Merge branch 'drm-nouveau-fixes-3.9' of git://anongit.freedesktop.org/git/nouveau...
[linux-2.6/libata-dev.git] / fs / f2fs / checkpoint.c
blob2b6fc131e2ce44aceda047f83237a23b254cf590
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
24 static struct kmem_cache *orphan_entry_slab;
25 static struct kmem_cache *inode_entry_slab;
28 * We guarantee no failure on the returned page.
30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 struct address_space *mapping = sbi->meta_inode->i_mapping;
33 struct page *page = NULL;
34 repeat:
35 page = grab_cache_page(mapping, index);
36 if (!page) {
37 cond_resched();
38 goto repeat;
41 /* We wait writeback only inside grab_meta_page() */
42 wait_on_page_writeback(page);
43 SetPageUptodate(page);
44 return page;
48 * We guarantee no failure on the returned page.
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 struct address_space *mapping = sbi->meta_inode->i_mapping;
53 struct page *page;
54 repeat:
55 page = grab_cache_page(mapping, index);
56 if (!page) {
57 cond_resched();
58 goto repeat;
60 if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
61 f2fs_put_page(page, 1);
62 goto repeat;
64 mark_page_accessed(page);
66 /* We do not allow returning an errorneous page */
67 return page;
70 static int f2fs_write_meta_page(struct page *page,
71 struct writeback_control *wbc)
73 struct inode *inode = page->mapping->host;
74 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
76 /* Should not write any meta pages, if any IO error was occurred */
77 if (wbc->for_reclaim ||
78 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
79 dec_page_count(sbi, F2FS_DIRTY_META);
80 wbc->pages_skipped++;
81 set_page_dirty(page);
82 return AOP_WRITEPAGE_ACTIVATE;
85 wait_on_page_writeback(page);
87 write_meta_page(sbi, page);
88 dec_page_count(sbi, F2FS_DIRTY_META);
89 unlock_page(page);
90 return 0;
93 static int f2fs_write_meta_pages(struct address_space *mapping,
94 struct writeback_control *wbc)
96 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
97 struct block_device *bdev = sbi->sb->s_bdev;
98 long written;
100 if (wbc->for_kupdate)
101 return 0;
103 if (get_pages(sbi, F2FS_DIRTY_META) == 0)
104 return 0;
106 /* if mounting is failed, skip writing node pages */
107 mutex_lock(&sbi->cp_mutex);
108 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
109 mutex_unlock(&sbi->cp_mutex);
110 wbc->nr_to_write -= written;
111 return 0;
114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
115 long nr_to_write)
117 struct address_space *mapping = sbi->meta_inode->i_mapping;
118 pgoff_t index = 0, end = LONG_MAX;
119 struct pagevec pvec;
120 long nwritten = 0;
121 struct writeback_control wbc = {
122 .for_reclaim = 0,
125 pagevec_init(&pvec, 0);
127 while (index <= end) {
128 int i, nr_pages;
129 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
130 PAGECACHE_TAG_DIRTY,
131 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
132 if (nr_pages == 0)
133 break;
135 for (i = 0; i < nr_pages; i++) {
136 struct page *page = pvec.pages[i];
137 lock_page(page);
138 BUG_ON(page->mapping != mapping);
139 BUG_ON(!PageDirty(page));
140 clear_page_dirty_for_io(page);
141 if (f2fs_write_meta_page(page, &wbc)) {
142 unlock_page(page);
143 break;
145 if (nwritten++ >= nr_to_write)
146 break;
148 pagevec_release(&pvec);
149 cond_resched();
152 if (nwritten)
153 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
155 return nwritten;
158 static int f2fs_set_meta_page_dirty(struct page *page)
160 struct address_space *mapping = page->mapping;
161 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
163 SetPageUptodate(page);
164 if (!PageDirty(page)) {
165 __set_page_dirty_nobuffers(page);
166 inc_page_count(sbi, F2FS_DIRTY_META);
167 return 1;
169 return 0;
172 const struct address_space_operations f2fs_meta_aops = {
173 .writepage = f2fs_write_meta_page,
174 .writepages = f2fs_write_meta_pages,
175 .set_page_dirty = f2fs_set_meta_page_dirty,
178 int check_orphan_space(struct f2fs_sb_info *sbi)
180 unsigned int max_orphans;
181 int err = 0;
184 * considering 512 blocks in a segment 5 blocks are needed for cp
