tmpfs: make tmpfs scalable with percpu_counter for used blocks
[linux-2.6/libata-dev.git] / mm / rmap.c
blob07e9814c7a41ac92b92952059b6139a8ac5d3d90
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
60 #include <asm/tlbflush.h>
62 #include "internal.h"
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
67 static inline struct anon_vma *anon_vma_alloc(void)
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 void anon_vma_free(struct anon_vma *anon_vma)
74 kmem_cache_free(anon_vma_cachep, anon_vma);
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
87 /**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
112 * This must be called with the mmap_sem held for reading.
114 int anon_vma_prepare(struct vm_area_struct *vma)
116 struct anon_vma *anon_vma = vma->anon_vma;
117 struct anon_vma_chain *avc;
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
122 struct anon_vma *allocated;
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
128 anon_vma = find_mergeable_anon_vma(vma);
129 allocated = NULL;
130 if (!anon_vma) {
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
133 goto out_enomem_free_avc;
134 allocated = anon_vma;
136 * This VMA had no anon_vma yet. This anon_vma is
137 * the root of any anon_vma tree that might form.
139 anon_vma->root = anon_vma;
142 anon_vma_lock(anon_vma);
143 /* page_table_lock to protect against threads */
144 spin_lock(&mm->page_table_lock);
145 if (likely(!vma->anon_vma)) {
146 vma->anon_vma = anon_vma;
147 avc->anon_vma = anon_vma;
148 avc->vma = vma;
149 list_add(&avc->same_vma, &vma->anon_vma_chain);
150 list_add(&avc->same_anon_vma, &anon_vma->head);
151 allocated = NULL;
152 avc = NULL;
154 spin_unlock(&mm->page_table_lock);
155 anon_vma_unlock(anon_vma);
157 if (unlikely(allocated))
158 anon_vma_free(allocated);
159 if (unlikely(avc))
160 anon_vma_chain_free(avc);
162 return 0;
164 out_enomem_free_avc:
165 anon_vma_chain_free(avc);
166 out_enomem:
167 return -ENOMEM;
170 static void anon_vma_chain_link(struct vm_area_struct *vma,
171 struct anon_vma_chain *avc,
172 struct anon_vma *anon_vma)
174 avc->vma = vma;
175 avc->anon_vma = anon_vma;
176 list_add(&avc->same_vma, &vma->anon_vma_chain);
178 anon_vma_lock(anon_vma);
179 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
180 anon_vma_unlock(anon_vma);
184 * Attach the anon_vmas from src to dst.
185 * Returns 0 on success, -ENOMEM on failure.
187 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
189 struct anon_vma_chain *avc, *pavc;
191 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
192 avc = anon_vma_chain_alloc();
193 if (!avc)
194 goto enomem_failure;
195 anon_vma_chain_link(dst, avc, pavc->anon_vma);
197 return 0;
199 enomem_failure:
200 unlink_anon_vmas(dst);
201 return -ENOMEM;
205 * Attach vma to its own anon_vma, as well as to the anon_vmas that
206 * the corresponding VMA in the parent process is attached to.
207 * Returns 0 on success, non-zero on failure.
209 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
211 struct anon_vma_chain *avc;
212 struct anon_vma *anon_vma;
214 /* Don't bother if the parent process has no anon_vma here. */
215 if (!pvma->anon_vma)
216 return 0;
219 * First, attach the new VMA to the parent VMA's anon_vmas,
220 * so rmap can find non-COWed pages in child processes.
222 if (anon_vma_clone(vma, pvma))
223 return -ENOMEM;
225 /* Then add our own anon_vma. */
226 anon_vma = anon_vma_alloc();
227 if (!anon_vma)
228 goto out_error;
229 avc = anon_vma_chain_alloc();
230 if (!avc)
231 goto out_error_free_anon_vma;
234 * The root anon_vma's spinlock is the lock actually used when we
235 * lock any of the anon_vmas in this anon_vma tree.
237 anon_vma->root = pvma->anon_vma->root;
239 * With KSM refcounts, an anon_vma can stay around longer than the
240 * process it belongs to. The root anon_vma needs to be pinned
241 * until this anon_vma is freed, because the lock lives in the root.
243 get_anon_vma(anon_vma->root);
244 /* Mark this anon_vma as the one where our new (COWed) pages go. */
245 vma->anon_vma = anon_vma;
246 anon_vma_chain_link(vma, avc, anon_vma);
248 return 0;
250 out_error_free_anon_vma:
251 anon_vma_free(anon_vma);
252 out_error:
253 unlink_anon_vmas(vma);
254 return -ENOMEM;
257 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
259 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
260 int empty;
262 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
263 if (!anon_vma)
264 return;
266 anon_vma_lock(anon_vma);
267 list_del(&anon_vma_chain->same_anon_vma);
269 /* We must garbage collect the anon_vma if it's empty */
270 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
271 anon_vma_unlock(anon_vma);
273 if (empty) {
274 /* We no longer need the root anon_vma */
275 if (anon_vma->root != anon_vma)
276 drop_anon_vma(anon_vma->root);
277 anon_vma_free(anon_vma);
281 void unlink_anon_vmas(struct vm_area_struct *vma)
283 struct anon_vma_chain *avc, *next;
286 * Unlink each anon_vma chained to the VMA. This list is ordered
287 * from newest to oldest, ensuring the root anon_vma gets freed last.
