Merge branch 'drm-nouveau-fixes-3.9' of git://anongit.freedesktop.org/git/nouveau...
[linux-2.6/libata-dev.git] / fs / ext4 / ialloc.c
blob6c5bb8d993fe8ebb07ae48dab2697e247c78ea01
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 int i;
57 if (start_bit >= end_bit)
58 return;
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
63 if (i < end_bit)
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
73 J_ASSERT_BH(bh, buffer_locked(bh));
75 /* If checksum is bad mark all blocks and inodes use to prevent
76 * allocation, essentially implementing a per-group read-only flag. */
77 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
78 ext4_error(sb, "Checksum bad for group %u", block_group);
79 ext4_free_group_clusters_set(sb, gdp, 0);
80 ext4_free_inodes_set(sb, gdp, 0);
81 ext4_itable_unused_set(sb, gdp, 0);
82 memset(bh->b_data, 0xff, sb->s_blocksize);
83 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
84 EXT4_INODES_PER_GROUP(sb) / 8);
85 return 0;
88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 bh->b_data);
91 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
92 EXT4_INODES_PER_GROUP(sb) / 8);
93 ext4_group_desc_csum_set(sb, block_group, gdp);
95 return EXT4_INODES_PER_GROUP(sb);
98 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
100 if (uptodate) {
101 set_buffer_uptodate(bh);
102 set_bitmap_uptodate(bh);
104 unlock_buffer(bh);
105 put_bh(bh);
109 * Read the inode allocation bitmap for a given block_group, reading
110 * into the specified slot in the superblock's bitmap cache.
112 * Return buffer_head of bitmap on success or NULL.
114 static struct buffer_head *
115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
117 struct ext4_group_desc *desc;
118 struct buffer_head *bh = NULL;
119 ext4_fsblk_t bitmap_blk;
121 desc = ext4_get_group_desc(sb, block_group, NULL);
122 if (!desc)
123 return NULL;
125 bitmap_blk = ext4_inode_bitmap(sb, desc);
126 bh = sb_getblk(sb, bitmap_blk);
127 if (unlikely(!bh)) {
128 ext4_error(sb, "Cannot read inode bitmap - "
129 "block_group = %u, inode_bitmap = %llu",
130 block_group, bitmap_blk);
131 return NULL;
133 if (bitmap_uptodate(bh))
134 goto verify;
136 lock_buffer(bh);
137 if (bitmap_uptodate(bh)) {
138 unlock_buffer(bh);
139 goto verify;
142 ext4_lock_group(sb, block_group);
143 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
144 ext4_init_inode_bitmap(sb, bh, block_group, desc);
145 set_bitmap_uptodate(bh);
146 set_buffer_uptodate(bh);
147 set_buffer_verified(bh);
148 ext4_unlock_group(sb, block_group);
149 unlock_buffer(bh);
150 return bh;
152 ext4_unlock_group(sb, block_group);
154 if (buffer_uptodate(bh)) {
156 * if not uninit if bh is uptodate,
157 * bitmap is also uptodate
159 set_bitmap_uptodate(bh);
160 unlock_buffer(bh);
161 goto verify;
164 * submit the buffer_head for reading
166 trace_ext4_load_inode_bitmap(sb, block_group);
167 bh->b_end_io = ext4_end_bitmap_read;
168 get_bh(bh);
169 submit_bh(READ, bh);
170 wait_on_buffer(bh);
171 if (!buffer_uptodate(bh)) {
172 put_bh(bh);
173 ext4_error(sb, "Cannot read inode bitmap - "
174 "block_group = %u, inode_bitmap = %llu",
175 block_group, bitmap_blk);
176 return NULL;
179 verify:
180 ext4_lock_group(sb, block_group);
181 if (!buffer_verified(bh) &&
182 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
183 EXT4_INODES_PER_GROUP(sb) / 8)) {
184 ext4_unlock_group(sb, block_group);
185 put_bh(bh);
186 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
187 "inode_bitmap = %llu", block_group, bitmap_blk);
188 return NULL;
190 ext4_unlock_group(sb, block_group);
191 set_buffer_verified(bh);
192 return bh;
196 * NOTE! When we get the inode, we're the only people
197 * that have access to it, and as such there are no
198 * race conditions we have to worry about. The inode
199 * is not on the hash-lists, and it cannot be reached
200 * through the filesystem because the directory entry
201 * has been deleted earlier.
