Merge branch 'drm-nouveau-fixes-3.9' of git://anongit.freedesktop.org/git/nouveau...
[linux-2.6/libata-dev.git] / fs / btrfs / transaction.c
blob50767bbaad6c6bfeb40e4d0e815446effd5392b3
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 void put_transaction(struct btrfs_transaction *transaction)
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
47 static noinline void switch_commit_root(struct btrfs_root *root)
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 int type)
56 return !(trans->in_commit &&
57 type != TRANS_JOIN &&
58 type != TRANS_JOIN_NOLOCK);
62 * either allocate a new transaction or hop into the existing one
64 static noinline int join_transaction(struct btrfs_root *root, int type)
66 struct btrfs_transaction *cur_trans;
67 struct btrfs_fs_info *fs_info = root->fs_info;
69 spin_lock(&fs_info->trans_lock);
70 loop:
71 /* The file system has been taken offline. No new transactions. */
72 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 spin_unlock(&fs_info->trans_lock);
74 return -EROFS;
77 if (fs_info->trans_no_join) {
78 /*
79 * If we are JOIN_NOLOCK we're already committing a current
80 * transaction, we just need a handle to deal with something
81 * when committing the transaction, such as inode cache and
82 * space cache. It is a special case.
84 if (type != TRANS_JOIN_NOLOCK) {
85 spin_unlock(&fs_info->trans_lock);
86 return -EBUSY;
90 cur_trans = fs_info->running_transaction;
91 if (cur_trans) {
92 if (cur_trans->aborted) {
93 spin_unlock(&fs_info->trans_lock);
94 return cur_trans->aborted;
96 if (!can_join_transaction(cur_trans, type)) {
97 spin_unlock(&fs_info->trans_lock);
98 return -EBUSY;
100 atomic_inc(&cur_trans->use_count);
101 atomic_inc(&cur_trans->num_writers);
102 cur_trans->num_joined++;
103 spin_unlock(&fs_info->trans_lock);
104 return 0;
106 spin_unlock(&fs_info->trans_lock);
109 * If we are ATTACH, we just want to catch the current transaction,
110 * and commit it. If there is no transaction, just return ENOENT.
112 if (type == TRANS_ATTACH)
113 return -ENOENT;
115 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 if (!cur_trans)
117 return -ENOMEM;
119 spin_lock(&fs_info->trans_lock);
120 if (fs_info->running_transaction) {
122 * someone started a transaction after we unlocked. Make sure
123 * to redo the trans_no_join checks above
125 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 goto loop;
127 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
128 spin_unlock(&fs_info->trans_lock);
129 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
130 return -EROFS;
133 atomic_set(&cur_trans->num_writers, 1);
134 cur_trans->num_joined = 0;
135 init_waitqueue_head(&cur_trans->writer_wait);
136 init_waitqueue_head(&cur_trans->commit_wait);
137 cur_trans->in_commit = 0;
138 cur_trans->blocked = 0;
140 * One for this trans handle, one so it will live on until we
141 * commit the transaction.
143 atomic_set(&cur_trans->use_count, 2);
144 cur_trans->commit_done = 0;
145 cur_trans->start_time = get_seconds();
147 cur_trans->delayed_refs.root = RB_ROOT;
148 cur_trans->delayed_refs.num_entries = 0;
149 cur_trans->delayed_refs.num_heads_ready = 0;
150 cur_trans->delayed_refs.num_heads = 0;
151 cur_trans->delayed_refs.flushing = 0;
152 cur_trans->delayed_refs.run_delayed_start = 0;
155 * although the tree mod log is per file system and not per transaction,
156 * the log must never go across transaction boundaries.
158 smp_mb();
159 if (!list_empty(&fs_info->tree_mod_seq_list))
160 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
161 "creating a fresh transaction\n");
162 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
163 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
164 "creating a fresh transaction\n");
165 atomic_set(&fs_info->tree_mod_seq, 0);
167 spin_lock_init(&cur_trans->commit_lock);
168 spin_lock_init(&cur_trans->delayed_refs.lock);
169 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
170 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
171 init_waitqueue_head(&cur_trans->delayed_refs.wait);
173 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
174 INIT_LIST_HEAD(&cur_trans->ordered_operations);
175 list_add_tail(&cur_trans->list, &fs_info->trans_list);
176 extent_io_tree_init(&cur_trans->dirty_pages,
177 fs_info->btree_inode->i_mapping);
178 fs_info->generation++;
179 cur_trans->transid = fs_info->generation;
180 fs_info->running_transaction = cur_trans;
181 cur_trans->aborted = 0;
182 spin_unlock(&fs_info->trans_lock);
184 return 0;
188 * this does all the record keeping required to make sure that a reference
189 * counted root is properly recorded in a given transaction. This is required
190 * to make sure the old root from before we joined the transaction is deleted
191 * when the transaction commits
193 static int record_root_in_trans(struct btrfs_trans_handle *trans,
194 struct btrfs_root *root)
196 if (root->ref_cows && root->last_trans < trans->transid) {
197 WARN_ON(root == root->fs_info->extent_root);
198 WARN_ON(root->commit_root != root->node);
201 * see below for in_trans_setup usage rules
202 * we have the reloc mutex held now, so there
203 * is only one writer in this function
205 root->in_trans_setup = 1;
207 /* make sure readers find in_trans_setup before
208 * they find our root->last_trans update
210 smp_wmb();
212 spin_lock(&root->fs_info->fs_roots_radix_lock);
213 if (root->last_trans == trans->transid) {
214 spin_unlock(&root->fs_info->fs_roots_radix_lock);
215 return 0;
217 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
218 (unsigned long)root->root_key.objectid,
219 BTRFS_ROOT_TRANS_TAG);
220 spin_unlock(&root->fs_info->fs_roots_radix_lock);
221 root->last_trans = trans->transid;
223 /* this is pretty tricky. We don't want to
224 * take the relocation lock in btrfs_record_root_in_trans
225 * unless we're really doing the first setup for this root in
226 * this transaction.
228 * Normally we'd use root->last_trans as a flag to decide
229 * if we want to take the expensive mutex.
231 * But, we have to set root->last_trans before we
232 * init the relocation root, otherwise, we trip over warnings
233 * in ctree.c. The solution used here is to flag ourselves
234 * with root->in_trans_setup. When this is 1, we're still
235 * fixing up the reloc trees and everyone must wait.
