
2539 for (order
= 0; order
< MAX_ORDER
; order
++) {
2540 nr
[order
] = zone
->free_area
[order
].nr_free
;
2541 total
+= nr
[order
] << order
;
2543 spin_unlock_irqrestore(&zone
->lock
, flags
);
2544 for (order
= 0; order
< MAX_ORDER
; order
++)
2545 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2546 printk("= %lukB\n", K(total
));
2549 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2551 show_swap_cache_info();
2554 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2556 zoneref
->zone
= zone
;
2557 zoneref
->zone_idx
= zone_idx(zone
);
2561 * Builds allocation fallback zone lists.
2563 * Add all populated zones of a node to the zonelist.
2565 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2566 int nr_zones
, enum zone_type zone_type
)
2570 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2575 zone
= pgdat
->node_zones
+ zone_type
;
2576 if (populated_zone(zone
)) {
2577 zoneref_set_zone(zone
,
2578 &zonelist
->_zonerefs
[nr_zones
++]);
2579 check_highest_zone(zone_type
);
2582 } while (zone_type
);
2589 * 0 = automatic detection of better ordering.
2590 * 1 = order by ([node] distance, -zonetype)
2591 * 2 = order by (-zonetype, [node] distance)
2593 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2594 * the same zonelist. So only NUMA can configure this param.
2596 #define ZONELIST_ORDER_DEFAULT 0
2597 #define ZONELIST_ORDER_NODE 1
2598 #define ZONELIST_ORDER_ZONE 2
2600 /* zonelist order in the kernel.
2601 * set_zonelist_order() will set this to NODE or ZONE.
2603 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2604 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2608 /* The value user specified ....changed by config */
2609 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2610 /* string for sysctl */
2611 #define NUMA_ZONELIST_ORDER_LEN 16
2612 char numa_zonelist_order
[16] = "default";
2615 * interface for configure zonelist ordering.
2616 * command line option "numa_zonelist_order"
2617 * = "[dD]efault - default, automatic configuration.
2618 * = "[nN]ode - order by node locality, then by zone within node
2619 * = "[zZ]one - order by zone, then by locality within zone
2622 static int __parse_numa_zonelist_order(char *s
)
2624 if (*s
== 'd' || *s
== 'D') {
2625 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2626 } else if (*s
== 'n' || *s
== 'N') {
2627 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2628 } else if (*s
== 'z' || *s
== 'Z') {
2629 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2632 "Ignoring invalid numa_zonelist_order value: "
2639 static __init
int setup_numa_zonelist_order(char *s
)
2646 ret
= __parse_numa_zonelist_order(s
);
2648 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2652 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2655 * sysctl handler for numa_zonelist_order
2657 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2658 void __user
*buffer
, size_t *length
,
2661 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2663 static DEFINE_MUTEX(zl_order_mutex
);
2665 mutex_lock(&zl_order_mutex
);
2667 strcpy(saved_string
, (char*)table
->data
);
2668 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2672 int oldval
= user_zonelist_order
;
2673 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2675 * bogus value. restore saved string
2677 strncpy((char*)table
->data
, saved_string
,
2678 NUMA_ZONELIST_ORDER_LEN
);
2679 user_zonelist_order
= oldval
;
2680 } else if (oldval
!= user_zonelist_order
) {
2681 mutex_lock(&zonelists_mutex
);
2682 build_all_zonelists(NULL
);
2683 mutex_unlock(&zonelists_mutex
);
2687 mutex_unlock(&zl_order_mutex
);
2692 #define MAX_NODE_LOAD (nr_online_nodes)
2693 static int node_load
[MAX_NUMNODES
];
2696 * find_next_best_node - find the next node that should appear in a given node's fallback list
2697 * @node: node whose fallback list we're appending
2698 * @used_node_mask: nodemask_t of already used nodes
2700 * We use a number of factors to determine which is the next node that should
2701 * appear on a given node's fallback list. The node should not have appeared
2702 * already in @node's fallback list, and it should be the next closest node
2703 * according to the distance array (which contains arbitrary distance values
2704 * from each node to each node in the system), and should also prefer nodes
2705 * with no CPUs, since presumably they'll have very little allocation pressure
2706 * on them otherwise.
2707 * It returns -1 if no node is found.
2709 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2712 int min_val
= INT_MAX
;
2714 const struct cpumask
*tmp
= cpumask_of_node(0);
2716 /* Use the local node if we haven't already */
2717 if (!node_isset(node
, *used_node_mask
)) {
2718 node_set(node
, *used_node_mask
);
2722 for_each_node_state(n
, N_HIGH_MEMORY
) {
2724 /* Don't want a node to appear more than once */
2725 if (node_isset(n
, *used_node_mask
))
2728 /* Use the distance array to find the distance */
2729 val
= node_distance(node
, n
);
2731 /* Penalize nodes under us ("prefer the next node") */
2734 /* Give preference to headless and unused nodes */
2735 tmp
= cpumask_of_node(n
);
2736 if (!cpumask_empty(tmp
))
2737 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2739 /* Slight preference for less loaded node */
2740 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2741 val
+= node_load
[n
];
2743 if (val
< min_val
) {
2750 node_set(best_node
, *used_node_mask
);
2757 * Build zonelists ordered by node and zones within node.
2758 * This results in maximum locality--normal zone overflows into local
2759 * DMA zone, if any--but risks exhausting DMA zone.
2761 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2764 struct zonelist
*zonelist
;
2766 zonelist
= &pgdat
->node_zonelists
[0];
2767 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2769 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2771 zonelist
->_zonerefs
[j
].zone
= NULL
;
2772 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2776 * Build gfp_thisnode zonelists
2778 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2781 struct zonelist
*zonelist
;
2783 zonelist
= &pgdat
->node_zonelists
[1];
2784 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2785 zonelist
->_zonerefs
[j
].zone
= NULL
;
2786 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2790 * Build zonelists ordered by zone and nodes within zones.
2791 * This results in conserving DMA zone[s] until all Normal memory is
2792 * exhausted, but results in overflowing to remote node while memory
2793 * may still exist in local DMA zone.
2795 static int node_order
[MAX_NUMNODES
];
2797 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2800 int zone_type
; /* needs to be signed */
2802 struct zonelist
*zonelist
;
2804 zonelist
= &pgdat
->node_zonelists
[0];
2806 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2807 for (j
= 0; j
< nr_nodes
; j
++) {
2808 node
= node_order
[j
];
2809 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2810 if (populated_zone(z
)) {
2812 &zonelist
->_zonerefs
[pos
++]);
2813 check_highest_zone(zone_type
);
2817 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2818 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2821 static int default_zonelist_order(void)
2824 unsigned long low_kmem_size
,total_size
;
2828 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2829 * If they are really small and used heavily, the system can fall
2830 * into OOM very easily.
2831 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2833 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2836 for_each_online_node(nid
) {
2837 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2838 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2839 if (populated_zone(z
)) {
2840 if (zone_type
< ZONE_NORMAL
)
2841 low_kmem_size
+= z
->present_pages
;
2842 total_size
+= z
->present_pages
;
2843 } else if (zone_type
== ZONE_NORMAL
) {
2845 * If any node has only lowmem, then node order
2846 * is preferred to allow kernel allocations
2847 * locally; otherwise, they can easily infringe
2848 * on other nodes when there is an abundance of
2849 * lowmem available to allocate from.
2851 return ZONELIST_ORDER_NODE
;
2855 if (!low_kmem_size
|| /* there are no DMA area. */
2856 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2857 return ZONELIST_ORDER_NODE
;
2859 * look into each node's config.
2860 * If there is a node whose DMA/DMA32 memory is very big area on
2861 * local memory, NODE_ORDER may be suitable.
2863 average_size
= total_size
/
2864 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2865 for_each_online_node(nid
) {
2868 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2869 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2870 if (populated_zone(z
)) {
2871 if (zone_type
< ZONE_NORMAL
)
2872 low_kmem_size
+= z
->present_pages
;
2873 total_size
+= z
->present_pages
;
2876 if (low_kmem_size
&&
2877 total_size
> average_size
&& /* ignore small node */
2878 low_kmem_size
> total_size
* 70/100)
2879 return ZONELIST_ORDER_NODE
;
2881 return ZONELIST_ORDER_ZONE
;
2884 static void set_zonelist_order(void)
2886 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2887 current_zonelist_order
= default_zonelist_order();
2889 current_zonelist_order
= user_zonelist_order
;
2892 static void build_zonelists(pg_data_t
*pgdat
)
2896 nodemask_t used_mask
;
2897 int local_node
, prev_node
;
2898 struct zonelist
*zonelist
;
2899 int order
= current_zonelist_order
;
2901 /* initialize zonelists */
2902 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2903 zonelist
= pgdat
->node_zonelists
+ i
;
2904 zonelist
->_zonerefs
[0].zone
= NULL
;
2905 zonelist
->_zonerefs
[0].zone_idx
= 0;
2908 /* NUMA-aware ordering of nodes */
2909 local_node
= pgdat
->node_id
;
2910 load
= nr_online_nodes
;
2911 prev_node
= local_node
;
2912 nodes_clear(used_mask
);
2914 memset(node_order
, 0, sizeof(node_order
));
2917 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2918 int distance
= node_distance(local_node
, node
);
2921 * If another node is sufficiently far away then it is better
2922 * to reclaim pages in a zone before going off node.