203 * HOWEVER: we must make sure that we get no aliases,
204 * which means that we have to call "clear_inode()"
205 * _before_ we mark the inode not in use in the inode
206 * bitmaps. Otherwise a newly created file might use
207 * the same inode number (not actually the same pointer
208 * though), and then we'd have two inodes sharing the
209 * same inode number and space on the harddisk.
211 void ext4_free_inode(handle_t *handle, struct inode *inode)
213 struct super_block *sb = inode->i_sb;
214 int is_directory;
215 unsigned long ino;
216 struct buffer_head *bitmap_bh = NULL;
217 struct buffer_head *bh2;
218 ext4_group_t block_group;
219 unsigned long bit;
220 struct ext4_group_desc *gdp;
221 struct ext4_super_block *es;
222 struct ext4_sb_info *sbi;
223 int fatal = 0, err, count, cleared;
225 if (!sb) {
226 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
227 "nonexistent device\n", __func__, __LINE__);
228 return;
230 if (atomic_read(&inode->i_count) > 1) {
231 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
232 __func__, __LINE__, inode->i_ino,
233 atomic_read(&inode->i_count));
234 return;
236 if (inode->i_nlink) {
237 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
238 __func__, __LINE__, inode->i_ino, inode->i_nlink);
239 return;
241 sbi = EXT4_SB(sb);
243 ino = inode->i_ino;
244 ext4_debug("freeing inode %lu\n", ino);
245 trace_ext4_free_inode(inode);
248 * Note: we must free any quota before locking the superblock,
249 * as writing the quota to disk may need the lock as well.
251 dquot_initialize(inode);
252 ext4_xattr_delete_inode(handle, inode);
253 dquot_free_inode(inode);
254 dquot_drop(inode);
256 is_directory = S_ISDIR(inode->i_mode);
258 /* Do this BEFORE marking the inode not in use or returning an error */
259 ext4_clear_inode(inode);
261 es = EXT4_SB(sb)->s_es;
262 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
263 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
264 goto error_return;
266 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
267 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
268 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
269 if (!bitmap_bh)
270 goto error_return;
272 BUFFER_TRACE(bitmap_bh, "get_write_access");
273 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
274 if (fatal)
275 goto error_return;
277 fatal = -ESRCH;
278 gdp = ext4_get_group_desc(sb, block_group, &bh2);
279 if (gdp) {
280 BUFFER_TRACE(bh2, "get_write_access");
281 fatal = ext4_journal_get_write_access(handle, bh2);
283 ext4_lock_group(sb, block_group);
284 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
285 if (fatal || !cleared) {
286 ext4_unlock_group(sb, block_group);
287 goto out;
290 count = ext4_free_inodes_count(sb, gdp) + 1;
291 ext4_free_inodes_set(sb, gdp, count);
292 if (is_directory) {
293 count = ext4_used_dirs_count(sb, gdp) - 1;
294 ext4_used_dirs_set(sb, gdp, count);
295 percpu_counter_dec(&sbi->s_dirs_counter);
297 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
298 EXT4_INODES_PER_GROUP(sb) / 8);
299 ext4_group_desc_csum_set(sb, block_group, gdp);
300 ext4_unlock_group(sb, block_group);
302 percpu_counter_inc(&sbi->s_freeinodes_counter);
303 if (sbi->s_log_groups_per_flex) {
304 ext4_group_t f = ext4_flex_group(sbi, block_group);
306 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
307 if (is_directory)
308 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
310 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
311 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
312 out:
313 if (cleared) {
314 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
315 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
316 if (!fatal)
317 fatal = err;
318 } else
319 ext4_error(sb, "bit already cleared for inode %lu", ino);
321 error_return:
322 brelse(bitmap_bh);
323 ext4_std_error(sb, fatal);
326 struct orlov_stats {
327 __u64 free_clusters;
328 __u32 free_inodes;
329 __u32 used_dirs;
333 * Helper function for Orlov's allocator; returns critical information
334 * for a particular block group or flex_bg. If flex_size is 1, then g
335 * is a block group number; otherwise it is flex_bg number.