289 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
290 anon_vma_unlink(avc);
291 list_del(&avc->same_vma);
292 anon_vma_chain_free(avc);
296 static void anon_vma_ctor(void *data)
298 struct anon_vma *anon_vma = data;
300 spin_lock_init(&anon_vma->lock);
301 anonvma_external_refcount_init(anon_vma);
302 INIT_LIST_HEAD(&anon_vma->head);
305 void __init anon_vma_init(void)
307 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
308 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
309 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
313 * Getting a lock on a stable anon_vma from a page off the LRU is
314 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316 struct anon_vma *page_lock_anon_vma(struct page *page)
318 struct anon_vma *anon_vma;
319 unsigned long anon_mapping;
321 rcu_read_lock();
322 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
323 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
324 goto out;
325 if (!page_mapped(page))
326 goto out;
328 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
329 anon_vma_lock(anon_vma);
330 return anon_vma;
331 out:
332 rcu_read_unlock();
333 return NULL;
336 void page_unlock_anon_vma(struct anon_vma *anon_vma)
338 anon_vma_unlock(anon_vma);
339 rcu_read_unlock();
343 * At what user virtual address is page expected in @vma?
344 * Returns virtual address or -EFAULT if page's index/offset is not
345 * within the range mapped the @vma.
347 static inline unsigned long
348 vma_address(struct page *page, struct vm_area_struct *vma)
350 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
351 unsigned long address;
353 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
354 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
355 /* page should be within @vma mapping range */
356 return -EFAULT;
358 return address;
362 * At what user virtual address is page expected in vma?
363 * Caller should check the page is actually part of the vma.
365 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
367 if (PageAnon(page))
369 else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
370 if (!vma->vm_file ||
371 vma->vm_file->f_mapping != page->mapping)
372 return -EFAULT;
373 } else
374 return -EFAULT;
375 return vma_address(page, vma);
379 * Check that @page is mapped at @address into @mm.
381 * If @sync is false, page_check_address may perform a racy check to avoid
382 * the page table lock when the pte is not present (helpful when reclaiming
383 * highly shared pages).
385 * On success returns with pte mapped and locked.
387 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
388 unsigned long address, spinlock_t **ptlp, int sync)
390 pgd_t *pgd;
391 pud_t *pud;
392 pmd_t *pmd;
393 pte_t *pte;
394 spinlock_t *ptl;
396 pgd = pgd_offset(mm, address);
397 if (!pgd_present(*pgd))
398 return NULL;
400 pud = pud_offset(pgd, address);
401 if (!pud_present(*pud))
402 return NULL;
404 pmd = pmd_offset(pud, address);
405 if (!pmd_present(*pmd))
406 return NULL;
408 pte = pte_offset_map(pmd, address);
409 /* Make a quick check before getting the lock */
410 if (!sync && !pte_present(*pte)) {
411 pte_unmap(pte);
412 return NULL;
415 ptl = pte_lockptr(mm, pmd);
416 spin_lock(ptl);
417 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
418 *ptlp = ptl;
419 return pte;
421 pte_unmap_unlock(pte, ptl);
422 return NULL;
426 * page_mapped_in_vma - check whether a page is really mapped in a VMA
427 * @page: the page to test
428 * @vma: the VMA to test
430 * Returns 1 if the page is mapped into the page tables of the VMA, 0
431 * if the page is not mapped into the page tables of this VMA. Only
432 * valid for normal file or anonymous VMAs.
434 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
436 unsigned long address;
437 pte_t *pte;
438 spinlock_t *ptl;
440 address = vma_address(page, vma);
441 if (address == -EFAULT) /* out of vma range */
442 return 0;
443 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
444 if (!pte) /* the page is not in this mm */
445 return 0;
446 pte_unmap_unlock(pte, ptl);
448 return 1;
452 * Subfunctions of page_referenced: page_referenced_one called
453 * repeatedly from either page_referenced_anon or page_referenced_file.
455 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
456 unsigned long address, unsigned int *mapcount,
457 unsigned long *vm_flags)
459 struct mm_struct *mm = vma->vm_mm;
460 pte_t *pte;
461 spinlock_t *ptl;
462 int referenced = 0;
464 pte = page_check_address(page, mm, address, &ptl, 0);
465 if (!pte)
466 goto out;
469 * Don't want to elevate referenced for mlocked page that gets this far,
470 * in order that it progresses to try_to_unmap and is moved to the
471 * unevictable list.
473 if (vma->vm_flags & VM_LOCKED) {
474 *mapcount = 1; /* break early from loop */
475 *vm_flags |= VM_LOCKED;
476 goto out_unmap;
479 if (ptep_clear_flush_young_notify(vma, address, pte)) {
481 * Don't treat a reference through a sequentially read
482 * mapping as such. If the page has been used in
483 * another mapping, we will catch it; if this other
484 * mapping is already gone, the unmap path will have
485 * set PG_referenced or activated the page.