185 * and log segment summaries. Remaining blocks are used to keep
186 * orphan entries with the limitation one reserved segment
187 * for cp pack we can have max 1020*507 orphan entries
189 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
190 mutex_lock(&sbi->orphan_inode_mutex);
191 if (sbi->n_orphans >= max_orphans)
192 err = -ENOSPC;
193 mutex_unlock(&sbi->orphan_inode_mutex);
194 return err;
197 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
199 struct list_head *head, *this;
200 struct orphan_inode_entry *new = NULL, *orphan = NULL;
202 mutex_lock(&sbi->orphan_inode_mutex);
203 head = &sbi->orphan_inode_list;
204 list_for_each(this, head) {
205 orphan = list_entry(this, struct orphan_inode_entry, list);
206 if (orphan->ino == ino)
207 goto out;
208 if (orphan->ino > ino)
209 break;
210 orphan = NULL;
212 retry:
213 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
214 if (!new) {
215 cond_resched();
216 goto retry;
218 new->ino = ino;
220 /* add new_oentry into list which is sorted by inode number */
221 if (orphan)
222 list_add(&new->list, this->prev);
223 else
224 list_add_tail(&new->list, head);
226 sbi->n_orphans++;
227 out:
228 mutex_unlock(&sbi->orphan_inode_mutex);
231 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
233 struct list_head *this, *next, *head;
234 struct orphan_inode_entry *orphan;
236 mutex_lock(&sbi->orphan_inode_mutex);
237 head = &sbi->orphan_inode_list;
238 list_for_each_safe(this, next, head) {
239 orphan = list_entry(this, struct orphan_inode_entry, list);
240 if (orphan->ino == ino) {
241 list_del(&orphan->list);
242 kmem_cache_free(orphan_entry_slab, orphan);
243 sbi->n_orphans--;
244 break;
247 mutex_unlock(&sbi->orphan_inode_mutex);
250 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
252 struct inode *inode = f2fs_iget(sbi->sb, ino);
253 BUG_ON(IS_ERR(inode));
254 clear_nlink(inode);
256 /* truncate all the data during iput */
257 iput(inode);
260 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
262 block_t start_blk, orphan_blkaddr, i, j;
264 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
265 return 0;
267 sbi->por_doing = 1;
268 start_blk = __start_cp_addr(sbi) + 1;
269 orphan_blkaddr = __start_sum_addr(sbi) - 1;
271 for (i = 0; i < orphan_blkaddr; i++) {
272 struct page *page = get_meta_page(sbi, start_blk + i);
273 struct f2fs_orphan_block *orphan_blk;
275 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
276 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
277 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
278 recover_orphan_inode(sbi, ino);
280 f2fs_put_page(page, 1);
282 /* clear Orphan Flag */
283 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
284 sbi->por_doing = 0;
285 return 0;
288 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
290 struct list_head *head, *this, *next;
291 struct f2fs_orphan_block *orphan_blk = NULL;
292 struct page *page = NULL;
293 unsigned int nentries = 0;
294 unsigned short index = 1;
295 unsigned short orphan_blocks;
297 orphan_blocks = (unsigned short)((sbi->n_orphans +
298 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
300 mutex_lock(&sbi->orphan_inode_mutex);
301 head = &sbi->orphan_inode_list;
303 /* loop for each orphan inode entry and write them in Jornal block */
304 list_for_each_safe(this, next, head) {
305 struct orphan_inode_entry *orphan;
307 orphan = list_entry(this, struct orphan_inode_entry, list);
309 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
311 * an orphan block is full of 1020 entries,
312 * then we need to flush current orphan blocks
313 * and bring another one in memory
315 orphan_blk->blk_addr = cpu_to_le16(index);
316 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
317 orphan_blk->entry_count = cpu_to_le32(nentries);
318 set_page_dirty(page);
319 f2fs_put_page(page, 1);
320 index++;
321 start_blk++;
322 nentries = 0;
323 page = NULL;
325 if (page)
326 goto page_exist;
328 page = grab_meta_page(sbi, start_blk);
329 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
330 memset(orphan_blk, 0, sizeof(*orphan_blk));
331 page_exist:
332 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
334 if (!page)
335 goto end;