237 * When this is zero, they can trust root->last_trans and fly
238 * through btrfs_record_root_in_trans without having to take the
239 * lock. smp_wmb() makes sure that all the writes above are
240 * done before we pop in the zero below
242 btrfs_init_reloc_root(trans, root);
243 smp_wmb();
244 root->in_trans_setup = 0;
246 return 0;
250 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
251 struct btrfs_root *root)
253 if (!root->ref_cows)
254 return 0;
257 * see record_root_in_trans for comments about in_trans_setup usage
258 * and barriers
260 smp_rmb();
261 if (root->last_trans == trans->transid &&
262 !root->in_trans_setup)
263 return 0;
265 mutex_lock(&root->fs_info->reloc_mutex);
266 record_root_in_trans(trans, root);
267 mutex_unlock(&root->fs_info->reloc_mutex);
269 return 0;
272 /* wait for commit against the current transaction to become unblocked
273 * when this is done, it is safe to start a new transaction, but the current
274 * transaction might not be fully on disk.
276 static void wait_current_trans(struct btrfs_root *root)
278 struct btrfs_transaction *cur_trans;
280 spin_lock(&root->fs_info->trans_lock);
281 cur_trans = root->fs_info->running_transaction;
282 if (cur_trans && cur_trans->blocked) {
283 atomic_inc(&cur_trans->use_count);
284 spin_unlock(&root->fs_info->trans_lock);
286 wait_event(root->fs_info->transaction_wait,
287 !cur_trans->blocked);
288 put_transaction(cur_trans);
289 } else {
290 spin_unlock(&root->fs_info->trans_lock);
294 static int may_wait_transaction(struct btrfs_root *root, int type)
296 if (root->fs_info->log_root_recovering)
297 return 0;
299 if (type == TRANS_USERSPACE)
300 return 1;
302 if (type == TRANS_START &&
303 !atomic_read(&root->fs_info->open_ioctl_trans))
304 return 1;
306 return 0;
309 static struct btrfs_trans_handle *
310 start_transaction(struct btrfs_root *root, u64 num_items, int type,
311 enum btrfs_reserve_flush_enum flush)
313 struct btrfs_trans_handle *h;
314 struct btrfs_transaction *cur_trans;
315 u64 num_bytes = 0;
316 int ret;
317 u64 qgroup_reserved = 0;
319 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
320 return ERR_PTR(-EROFS);
322 if (current->journal_info) {
323 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
324 h = current->journal_info;
325 h->use_count++;
326 WARN_ON(h->use_count > 2);
327 h->orig_rsv = h->block_rsv;
328 h->block_rsv = NULL;
329 goto got_it;
333 * Do the reservation before we join the transaction so we can do all
334 * the appropriate flushing if need be.
336 if (num_items > 0 && root != root->fs_info->chunk_root) {
337 if (root->fs_info->quota_enabled &&
338 is_fstree(root->root_key.objectid)) {
339 qgroup_reserved = num_items * root->leafsize;
340 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
341 if (ret)
342 return ERR_PTR(ret);
345 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
346 ret = btrfs_block_rsv_add(root,
347 &root->fs_info->trans_block_rsv,
348 num_bytes, flush);
349 if (ret)
350 goto reserve_fail;
352 again:
353 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
354 if (!h) {
355 ret = -ENOMEM;
356 goto alloc_fail;
360 * If we are JOIN_NOLOCK we're already committing a transaction and
361 * waiting on this guy, so we don't need to do the sb_start_intwrite
362 * because we're already holding a ref. We need this because we could
363 * have raced in and did an fsync() on a file which can kick a commit
364 * and then we deadlock with somebody doing a freeze.
366 * If we are ATTACH, it means we just want to catch the current
367 * transaction and commit it, so we needn't do sb_start_intwrite().
369 if (type < TRANS_JOIN_NOLOCK)
370 sb_start_intwrite(root->fs_info->sb);
372 if (may_wait_transaction(root, type))
373 wait_current_trans(root);
375 do {
376 ret = join_transaction(root, type);
377 if (ret == -EBUSY) {
378 wait_current_trans(root);
379 if (unlikely(type == TRANS_ATTACH))
380 ret = -ENOENT;
382 } while (ret == -EBUSY);
384 if (ret < 0) {
385 /* We must get the transaction if we are JOIN_NOLOCK. */
386 BUG_ON(type == TRANS_JOIN_NOLOCK);
387 goto join_fail;
390 cur_trans = root->fs_info->running_transaction;
392 h->transid = cur_trans->transid;
393 h->transaction = cur_trans;
394 h->blocks_used = 0;
395 h->bytes_reserved = 0;
396 h->root = root;
397 h->delayed_ref_updates = 0;
398 h->use_count = 1;
399 h->adding_csums = 0;
400 h->block_rsv = NULL;
401 h->orig_rsv = NULL;
402 h->aborted = 0;
403 h->qgroup_reserved = 0;
404 h->delayed_ref_elem.seq = 0;
405 h->type = type;
406 h->allocating_chunk = false;
407 INIT_LIST_HEAD(&h->qgroup_ref_list);
408 INIT_LIST_HEAD(&h->new_bgs);
410 smp_mb();
411 if (cur_trans->blocked && may_wait_transaction(root, type)) {
412 btrfs_commit_transaction(h, root);
413 goto again;
416 if (num_bytes) {
417 trace_btrfs_space_reservation(root->fs_info, "transaction",
418 h->transid, num_bytes, 1);
419 h->block_rsv = &root->fs_info->trans_block_rsv;
420 h->bytes_reserved = num_bytes;
422 h->qgroup_reserved = qgroup_reserved;
424 got_it:
425 btrfs_record_root_in_trans(h, root);
427 if (!current->journal_info && type != TRANS_USERSPACE)
428 current->journal_info = h;
429 return h;
431 join_fail:
432 if (type < TRANS_JOIN_NOLOCK)
433 sb_end_intwrite(root->fs_info->sb);
434 kmem_cache_free(btrfs_trans_handle_cachep, h);
435 alloc_fail:
436 if (num_bytes)
437 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
438 num_bytes);
439 reserve_fail:
440 if (qgroup_reserved)
441 btrfs_qgroup_free(root, qgroup_reserved);
442 return ERR_PTR(ret);
445 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
446 int num_items)
448 return start_transaction(root, num_items, TRANS_START,
449 BTRFS_RESERVE_FLUSH_ALL);
452 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
453 struct btrfs_root *root, int num_items)
455 return start_transaction(root, num_items, TRANS_START,
456 BTRFS_RESERVE_FLUSH_LIMIT);
459 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
461 return start_transaction(root, 0, TRANS_JOIN, 0);
464 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
466 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
469 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
471 return start_transaction(root, 0, TRANS_USERSPACE, 0);
475 * btrfs_attach_transaction() - catch the running transaction
477 * It is used when we want to commit the current the transaction, but
478 * don't want to start a new one.