487 if (likely(!VM_SequentialReadHint(vma)))
488 referenced++;
491 /* Pretend the page is referenced if the task has the
492 swap token and is in the middle of a page fault. */
493 if (mm != current->mm && has_swap_token(mm) &&
494 rwsem_is_locked(&mm->mmap_sem))
495 referenced++;
497 out_unmap:
498 (*mapcount)--;
499 pte_unmap_unlock(pte, ptl);
501 if (referenced)
502 *vm_flags |= vma->vm_flags;
503 out:
504 return referenced;
507 static int page_referenced_anon(struct page *page,
508 struct mem_cgroup *mem_cont,
509 unsigned long *vm_flags)
511 unsigned int mapcount;
512 struct anon_vma *anon_vma;
513 struct anon_vma_chain *avc;
514 int referenced = 0;
516 anon_vma = page_lock_anon_vma(page);
517 if (!anon_vma)
518 return referenced;
520 mapcount = page_mapcount(page);
521 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
522 struct vm_area_struct *vma = avc->vma;
523 unsigned long address = vma_address(page, vma);
524 if (address == -EFAULT)
525 continue;
527 * If we are reclaiming on behalf of a cgroup, skip
528 * counting on behalf of references from different
529 * cgroups
531 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
532 continue;
533 referenced += page_referenced_one(page, vma, address,
534 &mapcount, vm_flags);
535 if (!mapcount)
536 break;
539 page_unlock_anon_vma(anon_vma);
540 return referenced;
544 * page_referenced_file - referenced check for object-based rmap
545 * @page: the page we're checking references on.
546 * @mem_cont: target memory controller
547 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
549 * For an object-based mapped page, find all the places it is mapped and
550 * check/clear the referenced flag. This is done by following the page->mapping
551 * pointer, then walking the chain of vmas it holds. It returns the number
552 * of references it found.
554 * This function is only called from page_referenced for object-based pages.
556 static int page_referenced_file(struct page *page,
557 struct mem_cgroup *mem_cont,
558 unsigned long *vm_flags)
560 unsigned int mapcount;
561 struct address_space *mapping = page->mapping;
562 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
563 struct vm_area_struct *vma;
564 struct prio_tree_iter iter;
565 int referenced = 0;
568 * The caller's checks on page->mapping and !PageAnon have made
569 * sure that this is a file page: the check for page->mapping
570 * excludes the case just before it gets set on an anon page.
572 BUG_ON(PageAnon(page));
575 * The page lock not only makes sure that page->mapping cannot
576 * suddenly be NULLified by truncation, it makes sure that the
577 * structure at mapping cannot be freed and reused yet,
578 * so we can safely take mapping->i_mmap_lock.
580 BUG_ON(!PageLocked(page));
582 spin_lock(&mapping->i_mmap_lock);
585 * i_mmap_lock does not stabilize mapcount at all, but mapcount
586 * is more likely to be accurate if we note it after spinning.
588 mapcount = page_mapcount(page);
590 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
591 unsigned long address = vma_address(page, vma);
592 if (address == -EFAULT)
593 continue;
595 * If we are reclaiming on behalf of a cgroup, skip
596 * counting on behalf of references from different
597 * cgroups
599 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
600 continue;
601 referenced += page_referenced_one(page, vma, address,
602 &mapcount, vm_flags);
603 if (!mapcount)
604 break;
607 spin_unlock(&mapping->i_mmap_lock);
608 return referenced;
612 * page_referenced - test if the page was referenced
613 * @page: the page to test
614 * @is_locked: caller holds lock on the page
615 * @mem_cont: target memory controller
616 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
618 * Quick test_and_clear_referenced for all mappings to a page,
619 * returns the number of ptes which referenced the page.