2924 if (distance
> RECLAIM_DISTANCE
)
2925 zone_reclaim_mode
= 1;
2928 * We don't want to pressure a particular node.
2929 * So adding penalty to the first node in same
2930 * distance group to make it round-robin.
2932 if (distance
!= node_distance(local_node
, prev_node
))
2933 node_load
[node
] = load
;
2937 if (order
== ZONELIST_ORDER_NODE
)
2938 build_zonelists_in_node_order(pgdat
, node
);
2940 node_order
[j
++] = node
; /* remember order */
2943 if (order
== ZONELIST_ORDER_ZONE
) {
2944 /* calculate node order -- i.e., DMA last! */
2945 build_zonelists_in_zone_order(pgdat
, j
);
2948 build_thisnode_zonelists(pgdat
);
2951 /* Construct the zonelist performance cache - see further mmzone.h */
2952 static void build_zonelist_cache(pg_data_t
*pgdat
)
2954 struct zonelist
*zonelist
;
2955 struct zonelist_cache
*zlc
;
2958 zonelist
= &pgdat
->node_zonelists
[0];
2959 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2960 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2961 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2962 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2965 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2967 * Return node id of node used for "local" allocations.
2968 * I.e., first node id of first zone in arg node's generic zonelist.
2969 * Used for initializing percpu 'numa_mem', which is used primarily
2970 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2972 int local_memory_node(int node
)
2976 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
2977 gfp_zone(GFP_KERNEL
),
2984 #else /* CONFIG_NUMA */
2986 static void set_zonelist_order(void)
2988 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2991 static void build_zonelists(pg_data_t
*pgdat
)
2993 int node
, local_node
;
2995 struct zonelist
*zonelist
;
2997 local_node
= pgdat
->node_id
;
2999 zonelist
= &pgdat
->node_zonelists
[0];
3000 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3003 * Now we build the zonelist so that it contains the zones
3004 * of all the other nodes.
3005 * We don't want to pressure a particular node, so when
3006 * building the zones for node N, we make sure that the
3007 * zones coming right after the local ones are those from
3008 * node N+1 (modulo N)
3010 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3011 if (!node_online(node
))
3013 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3016 for (node
= 0; node
< local_node
; node
++) {
3017 if (!node_online(node
))
3019 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3023 zonelist
->_zonerefs
[j
].zone
= NULL
;
3024 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3027 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3028 static void build_zonelist_cache(pg_data_t
*pgdat
)
3030 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3033 #endif /* CONFIG_NUMA */
3036 * Boot pageset table. One per cpu which is going to be used for all
3037 * zones and all nodes. The parameters will be set in such a way
3038 * that an item put on a list will immediately be handed over to
3039 * the buddy list. This is safe since pageset manipulation is done
3040 * with interrupts disabled.
3042 * The boot_pagesets must be kept even after bootup is complete for
3043 * unused processors and/or zones. They do play a role for bootstrapping
3044 * hotplugged processors.
3046 * zoneinfo_show() and maybe other functions do
3047 * not check if the processor is online before following the pageset pointer.
3048 * Other parts of the kernel may not check if the zone is available.
3050 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3051 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3052 static void setup_zone_pageset(struct zone
*zone
);
3055 * Global mutex to protect against size modification of zonelists
3056 * as well as to serialize pageset setup for the new populated zone.
3058 DEFINE_MUTEX(zonelists_mutex
);
3060 /* return values int ....just for stop_machine() */
3061 static __init_refok
int __build_all_zonelists(void *data
)
3067 memset(node_load
, 0, sizeof(node_load
));
3069 for_each_online_node(nid
) {
3070 pg_data_t
*pgdat
= NODE_DATA(nid
);
3072 build_zonelists(pgdat
);
3073 build_zonelist_cache(pgdat
);
3077 * Initialize the boot_pagesets that are going to be used
3078 * for bootstrapping processors. The real pagesets for
3079 * each zone will be allocated later when the per cpu
3080 * allocator is available.
3082 * boot_pagesets are used also for bootstrapping offline
3083 * cpus if the system is already booted because the pagesets
3084 * are needed to initialize allocators on a specific cpu too.
3085 * F.e. the percpu allocator needs the page allocator which
3086 * needs the percpu allocator in order to allocate its pagesets
3087 * (a chicken-egg dilemma).
3089 for_each_possible_cpu(cpu
) {
3090 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3092 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3094 * We now know the "local memory node" for each node--
3095 * i.e., the node of the first zone in the generic zonelist.
3096 * Set up numa_mem percpu variable for on-line cpus. During
3097 * boot, only the boot cpu should be on-line; we'll init the
3098 * secondary cpus' numa_mem as they come on-line. During
3099 * node/memory hotplug, we'll fixup all on-line cpus.
3101 if (cpu_online(cpu
))
3102 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3110 * Called with zonelists_mutex held always
3111 * unless system_state == SYSTEM_BOOTING.
3113 void build_all_zonelists(void *data
)
3115 set_zonelist_order();
3117 if (system_state
== SYSTEM_BOOTING
) {
3118 __build_all_zonelists(NULL
);
3119 mminit_verify_zonelist();
3120 cpuset_init_current_mems_allowed();
3122 /* we have to stop all cpus to guarantee there is no user
3124 #ifdef CONFIG_MEMORY_HOTPLUG
3126 setup_zone_pageset((struct zone
*)data
);
3128 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3129 /* cpuset refresh routine should be here */
3131 vm_total_pages
= nr_free_pagecache_pages();
3133 * Disable grouping by mobility if the number of pages in the
3134 * system is too low to allow the mechanism to work. It would be
3135 * more accurate, but expensive to check per-zone. This check is
3136 * made on memory-hotadd so a system can start with mobility
3137 * disabled and enable it later
3139 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3140 page_group_by_mobility_disabled
= 1;
3142 page_group_by_mobility_disabled
= 0;
3144 printk("Built %i zonelists in %s order, mobility grouping %s. "
3145 "Total pages: %ld\n",
3147 zonelist_order_name
[current_zonelist_order
],
3148 page_group_by_mobility_disabled
? "off" : "on",
3151 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3156 * Helper functions to size the waitqueue hash table.
3157 * Essentially these want to choose hash table sizes sufficiently
3158 * large so that collisions trying to wait on pages are rare.
3159 * But in fact, the number of active page waitqueues on typical
3160 * systems is ridiculously low, less than 200. So this is even
3161 * conservative, even though it seems large.
3163 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3164 * waitqueues, i.e. the size of the waitq table given the number of pages.
3166 #define PAGES_PER_WAITQUEUE 256
3168 #ifndef CONFIG_MEMORY_HOTPLUG
3169 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3171 unsigned long size
= 1;
3173 pages
/= PAGES_PER_WAITQUEUE
;
3175 while (size
< pages
)
3179 * Once we have dozens or even hundreds of threads sleeping
3180 * on IO we've got bigger problems than wait queue collision.
3181 * Limit the size of the wait table to a reasonable size.
3183 size
= min(size
, 4096UL);
3185 return max(size
, 4UL);
3189 * A zone's size might be changed by hot-add, so it is not possible to determine
3190 * a suitable size for its wait_table. So we use the maximum size now.
3192 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3194 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3195 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3196 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3198 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3199 * or more by the traditional way. (See above). It equals:
3201 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3202 * ia64(16K page size) : = ( 8G + 4M)byte.
3203 * powerpc (64K page size) : = (32G +16M)byte.
3205 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3212 * This is an integer logarithm so that shifts can be used later
3213 * to extract the more random high bits from the multiplicative
3214 * hash function before the remainder is taken.
3216 static inline unsigned long wait_table_bits(unsigned long size
)
3221 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3224 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3225 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3226 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3227 * higher will lead to a bigger reserve which will get freed as contiguous
3228 * blocks as reclaim kicks in
3230 static void setup_zone_migrate_reserve(struct zone
*zone
)
3232 unsigned long start_pfn
, pfn
, end_pfn
;
3234 unsigned long block_migratetype
;
3237 /* Get the start pfn, end pfn and the number of blocks to reserve */
3238 start_pfn
= zone
->zone_start_pfn
;
3239 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3240 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3244 * Reserve blocks are generally in place to help high-order atomic
3245 * allocations that are short-lived. A min_free_kbytes value that
3246 * would result in more than 2 reserve blocks for atomic allocations
3247 * is assumed to be in place to help anti-fragmentation for the
3248 * future allocation of hugepages at runtime.
3250 reserve
= min(2, reserve
);
3252 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3253 if (!pfn_valid(pfn
))
3255 page
= pfn_to_page(pfn
);
3257 /* Watch out for overlapping nodes */
3258 if (page_to_nid(page
) != zone_to_nid(zone
))
3261 /* Blocks with reserved pages will never free, skip them. */
3262 if (PageReserved(page
))
3265 block_migratetype
= get_pageblock_migratetype(page
);
3267 /* If this block is reserved, account for it */
3268 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3273 /* Suitable for reserving if this block is movable */
3274 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3275 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3276 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3282 * If the reserve is met and this is a previous reserved block,
3285 if (block_migratetype
== MIGRATE_RESERVE
) {
3286 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3287 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3293 * Initially all pages are reserved - free ones are freed
3294 * up by free_all_bootmem() once the early boot process is
3295 * done. Non-atomic initialization, single-pass.