337 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
338 int flex_size, struct orlov_stats *stats)
340 struct ext4_group_desc *desc;
341 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
343 if (flex_size > 1) {
344 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
345 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
346 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
347 return;
350 desc = ext4_get_group_desc(sb, g, NULL);
351 if (desc) {
352 stats->free_inodes = ext4_free_inodes_count(sb, desc);
353 stats->free_clusters = ext4_free_group_clusters(sb, desc);
354 stats->used_dirs = ext4_used_dirs_count(sb, desc);
355 } else {
356 stats->free_inodes = 0;
357 stats->free_clusters = 0;
358 stats->used_dirs = 0;
363 * Orlov's allocator for directories.
365 * We always try to spread first-level directories.
367 * If there are blockgroups with both free inodes and free blocks counts
368 * not worse than average we return one with smallest directory count.
369 * Otherwise we simply return a random group.
371 * For the rest rules look so:
373 * It's OK to put directory into a group unless
374 * it has too many directories already (max_dirs) or
375 * it has too few free inodes left (min_inodes) or
376 * it has too few free blocks left (min_blocks) or
377 * Parent's group is preferred, if it doesn't satisfy these
378 * conditions we search cyclically through the rest. If none
379 * of the groups look good we just look for a group with more
380 * free inodes than average (starting at parent's group).
383 static int find_group_orlov(struct super_block *sb, struct inode *parent,
384 ext4_group_t *group, umode_t mode,
385 const struct qstr *qstr)
387 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
388 struct ext4_sb_info *sbi = EXT4_SB(sb);
389 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
390 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
391 unsigned int freei, avefreei, grp_free;
392 ext4_fsblk_t freeb, avefreec;
393 unsigned int ndirs;
394 int max_dirs, min_inodes;
395 ext4_grpblk_t min_clusters;
396 ext4_group_t i, grp, g, ngroups;
397 struct ext4_group_desc *desc;
398 struct orlov_stats stats;
399 int flex_size = ext4_flex_bg_size(sbi);
400 struct dx_hash_info hinfo;
402 ngroups = real_ngroups;
403 if (flex_size > 1) {
404 ngroups = (real_ngroups + flex_size - 1) >>
405 sbi->s_log_groups_per_flex;
406 parent_group >>= sbi->s_log_groups_per_flex;
409 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
410 avefreei = freei / ngroups;
411 freeb = EXT4_C2B(sbi,
412 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
413 avefreec = freeb;
414 do_div(avefreec, ngroups);
415 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
417 if (S_ISDIR(mode) &&
418 ((parent == sb->s_root->d_inode) ||
419 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
420 int best_ndir = inodes_per_group;
421 int ret = -1;
423 if (qstr) {
424 hinfo.hash_version = DX_HASH_HALF_MD4;
425 hinfo.seed = sbi->s_hash_seed;
426 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
427 grp = hinfo.hash;
428 } else
429 get_random_bytes(&grp, sizeof(grp));
430 parent_group = (unsigned)grp % ngroups;
431 for (i = 0; i < ngroups; i++) {
432 g = (parent_group + i) % ngroups;
433 get_orlov_stats(sb, g, flex_size, &stats);
434 if (!stats.free_inodes)
435 continue;
436 if (stats.used_dirs >= best_ndir)
437 continue;
438 if (stats.free_inodes < avefreei)
439 continue;
440 if (stats.free_clusters < avefreec)
441 continue;
442 grp = g;
443 ret = 0;
444 best_ndir = stats.used_dirs;
446 if (ret)
447 goto fallback;
448 found_flex_bg:
449 if (flex_size == 1) {
450 *group = grp;
451 return 0;
455 * We pack inodes at the beginning of the flexgroup's
456 * inode tables. Block allocation decisions will do
457 * something similar, although regular files will
458 * start at 2nd block group of the flexgroup. See
459 * ext4_ext_find_goal() and ext4_find_near().