621 int page_referenced(struct page *page,
622 int is_locked,
623 struct mem_cgroup *mem_cont,
624 unsigned long *vm_flags)
626 int referenced = 0;
627 int we_locked = 0;
629 *vm_flags = 0;
630 if (page_mapped(page) && page_rmapping(page)) {
631 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
632 we_locked = trylock_page(page);
633 if (!we_locked) {
634 referenced++;
635 goto out;
638 if (unlikely(PageKsm(page)))
639 referenced += page_referenced_ksm(page, mem_cont,
640 vm_flags);
641 else if (PageAnon(page))
642 referenced += page_referenced_anon(page, mem_cont,
643 vm_flags);
644 else if (page->mapping)
645 referenced += page_referenced_file(page, mem_cont,
646 vm_flags);
647 if (we_locked)
648 unlock_page(page);
650 out:
651 if (page_test_and_clear_young(page))
652 referenced++;
654 return referenced;
657 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
658 unsigned long address)
660 struct mm_struct *mm = vma->vm_mm;
661 pte_t *pte;
662 spinlock_t *ptl;
663 int ret = 0;
665 pte = page_check_address(page, mm, address, &ptl, 1);
666 if (!pte)
667 goto out;
669 if (pte_dirty(*pte) || pte_write(*pte)) {
670 pte_t entry;
672 flush_cache_page(vma, address, pte_pfn(*pte));
673 entry = ptep_clear_flush_notify(vma, address, pte);
674 entry = pte_wrprotect(entry);
675 entry = pte_mkclean(entry);
676 set_pte_at(mm, address, pte, entry);
677 ret = 1;
680 pte_unmap_unlock(pte, ptl);
681 out:
682 return ret;
685 static int page_mkclean_file(struct address_space *mapping, struct page *page)
687 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
688 struct vm_area_struct *vma;
689 struct prio_tree_iter iter;
690 int ret = 0;
692 BUG_ON(PageAnon(page));
694 spin_lock(&mapping->i_mmap_lock);
695 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
696 if (vma->vm_flags & VM_SHARED) {
697 unsigned long address = vma_address(page, vma);
698 if (address == -EFAULT)
699 continue;
700 ret += page_mkclean_one(page, vma, address);
703 spin_unlock(&mapping->i_mmap_lock);
704 return ret;
707 int page_mkclean(struct page *page)
709 int ret = 0;
711 BUG_ON(!PageLocked(page));
713 if (page_mapped(page)) {
714 struct address_space *mapping = page_mapping(page);
715 if (mapping) {
716 ret = page_mkclean_file(mapping, page);
717 if (page_test_dirty(page)) {
718 page_clear_dirty(page);
719 ret = 1;
724 return ret;
726 EXPORT_SYMBOL_GPL(page_mkclean);
729 * page_move_anon_rmap - move a page to our anon_vma
730 * @page: the page to move to our anon_vma
731 * @vma: the vma the page belongs to
732 * @address: the user virtual address mapped
734 * When a page belongs exclusively to one process after a COW event,
735 * that page can be moved into the anon_vma that belongs to just that
736 * process, so the rmap code will not search the parent or sibling
737 * processes.
739 void page_move_anon_rmap(struct page *page,
740 struct vm_area_struct *vma, unsigned long address)
742 struct anon_vma *anon_vma = vma->anon_vma;
744 VM_BUG_ON(!PageLocked(page));
745 VM_BUG_ON(!anon_vma);
746 VM_BUG_ON(page->index != linear_page_index(vma, address));
748 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
749 page->mapping = (struct address_space *) anon_vma;
753 * __page_set_anon_rmap - setup new anonymous rmap
754 * @page: the page to add the mapping to
755 * @vma: the vm area in which the mapping is added
756 * @address: the user virtual address mapped
757 * @exclusive: the page is exclusively owned by the current process
759 static void __page_set_anon_rmap(struct page *page,
760 struct vm_area_struct *vma, unsigned long address, int exclusive)
762 struct anon_vma *anon_vma = vma->anon_vma;
764 BUG_ON(!anon_vma);
767 * If the page isn't exclusively mapped into this vma,
768 * we must use the _oldest_ possible anon_vma for the
769 * page mapping!
771 * So take the last AVC chain entry in the vma, which is
772 * the deepest ancestor, and use the anon_vma from that.
774 if (!exclusive) {
775 struct anon_vma_chain *avc;
776 avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
777 anon_vma = avc->anon_vma;
780 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
781 page->mapping = (struct address_space *) anon_vma;
782 page->index = linear_page_index(vma, address);
786 * __page_check_anon_rmap - sanity check anonymous rmap addition
787 * @page: the page to add the mapping to
788 * @vma: the vm area in which the mapping is added
789 * @address: the user virtual address mapped
791 static void __page_check_anon_rmap(struct page *page,
792 struct vm_area_struct *vma, unsigned long address)
794 #ifdef CONFIG_DEBUG_VM
796 * The page's anon-rmap details (mapping and index) are guaranteed to
797 * be set up correctly at this point.
799 * We have exclusion against page_add_anon_rmap because the caller
800 * always holds the page locked, except if called from page_dup_rmap,
801 * in which case the page is already known to be setup.
803 * We have exclusion against page_add_new_anon_rmap because those pages
804 * are initially only visible via the pagetables, and the pte is locked
805 * over the call to page_add_new_anon_rmap.
807 BUG_ON(page->index != linear_page_index(vma, address));
808 #endif
812 * page_add_anon_rmap - add pte mapping to an anonymous page
813 * @page: the page to add the mapping to
814 * @vma: the vm area in which the mapping is added
815 * @address: the user virtual address mapped
817 * The caller needs to hold the pte lock, and the page must be locked in
818 * the anon_vma case: to serialize mapping,index checking after setting,
819 * and to ensure that PageAnon is not being upgraded racily to PageKsm
820 * (but PageKsm is never downgraded to PageAnon).
822 void page_add_anon_rmap(struct page *page,
823 struct vm_area_struct *vma, unsigned long address)
825 int first = atomic_inc_and_test(&page->_mapcount);
826 if (first)
827 __inc_zone_page_state(page, NR_ANON_PAGES);
828 if (unlikely(PageKsm(page)))
829 return;
831 VM_BUG_ON(!PageLocked(page));
832 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
833 if (first)
834 __page_set_anon_rmap(page, vma, address, 0);
835 else
836 __page_check_anon_rmap(page, vma, address);
840 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
841 * @page: the page to add the mapping to
842 * @vma: the vm area in which the mapping is added
843 * @address: the user virtual address mapped
845 * Same as page_add_anon_rmap but must only be called on *new* pages.