3297 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3298 unsigned long start_pfn
, enum memmap_context context
)
3301 unsigned long end_pfn
= start_pfn
+ size
;
3305 if (highest_memmap_pfn
< end_pfn
- 1)
3306 highest_memmap_pfn
= end_pfn
- 1;
3308 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3309 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3311 * There can be holes in boot-time mem_map[]s
3312 * handed to this function. They do not
3313 * exist on hotplugged memory.
3315 if (context
== MEMMAP_EARLY
) {
3316 if (!early_pfn_valid(pfn
))
3318 if (!early_pfn_in_nid(pfn
, nid
))
3321 page
= pfn_to_page(pfn
);
3322 set_page_links(page
, zone
, nid
, pfn
);
3323 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3324 init_page_count(page
);
3325 reset_page_mapcount(page
);
3326 SetPageReserved(page
);
3328 * Mark the block movable so that blocks are reserved for
3329 * movable at startup. This will force kernel allocations
3330 * to reserve their blocks rather than leaking throughout
3331 * the address space during boot when many long-lived
3332 * kernel allocations are made. Later some blocks near
3333 * the start are marked MIGRATE_RESERVE by
3334 * setup_zone_migrate_reserve()
3336 * bitmap is created for zone's valid pfn range. but memmap
3337 * can be created for invalid pages (for alignment)
3338 * check here not to call set_pageblock_migratetype() against
3341 if ((z
->zone_start_pfn
<= pfn
)
3342 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3343 && !(pfn
& (pageblock_nr_pages
- 1)))
3344 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3346 INIT_LIST_HEAD(&page
->lru
);
3347 #ifdef WANT_PAGE_VIRTUAL
3348 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3349 if (!is_highmem_idx(zone
))
3350 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3355 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3358 for_each_migratetype_order(order
, t
) {
3359 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3360 zone
->free_area
[order
].nr_free
= 0;
3364 #ifndef __HAVE_ARCH_MEMMAP_INIT
3365 #define memmap_init(size, nid, zone, start_pfn) \
3366 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3369 static int zone_batchsize(struct zone
*zone
)
3375 * The per-cpu-pages pools are set to around 1000th of the
3376 * size of the zone. But no more than 1/2 of a meg.
3378 * OK, so we don't know how big the cache is. So guess.
3380 batch
= zone
->present_pages
/ 1024;
3381 if (batch
* PAGE_SIZE
> 512 * 1024)
3382 batch
= (512 * 1024) / PAGE_SIZE
;
3383 batch
/= 4; /* We effectively *= 4 below */
3388 * Clamp the batch to a 2^n - 1 value. Having a power
3389 * of 2 value was found to be more likely to have
3390 * suboptimal cache aliasing properties in some cases.
3392 * For example if 2 tasks are alternately allocating
3393 * batches of pages, one task can end up with a lot
3394 * of pages of one half of the possible page colors
3395 * and the other with pages of the other colors.
3397 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3402 /* The deferral and batching of frees should be suppressed under NOMMU
3405 * The problem is that NOMMU needs to be able to allocate large chunks
3406 * of contiguous memory as there's no hardware page translation to
3407 * assemble apparent contiguous memory from discontiguous pages.
3409 * Queueing large contiguous runs of pages for batching, however,
3410 * causes the pages to actually be freed in smaller chunks. As there
3411 * can be a significant delay between the individual batches being
3412 * recycled, this leads to the once large chunks of space being
3413 * fragmented and becoming unavailable for high-order allocations.
3419 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3421 struct per_cpu_pages
*pcp
;
3424 memset(p
, 0, sizeof(*p
));
3428 pcp
->high
= 6 * batch
;
3429 pcp
->batch
= max(1UL, 1 * batch
);
3430 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3431 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3435 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3436 * to the value high for the pageset p.
3439 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3442 struct per_cpu_pages
*pcp
;
3446 pcp
->batch
= max(1UL, high
/4);
3447 if ((high
/4) > (PAGE_SHIFT
* 8))
3448 pcp
->batch
= PAGE_SHIFT
* 8;
3451 static __meminit
void setup_zone_pageset(struct zone
*zone
)
3455 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3457 for_each_possible_cpu(cpu
) {
3458 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3460 setup_pageset(pcp
, zone_batchsize(zone
));
3462 if (percpu_pagelist_fraction
)
3463 setup_pagelist_highmark(pcp
,
3464 (zone
->present_pages
/
3465 percpu_pagelist_fraction
));
3470 * Allocate per cpu pagesets and initialize them.
3471 * Before this call only boot pagesets were available.
3473 void __init
setup_per_cpu_pageset(void)
3477 for_each_populated_zone(zone
)
3478 setup_zone_pageset(zone
);
3481 static noinline __init_refok
3482 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3485 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3489 * The per-page waitqueue mechanism uses hashed waitqueues
3492 zone
->wait_table_hash_nr_entries
=
3493 wait_table_hash_nr_entries(zone_size_pages
);
3494 zone
->wait_table_bits
=
3495 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3496 alloc_size
= zone
->wait_table_hash_nr_entries
3497 * sizeof(wait_queue_head_t
);
3499 if (!slab_is_available()) {
3500 zone
->wait_table
= (wait_queue_head_t
*)
3501 alloc_bootmem_node(pgdat
, alloc_size
);
3504 * This case means that a zone whose size was 0 gets new memory
3505 * via memory hot-add.
3506 * But it may be the case that a new node was hot-added. In
3507 * this case vmalloc() will not be able to use this new node's
3508 * memory - this wait_table must be initialized to use this new
3509 * node itself as well.
3510 * To use this new node's memory, further consideration will be
3513 zone
->wait_table
= vmalloc(alloc_size
);
3515 if (!zone
->wait_table
)
3518 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3519 init_waitqueue_head(zone
->wait_table
+ i
);
3524 static int __zone_pcp_update(void *data
)
3526 struct zone
*zone
= data
;
3528 unsigned long batch
= zone_batchsize(zone
), flags
;
3530 for_each_possible_cpu(cpu
) {
3531 struct per_cpu_pageset
*pset
;
3532 struct per_cpu_pages
*pcp
;
3534 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3537 local_irq_save(flags
);
3538 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3539 setup_pageset(pset
, batch
);
3540 local_irq_restore(flags
);
3545 void zone_pcp_update(struct zone
*zone
)
3547 stop_machine(__zone_pcp_update
, zone
, NULL
);
3550 static __meminit
void zone_pcp_init(struct zone
*zone
)
3553 * per cpu subsystem is not up at this point. The following code
3554 * relies on the ability of the linker to provide the
3555 * offset of a (static) per cpu variable into the per cpu area.
3557 zone
->pageset
= &boot_pageset
;
3559 if (zone
->present_pages
)
3560 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3561 zone
->name
, zone
->present_pages
,
3562 zone_batchsize(zone
));
3565 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3566 unsigned long zone_start_pfn
,
3568 enum memmap_context context
)
3570 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3572 ret
= zone_wait_table_init(zone
, size
);
3575 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3577 zone
->zone_start_pfn
= zone_start_pfn
;
3579 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3580 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3582 (unsigned long)zone_idx(zone
),
3583 zone_start_pfn
, (zone_start_pfn
+ size
));
3585 zone_init_free_lists(zone
);
3590 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3592 * Basic iterator support. Return the first range of PFNs for a node
3593 * Note: nid == MAX_NUMNODES returns first region regardless of node
3595 static int __meminit
first_active_region_index_in_nid(int nid
)
3599 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3600 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3607 * Basic iterator support. Return the next active range of PFNs for a node
3608 * Note: nid == MAX_NUMNODES returns next region regardless of node
3610 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3612 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3613 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3619 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3621 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3622 * Architectures may implement their own version but if add_active_range()
3623 * was used and there are no special requirements, this is a convenient
3626 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3630 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3631 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3632 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3634 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3635 return early_node_map
[i
].nid
;
3637 /* This is a memory hole */
3640 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3642 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3646 nid
= __early_pfn_to_nid(pfn
);
3649 /* just returns 0 */
3653 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3654 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3658 nid
= __early_pfn_to_nid(pfn
);
3659 if (nid
>= 0 && nid
!= node
)
3665 /* Basic iterator support to walk early_node_map[] */
3666 #define for_each_active_range_index_in_nid(i, nid) \
3667 for (i = first_active_region_index_in_nid(nid); i != -1; \
3668 i = next_active_region_index_in_nid(i, nid))
3671 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3672 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3673 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3675 * If an architecture guarantees that all ranges registered with
3676 * add_active_ranges() contain no holes and may be freed, this
3677 * this function may be used instead of calling free_bootmem() manually.
