ath9k: RX Filter cleanup
[linux-2.6/libata-dev.git] / drivers / net / wireless / ath9k / recv.c
bloba12584961d699896bd97e5fb9cf3b616b7868d05
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 * Implementation of receive path.
21 #include "core.h"
24 * Setup and link descriptors.
26 * 11N: we can no longer afford to self link the last descriptor.
27 * MAC acknowledges BA status as long as it copies frames to host
28 * buffer (or rx fifo). This can incorrectly acknowledge packets
29 * to a sender if last desc is self-linked.
31 * NOTE: Caller should hold the rxbuf lock.
34 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
36 struct ath_hal *ah = sc->sc_ah;
37 struct ath_desc *ds;
38 struct sk_buff *skb;
40 ATH_RXBUF_RESET(bf);
42 ds = bf->bf_desc;
43 ds->ds_link = 0; /* link to null */
44 ds->ds_data = bf->bf_buf_addr;
46 /* XXX For RADAR?
47 * virtual addr of the beginning of the buffer. */
48 skb = bf->bf_mpdu;
49 ASSERT(skb != NULL);
50 ds->ds_vdata = skb->data;
52 /* setup rx descriptors */
53 ath9k_hw_setuprxdesc(ah,
54 ds,
55 skb_tailroom(skb), /* buffer size */
56 0);
58 if (sc->sc_rxlink == NULL)
59 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
60 else
61 *sc->sc_rxlink = bf->bf_daddr;
63 sc->sc_rxlink = &ds->ds_link;
64 ath9k_hw_rxena(ah);
67 /* Process received BAR frame */
69 static int ath_bar_rx(struct ath_softc *sc,
70 struct ath_node *an,
71 struct sk_buff *skb)
73 struct ieee80211_bar *bar;
74 struct ath_arx_tid *rxtid;
75 struct sk_buff *tskb;
76 struct ath_recv_status *rx_status;
77 int tidno, index, cindex;
78 u16 seqno;
80 /* look at BAR contents */
82 bar = (struct ieee80211_bar *)skb->data;
83 tidno = (le16_to_cpu(bar->control) & IEEE80211_BAR_CTL_TID_M)
84 >> IEEE80211_BAR_CTL_TID_S;
85 seqno = le16_to_cpu(bar->start_seq_num) >> IEEE80211_SEQ_SEQ_SHIFT;
87 /* process BAR - indicate all pending RX frames till the BAR seqno */
89 rxtid = &an->an_aggr.rx.tid[tidno];
91 spin_lock_bh(&rxtid->tidlock);
93 /* get relative index */
95 index = ATH_BA_INDEX(rxtid->seq_next, seqno);
97 /* drop BAR if old sequence (index is too large) */
99 if ((index > rxtid->baw_size) &&
100 (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))))
101 /* discard frame, ieee layer may not treat frame as a dup */
102 goto unlock_and_free;
104 /* complete receive processing for all pending frames upto BAR seqno */
106 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
107 while ((rxtid->baw_head != rxtid->baw_tail) &&
108 (rxtid->baw_head != cindex)) {
109 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
110 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
111 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
113 if (tskb != NULL)
114 ath_rx_subframe(an, tskb, rx_status);
116 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
117 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
120 /* ... and indicate rest of the frames in-order */
122 while (rxtid->baw_head != rxtid->baw_tail &&
123 rxtid->rxbuf[rxtid->baw_head].rx_wbuf != NULL) {
124 tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf;
125 rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status;
126 rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL;
128 ath_rx_subframe(an, tskb, rx_status);
130 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
131 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
134 unlock_and_free:
135 spin_unlock_bh(&rxtid->tidlock);
136 /* free bar itself */
137 dev_kfree_skb(skb);
138 return IEEE80211_FTYPE_CTL;
141 /* Function to handle a subframe of aggregation when HT is enabled */
143 static int ath_ampdu_input(struct ath_softc *sc,
144 struct ath_node *an,
145 struct sk_buff *skb,
146 struct ath_recv_status *rx_status)
148 struct ieee80211_hdr *hdr;
149 struct ath_arx_tid *rxtid;
150 struct ath_rxbuf *rxbuf;
151 u8 type, subtype;
152 u16 rxseq;
153 int tid = 0, index, cindex, rxdiff;
154 __le16 fc;
155 u8 *qc;
157 hdr = (struct ieee80211_hdr *)skb->data;
158 fc = hdr->frame_control;
160 /* collect stats of frames with non-zero version */
162 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_VERS) != 0) {
163 dev_kfree_skb(skb);
164 return -1;
167 type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
168 subtype = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE;
170 if (ieee80211_is_back_req(fc))
171 return ath_bar_rx(sc, an, skb);
173 /* special aggregate processing only for qos unicast data frames */
175 if (!ieee80211_is_data(fc) ||
176 !ieee80211_is_data_qos(fc) ||
177 is_multicast_ether_addr(hdr->addr1))
178 return ath_rx_subframe(an, skb, rx_status);
180 /* lookup rx tid state */
182 if (ieee80211_is_data_qos(fc)) {
183 qc = ieee80211_get_qos_ctl(hdr);
184 tid = qc[0] & 0xf;
187 if (sc->sc_opmode == ATH9K_M_STA) {
188 /* Drop the frame not belonging to me. */
189 if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) {
190 dev_kfree_skb(skb);
191 return -1;
195 rxtid = &an->an_aggr.rx.tid[tid];
197 spin_lock(&rxtid->tidlock);
199 rxdiff = (rxtid->baw_tail - rxtid->baw_head) &