337 orphan_blk->blk_addr = cpu_to_le16(index);
338 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
339 orphan_blk->entry_count = cpu_to_le32(nentries);
340 set_page_dirty(page);
341 f2fs_put_page(page, 1);
342 end:
343 mutex_unlock(&sbi->orphan_inode_mutex);
346 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
347 block_t cp_addr, unsigned long long *version)
349 struct page *cp_page_1, *cp_page_2 = NULL;
350 unsigned long blk_size = sbi->blocksize;
351 struct f2fs_checkpoint *cp_block;
352 unsigned long long cur_version = 0, pre_version = 0;
353 unsigned int crc = 0;
354 size_t crc_offset;
356 /* Read the 1st cp block in this CP pack */
357 cp_page_1 = get_meta_page(sbi, cp_addr);
359 /* get the version number */
360 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
361 crc_offset = le32_to_cpu(cp_block->checksum_offset);
362 if (crc_offset >= blk_size)
363 goto invalid_cp1;
365 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
366 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
367 goto invalid_cp1;
369 pre_version = le64_to_cpu(cp_block->checkpoint_ver);
371 /* Read the 2nd cp block in this CP pack */
372 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
373 cp_page_2 = get_meta_page(sbi, cp_addr);
375 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
376 crc_offset = le32_to_cpu(cp_block->checksum_offset);
377 if (crc_offset >= blk_size)
378 goto invalid_cp2;
380 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
381 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
382 goto invalid_cp2;
384 cur_version = le64_to_cpu(cp_block->checkpoint_ver);
386 if (cur_version == pre_version) {
387 *version = cur_version;
388 f2fs_put_page(cp_page_2, 1);
389 return cp_page_1;
391 invalid_cp2:
392 f2fs_put_page(cp_page_2, 1);
393 invalid_cp1:
394 f2fs_put_page(cp_page_1, 1);
395 return NULL;
398 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
400 struct f2fs_checkpoint *cp_block;
401 struct f2fs_super_block *fsb = sbi->raw_super;
402 struct page *cp1, *cp2, *cur_page;
403 unsigned long blk_size = sbi->blocksize;
404 unsigned long long cp1_version = 0, cp2_version = 0;
405 unsigned long long cp_start_blk_no;
407 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
408 if (!sbi->ckpt)
409 return -ENOMEM;
411 * Finding out valid cp block involves read both
412 * sets( cp pack1 and cp pack 2)
414 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
415 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
417 /* The second checkpoint pack should start at the next segment */
418 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
419 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
421 if (cp1 && cp2) {
422 if (ver_after(cp2_version, cp1_version))
423 cur_page = cp2;
424 else
425 cur_page = cp1;
426 } else if (cp1) {
427 cur_page = cp1;
428 } else if (cp2) {
429 cur_page = cp2;
430 } else {
431 goto fail_no_cp;
434 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
435 memcpy(sbi->ckpt, cp_block, blk_size);
437 f2fs_put_page(cp1, 1);
438 f2fs_put_page(cp2, 1);
439 return 0;
441 fail_no_cp:
442 kfree(sbi->ckpt);
443 return -EINVAL;
446 void set_dirty_dir_page(struct inode *inode, struct page *page)
448 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
449 struct list_head *head = &sbi->dir_inode_list;
450 struct dir_inode_entry *new;
451 struct list_head *this;
453 if (!S_ISDIR(inode->i_mode))
454 return;
455 retry:
456 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
457 if (!new) {
458 cond_resched();
459 goto retry;
461 new->inode = inode;
462 INIT_LIST_HEAD(&new->list);
464 spin_lock(&sbi->dir_inode_lock);
465 list_for_each(this, head) {
466 struct dir_inode_entry *entry;
467 entry = list_entry(this, struct dir_inode_entry, list);
468 if (entry->inode == inode) {
469 kmem_cache_free(inode_entry_slab, new);
470 goto out;
473 list_add_tail(&new->list, head);
474 sbi->n_dirty_dirs++;
476 BUG_ON(!S_ISDIR(inode->i_mode));
477 out:
478 inc_page_count(sbi, F2FS_DIRTY_DENTS);
479 inode_inc_dirty_dents(inode);
480 SetPagePrivate(page);
482 spin_unlock(&sbi->dir_inode_lock);
485 void remove_dirty_dir_inode(struct inode *inode)