461 grp *= flex_size;
462 for (i = 0; i < flex_size; i++) {
463 if (grp+i >= real_ngroups)
464 break;
465 desc = ext4_get_group_desc(sb, grp+i, NULL);
466 if (desc && ext4_free_inodes_count(sb, desc)) {
467 *group = grp+i;
468 return 0;
471 goto fallback;
474 max_dirs = ndirs / ngroups + inodes_per_group / 16;
475 min_inodes = avefreei - inodes_per_group*flex_size / 4;
476 if (min_inodes < 1)
477 min_inodes = 1;
478 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
481 * Start looking in the flex group where we last allocated an
482 * inode for this parent directory
484 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
485 parent_group = EXT4_I(parent)->i_last_alloc_group;
486 if (flex_size > 1)
487 parent_group >>= sbi->s_log_groups_per_flex;
490 for (i = 0; i < ngroups; i++) {
491 grp = (parent_group + i) % ngroups;
492 get_orlov_stats(sb, grp, flex_size, &stats);
493 if (stats.used_dirs >= max_dirs)
494 continue;
495 if (stats.free_inodes < min_inodes)
496 continue;
497 if (stats.free_clusters < min_clusters)
498 continue;
499 goto found_flex_bg;
502 fallback:
503 ngroups = real_ngroups;
504 avefreei = freei / ngroups;
505 fallback_retry:
506 parent_group = EXT4_I(parent)->i_block_group;
507 for (i = 0; i < ngroups; i++) {
508 grp = (parent_group + i) % ngroups;
509 desc = ext4_get_group_desc(sb, grp, NULL);
510 if (desc) {
511 grp_free = ext4_free_inodes_count(sb, desc);
512 if (grp_free && grp_free >= avefreei) {
513 *group = grp;
514 return 0;
519 if (avefreei) {
521 * The free-inodes counter is approximate, and for really small
522 * filesystems the above test can fail to find any blockgroups
524 avefreei = 0;
525 goto fallback_retry;
528 return -1;
531 static int find_group_other(struct super_block *sb, struct inode *parent,
532 ext4_group_t *group, umode_t mode)
534 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
535 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
536 struct ext4_group_desc *desc;
537 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
540 * Try to place the inode is the same flex group as its
541 * parent. If we can't find space, use the Orlov algorithm to
542 * find another flex group, and store that information in the
543 * parent directory's inode information so that use that flex
544 * group for future allocations.
546 if (flex_size > 1) {
547 int retry = 0;
549 try_again:
550 parent_group &= ~(flex_size-1);
551 last = parent_group + flex_size;
552 if (last > ngroups)
553 last = ngroups;
554 for (i = parent_group; i < last; i++) {
555 desc = ext4_get_group_desc(sb, i, NULL);
556 if (desc && ext4_free_inodes_count(sb, desc)) {
557 *group = i;
558 return 0;
561 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
562 retry = 1;
563 parent_group = EXT4_I(parent)->i_last_alloc_group;
564 goto try_again;
567 * If this didn't work, use the Orlov search algorithm
568 * to find a new flex group; we pass in the mode to
569 * avoid the topdir algorithms.
571 *group = parent_group + flex_size;
572 if (*group > ngroups)
573 *group = 0;
574 return find_group_orlov(sb, parent, group, mode, NULL);
578 * Try to place the inode in its parent directory
580 *group = parent_group;
581 desc = ext4_get_group_desc(sb, *group, NULL);
582 if (desc && ext4_free_inodes_count(sb, desc) &&
583 ext4_free_group_clusters(sb, desc))
584 return 0;
587 * We're going to place this inode in a different blockgroup from its
588 * parent. We want to cause files in a common directory to all land in
589 * the same blockgroup. But we want files which are in a different
590 * directory which shares a blockgroup with our parent to land in a
591 * different blockgroup.
593 * So add our directory's i_ino into the starting point for the hash.
595 *group = (*group + parent->i_ino) % ngroups;
598 * Use a quadratic hash to find a group with a free inode and some free
599 * blocks.
601 for (i = 1; i < ngroups; i <<= 1) {
602 *group += i;
603 if (*group >= ngroups)
604 *group -= ngroups;
605 desc = ext4_get_group_desc(sb, *group, NULL);
606 if (desc && ext4_free_inodes_count(sb, desc) &&
607 ext4_free_group_clusters(sb, desc))
608 return 0;
612 * That failed: try linear search for a free inode, even if that group
613 * has no free blocks.