200 (ATH_TID_MAX_BUFS - 1);
203 * If the ADDBA exchange has not been completed by the source,
204 * process via legacy path (i.e. no reordering buffer is needed)
206 if (!rxtid->addba_exchangecomplete) {
207 spin_unlock(&rxtid->tidlock);
208 return ath_rx_subframe(an, skb, rx_status);
211 /* extract sequence number from recvd frame */
213 rxseq = le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT;
215 if (rxtid->seq_reset) {
216 rxtid->seq_reset = 0;
217 rxtid->seq_next = rxseq;
220 index = ATH_BA_INDEX(rxtid->seq_next, rxseq);
222 /* drop frame if old sequence (index is too large) */
224 if (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))) {
225 /* discard frame, ieee layer may not treat frame as a dup */
226 spin_unlock(&rxtid->tidlock);
227 dev_kfree_skb(skb);
228 return IEEE80211_FTYPE_DATA;
231 /* sequence number is beyond block-ack window */
233 if (index >= rxtid->baw_size) {
235 /* complete receive processing for all pending frames */
237 while (index >= rxtid->baw_size) {
239 rxbuf = rxtid->rxbuf + rxtid->baw_head;
241 if (rxbuf->rx_wbuf != NULL) {
242 ath_rx_subframe(an, rxbuf->rx_wbuf,
243 &rxbuf->rx_status);
244 rxbuf->rx_wbuf = NULL;
247 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
248 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
250 index--;
254 /* add buffer to the recv ba window */
256 cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
257 rxbuf = rxtid->rxbuf + cindex;
259 if (rxbuf->rx_wbuf != NULL) {
260 spin_unlock(&rxtid->tidlock);
261 /* duplicate frame */
262 dev_kfree_skb(skb);
263 return IEEE80211_FTYPE_DATA;
266 rxbuf->rx_wbuf = skb;
267 rxbuf->rx_time = get_timestamp();
268 rxbuf->rx_status = *rx_status;
270 /* advance tail if sequence received is newer
271 * than any received so far */
273 if (index >= rxdiff) {
274 rxtid->baw_tail = cindex;
275 INCR(rxtid->baw_tail, ATH_TID_MAX_BUFS);
278 /* indicate all in-order received frames */
280 while (rxtid->baw_head != rxtid->baw_tail) {
281 rxbuf = rxtid->rxbuf + rxtid->baw_head;
282 if (!rxbuf->rx_wbuf)
283 break;
285 ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status);
286 rxbuf->rx_wbuf = NULL;
288 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
289 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
293 * start a timer to flush all received frames if there are pending
294 * receive frames
296 if (rxtid->baw_head != rxtid->baw_tail)
297 mod_timer(&rxtid->timer, ATH_RX_TIMEOUT);
298 else
299 del_timer_sync(&rxtid->timer);
301 spin_unlock(&rxtid->tidlock);
302 return IEEE80211_FTYPE_DATA;
305 /* Timer to flush all received sub-frames */
307 static void ath_rx_timer(unsigned long data)
309 struct ath_arx_tid *rxtid = (struct ath_arx_tid *)data;
310 struct ath_node *an = rxtid->an;
311 struct ath_rxbuf *rxbuf;
312 int nosched;
314 spin_lock_bh(&rxtid->tidlock);
315 while (rxtid->baw_head != rxtid->baw_tail) {
316 rxbuf = rxtid->rxbuf + rxtid->baw_head;
317 if (!rxbuf->rx_wbuf) {
318 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
319 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
320 continue;
324 * Stop if the next one is a very recent frame.
326 * Call get_timestamp in every iteration to protect against the
327 * case in which a new frame is received while we are executing
328 * this function. Using a timestamp obtained before entering
329 * the loop could lead to a very large time interval
330 * (a negative value typecast to unsigned), breaking the
331 * function's logic.
333 if ((get_timestamp() - rxbuf->rx_time) <
334 (ATH_RX_TIMEOUT * HZ / 1000))
335 break;
337 ath_rx_subframe(an, rxbuf->rx_wbuf,
338 &rxbuf->rx_status);
339 rxbuf->rx_wbuf = NULL;
341 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
342 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
346 * start a timer to flush all received frames if there are pending
347 * receive frames
349 if (rxtid->baw_head != rxtid->baw_tail)
350 nosched = 0;
351 else
352 nosched = 1; /* no need to re-arm the timer again */
354 spin_unlock_bh(&rxtid->tidlock);
357 /* Free all pending sub-frames in the re-ordering buffer */
359 static void ath_rx_flush_tid(struct ath_softc *sc,
360 struct ath_arx_tid *rxtid, int drop)
362 struct ath_rxbuf *rxbuf;
364 spin_lock_bh(&rxtid->tidlock);
365 while (rxtid->baw_head != rxtid->baw_tail) {
366 rxbuf = rxtid->rxbuf + rxtid->baw_head;
367 if (!rxbuf->rx_wbuf) {
368 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
369 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
370 continue;
373 if (drop)
374 dev_kfree_skb(rxbuf->rx_wbuf);
375 else
376 ath_rx_subframe(rxtid->an,
377 rxbuf->rx_wbuf,
378 &rxbuf->rx_status);
380 rxbuf->rx_wbuf = NULL;
382 INCR(rxtid->baw_head, ATH_TID_MAX_BUFS);
383 INCR(rxtid->seq_next, IEEE80211_SEQ_MAX);
385 spin_unlock_bh(&rxtid->tidlock);
388 static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc,
389 u32 len)
391 struct sk_buff *skb;
392 u32 off;
395 * Cache-line-align. This is important (for the
396 * 5210 at least) as not doing so causes bogus data
397 * in rx'd frames.