487 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
488 struct list_head *head = &sbi->dir_inode_list;
489 struct list_head *this;
491 if (!S_ISDIR(inode->i_mode))
492 return;
494 spin_lock(&sbi->dir_inode_lock);
495 if (atomic_read(&F2FS_I(inode)->dirty_dents))
496 goto out;
498 list_for_each(this, head) {
499 struct dir_inode_entry *entry;
500 entry = list_entry(this, struct dir_inode_entry, list);
501 if (entry->inode == inode) {
502 list_del(&entry->list);
503 kmem_cache_free(inode_entry_slab, entry);
504 sbi->n_dirty_dirs--;
505 break;
508 out:
509 spin_unlock(&sbi->dir_inode_lock);
512 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
514 struct list_head *head = &sbi->dir_inode_list;
515 struct dir_inode_entry *entry;
516 struct inode *inode;
517 retry:
518 spin_lock(&sbi->dir_inode_lock);
519 if (list_empty(head)) {
520 spin_unlock(&sbi->dir_inode_lock);
521 return;
523 entry = list_entry(head->next, struct dir_inode_entry, list);
524 inode = igrab(entry->inode);
525 spin_unlock(&sbi->dir_inode_lock);
526 if (inode) {
527 filemap_flush(inode->i_mapping);
528 iput(inode);
529 } else {
531 * We should submit bio, since it exists several
532 * wribacking dentry pages in the freeing inode.
534 f2fs_submit_bio(sbi, DATA, true);
536 goto retry;
540 * Freeze all the FS-operations for checkpoint.
542 static void block_operations(struct f2fs_sb_info *sbi)
544 int t;
545 struct writeback_control wbc = {
546 .sync_mode = WB_SYNC_ALL,
547 .nr_to_write = LONG_MAX,
548 .for_reclaim = 0,
551 /* Stop renaming operation */
552 mutex_lock_op(sbi, RENAME);
553 mutex_lock_op(sbi, DENTRY_OPS);
555 retry_dents:
556 /* write all the dirty dentry pages */
557 sync_dirty_dir_inodes(sbi);
559 mutex_lock_op(sbi, DATA_WRITE);
560 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
561 mutex_unlock_op(sbi, DATA_WRITE);
562 goto retry_dents;
565 /* block all the operations */
566 for (t = DATA_NEW; t <= NODE_TRUNC; t++)
567 mutex_lock_op(sbi, t);
569 mutex_lock(&sbi->write_inode);
572 * POR: we should ensure that there is no dirty node pages
573 * until finishing nat/sit flush.
575 retry:
576 sync_node_pages(sbi, 0, &wbc);
578 mutex_lock_op(sbi, NODE_WRITE);
580 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
581 mutex_unlock_op(sbi, NODE_WRITE);
582 goto retry;
584 mutex_unlock(&sbi->write_inode);
587 static void unblock_operations(struct f2fs_sb_info *sbi)
589 int t;
590 for (t = NODE_WRITE; t >= RENAME; t--)
591 mutex_unlock_op(sbi, t);
594 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
596 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
597 nid_t last_nid = 0;
598 block_t start_blk;
599 struct page *cp_page;
600 unsigned int data_sum_blocks, orphan_blocks;
601 unsigned int crc32 = 0;
602 void *kaddr;
603 int i;
605 /* Flush all the NAT/SIT pages */
606 while (get_pages(sbi, F2FS_DIRTY_META))
607 sync_meta_pages(sbi, META, LONG_MAX);
609 next_free_nid(sbi, &last_nid);
612 * modify checkpoint
613 * version number is already updated
615 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
616 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
617 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
618 for (i = 0; i < 3; i++) {
619 ckpt->cur_node_segno[i] =
620 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
621 ckpt->cur_node_blkoff[i] =
622 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
623 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
624 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
626 for (i = 0; i < 3; i++) {
627 ckpt->cur_data_segno[i] =
628 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
629 ckpt->cur_data_blkoff[i] =
630 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
631 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
632 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
635 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
636 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
637 ckpt->next_free_nid = cpu_to_le32(last_nid);
639 /* 2 cp + n data seg summary + orphan inode blocks */
640 data_sum_blocks = npages_for_summary_flush(sbi);
641 if (data_sum_blocks < 3)
642 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