480 * Note: If this function return -ENOENT, it just means there is no
481 * running transaction. But it is possible that the inactive transaction
482 * is still in the memory, not fully on disk. If you hope there is no
483 * inactive transaction in the fs when -ENOENT is returned, you should
484 * invoke
485 * btrfs_attach_transaction_barrier()
487 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
489 return start_transaction(root, 0, TRANS_ATTACH, 0);
493 * btrfs_attach_transaction() - catch the running transaction
495 * It is similar to the above function, the differentia is this one
496 * will wait for all the inactive transactions until they fully
497 * complete.
499 struct btrfs_trans_handle *
500 btrfs_attach_transaction_barrier(struct btrfs_root *root)
502 struct btrfs_trans_handle *trans;
504 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
505 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
506 btrfs_wait_for_commit(root, 0);
508 return trans;
511 /* wait for a transaction commit to be fully complete */
512 static noinline void wait_for_commit(struct btrfs_root *root,
513 struct btrfs_transaction *commit)
515 wait_event(commit->commit_wait, commit->commit_done);
518 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
520 struct btrfs_transaction *cur_trans = NULL, *t;
521 int ret = 0;
523 if (transid) {
524 if (transid <= root->fs_info->last_trans_committed)
525 goto out;
527 ret = -EINVAL;
528 /* find specified transaction */
529 spin_lock(&root->fs_info->trans_lock);
530 list_for_each_entry(t, &root->fs_info->trans_list, list) {
531 if (t->transid == transid) {
532 cur_trans = t;
533 atomic_inc(&cur_trans->use_count);
534 ret = 0;
535 break;
537 if (t->transid > transid) {
538 ret = 0;
539 break;
542 spin_unlock(&root->fs_info->trans_lock);
543 /* The specified transaction doesn't exist */
544 if (!cur_trans)
545 goto out;
546 } else {
547 /* find newest transaction that is committing | committed */
548 spin_lock(&root->fs_info->trans_lock);
549 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
550 list) {
551 if (t->in_commit) {
552 if (t->commit_done)
553 break;
554 cur_trans = t;
555 atomic_inc(&cur_trans->use_count);
556 break;
559 spin_unlock(&root->fs_info->trans_lock);
560 if (!cur_trans)
561 goto out; /* nothing committing|committed */
564 wait_for_commit(root, cur_trans);
565 put_transaction(cur_trans);
566 out:
567 return ret;
570 void btrfs_throttle(struct btrfs_root *root)
572 if (!atomic_read(&root->fs_info->open_ioctl_trans))
573 wait_current_trans(root);
576 static int should_end_transaction(struct btrfs_trans_handle *trans,
577 struct btrfs_root *root)
579 int ret;
581 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
582 return ret ? 1 : 0;
585 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root)
588 struct btrfs_transaction *cur_trans = trans->transaction;
589 int updates;
590 int err;
592 smp_mb();
593 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
594 return 1;
596 updates = trans->delayed_ref_updates;
597 trans->delayed_ref_updates = 0;
598 if (updates) {
599 err = btrfs_run_delayed_refs(trans, root, updates);
600 if (err) /* Error code will also eval true */
601 return err;
604 return should_end_transaction(trans, root);
607 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
608 struct btrfs_root *root, int throttle)
610 struct btrfs_transaction *cur_trans = trans->transaction;
611 struct btrfs_fs_info *info = root->fs_info;
612 int count = 0;
613 int lock = (trans->type != TRANS_JOIN_NOLOCK);
614 int err = 0;
616 if (--trans->use_count) {
617 trans->block_rsv = trans->orig_rsv;
618 return 0;
622 * do the qgroup accounting as early as possible
624 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
626 btrfs_trans_release_metadata(trans, root);
627 trans->block_rsv = NULL;
629 if (trans->qgroup_reserved) {
631 * the same root has to be passed here between start_transaction
632 * and end_transaction. Subvolume quota depends on this.
634 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
635 trans->qgroup_reserved = 0;
638 if (!list_empty(&trans->new_bgs))
639 btrfs_create_pending_block_groups(trans, root);
641 while (count < 1) {
642 unsigned long cur = trans->delayed_ref_updates;
643 trans->delayed_ref_updates = 0;
644 if (cur &&
645 trans->transaction->delayed_refs.num_heads_ready > 64) {
646 trans->delayed_ref_updates = 0;
647 btrfs_run_delayed_refs(trans, root, cur);
648 } else {
649 break;
651 count++;
654 btrfs_trans_release_metadata(trans, root);
655 trans->block_rsv = NULL;
657 if (!list_empty(&trans->new_bgs))
658 btrfs_create_pending_block_groups(trans, root);
660 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
661 should_end_transaction(trans, root)) {
662 trans->transaction->blocked = 1;
663 smp_wmb();
666 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
667 if (throttle) {
669 * We may race with somebody else here so end up having
670 * to call end_transaction on ourselves again, so inc
671 * our use_count.