400 skb = dev_alloc_skb(len + sc->sc_cachelsz - 1);
401 if (skb != NULL) {
402 off = ((unsigned long) skb->data) % sc->sc_cachelsz;
403 if (off != 0)
404 skb_reserve(skb, sc->sc_cachelsz - off);
405 } else {
406 DPRINTF(sc, ATH_DBG_FATAL,
407 "%s: skbuff alloc of size %u failed\n",
408 __func__, len);
409 return NULL;
412 return skb;
415 static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb)
417 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
419 ASSERT(bf != NULL);
421 spin_lock_bh(&sc->sc_rxbuflock);
422 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
424 * This buffer is still held for hw acess.
425 * Mark it as free to be re-queued it later.
427 bf->bf_status |= ATH_BUFSTATUS_FREE;
428 } else {
429 /* XXX: we probably never enter here, remove after
430 * verification */
431 list_add_tail(&bf->list, &sc->sc_rxbuf);
432 ath_rx_buf_link(sc, bf);
434 spin_unlock_bh(&sc->sc_rxbuflock);
438 * The skb indicated to upper stack won't be returned to us.
439 * So we have to allocate a new one and queue it by ourselves.
441 static int ath_rx_indicate(struct ath_softc *sc,
442 struct sk_buff *skb,
443 struct ath_recv_status *status,
444 u16 keyix)
446 struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
447 struct sk_buff *nskb;
448 int type;
450 /* indicate frame to the stack, which will free the old skb. */
451 type = ath__rx_indicate(sc, skb, status, keyix);
453 /* allocate a new skb and queue it to for H/W processing */
454 nskb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
455 if (nskb != NULL) {
456 bf->bf_mpdu = nskb;
457 bf->bf_buf_addr = ath_skb_map_single(sc,
458 nskb,
459 PCI_DMA_FROMDEVICE,
460 /* XXX: Remove get_dma_mem_context() */
461 get_dma_mem_context(bf, bf_dmacontext));
462 ATH_RX_CONTEXT(nskb)->ctx_rxbuf = bf;
464 /* queue the new wbuf to H/W */
465 ath_rx_requeue(sc, nskb);
468 return type;
471 static void ath_opmode_init(struct ath_softc *sc)
473 struct ath_hal *ah = sc->sc_ah;
474 u32 rfilt, mfilt[2];
476 /* configure rx filter */
477 rfilt = ath_calcrxfilter(sc);
478 ath9k_hw_setrxfilter(ah, rfilt);
480 /* configure bssid mask */
481 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
482 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
484 /* configure operational mode */
485 ath9k_hw_setopmode(ah);
487 /* Handle any link-level address change. */
488 ath9k_hw_setmac(ah, sc->sc_myaddr);
490 /* calculate and install multicast filter */
491 mfilt[0] = mfilt[1] = ~0;
493 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
494 DPRINTF(sc, ATH_DBG_CONFIG ,
495 "%s: RX filter 0x%x, MC filter %08x:%08x\n",
496 __func__, rfilt, mfilt[0], mfilt[1]);
499 int ath_rx_init(struct ath_softc *sc, int nbufs)
501 struct sk_buff *skb;
502 struct ath_buf *bf;
503 int error = 0;
505 do {
506 spin_lock_init(&sc->sc_rxflushlock);
507 sc->sc_rxflush = 0;
508 spin_lock_init(&sc->sc_rxbuflock);
511 * Cisco's VPN software requires that drivers be able to
512 * receive encapsulated frames that are larger than the MTU.
513 * Since we can't be sure how large a frame we'll get, setup
514 * to handle the larges on possible.