3679 void __init
free_bootmem_with_active_regions(int nid
,
3680 unsigned long max_low_pfn
)
3684 for_each_active_range_index_in_nid(i
, nid
) {
3685 unsigned long size_pages
= 0;
3686 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3688 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3691 if (end_pfn
> max_low_pfn
)
3692 end_pfn
= max_low_pfn
;
3694 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3695 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3696 PFN_PHYS(early_node_map
[i
].start_pfn
),
3697 size_pages
<< PAGE_SHIFT
);
3701 #ifdef CONFIG_HAVE_MEMBLOCK
3703 * Basic iterator support. Return the last range of PFNs for a node
3704 * Note: nid == MAX_NUMNODES returns last region regardless of node
3706 static int __meminit
last_active_region_index_in_nid(int nid
)
3710 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3711 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3718 * Basic iterator support. Return the previous active range of PFNs for a node
3719 * Note: nid == MAX_NUMNODES returns next region regardless of node
3721 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3723 for (index
= index
- 1; index
>= 0; index
--)
3724 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3730 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3731 for (i = last_active_region_index_in_nid(nid); i != -1; \
3732 i = previous_active_region_index_in_nid(i, nid))
3734 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3735 u64 goal
, u64 limit
)
3739 /* Need to go over early_node_map to find out good range for node */
3740 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3742 u64 ei_start
, ei_last
;
3743 u64 final_start
, final_end
;
3745 ei_last
= early_node_map
[i
].end_pfn
;
3746 ei_last
<<= PAGE_SHIFT
;
3747 ei_start
= early_node_map
[i
].start_pfn
;
3748 ei_start
<<= PAGE_SHIFT
;
3750 final_start
= max(ei_start
, goal
);
3751 final_end
= min(ei_last
, limit
);
3753 if (final_start
>= final_end
)
3756 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3758 if (addr
== MEMBLOCK_ERROR
)
3764 return MEMBLOCK_ERROR
;
3768 int __init
add_from_early_node_map(struct range
*range
, int az
,
3769 int nr_range
, int nid
)
3774 /* need to go over early_node_map to find out good range for node */
3775 for_each_active_range_index_in_nid(i
, nid
) {
3776 start
= early_node_map
[i
].start_pfn
;
3777 end
= early_node_map
[i
].end_pfn
;
3778 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3783 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3788 for_each_active_range_index_in_nid(i
, nid
) {
3789 ret
= work_fn(early_node_map
[i
].start_pfn
,
3790 early_node_map
[i
].end_pfn
, data
);
3796 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3797 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3799 * If an architecture guarantees that all ranges registered with
3800 * add_active_ranges() contain no holes and may be freed, this
3801 * function may be used instead of calling memory_present() manually.
3803 void __init
sparse_memory_present_with_active_regions(int nid
)
3807 for_each_active_range_index_in_nid(i
, nid
)
3808 memory_present(early_node_map
[i
].nid
,
3809 early_node_map
[i
].start_pfn
,
3810 early_node_map
[i
].end_pfn
);
3814 * get_pfn_range_for_nid - Return the start and end page frames for a node
3815 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3816 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3817 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3819 * It returns the start and end page frame of a node based on information
3820 * provided by an arch calling add_active_range(). If called for a node
3821 * with no available memory, a warning is printed and the start and end
3824 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3825 unsigned long *start_pfn
, unsigned long *end_pfn
)
3831 for_each_active_range_index_in_nid(i
, nid
) {
3832 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3833 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3836 if (*start_pfn
== -1UL)
3841 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3842 * assumption is made that zones within a node are ordered in monotonic
3843 * increasing memory addresses so that the "highest" populated zone is used
3845 static void __init
find_usable_zone_for_movable(void)
3848 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3849 if (zone_index
== ZONE_MOVABLE
)
3852 if (arch_zone_highest_possible_pfn
[zone_index
] >
3853 arch_zone_lowest_possible_pfn
[zone_index
])
3857 VM_BUG_ON(zone_index
== -1);
3858 movable_zone
= zone_index
;
3862 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3863 * because it is sized independant of architecture. Unlike the other zones,
3864 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3865 * in each node depending on the size of each node and how evenly kernelcore
3866 * is distributed. This helper function adjusts the zone ranges
3867 * provided by the architecture for a given node by using the end of the
3868 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3869 * zones within a node are in order of monotonic increases memory addresses
3871 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3872 unsigned long zone_type
,
3873 unsigned long node_start_pfn
,
3874 unsigned long node_end_pfn
,
3875 unsigned long *zone_start_pfn
,
3876 unsigned long *zone_end_pfn
)
3878 /* Only adjust if ZONE_MOVABLE is on this node */
3879 if (zone_movable_pfn
[nid
]) {
3880 /* Size ZONE_MOVABLE */
3881 if (zone_type
== ZONE_MOVABLE
) {
3882 *zone_start_pfn
= zone_movable_pfn
[nid
];
3883 *zone_end_pfn
= min(node_end_pfn
,
3884 arch_zone_highest_possible_pfn
[movable_zone
]);
3886 /* Adjust for ZONE_MOVABLE starting within this range */
3887 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3888 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3889 *zone_end_pfn
= zone_movable_pfn
[nid
];
3891 /* Check if this whole range is within ZONE_MOVABLE */
3892 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3893 *zone_start_pfn
= *zone_end_pfn
;
3898 * Return the number of pages a zone spans in a node, including holes
3899 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3901 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3902 unsigned long zone_type
,
3903 unsigned long *ignored
)
3905 unsigned long node_start_pfn
, node_end_pfn
;
3906 unsigned long zone_start_pfn
, zone_end_pfn
;
3908 /* Get the start and end of the node and zone */
3909 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3910 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3911 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3912 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3913 node_start_pfn
, node_end_pfn
,
3914 &zone_start_pfn
, &zone_end_pfn
);
3916 /* Check that this node has pages within the zone's required range */
3917 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3920 /* Move the zone boundaries inside the node if necessary */
3921 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3922 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3924 /* Return the spanned pages */
3925 return zone_end_pfn
- zone_start_pfn
;
3929 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3930 * then all holes in the requested range will be accounted for.
3932 unsigned long __meminit
__absent_pages_in_range(int nid
,
3933 unsigned long range_start_pfn
,
3934 unsigned long range_end_pfn
)
3937 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3938 unsigned long start_pfn
;
3940 /* Find the end_pfn of the first active range of pfns in the node */
3941 i
= first_active_region_index_in_nid(nid
);
3945 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3947 /* Account for ranges before physical memory on this node */
3948 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3949 hole_pages
= prev_end_pfn
- range_start_pfn
;
3951 /* Find all holes for the zone within the node */
3952 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3954 /* No need to continue if prev_end_pfn is outside the zone */
3955 if (prev_end_pfn
>= range_end_pfn
)
3958 /* Make sure the end of the zone is not within the hole */
3959 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3960 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3962 /* Update the hole size cound and move on */
3963 if (start_pfn
> range_start_pfn
) {
3964 BUG_ON(prev_end_pfn
> start_pfn
);
3965 hole_pages
+= start_pfn
- prev_end_pfn
;
3967 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3970 /* Account for ranges past physical memory on this node */
3971 if (range_end_pfn
> prev_end_pfn
)
3972 hole_pages
+= range_end_pfn
-
3973 max(range_start_pfn
, prev_end_pfn
);
3979 * absent_pages_in_range - Return number of page frames in holes within a range
3980 * @start_pfn: The start PFN to start searching for holes
3981 * @end_pfn: The end PFN to stop searching for holes
3983 * It returns the number of pages frames in memory holes within a range.
3985 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3986 unsigned long end_pfn
)
3988 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3991 /* Return the number of page frames in holes in a zone on a node */
3992 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3993 unsigned long zone_type
,
3994 unsigned long *ignored
)
3996 unsigned long node_start_pfn
, node_end_pfn
;
3997 unsigned long zone_start_pfn
, zone_end_pfn
;
3999 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4000 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4002 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4005 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4006 node_start_pfn
, node_end_pfn
,
4007 &zone_start_pfn
, &zone_end_pfn
);
4008 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4012 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4013 unsigned long zone_type
,
4014 unsigned long *zones_size
)
4016 return zones_size
[zone_type
];
4019 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4020 unsigned long zone_type
,
4021 unsigned long *zholes_size
)
4026 return zholes_size
[zone_type
];
4031 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4032 unsigned long *zones_size
, unsigned long *zholes_size
)
4034 unsigned long realtotalpages
, totalpages
= 0;
4037 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4038 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4040 pgdat
->node_spanned_pages
= totalpages
;
4042 realtotalpages
= totalpages
;
4043 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4045 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4047 pgdat
->node_present_pages
= realtotalpages
;
4048 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4052 #ifndef CONFIG_SPARSEMEM
4054 * Calculate the size of the zone->blockflags rounded to an unsigned long
4055 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4056 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4057 * round what is now in bits to nearest long in bits, then return it in
4060 static unsigned long __init
usemap_size(unsigned long zonesize
)
4062 unsigned long usemapsize
;
4064 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4065 usemapsize
= usemapsize
>> pageblock_order
;
4066 usemapsize
*= NR_PAGEBLOCK_BITS
;
4067 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4069 return usemapsize
/ 8;
4072 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4073 struct zone
*zone
, unsigned long zonesize
)
4075 unsigned long usemapsize
= usemap_size(zonesize
);
4076 zone
->pageblock_flags
= NULL
;
4078 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
4081 static inline void setup_usemap(struct pglist_data
*pgdat
,
4082 struct zone
*zone
, unsigned long zonesize
) {}
4083 #endif /* CONFIG_SPARSEMEM */
4085 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4087 /* Return a sensible default order for the pageblock size. */
4088 static inline int pageblock_default_order(void)
4090 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4091 return HUGETLB_PAGE_ORDER
;
4096 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4097 static inline void __init
set_pageblock_order(unsigned int order
)
4099 /* Check that pageblock_nr_pages has not already been setup */
4100 if (pageblock_order
)
4104 * Assume the largest contiguous order of interest is a huge page.