643 else
644 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
646 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
647 / F2FS_ORPHANS_PER_BLOCK;
648 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
650 if (is_umount) {
651 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
652 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
653 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
654 } else {
655 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
656 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
657 data_sum_blocks + orphan_blocks);
660 if (sbi->n_orphans)
661 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
662 else
663 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
665 /* update SIT/NAT bitmap */
666 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
667 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
669 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
670 *(__le32 *)((unsigned char *)ckpt +
671 le32_to_cpu(ckpt->checksum_offset))
672 = cpu_to_le32(crc32);
674 start_blk = __start_cp_addr(sbi);
676 /* write out checkpoint buffer at block 0 */
677 cp_page = grab_meta_page(sbi, start_blk++);
678 kaddr = page_address(cp_page);
679 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
680 set_page_dirty(cp_page);
681 f2fs_put_page(cp_page, 1);
683 if (sbi->n_orphans) {
684 write_orphan_inodes(sbi, start_blk);
685 start_blk += orphan_blocks;
688 write_data_summaries(sbi, start_blk);
689 start_blk += data_sum_blocks;
690 if (is_umount) {
691 write_node_summaries(sbi, start_blk);
692 start_blk += NR_CURSEG_NODE_TYPE;
695 /* writeout checkpoint block */
696 cp_page = grab_meta_page(sbi, start_blk);
697 kaddr = page_address(cp_page);
698 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
699 set_page_dirty(cp_page);
700 f2fs_put_page(cp_page, 1);
702 /* wait for previous submitted node/meta pages writeback */
703 while (get_pages(sbi, F2FS_WRITEBACK))
704 congestion_wait(BLK_RW_ASYNC, HZ / 50);
706 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
707 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
709 /* update user_block_counts */
710 sbi->last_valid_block_count = sbi->total_valid_block_count;
711 sbi->alloc_valid_block_count = 0;
713 /* Here, we only have one bio having CP pack */
714 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
716 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
717 clear_prefree_segments(sbi);
718 F2FS_RESET_SB_DIRT(sbi);
723 * We guarantee that this checkpoint procedure should not fail.
725 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
727 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
728 unsigned long long ckpt_ver;
730 mutex_lock(&sbi->cp_mutex);
731 block_operations(sbi);
733 f2fs_submit_bio(sbi, DATA, true);
734 f2fs_submit_bio(sbi, NODE, true);
735 f2fs_submit_bio(sbi, META, true);
738 * update checkpoint pack index
739 * Increase the version number so that
740 * SIT entries and seg summaries are written at correct place
742 ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
743 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
745 /* write cached NAT/SIT entries to NAT/SIT area */
746 flush_nat_entries(sbi);
747 flush_sit_entries(sbi);
749 reset_victim_segmap(sbi);
751 /* unlock all the fs_lock[] in do_checkpoint() */
752 do_checkpoint(sbi, is_umount);
754 unblock_operations(sbi);
755 mutex_unlock(&sbi->cp_mutex);
758 void init_orphan_info(struct f2fs_sb_info *sbi)
760 mutex_init(&sbi->orphan_inode_mutex);
761 INIT_LIST_HEAD(&sbi->orphan_inode_list);
762 sbi->n_orphans = 0;
765 int __init create_checkpoint_caches(void)
767 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
768 sizeof(struct orphan_inode_entry), NULL);
769 if (unlikely(!orphan_entry_slab))
770 return -ENOMEM;
771 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
772 sizeof(struct dir_inode_entry), NULL);
773 if (unlikely(!inode_entry_slab)) {
774 kmem_cache_destroy(orphan_entry_slab);
775 return -ENOMEM;
777 return 0;
780 void destroy_checkpoint_caches(void)
782 kmem_cache_destroy(orphan_entry_slab);
783 kmem_cache_destroy(inode_entry_slab);