516 sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN,
517 min(sc->sc_cachelsz,
518 (u16)64));
520 DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n",
521 __func__, sc->sc_cachelsz, sc->sc_rxbufsize);
523 /* Initialize rx descriptors */
525 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
526 "rx", nbufs, 1);
527 if (error != 0) {
528 DPRINTF(sc, ATH_DBG_FATAL,
529 "%s: failed to allocate rx descriptors: %d\n",
530 __func__, error);
531 break;
534 /* Pre-allocate a wbuf for each rx buffer */
536 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
537 skb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
538 if (skb == NULL) {
539 error = -ENOMEM;
540 break;
543 bf->bf_mpdu = skb;
544 bf->bf_buf_addr =
545 ath_skb_map_single(sc, skb, PCI_DMA_FROMDEVICE,
546 get_dma_mem_context(bf, bf_dmacontext));
547 ATH_RX_CONTEXT(skb)->ctx_rxbuf = bf;
549 sc->sc_rxlink = NULL;
551 } while (0);
553 if (error)
554 ath_rx_cleanup(sc);
556 return error;
559 /* Reclaim all rx queue resources */
561 void ath_rx_cleanup(struct ath_softc *sc)
563 struct sk_buff *skb;
564 struct ath_buf *bf;
566 list_for_each_entry(bf, &sc->sc_rxbuf, list) {
567 skb = bf->bf_mpdu;
568 if (skb)
569 dev_kfree_skb(skb);
572 /* cleanup rx descriptors */
574 if (sc->sc_rxdma.dd_desc_len != 0)
575 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
579 * Calculate the receive filter according to the
580 * operating mode and state:
582 * o always accept unicast, broadcast, and multicast traffic
583 * o maintain current state of phy error reception (the hal
584 * may enable phy error frames for noise immunity work)
585 * o probe request frames are accepted only when operating in
586 * hostap, adhoc, or monitor modes
587 * o enable promiscuous mode according to the interface state
588 * o accept beacons:
589 * - when operating in adhoc mode so the 802.11 layer creates
590 * node table entries for peers,
591 * - when operating in station mode for collecting rssi data when
592 * the station is otherwise quiet, or
593 * - when operating as a repeater so we see repeater-sta beacons
594 * - when scanning
597 u32 ath_calcrxfilter(struct ath_softc *sc)
599 #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
601 u32 rfilt;
603 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
604 | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
605 | ATH9K_RX_FILTER_MCAST;
607 /* If not a STA, enable processing of Probe Requests */
608 if (sc->sc_opmode != ATH9K_M_STA)
609 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
611 /* Can't set HOSTAP into promiscous mode */
612 if (((sc->sc_opmode != ATH9K_M_HOSTAP) &&
613 (sc->rx_filter & FIF_PROMISC_IN_BSS)) ||
614 (sc->sc_opmode == ATH9K_M_MONITOR)) {
615 rfilt |= ATH9K_RX_FILTER_PROM;
616 /* ??? To prevent from sending ACK */
617 rfilt &= ~ATH9K_RX_FILTER_UCAST;
620 if (((sc->sc_opmode == ATH9K_M_STA) &&
621 (sc->rx_filter & FIF_BCN_PRBRESP_PROMISC)) ||
622 (sc->sc_opmode == ATH9K_M_IBSS))
623 rfilt |= ATH9K_RX_FILTER_BEACON;
625 /* If in HOSTAP mode, want to enable reception of PSPOLL frames
626 & beacon frames */
627 if (sc->sc_opmode == ATH9K_M_HOSTAP)
628 rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL);
629 return rfilt;
631 #undef RX_FILTER_PRESERVE
634 /* Enable the receive h/w following a reset. */
636 int ath_startrecv(struct ath_softc *sc)
638 struct ath_hal *ah = sc->sc_ah;
639 struct ath_buf *bf, *tbf;
641 spin_lock_bh(&sc->sc_rxbuflock);
642 if (list_empty(&sc->sc_rxbuf))
643 goto start_recv;
645 sc->sc_rxlink = NULL;
646 list_for_each_entry_safe(bf, tbf, &sc->sc_rxbuf, list) {
647 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
648 /* restarting h/w, no need for holding descriptors */
649 bf->bf_status &= ~ATH_BUFSTATUS_STALE;
651 * Upper layer may not be done with the frame yet so
652 * we can't just re-queue it to hardware. Remove it
653 * from h/w queue. It'll be re-queued when upper layer
654 * returns the frame and ath_rx_requeue_mpdu is called.
656 if (!(bf->bf_status & ATH_BUFSTATUS_FREE)) {
657 list_del(&bf->list);
658 continue;
661 /* chain descriptors */
662 ath_rx_buf_link(sc, bf);
665 /* We could have deleted elements so the list may be empty now */
666 if (list_empty(&sc->sc_rxbuf))
667 goto start_recv;
669 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
670 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
671 ath9k_hw_rxena(ah); /* enable recv descriptors */
673 start_recv:
674 spin_unlock_bh(&sc->sc_rxbuflock);
675 ath_opmode_init(sc); /* set filters, etc. */
676 ath9k_hw_startpcureceive(ah); /* re-enable PCU/DMA engine */
677 return 0;
680 /* Disable the receive h/w in preparation for a reset. */
682 bool ath_stoprecv(struct ath_softc *sc)
684 struct ath_hal *ah = sc->sc_ah;
685 u64 tsf;
686 bool stopped;
688 ath9k_hw_stoppcurecv(ah); /* disable PCU */
689 ath9k_hw_setrxfilter(ah, 0); /* clear recv filter */
690 stopped = ath9k_hw_stopdmarecv(ah); /* disable DMA engine */
691 mdelay(3); /* 3ms is long enough for 1 frame */
692 tsf = ath9k_hw_gettsf64(ah);
693 sc->sc_rxlink = NULL; /* just in case */
694 return stopped;
697 /* Flush receive queue */
699 void ath_flushrecv(struct ath_softc *sc)
702 * ath_rx_tasklet may be used to handle rx interrupt and flush receive
703 * queue at the same time. Use a lock to serialize the access of rx
704 * queue.