615 *group = parent_group;
616 for (i = 0; i < ngroups; i++) {
617 if (++*group >= ngroups)
618 *group = 0;
619 desc = ext4_get_group_desc(sb, *group, NULL);
620 if (desc && ext4_free_inodes_count(sb, desc))
621 return 0;
624 return -1;
628 * There are two policies for allocating an inode. If the new inode is
629 * a directory, then a forward search is made for a block group with both
630 * free space and a low directory-to-inode ratio; if that fails, then of
631 * the groups with above-average free space, that group with the fewest
632 * directories already is chosen.
634 * For other inodes, search forward from the parent directory's block
635 * group to find a free inode.
637 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
638 umode_t mode, const struct qstr *qstr,
639 __u32 goal, uid_t *owner, int handle_type,
640 unsigned int line_no, int nblocks)
642 struct super_block *sb;
643 struct buffer_head *inode_bitmap_bh = NULL;
644 struct buffer_head *group_desc_bh;
645 ext4_group_t ngroups, group = 0;
646 unsigned long ino = 0;
647 struct inode *inode;
648 struct ext4_group_desc *gdp = NULL;
649 struct ext4_inode_info *ei;
650 struct ext4_sb_info *sbi;
651 int ret2, err = 0;
652 struct inode *ret;
653 ext4_group_t i;
654 ext4_group_t flex_group;
656 /* Cannot create files in a deleted directory */
657 if (!dir || !dir->i_nlink)
658 return ERR_PTR(-EPERM);
660 sb = dir->i_sb;
661 ngroups = ext4_get_groups_count(sb);
662 trace_ext4_request_inode(dir, mode);
663 inode = new_inode(sb);
664 if (!inode)
665 return ERR_PTR(-ENOMEM);
666 ei = EXT4_I(inode);
667 sbi = EXT4_SB(sb);
669 if (!goal)
670 goal = sbi->s_inode_goal;
672 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
673 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
674 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
675 ret2 = 0;
676 goto got_group;
679 if (S_ISDIR(mode))
680 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
681 else
682 ret2 = find_group_other(sb, dir, &group, mode);
684 got_group:
685 EXT4_I(dir)->i_last_alloc_group = group;
686 err = -ENOSPC;
687 if (ret2 == -1)
688 goto out;
691 * Normally we will only go through one pass of this loop,
692 * unless we get unlucky and it turns out the group we selected
693 * had its last inode grabbed by someone else.
695 for (i = 0; i < ngroups; i++, ino = 0) {
696 err = -EIO;
698 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
699 if (!gdp)
700 goto fail;
703 * Check free inodes count before loading bitmap.
705 if (ext4_free_inodes_count(sb, gdp) == 0) {
706 if (++group == ngroups)
707 group = 0;
708 continue;
711 brelse(inode_bitmap_bh);
712 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
713 if (!inode_bitmap_bh)
714 goto fail;
716 repeat_in_this_group:
717 ino = ext4_find_next_zero_bit((unsigned long *)
718 inode_bitmap_bh->b_data,
719 EXT4_INODES_PER_GROUP(sb), ino);
720 if (ino >= EXT4_INODES_PER_GROUP(sb)) {
721 if (++group == ngroups)
722 group = 0;
723 continue;
725 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
726 ext4_error(sb, "reserved inode found cleared - "
727 "inode=%lu", ino + 1);
728 continue;
730 if (!handle) {
731 BUG_ON(nblocks <= 0);
732 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
733 handle_type, nblocks);
734 if (IS_ERR(handle)) {
735 err = PTR_ERR(handle);
736 goto fail;
739 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
740 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
741 if (err)
742 goto fail;
743 ext4_lock_group(sb, group);
744 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
745 ext4_unlock_group(sb, group);
746 ino++; /* the inode bitmap is zero-based */
747 if (!ret2)
748 goto got; /* we grabbed the inode! */
749 if (ino < EXT4_INODES_PER_GROUP(sb))
750 goto repeat_in_this_group;
752 err = -ENOSPC;
753 goto out;
755 got:
756 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
757 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
758 if (err)
759 goto fail;
761 /* We may have to initialize the block bitmap if it isn't already */