4105 * This value may be variable depending on boot parameters on IA64
4107 pageblock_order
= order
;
4109 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4112 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4113 * and pageblock_default_order() are unused as pageblock_order is set
4114 * at compile-time. See include/linux/pageblock-flags.h for the values of
4115 * pageblock_order based on the kernel config
4117 static inline int pageblock_default_order(unsigned int order
)
4121 #define set_pageblock_order(x) do {} while (0)
4123 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4126 * Set up the zone data structures:
4127 * - mark all pages reserved
4128 * - mark all memory queues empty
4129 * - clear the memory bitmaps
4131 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4132 unsigned long *zones_size
, unsigned long *zholes_size
)
4135 int nid
= pgdat
->node_id
;
4136 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4139 pgdat_resize_init(pgdat
);
4140 pgdat
->nr_zones
= 0;
4141 init_waitqueue_head(&pgdat
->kswapd_wait
);
4142 pgdat
->kswapd_max_order
= 0;
4143 pgdat_page_cgroup_init(pgdat
);
4145 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4146 struct zone
*zone
= pgdat
->node_zones
+ j
;
4147 unsigned long size
, realsize
, memmap_pages
;
4150 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4151 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4155 * Adjust realsize so that it accounts for how much memory
4156 * is used by this zone for memmap. This affects the watermark
4157 * and per-cpu initialisations
4160 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4161 if (realsize
>= memmap_pages
) {
4162 realsize
-= memmap_pages
;
4165 " %s zone: %lu pages used for memmap\n",
4166 zone_names
[j
], memmap_pages
);
4169 " %s zone: %lu pages exceeds realsize %lu\n",
4170 zone_names
[j
], memmap_pages
, realsize
);
4172 /* Account for reserved pages */
4173 if (j
== 0 && realsize
> dma_reserve
) {
4174 realsize
-= dma_reserve
;
4175 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4176 zone_names
[0], dma_reserve
);
4179 if (!is_highmem_idx(j
))
4180 nr_kernel_pages
+= realsize
;
4181 nr_all_pages
+= realsize
;
4183 zone
->spanned_pages
= size
;
4184 zone
->present_pages
= realsize
;
4187 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4189 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4191 zone
->name
= zone_names
[j
];
4192 spin_lock_init(&zone
->lock
);
4193 spin_lock_init(&zone
->lru_lock
);
4194 zone_seqlock_init(zone
);
4195 zone
->zone_pgdat
= pgdat
;
4197 zone_pcp_init(zone
);
4199 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4200 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
4202 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4203 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4204 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4205 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4206 zap_zone_vm_stats(zone
);
4211 set_pageblock_order(pageblock_default_order());
4212 setup_usemap(pgdat
, zone
, size
);
4213 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4214 size
, MEMMAP_EARLY
);
4216 memmap_init(size
, nid
, j
, zone_start_pfn
);
4217 zone_start_pfn
+= size
;
4221 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4223 /* Skip empty nodes */
4224 if (!pgdat
->node_spanned_pages
)
4227 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4228 /* ia64 gets its own node_mem_map, before this, without bootmem */
4229 if (!pgdat
->node_mem_map
) {
4230 unsigned long size
, start
, end
;
4234 * The zone's endpoints aren't required to be MAX_ORDER
4235 * aligned but the node_mem_map endpoints must be in order
4236 * for the buddy allocator to function correctly.
4238 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4239 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4240 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4241 size
= (end
- start
) * sizeof(struct page
);
4242 map
= alloc_remap(pgdat
->node_id
, size
);
4244 map
= alloc_bootmem_node(pgdat
, size
);
4245 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4247 #ifndef CONFIG_NEED_MULTIPLE_NODES
4249 * With no DISCONTIG, the global mem_map is just set as node 0's
4251 if (pgdat
== NODE_DATA(0)) {
4252 mem_map
= NODE_DATA(0)->node_mem_map
;
4253 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4254 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4255 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4256 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4259 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4262 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4263 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4265 pg_data_t
*pgdat
= NODE_DATA(nid
);
4267 pgdat
->node_id
= nid
;
4268 pgdat
->node_start_pfn
= node_start_pfn
;
4269 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4271 alloc_node_mem_map(pgdat
);
4272 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4273 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4274 nid
, (unsigned long)pgdat
,
4275 (unsigned long)pgdat
->node_mem_map
);
4278 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4281 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4283 #if MAX_NUMNODES > 1
4285 * Figure out the number of possible node ids.
4287 static void __init
setup_nr_node_ids(void)
4290 unsigned int highest
= 0;
4292 for_each_node_mask(node
, node_possible_map
)
4294 nr_node_ids
= highest
+ 1;
4297 static inline void setup_nr_node_ids(void)
4303 * add_active_range - Register a range of PFNs backed by physical memory
4304 * @nid: The node ID the range resides on
4305 * @start_pfn: The start PFN of the available physical memory
4306 * @end_pfn: The end PFN of the available physical memory
4308 * These ranges are stored in an early_node_map[] and later used by
4309 * free_area_init_nodes() to calculate zone sizes and holes. If the
4310 * range spans a memory hole, it is up to the architecture to ensure
4311 * the memory is not freed by the bootmem allocator. If possible
4312 * the range being registered will be merged with existing ranges.
4314 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4315 unsigned long end_pfn
)
4319 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4320 "Entering add_active_range(%d, %#lx, %#lx) "
4321 "%d entries of %d used\n",
4322 nid
, start_pfn
, end_pfn
,
4323 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4325 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4327 /* Merge with existing active regions if possible */
4328 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4329 if (early_node_map
[i
].nid
!= nid
)
4332 /* Skip if an existing region covers this new one */
4333 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4334 end_pfn
<= early_node_map
[i
].end_pfn
)
4337 /* Merge forward if suitable */
4338 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4339 end_pfn
> early_node_map
[i
].end_pfn
) {
4340 early_node_map
[i
].end_pfn
= end_pfn
;
4344 /* Merge backward if suitable */
4345 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4346 end_pfn
>= early_node_map
[i
].start_pfn
) {
4347 early_node_map
[i
].start_pfn
= start_pfn
;
4352 /* Check that early_node_map is large enough */
4353 if (i
>= MAX_ACTIVE_REGIONS
) {
4354 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4355 MAX_ACTIVE_REGIONS
);
4359 early_node_map
[i
].nid
= nid
;
4360 early_node_map
[i
].start_pfn
= start_pfn
;
4361 early_node_map
[i
].end_pfn
= end_pfn
;
4362 nr_nodemap_entries
= i
+ 1;
4366 * remove_active_range - Shrink an existing registered range of PFNs
4367 * @nid: The node id the range is on that should be shrunk
4368 * @start_pfn: The new PFN of the range
4369 * @end_pfn: The new PFN of the range
4371 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4372 * The map is kept near the end physical page range that has already been
4373 * registered. This function allows an arch to shrink an existing registered
4376 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4377 unsigned long end_pfn
)
4382 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4383 nid
, start_pfn
, end_pfn
);
4385 /* Find the old active region end and shrink */
4386 for_each_active_range_index_in_nid(i
, nid
) {
4387 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4388 early_node_map
[i
].end_pfn
<= end_pfn
) {
4390 early_node_map
[i
].start_pfn
= 0;
4391 early_node_map
[i
].end_pfn
= 0;
4395 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4396 early_node_map
[i
].end_pfn
> start_pfn
) {
4397 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4398 early_node_map
[i
].end_pfn
= start_pfn
;
4399 if (temp_end_pfn
> end_pfn
)
4400 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4403 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4404 early_node_map
[i
].end_pfn
> end_pfn
&&
4405 early_node_map
[i
].start_pfn
< end_pfn
) {
4406 early_node_map
[i
].start_pfn
= end_pfn
;
4414 /* remove the blank ones */
4415 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4416 if (early_node_map
[i
].nid
!= nid
)
4418 if (early_node_map
[i
].end_pfn
)
4420 /* we found it, get rid of it */
4421 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4422 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4423 sizeof(early_node_map
[j
]));
4424 j
= nr_nodemap_entries
- 1;
4425 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4426 nr_nodemap_entries
--;
4431 * remove_all_active_ranges - Remove all currently registered regions
4433 * During discovery, it may be found that a table like SRAT is invalid
4434 * and an alternative discovery method must be used. This function removes
4435 * all currently registered regions.