705 * ath_rx_tasklet cannot hold the spinlock while indicating packets.
706 * Instead, do not claim the spinlock but check for a flush in
707 * progress (see references to sc_rxflush)
709 spin_lock_bh(&sc->sc_rxflushlock);
710 sc->sc_rxflush = 1;
712 ath_rx_tasklet(sc, 1);
714 sc->sc_rxflush = 0;
715 spin_unlock_bh(&sc->sc_rxflushlock);
718 /* Process an individual frame */
720 int ath_rx_input(struct ath_softc *sc,
721 struct ath_node *an,
722 int is_ampdu,
723 struct sk_buff *skb,
724 struct ath_recv_status *rx_status,
725 enum ATH_RX_TYPE *status)
727 if (is_ampdu && sc->sc_rxaggr) {
728 *status = ATH_RX_CONSUMED;
729 return ath_ampdu_input(sc, an, skb, rx_status);
730 } else {
731 *status = ATH_RX_NON_CONSUMED;
732 return -1;
736 /* Process receive queue, as well as LED, etc. */
738 int ath_rx_tasklet(struct ath_softc *sc, int flush)
740 #define PA2DESC(_sc, _pa) \
741 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
742 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
744 struct ath_buf *bf, *bf_held = NULL;
745 struct ath_desc *ds;
746 struct ieee80211_hdr *hdr;
747 struct sk_buff *skb = NULL;
748 struct ath_recv_status rx_status;
749 struct ath_hal *ah = sc->sc_ah;
750 int type, rx_processed = 0;
751 u32 phyerr;
752 u8 chainreset = 0;
753 int retval;
754 __le16 fc;
756 do {
757 /* If handling rx interrupt and flush is in progress => exit */
758 if (sc->sc_rxflush && (flush == 0))
759 break;
761 spin_lock_bh(&sc->sc_rxbuflock);
762 if (list_empty(&sc->sc_rxbuf)) {
763 sc->sc_rxlink = NULL;
764 spin_unlock_bh(&sc->sc_rxbuflock);
765 break;
768 bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
771 * There is a race condition that BH gets scheduled after sw
772 * writes RxE and before hw re-load the last descriptor to get
773 * the newly chained one. Software must keep the last DONE
774 * descriptor as a holding descriptor - software does so by
775 * marking it with the STALE flag.
777 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
778 bf_held = bf;
779 if (list_is_last(&bf_held->list, &sc->sc_rxbuf)) {
781 * The holding descriptor is the last
782 * descriptor in queue. It's safe to
783 * remove the last holding descriptor
784 * in BH context.
786 list_del(&bf_held->list);
787 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
788 sc->sc_rxlink = NULL;
790 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
791 list_add_tail(&bf_held->list,
792 &sc->sc_rxbuf);
793 ath_rx_buf_link(sc, bf_held);
795 spin_unlock_bh(&sc->sc_rxbuflock);
796 break;
798 bf = list_entry(bf->list.next, struct ath_buf, list);
801 ds = bf->bf_desc;
802 ++rx_processed;
805 * Must provide the virtual address of the current
806 * descriptor, the physical address, and the virtual
807 * address of the next descriptor in the h/w chain.
808 * This allows the HAL to look ahead to see if the
809 * hardware is done with a descriptor by checking the
810 * done bit in the following descriptor and the address
811 * of the current descriptor the DMA engine is working
812 * on. All this is necessary because of our use of
813 * a self-linked list to avoid rx overruns.
815 retval = ath9k_hw_rxprocdesc(ah,
817 bf->bf_daddr,
818 PA2DESC(sc, ds->ds_link),
820 if (retval == -EINPROGRESS) {
821 struct ath_buf *tbf;
822 struct ath_desc *tds;
824 if (list_is_last(&bf->list, &sc->sc_rxbuf)) {
825 spin_unlock_bh(&sc->sc_rxbuflock);
826 break;
829 tbf = list_entry(bf->list.next, struct ath_buf, list);
832 * On some hardware the descriptor status words could
833 * get corrupted, including the done bit. Because of
834 * this, check if the next descriptor's done bit is
835 * set or not.
837 * If the next descriptor's done bit is set, the current
838 * descriptor has been corrupted. Force s/w to discard
839 * this descriptor and continue...
842 tds = tbf->bf_desc;
843 retval = ath9k_hw_rxprocdesc(ah,
844 tds, tbf->bf_daddr,
845 PA2DESC(sc, tds->ds_link), 0);
846 if (retval == -EINPROGRESS) {
847 spin_unlock_bh(&sc->sc_rxbuflock);
848 break;
852 /* XXX: we do not support frames spanning
853 * multiple descriptors */
854 bf->bf_status |= ATH_BUFSTATUS_DONE;
856 skb = bf->bf_mpdu;
857 if (skb == NULL) { /* XXX ??? can this happen */
858 spin_unlock_bh(&sc->sc_rxbuflock);
859 continue;
862 * Now we know it's a completed frame, we can indicate the
863 * frame. Remove the previous holding descriptor and leave
864 * this one in the queue as the new holding descriptor.