846 * This means the inc-and-test can be bypassed.
847 * Page does not have to be locked.
849 void page_add_new_anon_rmap(struct page *page,
850 struct vm_area_struct *vma, unsigned long address)
852 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
853 SetPageSwapBacked(page);
854 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
855 __inc_zone_page_state(page, NR_ANON_PAGES);
856 __page_set_anon_rmap(page, vma, address, 1);
857 if (page_evictable(page, vma))
858 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
859 else
860 add_page_to_unevictable_list(page);
864 * page_add_file_rmap - add pte mapping to a file page
865 * @page: the page to add the mapping to
867 * The caller needs to hold the pte lock.
869 void page_add_file_rmap(struct page *page)
871 if (atomic_inc_and_test(&page->_mapcount)) {
872 __inc_zone_page_state(page, NR_FILE_MAPPED);
873 mem_cgroup_update_file_mapped(page, 1);
878 * page_remove_rmap - take down pte mapping from a page
879 * @page: page to remove mapping from
881 * The caller needs to hold the pte lock.
883 void page_remove_rmap(struct page *page)
885 /* page still mapped by someone else? */
886 if (!atomic_add_negative(-1, &page->_mapcount))
887 return;
890 * Now that the last pte has gone, s390 must transfer dirty
891 * flag from storage key to struct page. We can usually skip
892 * this if the page is anon, so about to be freed; but perhaps
893 * not if it's in swapcache - there might be another pte slot
894 * containing the swap entry, but page not yet written to swap.
896 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
897 page_clear_dirty(page);
898 set_page_dirty(page);
900 if (PageAnon(page)) {
901 mem_cgroup_uncharge_page(page);
902 __dec_zone_page_state(page, NR_ANON_PAGES);
903 } else {
904 __dec_zone_page_state(page, NR_FILE_MAPPED);
905 mem_cgroup_update_file_mapped(page, -1);
908 * It would be tidy to reset the PageAnon mapping here,
909 * but that might overwrite a racing page_add_anon_rmap
910 * which increments mapcount after us but sets mapping
911 * before us: so leave the reset to free_hot_cold_page,
912 * and remember that it's only reliable while mapped.
913 * Leaving it set also helps swapoff to reinstate ptes
914 * faster for those pages still in swapcache.
919 * Subfunctions of try_to_unmap: try_to_unmap_one called
920 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
922 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
923 unsigned long address, enum ttu_flags flags)
925 struct mm_struct *mm = vma->vm_mm;
926 pte_t *pte;
927 pte_t pteval;
928 spinlock_t *ptl;
929 int ret = SWAP_AGAIN;
931 pte = page_check_address(page, mm, address, &ptl, 0);
932 if (!pte)
933 goto out;
936 * If the page is mlock()d, we cannot swap it out.
937 * If it's recently referenced (perhaps page_referenced
938 * skipped over this mm) then we should reactivate it.
940 if (!(flags & TTU_IGNORE_MLOCK)) {
941 if (vma->vm_flags & VM_LOCKED)
942 goto out_mlock;
944 if (TTU_ACTION(flags) == TTU_MUNLOCK)
945 goto out_unmap;
947 if (!(flags & TTU_IGNORE_ACCESS)) {
948 if (ptep_clear_flush_young_notify(vma, address, pte)) {
949 ret = SWAP_FAIL;
950 goto out_unmap;
954 /* Nuke the page table entry. */
955 flush_cache_page(vma, address, page_to_pfn(page));
956 pteval = ptep_clear_flush_notify(vma, address, pte);
958 /* Move the dirty bit to the physical page now the pte is gone. */
959 if (pte_dirty(pteval))
960 set_page_dirty(page);
962 /* Update high watermark before we lower rss */
963 update_hiwater_rss(mm);
965 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
966 if (PageAnon(page))
967 dec_mm_counter(mm, MM_ANONPAGES);
968 else
969 dec_mm_counter(mm, MM_FILEPAGES);
970 set_pte_at(mm, address, pte,
971 swp_entry_to_pte(make_hwpoison_entry(page)));
972 } else if (PageAnon(page)) {
973 swp_entry_t entry = { .val = page_private(page) };
975 if (PageSwapCache(page)) {
977 * Store the swap location in the pte.
978 * See handle_pte_fault() ...
980 if (swap_duplicate(entry) < 0) {
981 set_pte_at(mm, address, pte, pteval);
982 ret = SWAP_FAIL;
983 goto out_unmap;
985 if (list_empty(&mm->mmlist)) {
986 spin_lock(&mmlist_lock);
987 if (list_empty(&mm->mmlist))
988 list_add(&mm->mmlist, &init_mm.mmlist);
989 spin_unlock(&mmlist_lock);
991 dec_mm_counter(mm, MM_ANONPAGES);
992 inc_mm_counter(mm, MM_SWAPENTS);
993 } else if (PAGE_MIGRATION) {
995 * Store the pfn of the page in a special migration
996 * pte. do_swap_page() will wait until the migration
997 * pte is removed and then restart fault handling.