762 if (ext4_has_group_desc_csum(sb) &&
763 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
764 struct buffer_head *block_bitmap_bh;
766 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
767 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
768 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
769 if (err) {
770 brelse(block_bitmap_bh);
771 goto fail;
774 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
775 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
777 /* recheck and clear flag under lock if we still need to */
778 ext4_lock_group(sb, group);
779 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
780 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
781 ext4_free_group_clusters_set(sb, gdp,
782 ext4_free_clusters_after_init(sb, group, gdp));
783 ext4_block_bitmap_csum_set(sb, group, gdp,
784 block_bitmap_bh);
785 ext4_group_desc_csum_set(sb, group, gdp);
787 ext4_unlock_group(sb, group);
788 brelse(block_bitmap_bh);
790 if (err)
791 goto fail;
794 BUFFER_TRACE(group_desc_bh, "get_write_access");
795 err = ext4_journal_get_write_access(handle, group_desc_bh);
796 if (err)
797 goto fail;
799 /* Update the relevant bg descriptor fields */
800 if (ext4_has_group_desc_csum(sb)) {
801 int free;
802 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
804 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
805 ext4_lock_group(sb, group); /* while we modify the bg desc */
806 free = EXT4_INODES_PER_GROUP(sb) -
807 ext4_itable_unused_count(sb, gdp);
808 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
809 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
810 free = 0;
813 * Check the relative inode number against the last used
814 * relative inode number in this group. if it is greater
815 * we need to update the bg_itable_unused count
817 if (ino > free)
818 ext4_itable_unused_set(sb, gdp,
819 (EXT4_INODES_PER_GROUP(sb) - ino));
820 up_read(&grp->alloc_sem);
821 } else {
822 ext4_lock_group(sb, group);
825 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
826 if (S_ISDIR(mode)) {
827 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
828 if (sbi->s_log_groups_per_flex) {
829 ext4_group_t f = ext4_flex_group(sbi, group);
831 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
834 if (ext4_has_group_desc_csum(sb)) {
835 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
836 EXT4_INODES_PER_GROUP(sb) / 8);
837 ext4_group_desc_csum_set(sb, group, gdp);
839 ext4_unlock_group(sb, group);
841 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
842 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
843 if (err)
844 goto fail;
846 percpu_counter_dec(&sbi->s_freeinodes_counter);
847 if (S_ISDIR(mode))
848 percpu_counter_inc(&sbi->s_dirs_counter);
850 if (sbi->s_log_groups_per_flex) {
851 flex_group = ext4_flex_group(sbi, group);
852 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
854 if (owner) {
855 inode->i_mode = mode;
856 i_uid_write(inode, owner[0]);
857 i_gid_write(inode, owner[1]);
858 } else if (test_opt(sb, GRPID)) {
859 inode->i_mode = mode;
860 inode->i_uid = current_fsuid();
861 inode->i_gid = dir->i_gid;
862 } else
863 inode_init_owner(inode, dir, mode);
865 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
866 /* This is the optimal IO size (for stat), not the fs block size */
867 inode->i_blocks = 0;
868 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
869 ext4_current_time(inode);
871 memset(ei->i_data, 0, sizeof(ei->i_data));
872 ei->i_dir_start_lookup = 0;
873 ei->i_disksize = 0;
875 /* Don't inherit extent flag from directory, amongst others. */
876 ei->i_flags =
877 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
878 ei->i_file_acl = 0;
879 ei->i_dtime = 0;
880 ei->i_block_group = group;
881 ei->i_last_alloc_group = ~0;
883 ext4_set_inode_flags(inode);
884 if (IS_DIRSYNC(inode))
885 ext4_handle_sync(handle);
886 if (insert_inode_locked(inode) < 0) {
888 * Likely a bitmap corruption causing inode to be allocated
889 * twice.