866 if (bf_held) {
867 list_del(&bf_held->list);
868 bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
869 if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
870 list_add_tail(&bf_held->list, &sc->sc_rxbuf);
871 /* try to requeue this descriptor */
872 ath_rx_buf_link(sc, bf_held);
876 bf->bf_status |= ATH_BUFSTATUS_STALE;
877 bf_held = bf;
879 * Release the lock here in case ieee80211_input() return
880 * the frame immediately by calling ath_rx_mpdu_requeue().
882 spin_unlock_bh(&sc->sc_rxbuflock);
884 if (flush) {
886 * If we're asked to flush receive queue, directly
887 * chain it back at the queue without processing it.
889 goto rx_next;
892 hdr = (struct ieee80211_hdr *)skb->data;
893 fc = hdr->frame_control;
894 memzero(&rx_status, sizeof(struct ath_recv_status));
896 if (ds->ds_rxstat.rs_more) {
898 * Frame spans multiple descriptors; this
899 * cannot happen yet as we don't support
900 * jumbograms. If not in monitor mode,
901 * discard the frame.
903 #ifndef ERROR_FRAMES
905 * Enable this if you want to see
906 * error frames in Monitor mode.
908 if (sc->sc_opmode != ATH9K_M_MONITOR)
909 goto rx_next;
910 #endif
911 /* fall thru for monitor mode handling... */
912 } else if (ds->ds_rxstat.rs_status != 0) {
913 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
914 rx_status.flags |= ATH_RX_FCS_ERROR;
915 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) {
916 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
917 goto rx_next;
920 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
922 * Decrypt error. We only mark packet status
923 * here and always push up the frame up to let
924 * mac80211 handle the actual error case, be
925 * it no decryption key or real decryption
926 * error. This let us keep statistics there.
928 rx_status.flags |= ATH_RX_DECRYPT_ERROR;
929 } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
931 * Demic error. We only mark frame status here
932 * and always push up the frame up to let
933 * mac80211 handle the actual error case. This
934 * let us keep statistics there. Hardware may
935 * post a false-positive MIC error.
937 if (ieee80211_is_ctl(fc))
939 * Sometimes, we get invalid
940 * MIC failures on valid control frames.
941 * Remove these mic errors.
943 ds->ds_rxstat.rs_status &=
944 ~ATH9K_RXERR_MIC;
945 else
946 rx_status.flags |= ATH_RX_MIC_ERROR;
949 * Reject error frames with the exception of
950 * decryption and MIC failures. For monitor mode,
951 * we also ignore the CRC error.
953 if (sc->sc_opmode == ATH9K_M_MONITOR) {
954 if (ds->ds_rxstat.rs_status &
955 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
956 ATH9K_RXERR_CRC))
957 goto rx_next;
958 } else {
959 if (ds->ds_rxstat.rs_status &
960 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
961 goto rx_next;
966 * The status portion of the descriptor could get corrupted.
968 if (sc->sc_rxbufsize < ds->ds_rxstat.rs_datalen)
969 goto rx_next;
971 * Sync and unmap the frame. At this point we're
972 * committed to passing the sk_buff somewhere so
973 * clear buf_skb; this means a new sk_buff must be
974 * allocated when the rx descriptor is setup again
975 * to receive another frame.
977 skb_put(skb, ds->ds_rxstat.rs_datalen);
978 skb->protocol = cpu_to_be16(ETH_P_CONTROL);
979 rx_status.tsf = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
980 rx_status.rateieee =
981 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate;
982 rx_status.rateKbps =
983 sc->sc_hwmap[ds->ds_rxstat.rs_rate].rateKbps;
984 rx_status.ratecode = ds->ds_rxstat.rs_rate;
986 /* HT rate */
987 if (rx_status.ratecode & 0x80) {
988 /* TODO - add table to avoid division */
989 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
990 rx_status.flags |= ATH_RX_40MHZ;
991 rx_status.rateKbps =
992 (rx_status.rateKbps * 27) / 13;
994 if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
995 rx_status.rateKbps =
996 (rx_status.rateKbps * 10) / 9;
997 else
998 rx_status.flags |= ATH_RX_SHORT_GI;
1001 /* sc->sc_noise_floor is only available when the station
1002 attaches to an AP, so we use a default value
1003 if we are not yet attached. */
1005 /* XXX we should use either sc->sc_noise_floor or
1006 * ath_hal_getChanNoise(ah, &sc->sc_curchan)
1007 * to calculate the noise floor.
1008 * However, the value returned by ath_hal_getChanNoise
1009 * seems to be incorrect (-31dBm on the last test),
1010 * so we will use a hard-coded value until we
1011 * figure out what is going on.