4437 void __init
remove_all_active_ranges(void)
4439 memset(early_node_map
, 0, sizeof(early_node_map
));
4440 nr_nodemap_entries
= 0;
4443 /* Compare two active node_active_regions */
4444 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4446 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4447 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4449 /* Done this way to avoid overflows */
4450 if (arange
->start_pfn
> brange
->start_pfn
)
4452 if (arange
->start_pfn
< brange
->start_pfn
)
4458 /* sort the node_map by start_pfn */
4459 void __init
sort_node_map(void)
4461 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4462 sizeof(struct node_active_region
),
4463 cmp_node_active_region
, NULL
);
4466 /* Find the lowest pfn for a node */
4467 static unsigned long __init
find_min_pfn_for_node(int nid
)
4470 unsigned long min_pfn
= ULONG_MAX
;
4472 /* Assuming a sorted map, the first range found has the starting pfn */
4473 for_each_active_range_index_in_nid(i
, nid
)
4474 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4476 if (min_pfn
== ULONG_MAX
) {
4478 "Could not find start_pfn for node %d\n", nid
);
4486 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4488 * It returns the minimum PFN based on information provided via
4489 * add_active_range().
4491 unsigned long __init
find_min_pfn_with_active_regions(void)
4493 return find_min_pfn_for_node(MAX_NUMNODES
);
4497 * early_calculate_totalpages()
4498 * Sum pages in active regions for movable zone.
4499 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4501 static unsigned long __init
early_calculate_totalpages(void)
4504 unsigned long totalpages
= 0;
4506 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4507 unsigned long pages
= early_node_map
[i
].end_pfn
-
4508 early_node_map
[i
].start_pfn
;
4509 totalpages
+= pages
;
4511 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4517 * Find the PFN the Movable zone begins in each node. Kernel memory
4518 * is spread evenly between nodes as long as the nodes have enough
4519 * memory. When they don't, some nodes will have more kernelcore than
4522 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4525 unsigned long usable_startpfn
;
4526 unsigned long kernelcore_node
, kernelcore_remaining
;
4527 /* save the state before borrow the nodemask */
4528 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4529 unsigned long totalpages
= early_calculate_totalpages();
4530 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4533 * If movablecore was specified, calculate what size of
4534 * kernelcore that corresponds so that memory usable for
4535 * any allocation type is evenly spread. If both kernelcore
4536 * and movablecore are specified, then the value of kernelcore
4537 * will be used for required_kernelcore if it's greater than
4538 * what movablecore would have allowed.
4540 if (required_movablecore
) {
4541 unsigned long corepages
;
4544 * Round-up so that ZONE_MOVABLE is at least as large as what
4545 * was requested by the user
4547 required_movablecore
=
4548 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4549 corepages
= totalpages
- required_movablecore
;
4551 required_kernelcore
= max(required_kernelcore
, corepages
);
4554 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4555 if (!required_kernelcore
)
4558 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4559 find_usable_zone_for_movable();
4560 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4563 /* Spread kernelcore memory as evenly as possible throughout nodes */
4564 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4565 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4567 * Recalculate kernelcore_node if the division per node
4568 * now exceeds what is necessary to satisfy the requested
4569 * amount of memory for the kernel
4571 if (required_kernelcore
< kernelcore_node
)
4572 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4575 * As the map is walked, we track how much memory is usable
4576 * by the kernel using kernelcore_remaining. When it is
4577 * 0, the rest of the node is usable by ZONE_MOVABLE
4579 kernelcore_remaining
= kernelcore_node
;
4581 /* Go through each range of PFNs within this node */
4582 for_each_active_range_index_in_nid(i
, nid
) {
4583 unsigned long start_pfn
, end_pfn
;
4584 unsigned long size_pages
;
4586 start_pfn
= max(early_node_map
[i
].start_pfn
,
4587 zone_movable_pfn
[nid
]);
4588 end_pfn
= early_node_map
[i
].end_pfn
;
4589 if (start_pfn
>= end_pfn
)
4592 /* Account for what is only usable for kernelcore */
4593 if (start_pfn
< usable_startpfn
) {
4594 unsigned long kernel_pages
;
4595 kernel_pages
= min(end_pfn
, usable_startpfn
)
4598 kernelcore_remaining
-= min(kernel_pages
,
4599 kernelcore_remaining
);
4600 required_kernelcore
-= min(kernel_pages
,
4601 required_kernelcore
);
4603 /* Continue if range is now fully accounted */
4604 if (end_pfn
<= usable_startpfn
) {
4607 * Push zone_movable_pfn to the end so
4608 * that if we have to rebalance
4609 * kernelcore across nodes, we will
4610 * not double account here
4612 zone_movable_pfn
[nid
] = end_pfn
;
4615 start_pfn
= usable_startpfn
;
4619 * The usable PFN range for ZONE_MOVABLE is from
4620 * start_pfn->end_pfn. Calculate size_pages as the
4621 * number of pages used as kernelcore
4623 size_pages
= end_pfn
- start_pfn
;
4624 if (size_pages
> kernelcore_remaining
)
4625 size_pages
= kernelcore_remaining
;
4626 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4629 * Some kernelcore has been met, update counts and
4630 * break if the kernelcore for this node has been
4633 required_kernelcore
-= min(required_kernelcore
,
4635 kernelcore_remaining
-= size_pages
;
4636 if (!kernelcore_remaining
)
4642 * If there is still required_kernelcore, we do another pass with one
4643 * less node in the count. This will push zone_movable_pfn[nid] further
4644 * along on the nodes that still have memory until kernelcore is
4648 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4651 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4652 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4653 zone_movable_pfn
[nid
] =
4654 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4657 /* restore the node_state */
4658 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4661 /* Any regular memory on that node ? */
4662 static void check_for_regular_memory(pg_data_t
*pgdat
)
4664 #ifdef CONFIG_HIGHMEM
4665 enum zone_type zone_type
;
4667 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4668 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4669 if (zone
->present_pages
)
4670 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4676 * free_area_init_nodes - Initialise all pg_data_t and zone data
4677 * @max_zone_pfn: an array of max PFNs for each zone
4679 * This will call free_area_init_node() for each active node in the system.
4680 * Using the page ranges provided by add_active_range(), the size of each
4681 * zone in each node and their holes is calculated. If the maximum PFN
4682 * between two adjacent zones match, it is assumed that the zone is empty.
4683 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4684 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4685 * starts where the previous one ended. For example, ZONE_DMA32 starts
4686 * at arch_max_dma_pfn.
4688 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4693 /* Sort early_node_map as initialisation assumes it is sorted */
4696 /* Record where the zone boundaries are */
4697 memset(arch_zone_lowest_possible_pfn
, 0,
4698 sizeof(arch_zone_lowest_possible_pfn
));
4699 memset(arch_zone_highest_possible_pfn
, 0,
4700 sizeof(arch_zone_highest_possible_pfn
));
4701 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4702 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4703 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4704 if (i
== ZONE_MOVABLE
)
4706 arch_zone_lowest_possible_pfn
[i
] =
4707 arch_zone_highest_possible_pfn
[i
-1];
4708 arch_zone_highest_possible_pfn
[i
] =
4709 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4711 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4712 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4714 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4715 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4716 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4718 /* Print out the zone ranges */
4719 printk("Zone PFN ranges:\n");
4720 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4721 if (i
== ZONE_MOVABLE
)
4723 printk(" %-8s ", zone_names
[i
]);
4724 if (arch_zone_lowest_possible_pfn
[i
] ==
4725 arch_zone_highest_possible_pfn
[i
])
4728 printk("%0#10lx -> %0#10lx\n",
4729 arch_zone_lowest_possible_pfn
[i
],
4730 arch_zone_highest_possible_pfn
[i
]);
4733 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4734 printk("Movable zone start PFN for each node\n");
4735 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4736 if (zone_movable_pfn
[i
])
4737 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4740 /* Print out the early_node_map[] */
4741 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4742 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4743 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4744 early_node_map
[i
].start_pfn
,
4745 early_node_map
[i
].end_pfn
);
4747 /* Initialise every node */
4748 mminit_verify_pageflags_layout();
4749 setup_nr_node_ids();
4750 for_each_online_node(nid
) {
4751 pg_data_t
*pgdat
= NODE_DATA(nid
);
4752 free_area_init_node(nid
, NULL
,
4753 find_min_pfn_for_node(nid
), NULL
);
4755 /* Any memory on that node */
4756 if (pgdat
->node_present_pages
)
4757 node_set_state(nid
, N_HIGH_MEMORY
);
4758 check_for_regular_memory(pgdat
);
4762 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4764 unsigned long long coremem
;
4768 coremem
= memparse(p
, &p
);
4769 *core
= coremem
>> PAGE_SHIFT
;
4771 /* Paranoid check that UL is enough for the coremem value */
4772 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4778 * kernelcore=size sets the amount of memory for use for allocations that
4779 * cannot be reclaimed or migrated.
4781 static int __init
cmdline_parse_kernelcore(char *p
)
4783 return cmdline_parse_core(p
, &required_kernelcore
);
4787 * movablecore=size sets the amount of memory for use for allocations that
4788 * can be reclaimed or migrated.
4790 static int __init
cmdline_parse_movablecore(char *p
)
4792 return cmdline_parse_core(p
, &required_movablecore
);
4795 early_param("kernelcore", cmdline_parse_kernelcore
);
4796 early_param("movablecore", cmdline_parse_movablecore
);
4798 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4801 * set_dma_reserve - set the specified number of pages reserved in the first zone
4802 * @new_dma_reserve: The number of pages to mark reserved
4804 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4805 * In the DMA zone, a significant percentage may be consumed by kernel image
4806 * and other unfreeable allocations which can skew the watermarks badly. This
4807 * function may optionally be used to account for unfreeable pages in the
4808 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4809 * smaller per-cpu batchsize.