891 err = -EIO;
892 goto fail;
894 spin_lock(&sbi->s_next_gen_lock);
895 inode->i_generation = sbi->s_next_generation++;
896 spin_unlock(&sbi->s_next_gen_lock);
898 /* Precompute checksum seed for inode metadata */
899 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
900 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
901 __u32 csum;
902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
903 __le32 inum = cpu_to_le32(inode->i_ino);
904 __le32 gen = cpu_to_le32(inode->i_generation);
905 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
906 sizeof(inum));
907 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
908 sizeof(gen));
911 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
912 ext4_set_inode_state(inode, EXT4_STATE_NEW);
914 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
916 ei->i_inline_off = 0;
917 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
918 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
920 ret = inode;
921 dquot_initialize(inode);
922 err = dquot_alloc_inode(inode);
923 if (err)
924 goto fail_drop;
926 err = ext4_init_acl(handle, inode, dir);
927 if (err)
928 goto fail_free_drop;
930 err = ext4_init_security(handle, inode, dir, qstr);
931 if (err)
932 goto fail_free_drop;
934 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
935 /* set extent flag only for directory, file and normal symlink*/
936 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
937 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
938 ext4_ext_tree_init(handle, inode);
942 if (ext4_handle_valid(handle)) {
943 ei->i_sync_tid = handle->h_transaction->t_tid;
944 ei->i_datasync_tid = handle->h_transaction->t_tid;
947 err = ext4_mark_inode_dirty(handle, inode);
948 if (err) {
949 ext4_std_error(sb, err);
950 goto fail_free_drop;
953 ext4_debug("allocating inode %lu\n", inode->i_ino);
954 trace_ext4_allocate_inode(inode, dir, mode);
955 goto really_out;
956 fail:
957 ext4_std_error(sb, err);
958 out:
959 iput(inode);
960 ret = ERR_PTR(err);
961 really_out:
962 brelse(inode_bitmap_bh);
963 return ret;
965 fail_free_drop:
966 dquot_free_inode(inode);
968 fail_drop:
969 dquot_drop(inode);
970 inode->i_flags |= S_NOQUOTA;
971 clear_nlink(inode);
972 unlock_new_inode(inode);
973 iput(inode);
974 brelse(inode_bitmap_bh);
975 return ERR_PTR(err);
978 /* Verify that we are loading a valid orphan from disk */
979 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
981 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
982 ext4_group_t block_group;
983 int bit;
984 struct buffer_head *bitmap_bh;
985 struct inode *inode = NULL;
986 long err = -EIO;
988 /* Error cases - e2fsck has already cleaned up for us */
989 if (ino > max_ino) {
990 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
991 goto error;
994 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
995 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
996 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
997 if (!bitmap_bh) {
998 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
999 goto error;
1002 /* Having the inode bit set should be a 100% indicator that this
1003 * is a valid orphan (no e2fsck run on fs). Orphans also include
1004 * inodes that were being truncated, so we can't check i_nlink==0.
1006 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1007 goto bad_orphan;
1009 inode = ext4_iget(sb, ino);
1010 if (IS_ERR(inode))
1011 goto iget_failed;
1014 * If the orphans has i_nlinks > 0 then it should be able to be
1015 * truncated, otherwise it won't be removed from the orphan list
1016 * during processing and an infinite loop will result.
1018 if (inode->i_nlink && !ext4_can_truncate(inode))
1019 goto bad_orphan;
1021 if (NEXT_ORPHAN(inode) > max_ino)
1022 goto bad_orphan;
1023 brelse(bitmap_bh);
1024 return inode;
1026 iget_failed:
1027 err = PTR_ERR(inode);
1028 inode = NULL;
1029 bad_orphan:
1030 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1031 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1032 bit, (unsigned long long)bitmap_bh->b_blocknr,
1033 ext4_test_bit(bit, bitmap_bh->b_data));
1034 printk(KERN_WARNING "inode=%p\n", inode);
1035 if (inode) {
1036 printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1037 is_bad_inode(inode));
1038 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1039 NEXT_ORPHAN(inode));
1040 printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1041 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1042 /* Avoid freeing blocks if we got a bad deleted inode */
1043 if (inode->i_nlink == 0)
1044 inode->i_blocks = 0;
1045 iput(inode);
1047 brelse(bitmap_bh);
1048 error:
1049 return ERR_PTR(err);
1052 unsigned long ext4_count_free_inodes(struct super_block *sb)
1054 unsigned long desc_count;