1013 rx_status.abs_rssi =
1014 ds->ds_rxstat.rs_rssi + ATH_DEFAULT_NOISE_FLOOR;
1016 pci_dma_sync_single_for_cpu(sc->pdev,
1017 bf->bf_buf_addr,
1018 skb_tailroom(skb),
1019 PCI_DMA_FROMDEVICE);
1020 pci_unmap_single(sc->pdev,
1021 bf->bf_buf_addr,
1022 sc->sc_rxbufsize,
1023 PCI_DMA_FROMDEVICE);
1025 /* XXX: Ah! make me more readable, use a helper */
1026 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1027 if (ds->ds_rxstat.rs_moreaggr == 0) {
1028 rx_status.rssictl[0] =
1029 ds->ds_rxstat.rs_rssi_ctl0;
1030 rx_status.rssictl[1] =
1031 ds->ds_rxstat.rs_rssi_ctl1;
1032 rx_status.rssictl[2] =
1033 ds->ds_rxstat.rs_rssi_ctl2;
1034 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1035 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
1036 rx_status.rssiextn[0] =
1037 ds->ds_rxstat.rs_rssi_ext0;
1038 rx_status.rssiextn[1] =
1039 ds->ds_rxstat.rs_rssi_ext1;
1040 rx_status.rssiextn[2] =
1041 ds->ds_rxstat.rs_rssi_ext2;
1042 rx_status.flags |=
1043 ATH_RX_RSSI_EXTN_VALID;
1045 rx_status.flags |= ATH_RX_RSSI_VALID |
1046 ATH_RX_CHAIN_RSSI_VALID;
1048 } else {
1050 * Need to insert the "combined" rssi into the
1051 * status structure for upper layer processing
1053 rx_status.rssi = ds->ds_rxstat.rs_rssi;
1054 rx_status.flags |= ATH_RX_RSSI_VALID;
1057 /* Pass frames up to the stack. */
1059 type = ath_rx_indicate(sc, skb,
1060 &rx_status, ds->ds_rxstat.rs_keyix);
1063 * change the default rx antenna if rx diversity chooses the
1064 * other antenna 3 times in a row.
1066 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
1067 if (++sc->sc_rxotherant >= 3)
1068 ath_setdefantenna(sc,
1069 ds->ds_rxstat.rs_antenna);
1070 } else {
1071 sc->sc_rxotherant = 0;
1074 #ifdef CONFIG_SLOW_ANT_DIV
1075 if ((rx_status.flags & ATH_RX_RSSI_VALID) &&
1076 ieee80211_is_beacon(fc)) {
1077 ath_slow_ant_div(&sc->sc_antdiv, hdr, &ds->ds_rxstat);
1079 #endif
1081 * For frames successfully indicated, the buffer will be
1082 * returned to us by upper layers by calling
1083 * ath_rx_mpdu_requeue, either synchronusly or asynchronously.
1084 * So we don't want to do it here in this loop.
1086 continue;
1088 rx_next:
1089 bf->bf_status |= ATH_BUFSTATUS_FREE;
1090 } while (TRUE);
1092 if (chainreset) {
1093 DPRINTF(sc, ATH_DBG_CONFIG,
1094 "%s: Reset rx chain mask. "
1095 "Do internal reset\n", __func__);
1096 ASSERT(flush == 0);
1097 ath_reset(sc, false);
1100 return 0;
1101 #undef PA2DESC
1104 /* Process ADDBA request in per-TID data structure */
1106 int ath_rx_aggr_start(struct ath_softc *sc,
1107 const u8 *addr,
1108 u16 tid,
1109 u16 *ssn)
1111 struct ath_arx_tid *rxtid;
1112 struct ath_node *an;
1113 struct ieee80211_hw *hw = sc->hw;
1114 struct ieee80211_supported_band *sband;
1115 u16 buffersize = 0;
1117 spin_lock_bh(&sc->node_lock);
1118 an = ath_node_find(sc, (u8 *) addr);
1119 spin_unlock_bh(&sc->node_lock);
1121 if (!an) {
1122 DPRINTF(sc, ATH_DBG_AGGR,
1123 "%s: Node not found to initialize RX aggregation\n",
1124 __func__);
1125 return -1;
1128 sband = hw->wiphy->bands[hw->conf.channel->band];
1129 buffersize = IEEE80211_MIN_AMPDU_BUF <<
1130 sband->ht_info.ampdu_factor; /* FIXME */
1132 rxtid = &an->an_aggr.rx.tid[tid];
1134 spin_lock_bh(&rxtid->tidlock);
1135 if (sc->sc_rxaggr) {
1136 /* Allow aggregation reception
1137 * Adjust rx BA window size. Peer might indicate a
1138 * zero buffer size for a _dont_care_ condition.
1140 if (buffersize)
1141 rxtid->baw_size = min(buffersize, rxtid->baw_size);
1143 /* set rx sequence number */
1144 rxtid->seq_next = *ssn;
1146 /* Allocate the receive buffers for this TID */
1147 DPRINTF(sc, ATH_DBG_AGGR,
1148 "%s: Allcating rxbuffer for TID %d\n", __func__, tid);
1150 if (rxtid->rxbuf == NULL) {
1152 * If the rxbuff is not NULL at this point, we *probably*
1153 * already allocated the buffer on a previous ADDBA,
1154 * and this is a subsequent ADDBA that got through.
1155 * Don't allocate, but use the value in the pointer,
1156 * we zero it out when we de-allocate.