673 trans->use_count++;
674 return btrfs_commit_transaction(trans, root);
675 } else {
676 wake_up_process(info->transaction_kthread);
680 if (trans->type < TRANS_JOIN_NOLOCK)
681 sb_end_intwrite(root->fs_info->sb);
683 WARN_ON(cur_trans != info->running_transaction);
684 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
685 atomic_dec(&cur_trans->num_writers);
687 smp_mb();
688 if (waitqueue_active(&cur_trans->writer_wait))
689 wake_up(&cur_trans->writer_wait);
690 put_transaction(cur_trans);
692 if (current->journal_info == trans)
693 current->journal_info = NULL;
695 if (throttle)
696 btrfs_run_delayed_iputs(root);
698 if (trans->aborted ||
699 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
700 err = -EIO;
701 assert_qgroups_uptodate(trans);
703 kmem_cache_free(btrfs_trans_handle_cachep, trans);
704 return err;
707 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
708 struct btrfs_root *root)
710 int ret;
712 ret = __btrfs_end_transaction(trans, root, 0);
713 if (ret)
714 return ret;
715 return 0;
718 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
719 struct btrfs_root *root)
721 int ret;
723 ret = __btrfs_end_transaction(trans, root, 1);
724 if (ret)
725 return ret;
726 return 0;
729 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
730 struct btrfs_root *root)
732 return __btrfs_end_transaction(trans, root, 1);
736 * when btree blocks are allocated, they have some corresponding bits set for
737 * them in one of two extent_io trees. This is used to make sure all of
738 * those extents are sent to disk but does not wait on them
740 int btrfs_write_marked_extents(struct btrfs_root *root,
741 struct extent_io_tree *dirty_pages, int mark)
743 int err = 0;
744 int werr = 0;
745 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
746 struct extent_state *cached_state = NULL;
747 u64 start = 0;
748 u64 end;
749 struct blk_plug plug;
751 blk_start_plug(&plug);
752 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
753 mark, &cached_state)) {
754 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
755 mark, &cached_state, GFP_NOFS);
756 cached_state = NULL;
757 err = filemap_fdatawrite_range(mapping, start, end);
758 if (err)
759 werr = err;
760 cond_resched();
761 start = end + 1;
763 if (err)
764 werr = err;
765 blk_finish_plug(&plug);
766 return werr;
770 * when btree blocks are allocated, they have some corresponding bits set for
771 * them in one of two extent_io trees. This is used to make sure all of
772 * those extents are on disk for transaction or log commit. We wait
773 * on all the pages and clear them from the dirty pages state tree
775 int btrfs_wait_marked_extents(struct btrfs_root *root,
776 struct extent_io_tree *dirty_pages, int mark)
778 int err = 0;
779 int werr = 0;
780 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
781 struct extent_state *cached_state = NULL;
782 u64 start = 0;
783 u64 end;
785 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
786 EXTENT_NEED_WAIT, &cached_state)) {
787 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
788 0, 0, &cached_state, GFP_NOFS);
789 err = filemap_fdatawait_range(mapping, start, end);
790 if (err)
791 werr = err;
792 cond_resched();
793 start = end + 1;
795 if (err)
796 werr = err;
797 return werr;
801 * when btree blocks are allocated, they have some corresponding bits set for
802 * them in one of two extent_io trees. This is used to make sure all of
803 * those extents are on disk for transaction or log commit
805 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
806 struct extent_io_tree *dirty_pages, int mark)
808 int ret;
809 int ret2;
811 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
812 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
814 if (ret)
815 return ret;
816 if (ret2)
817 return ret2;
818 return 0;
821 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root)
824 if (!trans || !trans->transaction) {
825 struct inode *btree_inode;
826 btree_inode = root->fs_info->btree_inode;
827 return filemap_write_and_wait(btree_inode->i_mapping);
829 return btrfs_write_and_wait_marked_extents(root,
830 &trans->transaction->dirty_pages,
831 EXTENT_DIRTY);
835 * this is used to update the root pointer in the tree of tree roots.
837 * But, in the case of the extent allocation tree, updating the root
838 * pointer may allocate blocks which may change the root of the extent
839 * allocation tree.
841 * So, this loops and repeats and makes sure the cowonly root didn't
842 * change while the root pointer was being updated in the metadata.
844 static int update_cowonly_root(struct btrfs_trans_handle *trans,
845 struct btrfs_root *root)
847 int ret;
848 u64 old_root_bytenr;
849 u64 old_root_used;
850 struct btrfs_root *tree_root = root->fs_info->tree_root;
852 old_root_used = btrfs_root_used(&root->root_item);
853 btrfs_write_dirty_block_groups(trans, root);
855 while (1) {
856 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
857 if (old_root_bytenr == root->node->start &&
858 old_root_used == btrfs_root_used(&root->root_item))
859 break;
861 btrfs_set_root_node(&root->root_item, root->node);
862 ret = btrfs_update_root(trans, tree_root,
863 &root->root_key,
864 &root->root_item);
865 if (ret)
866 return ret;
868 old_root_used = btrfs_root_used(&root->root_item);
869 ret = btrfs_write_dirty_block_groups(trans, root);
870 if (ret)
871 return ret;
874 if (root != root->fs_info->extent_root)
875 switch_commit_root(root);
877 return 0;
881 * update all the cowonly tree roots on disk
883 * The error handling in this function may not be obvious. Any of the
884 * failures will cause the file system to go offline. We still need
885 * to clean up the delayed refs.