1055 struct ext4_group_desc *gdp;
1056 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1057 #ifdef EXT4FS_DEBUG
1058 struct ext4_super_block *es;
1059 unsigned long bitmap_count, x;
1060 struct buffer_head *bitmap_bh = NULL;
1062 es = EXT4_SB(sb)->s_es;
1063 desc_count = 0;
1064 bitmap_count = 0;
1065 gdp = NULL;
1066 for (i = 0; i < ngroups; i++) {
1067 gdp = ext4_get_group_desc(sb, i, NULL);
1068 if (!gdp)
1069 continue;
1070 desc_count += ext4_free_inodes_count(sb, gdp);
1071 brelse(bitmap_bh);
1072 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1073 if (!bitmap_bh)
1074 continue;
1076 x = ext4_count_free(bitmap_bh->b_data,
1077 EXT4_INODES_PER_GROUP(sb) / 8);
1078 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1079 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1080 bitmap_count += x;
1082 brelse(bitmap_bh);
1083 printk(KERN_DEBUG "ext4_count_free_inodes: "
1084 "stored = %u, computed = %lu, %lu\n",
1085 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1086 return desc_count;
1087 #else
1088 desc_count = 0;
1089 for (i = 0; i < ngroups; i++) {
1090 gdp = ext4_get_group_desc(sb, i, NULL);
1091 if (!gdp)
1092 continue;
1093 desc_count += ext4_free_inodes_count(sb, gdp);
1094 cond_resched();
1096 return desc_count;
1097 #endif
1100 /* Called at mount-time, super-block is locked */
1101 unsigned long ext4_count_dirs(struct super_block * sb)
1103 unsigned long count = 0;
1104 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1106 for (i = 0; i < ngroups; i++) {
1107 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1108 if (!gdp)
1109 continue;
1110 count += ext4_used_dirs_count(sb, gdp);
1112 return count;
1116 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1117 * inode table. Must be called without any spinlock held. The only place
1118 * where it is called from on active part of filesystem is ext4lazyinit
1119 * thread, so we do not need any special locks, however we have to prevent
1120 * inode allocation from the current group, so we take alloc_sem lock, to
1121 * block ext4_new_inode() until we are finished.
1123 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1124 int barrier)
1126 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1127 struct ext4_sb_info *sbi = EXT4_SB(sb);
1128 struct ext4_group_desc *gdp = NULL;
1129 struct buffer_head *group_desc_bh;
1130 handle_t *handle;
1131 ext4_fsblk_t blk;
1132 int num, ret = 0, used_blks = 0;
1134 /* This should not happen, but just to be sure check this */
1135 if (sb->s_flags & MS_RDONLY) {
1136 ret = 1;
1137 goto out;
1140 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1141 if (!gdp)
1142 goto out;
1145 * We do not need to lock this, because we are the only one
1146 * handling this flag.
1148 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1149 goto out;
1151 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1152 if (IS_ERR(handle)) {
1153 ret = PTR_ERR(handle);
1154 goto out;
1157 down_write(&grp->alloc_sem);
1159 * If inode bitmap was already initialized there may be some
1160 * used inodes so we need to skip blocks with used inodes in
1161 * inode table.
1163 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1164 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1165 ext4_itable_unused_count(sb, gdp)),
1166 sbi->s_inodes_per_block);
1168 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1169 ext4_error(sb, "Something is wrong with group %u: "
1170 "used itable blocks: %d; "
1171 "itable unused count: %u",
1172 group, used_blks,
1173 ext4_itable_unused_count(sb, gdp));
1174 ret = 1;
1175 goto err_out;
1178 blk = ext4_inode_table(sb, gdp) + used_blks;
1179 num = sbi->s_itb_per_group - used_blks;
1181 BUFFER_TRACE(group_desc_bh, "get_write_access");
1182 ret = ext4_journal_get_write_access(handle,
1183 group_desc_bh);
1184 if (ret)
1185 goto err_out;
1188 * Skip zeroout if the inode table is full. But we set the ZEROED
1189 * flag anyway, because obviously, when it is full it does not need
1190 * further zeroing.
1192 if (unlikely(num == 0))
1193 goto skip_zeroout;
1195 ext4_debug("going to zero out inode table in group %d\n",
1196 group);
1197 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1198 if (ret < 0)
1199 goto err_out;
1200 if (barrier)
1201 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1203 skip_zeroout:
1204 ext4_lock_group(sb, group);
1205 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1206 ext4_group_desc_csum_set(sb, group, gdp);
1207 ext4_unlock_group(sb, group);
1209 BUFFER_TRACE(group_desc_bh,
1210 "call ext4_handle_dirty_metadata");
1211 ret = ext4_handle_dirty_metadata(handle, NULL,
1212 group_desc_bh);
1214 err_out:
1215 up_write(&grp->alloc_sem);
1216 ext4_journal_stop(handle);
1217 out:
1218 return ret;