999 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1000 entry = make_migration_entry(page, pte_write(pteval));
1002 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1003 BUG_ON(pte_file(*pte));
1004 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1005 /* Establish migration entry for a file page */
1006 swp_entry_t entry;
1007 entry = make_migration_entry(page, pte_write(pteval));
1008 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1009 } else
1010 dec_mm_counter(mm, MM_FILEPAGES);
1012 page_remove_rmap(page);
1013 page_cache_release(page);
1015 out_unmap:
1016 pte_unmap_unlock(pte, ptl);
1017 out:
1018 return ret;
1020 out_mlock:
1021 pte_unmap_unlock(pte, ptl);
1025 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1026 * unstable result and race. Plus, We can't wait here because
1027 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1028 * if trylock failed, the page remain in evictable lru and later
1029 * vmscan could retry to move the page to unevictable lru if the
1030 * page is actually mlocked.
1032 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1033 if (vma->vm_flags & VM_LOCKED) {
1034 mlock_vma_page(page);
1035 ret = SWAP_MLOCK;
1037 up_read(&vma->vm_mm->mmap_sem);
1039 return ret;
1043 * objrmap doesn't work for nonlinear VMAs because the assumption that
1044 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1045 * Consequently, given a particular page and its ->index, we cannot locate the
1046 * ptes which are mapping that page without an exhaustive linear search.
1048 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1049 * maps the file to which the target page belongs. The ->vm_private_data field
1050 * holds the current cursor into that scan. Successive searches will circulate
1051 * around the vma's virtual address space.
1053 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1054 * more scanning pressure is placed against them as well. Eventually pages
1055 * will become fully unmapped and are eligible for eviction.
1057 * For very sparsely populated VMAs this is a little inefficient - chances are
1058 * there there won't be many ptes located within the scan cluster. In this case
1059 * maybe we could scan further - to the end of the pte page, perhaps.
1061 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1062 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1063 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1064 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1066 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1067 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1069 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1070 struct vm_area_struct *vma, struct page *check_page)
1072 struct mm_struct *mm = vma->vm_mm;
1073 pgd_t *pgd;
1074 pud_t *pud;
1075 pmd_t *pmd;
1076 pte_t *pte;
1077 pte_t pteval;
1078 spinlock_t *ptl;
1079 struct page *page;
1080 unsigned long address;
1081 unsigned long end;
1082 int ret = SWAP_AGAIN;
1083 int locked_vma = 0;
1085 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1086 end = address + CLUSTER_SIZE;
1087 if (address < vma->vm_start)
1088 address = vma->vm_start;
1089 if (end > vma->vm_end)
1090 end = vma->vm_end;
1092 pgd = pgd_offset(mm, address);
1093 if (!pgd_present(*pgd))
1094 return ret;
1096 pud = pud_offset(pgd, address);
1097 if (!pud_present(*pud))
1098 return ret;
1100 pmd = pmd_offset(pud, address);
1101 if (!pmd_present(*pmd))
1102 return ret;
1105 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1106 * keep the sem while scanning the cluster for mlocking pages.
1108 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1109 locked_vma = (vma->vm_flags & VM_LOCKED);
1110 if (!locked_vma)
1111 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1114 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1116 /* Update high watermark before we lower rss */
1117 update_hiwater_rss(mm);
1119 for (; address < end; pte++, address += PAGE_SIZE) {
1120 if (!pte_present(*pte))
1121 continue;
1122 page = vm_normal_page(vma, address, *pte);
1123 BUG_ON(!page || PageAnon(page));
1125 if (locked_vma) {
1126 mlock_vma_page(page); /* no-op if already mlocked */
1127 if (page == check_page)
1128 ret = SWAP_MLOCK;
1129 continue; /* don't unmap */
1132 if (ptep_clear_flush_young_notify(vma, address, pte))
1133 continue;
1135 /* Nuke the page table entry. */
1136 flush_cache_page(vma, address, pte_pfn(*pte));
1137 pteval = ptep_clear_flush_notify(vma, address, pte);
1139 /* If nonlinear, store the file page offset in the pte. */
1140 if (page->index != linear_page_index(vma, address))
1141 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1143 /* Move the dirty bit to the physical page now the pte is gone. */
1144 if (pte_dirty(pteval))
1145 set_page_dirty(page);
1147 page_remove_rmap(page);
1148 page_cache_release(page);
1149 dec_mm_counter(mm, MM_FILEPAGES);
1150 (*mapcount)--;
1152 pte_unmap_unlock(pte - 1, ptl);
1153 if (locked_vma)
1154 up_read(&vma->vm_mm->mmap_sem);
1155 return ret;
1158 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1160 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1162 if (!maybe_stack)
1163 return false;
1165 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1166 VM_STACK_INCOMPLETE_SETUP)
1167 return true;
1169 return false;
1173 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1174 * rmap method
1175 * @page: the page to unmap/unlock
1176 * @flags: action and flags
1178 * Find all the mappings of a page using the mapping pointer and the vma chains
1179 * contained in the anon_vma struct it points to.