887 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
888 struct btrfs_root *root)
890 struct btrfs_fs_info *fs_info = root->fs_info;
891 struct list_head *next;
892 struct extent_buffer *eb;
893 int ret;
895 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
896 if (ret)
897 return ret;
899 eb = btrfs_lock_root_node(fs_info->tree_root);
900 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
901 0, &eb);
902 btrfs_tree_unlock(eb);
903 free_extent_buffer(eb);
905 if (ret)
906 return ret;
908 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
909 if (ret)
910 return ret;
912 ret = btrfs_run_dev_stats(trans, root->fs_info);
913 WARN_ON(ret);
914 ret = btrfs_run_dev_replace(trans, root->fs_info);
915 WARN_ON(ret);
917 ret = btrfs_run_qgroups(trans, root->fs_info);
918 BUG_ON(ret);
920 /* run_qgroups might have added some more refs */
921 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
922 BUG_ON(ret);
924 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
925 next = fs_info->dirty_cowonly_roots.next;
926 list_del_init(next);
927 root = list_entry(next, struct btrfs_root, dirty_list);
929 ret = update_cowonly_root(trans, root);
930 if (ret)
931 return ret;
934 down_write(&fs_info->extent_commit_sem);
935 switch_commit_root(fs_info->extent_root);
936 up_write(&fs_info->extent_commit_sem);
938 btrfs_after_dev_replace_commit(fs_info);
940 return 0;
944 * dead roots are old snapshots that need to be deleted. This allocates
945 * a dirty root struct and adds it into the list of dead roots that need to
946 * be deleted
948 int btrfs_add_dead_root(struct btrfs_root *root)
950 spin_lock(&root->fs_info->trans_lock);
951 list_add(&root->root_list, &root->fs_info->dead_roots);
952 spin_unlock(&root->fs_info->trans_lock);
953 return 0;
957 * update all the cowonly tree roots on disk
959 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
960 struct btrfs_root *root)
962 struct btrfs_root *gang[8];
963 struct btrfs_fs_info *fs_info = root->fs_info;
964 int i;
965 int ret;
966 int err = 0;
968 spin_lock(&fs_info->fs_roots_radix_lock);
969 while (1) {
970 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
971 (void **)gang, 0,
972 ARRAY_SIZE(gang),
973 BTRFS_ROOT_TRANS_TAG);
974 if (ret == 0)
975 break;
976 for (i = 0; i < ret; i++) {
977 root = gang[i];
978 radix_tree_tag_clear(&fs_info->fs_roots_radix,
979 (unsigned long)root->root_key.objectid,
980 BTRFS_ROOT_TRANS_TAG);
981 spin_unlock(&fs_info->fs_roots_radix_lock);
983 btrfs_free_log(trans, root);
984 btrfs_update_reloc_root(trans, root);
985 btrfs_orphan_commit_root(trans, root);
987 btrfs_save_ino_cache(root, trans);
989 /* see comments in should_cow_block() */
990 root->force_cow = 0;
991 smp_wmb();
993 if (root->commit_root != root->node) {
994 mutex_lock(&root->fs_commit_mutex);
995 switch_commit_root(root);
996 btrfs_unpin_free_ino(root);
997 mutex_unlock(&root->fs_commit_mutex);
999 btrfs_set_root_node(&root->root_item,
1000 root->node);
1003 err = btrfs_update_root(trans, fs_info->tree_root,
1004 &root->root_key,
1005 &root->root_item);
1006 spin_lock(&fs_info->fs_roots_radix_lock);
1007 if (err)
1008 break;
1011 spin_unlock(&fs_info->fs_roots_radix_lock);
1012 return err;
1016 * defrag a given btree.
1017 * Every leaf in the btree is read and defragged.
1019 int btrfs_defrag_root(struct btrfs_root *root)
1021 struct btrfs_fs_info *info = root->fs_info;
1022 struct btrfs_trans_handle *trans;
1023 int ret;
1025 if (xchg(&root->defrag_running, 1))
1026 return 0;
1028 while (1) {
1029 trans = btrfs_start_transaction(root, 0);
1030 if (IS_ERR(trans))
1031 return PTR_ERR(trans);
1033 ret = btrfs_defrag_leaves(trans, root);
1035 btrfs_end_transaction(trans, root);
1036 btrfs_btree_balance_dirty(info->tree_root);
1037 cond_resched();
1039 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1040 break;
1042 if (btrfs_defrag_cancelled(root->fs_info)) {
1043 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1044 ret = -EAGAIN;
1045 break;
1048 root->defrag_running = 0;
1049 return ret;
1053 * new snapshots need to be created at a very specific time in the
1054 * transaction commit. This does the actual creation.
1056 * Note:
1057 * If the error which may affect the commitment of the current transaction
1058 * happens, we should return the error number. If the error which just affect
1059 * the creation of the pending snapshots, just return 0.
1061 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1062 struct btrfs_fs_info *fs_info,
1063 struct btrfs_pending_snapshot *pending)
1065 struct btrfs_key key;
1066 struct btrfs_root_item *new_root_item;
1067 struct btrfs_root *tree_root = fs_info->tree_root;
1068 struct btrfs_root *root = pending->root;
1069 struct btrfs_root *parent_root;
1070 struct btrfs_block_rsv *rsv;
1071 struct inode *parent_inode;
1072 struct btrfs_path *path;
1073 struct btrfs_dir_item *dir_item;
1074 struct dentry *dentry;
1075 struct extent_buffer *tmp;
1076 struct extent_buffer *old;
1077 struct timespec cur_time = CURRENT_TIME;
1078 int ret = 0;
1079 u64 to_reserve = 0;
1080 u64 index = 0;
1081 u64 objectid;
1082 u64 root_flags;
1083 uuid_le new_uuid;
1085 path = btrfs_alloc_path();
1086 if (!path) {
1087 pending->error = -ENOMEM;
1088 return 0;
1091 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1092 if (!new_root_item) {
1093 pending->error = -ENOMEM;
1094 goto root_item_alloc_fail;
1097 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1098 if (pending->error)
1099 goto no_free_objectid;
1101 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1103 if (to_reserve > 0) {
1104 pending->error = btrfs_block_rsv_add(root,
1105 &pending->block_rsv,
1106 to_reserve,
1107 BTRFS_RESERVE_NO_FLUSH);
1108 if (pending->error)
1109 goto no_free_objectid;
1112 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1113 root->root_key.objectid,
1114 objectid, pending->inherit);
1115 if (pending->error)
1116 goto no_free_objectid;
1118 key.objectid = objectid;
1119 key.offset = (u64)-1;
1120 key.type = BTRFS_ROOT_ITEM_KEY;
1122 rsv = trans->block_rsv;
1123 trans->block_rsv = &pending->block_rsv;
1124 trans->bytes_reserved = trans->block_rsv->reserved;
1126 dentry = pending->dentry;
1127 parent_inode = pending->dir;
1128 parent_root = BTRFS_I(parent_inode)->root;
1129 record_root_in_trans(trans, parent_root);
1132 * insert the directory item
1134 ret = btrfs_set_inode_index(parent_inode, &index);
1135 BUG_ON(ret); /* -ENOMEM */
1137 /* check if there is a file/dir which has the same name. */
1138 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1139 btrfs_ino(parent_inode),
1140 dentry->d_name.name,
1141 dentry->d_name.len, 0);
1142 if (dir_item != NULL && !IS_ERR(dir_item)) {
1143 pending->error = -EEXIST;
1144 goto dir_item_existed;
1145 } else if (IS_ERR(dir_item)) {
1146 ret = PTR_ERR(dir_item);