4811 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4813 dma_reserve
= new_dma_reserve
;
4816 void __init
free_area_init(unsigned long *zones_size
)
4818 free_area_init_node(0, zones_size
,
4819 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4822 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4823 unsigned long action
, void *hcpu
)
4825 int cpu
= (unsigned long)hcpu
;
4827 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4831 * Spill the event counters of the dead processor
4832 * into the current processors event counters.
4833 * This artificially elevates the count of the current
4836 vm_events_fold_cpu(cpu
);
4839 * Zero the differential counters of the dead processor
4840 * so that the vm statistics are consistent.
4842 * This is only okay since the processor is dead and cannot
4843 * race with what we are doing.
4845 refresh_cpu_vm_stats(cpu
);
4850 void __init
page_alloc_init(void)
4852 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4856 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4857 * or min_free_kbytes changes.
4859 static void calculate_totalreserve_pages(void)
4861 struct pglist_data
*pgdat
;
4862 unsigned long reserve_pages
= 0;
4863 enum zone_type i
, j
;
4865 for_each_online_pgdat(pgdat
) {
4866 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4867 struct zone
*zone
= pgdat
->node_zones
+ i
;
4868 unsigned long max
= 0;
4870 /* Find valid and maximum lowmem_reserve in the zone */
4871 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4872 if (zone
->lowmem_reserve
[j
] > max
)
4873 max
= zone
->lowmem_reserve
[j
];
4876 /* we treat the high watermark as reserved pages. */
4877 max
+= high_wmark_pages(zone
);
4879 if (max
> zone
->present_pages
)
4880 max
= zone
->present_pages
;
4881 reserve_pages
+= max
;
4884 totalreserve_pages
= reserve_pages
;
4888 * setup_per_zone_lowmem_reserve - called whenever
4889 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4890 * has a correct pages reserved value, so an adequate number of
4891 * pages are left in the zone after a successful __alloc_pages().
4893 static void setup_per_zone_lowmem_reserve(void)
4895 struct pglist_data
*pgdat
;
4896 enum zone_type j
, idx
;
4898 for_each_online_pgdat(pgdat
) {
4899 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4900 struct zone
*zone
= pgdat
->node_zones
+ j
;
4901 unsigned long present_pages
= zone
->present_pages
;
4903 zone
->lowmem_reserve
[j
] = 0;
4907 struct zone
*lower_zone
;
4911 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4912 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4914 lower_zone
= pgdat
->node_zones
+ idx
;
4915 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4916 sysctl_lowmem_reserve_ratio
[idx
];
4917 present_pages
+= lower_zone
->present_pages
;
4922 /* update totalreserve_pages */
4923 calculate_totalreserve_pages();
4927 * setup_per_zone_wmarks - called when min_free_kbytes changes
4928 * or when memory is hot-{added|removed}
4930 * Ensures that the watermark[min,low,high] values for each zone are set
4931 * correctly with respect to min_free_kbytes.
4933 void setup_per_zone_wmarks(void)
4935 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4936 unsigned long lowmem_pages
= 0;
4938 unsigned long flags
;
4940 /* Calculate total number of !ZONE_HIGHMEM pages */
4941 for_each_zone(zone
) {
4942 if (!is_highmem(zone
))
4943 lowmem_pages
+= zone
->present_pages
;
4946 for_each_zone(zone
) {
4949 spin_lock_irqsave(&zone
->lock
, flags
);
4950 tmp
= (u64
)pages_min
* zone
->present_pages
;
4951 do_div(tmp
, lowmem_pages
);
4952 if (is_highmem(zone
)) {
4954 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4955 * need highmem pages, so cap pages_min to a small
4958 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4959 * deltas controls asynch page reclaim, and so should
4960 * not be capped for highmem.
4964 min_pages
= zone
->present_pages
/ 1024;
4965 if (min_pages
< SWAP_CLUSTER_MAX
)
4966 min_pages
= SWAP_CLUSTER_MAX
;
4967 if (min_pages
> 128)
4969 zone
->watermark
[WMARK_MIN
] = min_pages
;
4972 * If it's a lowmem zone, reserve a number of pages
4973 * proportionate to the zone's size.
4975 zone
->watermark
[WMARK_MIN
] = tmp
;
4978 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4979 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4980 setup_zone_migrate_reserve(zone
);
4981 spin_unlock_irqrestore(&zone
->lock
, flags
);
4984 /* update totalreserve_pages */
4985 calculate_totalreserve_pages();
4989 * The inactive anon list should be small enough that the VM never has to
4990 * do too much work, but large enough that each inactive page has a chance
4991 * to be referenced again before it is swapped out.
4993 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4994 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4995 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4996 * the anonymous pages are kept on the inactive list.
4999 * memory ratio inactive anon
5000 * -------------------------------------
5009 void calculate_zone_inactive_ratio(struct zone
*zone
)
5011 unsigned int gb
, ratio
;
5013 /* Zone size in gigabytes */
5014 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5016 ratio
= int_sqrt(10 * gb
);
5020 zone
->inactive_ratio
= ratio
;
5023 static void __init
setup_per_zone_inactive_ratio(void)
5028 calculate_zone_inactive_ratio(zone
);
5032 * Initialise min_free_kbytes.
5034 * For small machines we want it small (128k min). For large machines
5035 * we want it large (64MB max). But it is not linear, because network
5036 * bandwidth does not increase linearly with machine size. We use
5038 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5039 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5055 static int __init
init_per_zone_wmark_min(void)
5057 unsigned long lowmem_kbytes
;
5059 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5061 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5062 if (min_free_kbytes
< 128)
5063 min_free_kbytes
= 128;
5064 if (min_free_kbytes
> 65536)
5065 min_free_kbytes
= 65536;
5066 setup_per_zone_wmarks();
5067 setup_per_zone_lowmem_reserve();
5068 setup_per_zone_inactive_ratio();
5071 module_init(init_per_zone_wmark_min
)
5074 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5075 * that we can call two helper functions whenever min_free_kbytes
5078 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5079 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5081 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5083 setup_per_zone_wmarks();
5088 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5089 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5094 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5099 zone
->min_unmapped_pages
= (zone
->present_pages
*
5100 sysctl_min_unmapped_ratio
) / 100;
5104 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5105 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5110 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5115 zone
->min_slab_pages
= (zone
->present_pages
*
5116 sysctl_min_slab_ratio
) / 100;
5122 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5123 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5124 * whenever sysctl_lowmem_reserve_ratio changes.
5126 * The reserve ratio obviously has absolutely no relation with the
5127 * minimum watermarks. The lowmem reserve ratio can only make sense
5128 * if in function of the boot time zone sizes.
5130 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5131 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5133 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5134 setup_per_zone_lowmem_reserve();
5139 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5140 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5141 * can have before it gets flushed back to buddy allocator.