1181 * This function is only called from try_to_unmap/try_to_munlock for
1182 * anonymous pages.
1183 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1184 * where the page was found will be held for write. So, we won't recheck
1185 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1186 * 'LOCKED.
1188 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1190 struct anon_vma *anon_vma;
1191 struct anon_vma_chain *avc;
1192 int ret = SWAP_AGAIN;
1194 anon_vma = page_lock_anon_vma(page);
1195 if (!anon_vma)
1196 return ret;
1198 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1199 struct vm_area_struct *vma = avc->vma;
1200 unsigned long address;
1203 * During exec, a temporary VMA is setup and later moved.
1204 * The VMA is moved under the anon_vma lock but not the
1205 * page tables leading to a race where migration cannot
1206 * find the migration ptes. Rather than increasing the
1207 * locking requirements of exec(), migration skips
1208 * temporary VMAs until after exec() completes.
1210 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1211 is_vma_temporary_stack(vma))
1212 continue;
1214 address = vma_address(page, vma);
1215 if (address == -EFAULT)
1216 continue;
1217 ret = try_to_unmap_one(page, vma, address, flags);
1218 if (ret != SWAP_AGAIN || !page_mapped(page))
1219 break;
1222 page_unlock_anon_vma(anon_vma);
1223 return ret;
1227 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1228 * @page: the page to unmap/unlock
1229 * @flags: action and flags
1231 * Find all the mappings of a page using the mapping pointer and the vma chains
1232 * contained in the address_space struct it points to.
1234 * This function is only called from try_to_unmap/try_to_munlock for
1235 * object-based pages.
1236 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1237 * where the page was found will be held for write. So, we won't recheck
1238 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1239 * 'LOCKED.
1241 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1243 struct address_space *mapping = page->mapping;
1244 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1245 struct vm_area_struct *vma;
1246 struct prio_tree_iter iter;
1247 int ret = SWAP_AGAIN;
1248 unsigned long cursor;
1249 unsigned long max_nl_cursor = 0;
1250 unsigned long max_nl_size = 0;
1251 unsigned int mapcount;
1253 spin_lock(&mapping->i_mmap_lock);
1254 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1255 unsigned long address = vma_address(page, vma);
1256 if (address == -EFAULT)
1257 continue;
1258 ret = try_to_unmap_one(page, vma, address, flags);
1259 if (ret != SWAP_AGAIN || !page_mapped(page))
1260 goto out;
1263 if (list_empty(&mapping->i_mmap_nonlinear))
1264 goto out;
1267 * We don't bother to try to find the munlocked page in nonlinears.
1268 * It's costly. Instead, later, page reclaim logic may call
1269 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1271 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1272 goto out;
1274 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1275 shared.vm_set.list) {
1276 cursor = (unsigned long) vma->vm_private_data;
1277 if (cursor > max_nl_cursor)
1278 max_nl_cursor = cursor;
1279 cursor = vma->vm_end - vma->vm_start;
1280 if (cursor > max_nl_size)
1281 max_nl_size = cursor;
1284 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1285 ret = SWAP_FAIL;
1286 goto out;
1290 * We don't try to search for this page in the nonlinear vmas,
1291 * and page_referenced wouldn't have found it anyway. Instead
1292 * just walk the nonlinear vmas trying to age and unmap some.
1293 * The mapcount of the page we came in with is irrelevant,
1294 * but even so use it as a guide to how hard we should try?
1296 mapcount = page_mapcount(page);
1297 if (!mapcount)
1298 goto out;
1299 cond_resched_lock(&mapping->i_mmap_lock);
1301 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1302 if (max_nl_cursor == 0)
1303 max_nl_cursor = CLUSTER_SIZE;
1305 do {
1306 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1307 shared.vm_set.list) {
1308 cursor = (unsigned long) vma->vm_private_data;
1309 while ( cursor < max_nl_cursor &&
1310 cursor < vma->vm_end - vma->vm_start) {
1311 if (try_to_unmap_cluster(cursor, &mapcount,
1312 vma, page) == SWAP_MLOCK)
1313 ret = SWAP_MLOCK;
1314 cursor += CLUSTER_SIZE;
1315 vma->vm_private_data = (void *) cursor;
1316 if ((int)mapcount <= 0)
1317 goto out;
1319 vma->vm_private_data = (void *) max_nl_cursor;
1321 cond_resched_lock(&mapping->i_mmap_lock);
1322 max_nl_cursor += CLUSTER_SIZE;
1323 } while (max_nl_cursor <= max_nl_size);
1326 * Don't loop forever (perhaps all the remaining pages are
1327 * in locked vmas). Reset cursor on all unreserved nonlinear
1328 * vmas, now forgetting on which ones it had fallen behind.
1330 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1331 vma->vm_private_data = NULL;
1332 out:
1333 spin_unlock(&mapping->i_mmap_lock);
1334 return ret;
1338 * try_to_unmap - try to remove all page table mappings to a page
1339 * @page: the page to get unmapped
1340 * @flags: action and flags
1342 * Tries to remove all the page table entries which are mapping this
1343 * page, used in the pageout path. Caller must hold the page lock.