1158 rxtid->rxbuf = kmalloc(ATH_TID_MAX_BUFS *
1159 sizeof(struct ath_rxbuf), GFP_ATOMIC);
1161 if (rxtid->rxbuf == NULL) {
1162 DPRINTF(sc, ATH_DBG_AGGR,
1163 "%s: Unable to allocate RX buffer, "
1164 "refusing ADDBA\n", __func__);
1165 } else {
1166 /* Ensure the memory is zeroed out (all internal
1167 * pointers are null) */
1168 memzero(rxtid->rxbuf, ATH_TID_MAX_BUFS *
1169 sizeof(struct ath_rxbuf));
1170 DPRINTF(sc, ATH_DBG_AGGR,
1171 "%s: Allocated @%p\n", __func__, rxtid->rxbuf);
1173 /* Allow aggregation reception */
1174 rxtid->addba_exchangecomplete = 1;
1177 spin_unlock_bh(&rxtid->tidlock);
1179 return 0;
1182 /* Process DELBA */
1184 int ath_rx_aggr_stop(struct ath_softc *sc,
1185 const u8 *addr,
1186 u16 tid)
1188 struct ath_node *an;
1190 spin_lock_bh(&sc->node_lock);
1191 an = ath_node_find(sc, (u8 *) addr);
1192 spin_unlock_bh(&sc->node_lock);
1194 if (!an) {
1195 DPRINTF(sc, ATH_DBG_AGGR,
1196 "%s: RX aggr stop for non-existent node\n", __func__);
1197 return -1;
1200 ath_rx_aggr_teardown(sc, an, tid);
1201 return 0;
1204 /* Rx aggregation tear down */
1206 void ath_rx_aggr_teardown(struct ath_softc *sc,
1207 struct ath_node *an, u8 tid)
1209 struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid];
1211 if (!rxtid->addba_exchangecomplete)
1212 return;
1214 del_timer_sync(&rxtid->timer);
1215 ath_rx_flush_tid(sc, rxtid, 0);
1216 rxtid->addba_exchangecomplete = 0;
1218 /* De-allocate the receive buffer array allocated when addba started */
1220 if (rxtid->rxbuf) {
1221 DPRINTF(sc, ATH_DBG_AGGR,
1222 "%s: Deallocating TID %d rxbuff @%p\n",
1223 __func__, tid, rxtid->rxbuf);
1224 kfree(rxtid->rxbuf);
1226 /* Set pointer to null to avoid reuse*/
1227 rxtid->rxbuf = NULL;
1231 /* Initialize per-node receive state */
1233 void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an)
1235 if (sc->sc_rxaggr) {
1236 struct ath_arx_tid *rxtid;
1237 int tidno;
1239 /* Init per tid rx state */
1240 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1241 tidno < WME_NUM_TID;
1242 tidno++, rxtid++) {
1243 rxtid->an = an;
1244 rxtid->seq_reset = 1;
1245 rxtid->seq_next = 0;
1246 rxtid->baw_size = WME_MAX_BA;
1247 rxtid->baw_head = rxtid->baw_tail = 0;
1250 * Ensure the buffer pointer is null at this point
1251 * (needs to be allocated when addba is received)
1254 rxtid->rxbuf = NULL;
1255 setup_timer(&rxtid->timer, ath_rx_timer,
1256 (unsigned long)rxtid);
1257 spin_lock_init(&rxtid->tidlock);
1259 /* ADDBA state */
1260 rxtid->addba_exchangecomplete = 0;
1265 void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
1267 if (sc->sc_rxaggr) {
1268 struct ath_arx_tid *rxtid;
1269 int tidno, i;
1271 /* Init per tid rx state */
1272 for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno];
1273 tidno < WME_NUM_TID;
1274 tidno++, rxtid++) {
1276 if (!rxtid->addba_exchangecomplete)
1277 continue;
1279 /* must cancel timer first */
1280 del_timer_sync(&rxtid->timer);
1282 /* drop any pending sub-frames */
1283 ath_rx_flush_tid(sc, rxtid, 1);
1285 for (i = 0; i < ATH_TID_MAX_BUFS; i++)
1286 ASSERT(rxtid->rxbuf[i].rx_wbuf == NULL);
1288 rxtid->addba_exchangecomplete = 0;
1294 /* Cleanup per-node receive state */
1296 void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an)
1298 ath_rx_node_cleanup(sc, an);
1301 dma_addr_t ath_skb_map_single(struct ath_softc *sc,
1302 struct sk_buff *skb,
1303 int direction,
1304 dma_addr_t *pa)
1307 * NB: do NOT use skb->len, which is 0 on initialization.
1308 * Use skb's entire data area instead.
1310 *pa = pci_map_single(sc->pdev, skb->data,
1311 skb_end_pointer(skb) - skb->head, direction);
1312 return *pa;
1315 void ath_skb_unmap_single(struct ath_softc *sc,
1316 struct sk_buff *skb,
1317 int direction,
1318 dma_addr_t *pa)
1320 /* Unmap skb's entire data area */
1321 pci_unmap_single(sc->pdev, *pa,
1322 skb_end_pointer(skb) - skb->head, direction);