5144 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5145 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5151 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5152 if (!write
|| (ret
== -EINVAL
))
5154 for_each_populated_zone(zone
) {
5155 for_each_possible_cpu(cpu
) {
5157 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5158 setup_pagelist_highmark(
5159 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5165 int hashdist
= HASHDIST_DEFAULT
;
5168 static int __init
set_hashdist(char *str
)
5172 hashdist
= simple_strtoul(str
, &str
, 0);
5175 __setup("hashdist=", set_hashdist
);
5179 * allocate a large system hash table from bootmem
5180 * - it is assumed that the hash table must contain an exact power-of-2
5181 * quantity of entries
5182 * - limit is the number of hash buckets, not the total allocation size
5184 void *__init
alloc_large_system_hash(const char *tablename
,
5185 unsigned long bucketsize
,
5186 unsigned long numentries
,
5189 unsigned int *_hash_shift
,
5190 unsigned int *_hash_mask
,
5191 unsigned long limit
)
5193 unsigned long long max
= limit
;
5194 unsigned long log2qty
, size
;
5197 /* allow the kernel cmdline to have a say */
5199 /* round applicable memory size up to nearest megabyte */
5200 numentries
= nr_kernel_pages
;
5201 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5202 numentries
>>= 20 - PAGE_SHIFT
;
5203 numentries
<<= 20 - PAGE_SHIFT
;
5205 /* limit to 1 bucket per 2^scale bytes of low memory */
5206 if (scale
> PAGE_SHIFT
)
5207 numentries
>>= (scale
- PAGE_SHIFT
);
5209 numentries
<<= (PAGE_SHIFT
- scale
);
5211 /* Make sure we've got at least a 0-order allocation.. */
5212 if (unlikely(flags
& HASH_SMALL
)) {
5213 /* Makes no sense without HASH_EARLY */
5214 WARN_ON(!(flags
& HASH_EARLY
));
5215 if (!(numentries
>> *_hash_shift
)) {
5216 numentries
= 1UL << *_hash_shift
;
5217 BUG_ON(!numentries
);
5219 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5220 numentries
= PAGE_SIZE
/ bucketsize
;
5222 numentries
= roundup_pow_of_two(numentries
);
5224 /* limit allocation size to 1/16 total memory by default */
5226 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5227 do_div(max
, bucketsize
);
5230 if (numentries
> max
)
5233 log2qty
= ilog2(numentries
);
5236 size
= bucketsize
<< log2qty
;
5237 if (flags
& HASH_EARLY
)
5238 table
= alloc_bootmem_nopanic(size
);
5240 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5243 * If bucketsize is not a power-of-two, we may free
5244 * some pages at the end of hash table which
5245 * alloc_pages_exact() automatically does
5247 if (get_order(size
) < MAX_ORDER
) {
5248 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5249 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5252 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5255 panic("Failed to allocate %s hash table\n", tablename
);
5257 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5260 ilog2(size
) - PAGE_SHIFT
,
5264 *_hash_shift
= log2qty
;
5266 *_hash_mask
= (1 << log2qty
) - 1;
5271 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5272 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5275 #ifdef CONFIG_SPARSEMEM
5276 return __pfn_to_section(pfn
)->pageblock_flags
;
5278 return zone
->pageblock_flags
;
5279 #endif /* CONFIG_SPARSEMEM */
5282 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5284 #ifdef CONFIG_SPARSEMEM
5285 pfn
&= (PAGES_PER_SECTION
-1);
5286 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5288 pfn
= pfn
- zone
->zone_start_pfn
;
5289 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5290 #endif /* CONFIG_SPARSEMEM */
5294 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5295 * @page: The page within the block of interest
5296 * @start_bitidx: The first bit of interest to retrieve
5297 * @end_bitidx: The last bit of interest
5298 * returns pageblock_bits flags
5300 unsigned long get_pageblock_flags_group(struct page
*page
,
5301 int start_bitidx
, int end_bitidx
)
5304 unsigned long *bitmap
;
5305 unsigned long pfn
, bitidx
;
5306 unsigned long flags
= 0;
5307 unsigned long value
= 1;
5309 zone
= page_zone(page
);
5310 pfn
= page_to_pfn(page
);
5311 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5312 bitidx
= pfn_to_bitidx(zone
, pfn
);
5314 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5315 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5322 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5323 * @page: The page within the block of interest
5324 * @start_bitidx: The first bit of interest
5325 * @end_bitidx: The last bit of interest
5326 * @flags: The flags to set
5328 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5329 int start_bitidx
, int end_bitidx
)
5332 unsigned long *bitmap
;
5333 unsigned long pfn
, bitidx
;
5334 unsigned long value
= 1;
5336 zone
= page_zone(page
);
5337 pfn
= page_to_pfn(page
);
5338 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5339 bitidx
= pfn_to_bitidx(zone
, pfn
);
5340 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5341 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5343 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5345 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5347 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5351 * This is designed as sub function...plz see page_isolation.c also.
5352 * set/clear page block's type to be ISOLATE.
5353 * page allocater never alloc memory from ISOLATE block.
5357 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5359 unsigned long pfn
, iter
, found
;
5361 * For avoiding noise data, lru_add_drain_all() should be called
5362 * If ZONE_MOVABLE, the zone never contains immobile pages
5364 if (zone_idx(zone
) == ZONE_MOVABLE
)
5367 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5370 pfn
= page_to_pfn(page
);
5371 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5372 unsigned long check
= pfn
+ iter
;
5374 if (!pfn_valid_within(check
))
5377 page
= pfn_to_page(check
);
5378 if (!page_count(page
)) {
5379 if (PageBuddy(page
))
5380 iter
+= (1 << page_order(page
)) - 1;
5386 * If there are RECLAIMABLE pages, we need to check it.
5387 * But now, memory offline itself doesn't call shrink_slab()
5388 * and it still to be fixed.
5391 * If the page is not RAM, page_count()should be 0.
5392 * we don't need more check. This is an _used_ not-movable page.
5394 * The problematic thing here is PG_reserved pages. PG_reserved
5395 * is set to both of a memory hole page and a _used_ kernel
5404 bool is_pageblock_removable_nolock(struct page
*page
)
5406 struct zone
*zone
= page_zone(page
);
5407 return __count_immobile_pages(zone
, page
, 0);
5410 int set_migratetype_isolate(struct page
*page
)
5413 unsigned long flags
, pfn
;
5414 struct memory_isolate_notify arg
;
5419 zone
= page_zone(page
);
5420 zone_idx
= zone_idx(zone
);
5422 spin_lock_irqsave(&zone
->lock
, flags
);
5424 pfn
= page_to_pfn(page
);
5425 arg
.start_pfn
= pfn
;
5426 arg
.nr_pages
= pageblock_nr_pages
;
5427 arg
.pages_found
= 0;
5430 * It may be possible to isolate a pageblock even if the
5431 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5432 * notifier chain is used by balloon drivers to return the
5433 * number of pages in a range that are held by the balloon
5434 * driver to shrink memory. If all the pages are accounted for
5435 * by balloons, are free, or on the LRU, isolation can continue.
5436 * Later, for example, when memory hotplug notifier runs, these
5437 * pages reported as "can be isolated" should be isolated(freed)
5438 * by the balloon driver through the memory notifier chain.
5440 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5441 notifier_ret
= notifier_to_errno(notifier_ret
);
5445 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5446 * We just check MOVABLE pages.
5448 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5452 * immobile means "not-on-lru" paes. If immobile is larger than
5453 * removable-by-driver pages reported by notifier, we'll fail.
5458 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5459 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5462 spin_unlock_irqrestore(&zone
->lock
, flags
);
5468 void unset_migratetype_isolate(struct page
*page
)
5471 unsigned long flags
;
5472 zone
= page_zone(page
);
5473 spin_lock_irqsave(&zone
->lock
, flags
);
5474 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5476 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5477 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5479 spin_unlock_irqrestore(&zone
->lock
, flags
);
5482 #ifdef CONFIG_MEMORY_HOTREMOVE
5484 * All pages in the range must be isolated before calling this.
5487 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5493 unsigned long flags
;
5494 /* find the first valid pfn */
5495 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5500 zone
= page_zone(pfn_to_page(pfn
));
5501 spin_lock_irqsave(&zone
->lock
, flags
);
5503 while (pfn
< end_pfn
) {
5504 if (!pfn_valid(pfn
)) {
5508 page
= pfn_to_page(pfn
);
5509 BUG_ON(page_count(page
));
5510 BUG_ON(!PageBuddy(page
));
5511 order
= page_order(page
);
5512 #ifdef CONFIG_DEBUG_VM
5513 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5514 pfn
, 1 << order
, end_pfn
);
5516 list_del(&page
->lru
);
5517 rmv_page_order(page
);
5518 zone
->free_area
[order
].nr_free
--;
5519 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5521 for (i
= 0; i
< (1 << order
); i
++)
5522 SetPageReserved((page
+i
));
5523 pfn
+= (1 << order
);
5525 spin_unlock_irqrestore(&zone
->lock
, flags
);
5529 #ifdef CONFIG_MEMORY_FAILURE
5530 bool is_free_buddy_page(struct page
*page
)
5532 struct zone
*zone
= page_zone(page
);
5533 unsigned long pfn
= page_to_pfn(page
);
5534 unsigned long flags
;
5537 spin_lock_irqsave(&zone
->lock
, flags
);
5538 for (order
= 0; order
< MAX_ORDER
; order
++) {
5539 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5541 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5544 spin_unlock_irqrestore(&zone
->lock
, flags
);
5546 return order
< MAX_ORDER
;
5550 static struct trace_print_flags pageflag_names
[] = {
5551 {1UL << PG_locked
, "locked" },
5552 {1UL << PG_error
, "error" },
5553 {1UL << PG_referenced
, "referenced" },
5554 {1UL << PG_uptodate
, "uptodate" },
5555 {1UL << PG_dirty
, "dirty" },
5556 {1UL << PG_lru
, "lru" },
5557 {1UL << PG_active
, "active" },
5558 {1UL << PG_slab
, "slab" },
5559 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5560 {1UL << PG_arch_1
, "arch_1" },
5561 {1UL << PG_reserved
, "reserved" },
5562 {1UL << PG_private
, "private" },
5563 {1UL << PG_private_2
, "private_2" },
5564 {1UL << PG_writeback
, "writeback" },
5565 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5566 {1UL << PG_head
, "head" },
5567 {1UL << PG_tail
, "tail" },
5569 {1UL << PG_compound
, "compound" },
5571 {1UL << PG_swapcache
, "swapcache" },
5572 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5573 {1UL << PG_reclaim
, "reclaim" },
5574 {1UL << PG_swapbacked
, "swapbacked" },
5575 {1UL << PG_unevictable
, "unevictable" },
5577 {1UL << PG_mlocked
, "mlocked" },
5579 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5580 {1UL << PG_uncached
, "uncached" },
5582 #ifdef CONFIG_MEMORY_FAILURE
5583 {1UL << PG_hwpoison
, "hwpoison" },
5588 static void dump_page_flags(unsigned long flags
)
5590 const char *delim
= "";
5594 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5596 /* remove zone id */
5597 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5599 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5601 mask
= pageflag_names
[i
].mask
;
5602 if ((flags
& mask
) != mask
)
5606 printk("%s%s", delim
, pageflag_names
[i
].name
);
5610 /* check for left over flags */
5612 printk("%s%#lx", delim
, flags
);
5617 void dump_page(struct page
*page
)
5620 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5621 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5622 page
->mapping
, page
->index
);
5623 dump_page_flags(page
->flags
);