1147 btrfs_abort_transaction(trans, root, ret);
1148 goto fail;
1150 btrfs_release_path(path);
1153 * pull in the delayed directory update
1154 * and the delayed inode item
1155 * otherwise we corrupt the FS during
1156 * snapshot
1158 ret = btrfs_run_delayed_items(trans, root);
1159 if (ret) { /* Transaction aborted */
1160 btrfs_abort_transaction(trans, root, ret);
1161 goto fail;
1164 record_root_in_trans(trans, root);
1165 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1166 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1167 btrfs_check_and_init_root_item(new_root_item);
1169 root_flags = btrfs_root_flags(new_root_item);
1170 if (pending->readonly)
1171 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1172 else
1173 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1174 btrfs_set_root_flags(new_root_item, root_flags);
1176 btrfs_set_root_generation_v2(new_root_item,
1177 trans->transid);
1178 uuid_le_gen(&new_uuid);
1179 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1180 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1181 BTRFS_UUID_SIZE);
1182 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1183 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1184 btrfs_set_root_otransid(new_root_item, trans->transid);
1185 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1186 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1187 btrfs_set_root_stransid(new_root_item, 0);
1188 btrfs_set_root_rtransid(new_root_item, 0);
1190 old = btrfs_lock_root_node(root);
1191 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1192 if (ret) {
1193 btrfs_tree_unlock(old);
1194 free_extent_buffer(old);
1195 btrfs_abort_transaction(trans, root, ret);
1196 goto fail;
1199 btrfs_set_lock_blocking(old);
1201 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1202 /* clean up in any case */
1203 btrfs_tree_unlock(old);
1204 free_extent_buffer(old);
1205 if (ret) {
1206 btrfs_abort_transaction(trans, root, ret);
1207 goto fail;
1210 /* see comments in should_cow_block() */
1211 root->force_cow = 1;
1212 smp_wmb();
1214 btrfs_set_root_node(new_root_item, tmp);
1215 /* record when the snapshot was created in key.offset */
1216 key.offset = trans->transid;
1217 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1218 btrfs_tree_unlock(tmp);
1219 free_extent_buffer(tmp);
1220 if (ret) {
1221 btrfs_abort_transaction(trans, root, ret);
1222 goto fail;
1226 * insert root back/forward references
1228 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1229 parent_root->root_key.objectid,
1230 btrfs_ino(parent_inode), index,
1231 dentry->d_name.name, dentry->d_name.len);
1232 if (ret) {
1233 btrfs_abort_transaction(trans, root, ret);
1234 goto fail;
1237 key.offset = (u64)-1;
1238 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1239 if (IS_ERR(pending->snap)) {
1240 ret = PTR_ERR(pending->snap);
1241 btrfs_abort_transaction(trans, root, ret);
1242 goto fail;
1245 ret = btrfs_reloc_post_snapshot(trans, pending);
1246 if (ret) {
1247 btrfs_abort_transaction(trans, root, ret);
1248 goto fail;
1251 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1252 if (ret) {
1253 btrfs_abort_transaction(trans, root, ret);
1254 goto fail;
1257 ret = btrfs_insert_dir_item(trans, parent_root,
1258 dentry->d_name.name, dentry->d_name.len,
1259 parent_inode, &key,
1260 BTRFS_FT_DIR, index);
1261 /* We have check then name at the beginning, so it is impossible. */
1262 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1263 if (ret) {
1264 btrfs_abort_transaction(trans, root, ret);
1265 goto fail;
1268 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1269 dentry->d_name.len * 2);
1270 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1271 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1272 if (ret)
1273 btrfs_abort_transaction(trans, root, ret);
1274 fail:
1275 pending->error = ret;
1276 dir_item_existed:
1277 trans->block_rsv = rsv;
1278 trans->bytes_reserved = 0;
1279 no_free_objectid:
1280 kfree(new_root_item);
1281 root_item_alloc_fail:
1282 btrfs_free_path(path);
1283 return ret;
1287 * create all the snapshots we've scheduled for creation
1289 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1290 struct btrfs_fs_info *fs_info)
1292 struct btrfs_pending_snapshot *pending, *next;
1293 struct list_head *head = &trans->transaction->pending_snapshots;
1294 int ret = 0;
1296 list_for_each_entry_safe(pending, next, head, list) {
1297 list_del(&pending->list);
1298 ret = create_pending_snapshot(trans, fs_info, pending);
1299 if (ret)
1300 break;
1302 return ret;
1305 static void update_super_roots(struct btrfs_root *root)
1307 struct btrfs_root_item *root_item;
1308 struct btrfs_super_block *super;
1310 super = root->fs_info->super_copy;
1312 root_item = &root->fs_info->chunk_root->root_item;
1313 super->chunk_root = root_item->bytenr;
1314 super->chunk_root_generation = root_item->generation;
1315 super->chunk_root_level = root_item->level;
1317 root_item = &root->fs_info->tree_root->root_item;
1318 super->root = root_item->bytenr;
1319 super->generation = root_item->generation;
1320 super->root_level = root_item->level;
1321 if (btrfs_test_opt(root, SPACE_CACHE))
1322 super->cache_generation = root_item->generation;
1325 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1327 int ret = 0;
1328 spin_lock(&info->trans_lock);
1329 if (info->running_transaction)
1330 ret = info->running_transaction->in_commit;
1331 spin_unlock(&info->trans_lock);
1332 return ret;
1335 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1337 int ret = 0;
1338 spin_lock(&info->trans_lock);
1339 if (info->running_transaction)
1340 ret = info->running_transaction->blocked;
1341 spin_unlock(&info->trans_lock);
1342 return ret;
1346 * wait for the current transaction commit to start and block subsequent
1347 * transaction joins
1349 static void wait_current_trans_commit_start(struct btrfs_root *root,
1350 struct btrfs_transaction *trans)
1352 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1356 * wait for the current transaction to start and then become unblocked.
1357 * caller holds ref.
1359 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1360 struct btrfs_transaction *trans)
1362 wait_event(root->fs_info->transaction_wait,
1363 trans->commit_done || (trans->in_commit && !trans->blocked));
1367 * commit transactions asynchronously. once btrfs_commit_transaction_async
1368 * returns, any subsequent transaction will not be allowed to join.
1370 struct btrfs_async_commit {
1371 struct btrfs_trans_handle *newtrans;
1372 struct btrfs_root *root;
1373 struct work_struct work;
1376 static void do_async_commit(struct work_struct *work)
1378 struct btrfs_async_commit *ac =
1379 container_of(work, struct btrfs_async_commit, work);
1382 * We've got freeze protection passed with the transaction.
1383 * Tell lockdep about it.