1344 * Return values are:
1346 * SWAP_SUCCESS - we succeeded in removing all mappings
1347 * SWAP_AGAIN - we missed a mapping, try again later
1348 * SWAP_FAIL - the page is unswappable
1349 * SWAP_MLOCK - page is mlocked.
1351 int try_to_unmap(struct page *page, enum ttu_flags flags)
1353 int ret;
1355 BUG_ON(!PageLocked(page));
1357 if (unlikely(PageKsm(page)))
1358 ret = try_to_unmap_ksm(page, flags);
1359 else if (PageAnon(page))
1360 ret = try_to_unmap_anon(page, flags);
1361 else
1362 ret = try_to_unmap_file(page, flags);
1363 if (ret != SWAP_MLOCK && !page_mapped(page))
1364 ret = SWAP_SUCCESS;
1365 return ret;
1369 * try_to_munlock - try to munlock a page
1370 * @page: the page to be munlocked
1372 * Called from munlock code. Checks all of the VMAs mapping the page
1373 * to make sure nobody else has this page mlocked. The page will be
1374 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1376 * Return values are:
1378 * SWAP_AGAIN - no vma is holding page mlocked, or,
1379 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1380 * SWAP_FAIL - page cannot be located at present
1381 * SWAP_MLOCK - page is now mlocked.
1383 int try_to_munlock(struct page *page)
1385 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1387 if (unlikely(PageKsm(page)))
1388 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1389 else if (PageAnon(page))
1390 return try_to_unmap_anon(page, TTU_MUNLOCK);
1391 else
1392 return try_to_unmap_file(page, TTU_MUNLOCK);
1395 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1397 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1398 * if necessary. Be careful to do all the tests under the lock. Once
1399 * we know we are the last user, nobody else can get a reference and we
1400 * can do the freeing without the lock.
1402 void drop_anon_vma(struct anon_vma *anon_vma)
1404 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1405 struct anon_vma *root = anon_vma->root;
1406 int empty = list_empty(&anon_vma->head);
1407 int last_root_user = 0;
1408 int root_empty = 0;
1411 * The refcount on a non-root anon_vma got dropped. Drop
1412 * the refcount on the root and check if we need to free it.
1414 if (empty && anon_vma != root) {
1415 last_root_user = atomic_dec_and_test(&root->external_refcount);
1416 root_empty = list_empty(&root->head);
1418 anon_vma_unlock(anon_vma);
1420 if (empty) {
1421 anon_vma_free(anon_vma);
1422 if (root_empty && last_root_user)
1423 anon_vma_free(root);
1427 #endif
1429 #ifdef CONFIG_MIGRATION
1431 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1432 * Called by migrate.c to remove migration ptes, but might be used more later.
1434 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1435 struct vm_area_struct *, unsigned long, void *), void *arg)
1437 struct anon_vma *anon_vma;
1438 struct anon_vma_chain *avc;
1439 int ret = SWAP_AGAIN;
1442 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1443 * because that depends on page_mapped(); but not all its usages
1444 * are holding mmap_sem. Users without mmap_sem are required to
1445 * take a reference count to prevent the anon_vma disappearing
1447 anon_vma = page_anon_vma(page);
1448 if (!anon_vma)
1449 return ret;
1450 anon_vma_lock(anon_vma);
1451 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1452 struct vm_area_struct *vma = avc->vma;
1453 unsigned long address = vma_address(page, vma);
1454 if (address == -EFAULT)
1455 continue;
1456 ret = rmap_one(page, vma, address, arg);
1457 if (ret != SWAP_AGAIN)
1458 break;
1460 anon_vma_unlock(anon_vma);
1461 return ret;
1464 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1465 struct vm_area_struct *, unsigned long, void *), void *arg)
1467 struct address_space *mapping = page->mapping;
1468 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1469 struct vm_area_struct *vma;
1470 struct prio_tree_iter iter;
1471 int ret = SWAP_AGAIN;
1473 if (!mapping)
1474 return ret;
1475 spin_lock(&mapping->i_mmap_lock);
1476 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1477 unsigned long address = vma_address(page, vma);
1478 if (address == -EFAULT)
1479 continue;
1480 ret = rmap_one(page, vma, address, arg);
1481 if (ret != SWAP_AGAIN)
1482 break;
1485 * No nonlinear handling: being always shared, nonlinear vmas
1486 * never contain migration ptes. Decide what to do about this
1487 * limitation to linear when we need rmap_walk() on nonlinear.
1489 spin_unlock(&mapping->i_mmap_lock);
1490 return ret;
1493 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1494 struct vm_area_struct *, unsigned long, void *), void *arg)
1496 VM_BUG_ON(!PageLocked(page));
1498 if (unlikely(PageKsm(page)))
1499 return rmap_walk_ksm(page, rmap_one, arg);
1500 else if (PageAnon(page))
1501 return rmap_walk_anon(page, rmap_one, arg);
1502 else
1503 return rmap_walk_file(page, rmap_one, arg);
1505 #endif /* CONFIG_MIGRATION */