1385 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1386 rwsem_acquire_read(
1387 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1388 0, 1, _THIS_IP_);
1390 current->journal_info = ac->newtrans;
1392 btrfs_commit_transaction(ac->newtrans, ac->root);
1393 kfree(ac);
1396 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1397 struct btrfs_root *root,
1398 int wait_for_unblock)
1400 struct btrfs_async_commit *ac;
1401 struct btrfs_transaction *cur_trans;
1403 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1404 if (!ac)
1405 return -ENOMEM;
1407 INIT_WORK(&ac->work, do_async_commit);
1408 ac->root = root;
1409 ac->newtrans = btrfs_join_transaction(root);
1410 if (IS_ERR(ac->newtrans)) {
1411 int err = PTR_ERR(ac->newtrans);
1412 kfree(ac);
1413 return err;
1416 /* take transaction reference */
1417 cur_trans = trans->transaction;
1418 atomic_inc(&cur_trans->use_count);
1420 btrfs_end_transaction(trans, root);
1423 * Tell lockdep we've released the freeze rwsem, since the
1424 * async commit thread will be the one to unlock it.
1426 if (trans->type < TRANS_JOIN_NOLOCK)
1427 rwsem_release(
1428 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1429 1, _THIS_IP_);
1431 schedule_work(&ac->work);
1433 /* wait for transaction to start and unblock */
1434 if (wait_for_unblock)
1435 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1436 else
1437 wait_current_trans_commit_start(root, cur_trans);
1439 if (current->journal_info == trans)
1440 current->journal_info = NULL;
1442 put_transaction(cur_trans);
1443 return 0;
1447 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1448 struct btrfs_root *root, int err)
1450 struct btrfs_transaction *cur_trans = trans->transaction;
1451 DEFINE_WAIT(wait);
1453 WARN_ON(trans->use_count > 1);
1455 btrfs_abort_transaction(trans, root, err);
1457 spin_lock(&root->fs_info->trans_lock);
1459 if (list_empty(&cur_trans->list)) {
1460 spin_unlock(&root->fs_info->trans_lock);
1461 btrfs_end_transaction(trans, root);
1462 return;
1465 list_del_init(&cur_trans->list);
1466 if (cur_trans == root->fs_info->running_transaction) {
1467 root->fs_info->trans_no_join = 1;
1468 spin_unlock(&root->fs_info->trans_lock);
1469 wait_event(cur_trans->writer_wait,
1470 atomic_read(&cur_trans->num_writers) == 1);
1472 spin_lock(&root->fs_info->trans_lock);
1473 root->fs_info->running_transaction = NULL;
1475 spin_unlock(&root->fs_info->trans_lock);
1477 btrfs_cleanup_one_transaction(trans->transaction, root);
1479 put_transaction(cur_trans);
1480 put_transaction(cur_trans);
1482 trace_btrfs_transaction_commit(root);
1484 btrfs_scrub_continue(root);
1486 if (current->journal_info == trans)
1487 current->journal_info = NULL;
1489 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1492 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1493 struct btrfs_root *root)
1495 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1496 int snap_pending = 0;
1497 int ret;
1499 if (!flush_on_commit) {
1500 spin_lock(&root->fs_info->trans_lock);
1501 if (!list_empty(&trans->transaction->pending_snapshots))
1502 snap_pending = 1;
1503 spin_unlock(&root->fs_info->trans_lock);
1506 if (flush_on_commit || snap_pending) {
1507 ret = btrfs_start_delalloc_inodes(root, 1);
1508 if (ret)
1509 return ret;
1510 btrfs_wait_ordered_extents(root, 1);
1513 ret = btrfs_run_delayed_items(trans, root);
1514 if (ret)
1515 return ret;
1518 * running the delayed items may have added new refs. account
1519 * them now so that they hinder processing of more delayed refs
1520 * as little as possible.
1522 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1525 * rename don't use btrfs_join_transaction, so, once we
1526 * set the transaction to blocked above, we aren't going
1527 * to get any new ordered operations. We can safely run
1528 * it here and no for sure that nothing new will be added
1529 * to the list
1531 ret = btrfs_run_ordered_operations(trans, root, 1);
1533 return ret;
1537 * btrfs_transaction state sequence:
1538 * in_commit = 0, blocked = 0 (initial)
1539 * in_commit = 1, blocked = 1
1540 * blocked = 0
1541 * commit_done = 1
1543 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root)
1546 unsigned long joined = 0;
1547 struct btrfs_transaction *cur_trans = trans->transaction;
1548 struct btrfs_transaction *prev_trans = NULL;
1549 DEFINE_WAIT(wait);
1550 int ret;
1551 int should_grow = 0;
1552 unsigned long now = get_seconds();
1554 ret = btrfs_run_ordered_operations(trans, root, 0);
1555 if (ret) {
1556 btrfs_abort_transaction(trans, root, ret);
1557 btrfs_end_transaction(trans, root);
1558 return ret;
1561 /* Stop the commit early if ->aborted is set */
1562 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1563 ret = cur_trans->aborted;
1564 btrfs_end_transaction(trans, root);
1565 return ret;
1568 /* make a pass through all the delayed refs we have so far
1569 * any runnings procs may add more while we are here
1571 ret = btrfs_run_delayed_refs(trans, root, 0);
1572 if (ret) {
1573 btrfs_end_transaction(trans, root);
1574 return ret;
1577 btrfs_trans_release_metadata(trans, root);
1578 trans->block_rsv = NULL;
1579 if (trans->qgroup_reserved) {
1580 btrfs_qgroup_free(root, trans->qgroup_reserved);
1581 trans->qgroup_reserved = 0;
1584 cur_trans = trans->transaction;
1587 * set the flushing flag so procs in this transaction have to
1588 * start sending their work down.
1590 cur_trans->delayed_refs.flushing = 1;
1592 if (!list_empty(&trans->new_bgs))
1593 btrfs_create_pending_block_groups(trans, root);
1595 ret = btrfs_run_delayed_refs(trans, root, 0);
1596 if (ret) {
1597 btrfs_end_transaction(trans, root);
1598 return ret;
1601 spin_lock(&cur_trans->commit_lock);
1602 if (cur_trans->in_commit) {
1603 spin_unlock(&cur_trans->commit_lock);
1604 atomic_inc(&cur_trans->use_count);
1605 ret = btrfs_end_transaction(trans, root);
1607 wait_for_commit(root, cur_trans);
1609 put_transaction(cur_trans);
1611 return ret;
1614 trans->transaction->in_commit = 1;
1615 trans->transaction->blocked = 1;
1616 spin_unlock(&cur_trans->commit_lock);
1617 wake_up(&root->fs_info->transaction_blocked_wait);
1619 spin_lock(&root->fs_info->trans_lock);
1620 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1621 prev_trans = list_entry(cur_trans->list.prev,
1622 struct btrfs_transaction, list);
1623 if (!prev_trans->commit_done) {
1624 atomic_inc(&prev_trans->use_count);
1625 spin_unlock(&root->fs_info->trans_lock);
1627 wait_for_commit(root, prev_trans);
1629 put_transaction(prev_trans);
1630 } else {
1631 spin_unlock(&root->fs_info->trans_lock);
1633 } else {
1634 spin_unlock(&root->fs_info->trans_lock);
1637 if (!btrfs_test_opt(root, SSD) &&
1638 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1639 should_grow = 1;
1641 do {
1642 joined = cur_trans->num_joined;
1644 WARN_ON(cur_trans != trans->transaction);
1646 ret = btrfs_flush_all_pending_stuffs(trans, root);
1647 if (ret)
1648 goto cleanup_transaction;
1650 prepare_to_wait(&cur_trans->writer_wait, &wait,
1651 TASK_UNINTERRUPTIBLE);
1653 if (atomic_read(&cur_trans->num_writers) > 1)
1654 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1655 else if (should_grow)
1656 schedule_timeout(1);
1658 finish_wait(&cur_trans->writer_wait, &wait);
1659 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1660 (should_grow && cur_trans->num_joined != joined));
1662 ret = btrfs_flush_all_pending_stuffs(trans, root);
1663 if (ret)
1664 goto cleanup_transaction;
1667 * Ok now we need to make sure to block out any other joins while we
1668 * commit the transaction. We could have started a join before setting
1669 * no_join so make sure to wait for num_writers to == 1 again.
1671 spin_lock(&root->fs_info->trans_lock);
1672 root->fs_info->trans_no_join = 1;
1673 spin_unlock(&root->fs_info->trans_lock);
1674 wait_event(cur_trans->writer_wait,
1675 atomic_read(&cur_trans->num_writers) == 1);
1677 /* ->aborted might be set after the previous check, so check it */
1678 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1679 ret = cur_trans->aborted;
1680 goto cleanup_transaction;
1683 * the reloc mutex makes sure that we stop
1684 * the balancing code from coming in and moving
1685 * extents around in the middle of the commit
1687 mutex_lock(&root->fs_info->reloc_mutex);
1690 * We needn't worry about the delayed items because we will
1691 * deal with them in create_pending_snapshot(), which is the
1692 * core function of the snapshot creation.
1694 ret = create_pending_snapshots(trans, root->fs_info);
1695 if (ret) {
1696 mutex_unlock(&root->fs_info->reloc_mutex);
1697 goto cleanup_transaction;
1701 * We insert the dir indexes of the snapshots and update the inode
1702 * of the snapshots' parents after the snapshot creation, so there
1703 * are some delayed items which are not dealt with. Now deal with
1704 * them.
1706 * We needn't worry that this operation will corrupt the snapshots,
1707 * because all the tree which are snapshoted will be forced to COW
1708 * the nodes and leaves.
1710 ret = btrfs_run_delayed_items(trans, root);
1711 if (ret) {
1712 mutex_unlock(&root->fs_info->reloc_mutex);
1713 goto cleanup_transaction;
1716 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1717 if (ret) {
1718 mutex_unlock(&root->fs_info->reloc_mutex);
1719 goto cleanup_transaction;
1723 * make sure none of the code above managed to slip in a
1724 * delayed item
1726 btrfs_assert_delayed_root_empty(root);
1728 WARN_ON(cur_trans != trans->transaction);
1730 btrfs_scrub_pause(root);
1731 /* btrfs_commit_tree_roots is responsible for getting the
1732 * various roots consistent with each other. Every pointer
1733 * in the tree of tree roots has to point to the most up to date
1734 * root for every subvolume and other tree. So, we have to keep
1735 * the tree logging code from jumping in and changing any
1736 * of the trees.
1738 * At this point in the commit, there can't be any tree-log
1739 * writers, but a little lower down we drop the trans mutex
1740 * and let new people in. By holding the tree_log_mutex
1741 * from now until after the super is written, we avoid races
1742 * with the tree-log code.
1744 mutex_lock(&root->fs_info->tree_log_mutex);
1746 ret = commit_fs_roots(trans, root);
1747 if (ret) {
1748 mutex_unlock(&root->fs_info->tree_log_mutex);
1749 mutex_unlock(&root->fs_info->reloc_mutex);
1750 goto cleanup_transaction;
1753 /* commit_fs_roots gets rid of all the tree log roots, it is now
1754 * safe to free the root of tree log roots
1756 btrfs_free_log_root_tree(trans, root->fs_info);
1758 ret = commit_cowonly_roots(trans, root);
1759 if (ret) {
1760 mutex_unlock(&root->fs_info->tree_log_mutex);
1761 mutex_unlock(&root->fs_info->reloc_mutex);
1762 goto cleanup_transaction;
1766 * The tasks which save the space cache and inode cache may also
1767 * update ->aborted, check it.
1769 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1770 ret = cur_trans->aborted;
1771 mutex_unlock(&root->fs_info->tree_log_mutex);
1772 mutex_unlock(&root->fs_info->reloc_mutex);
1773 goto cleanup_transaction;
1776 btrfs_prepare_extent_commit(trans, root);
1778 cur_trans = root->fs_info->running_transaction;
1780 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1781 root->fs_info->tree_root->node);
1782 switch_commit_root(root->fs_info->tree_root);
1784 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1785 root->fs_info->chunk_root->node);
1786 switch_commit_root(root->fs_info->chunk_root);
1788 assert_qgroups_uptodate(trans);
1789 update_super_roots(root);
1791 if (!root->fs_info->log_root_recovering) {
1792 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1793 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1796 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1797 sizeof(*root->fs_info->super_copy));
1799 trans->transaction->blocked = 0;
1800 spin_lock(&root->fs_info->trans_lock);
1801 root->fs_info->running_transaction = NULL;
1802 root->fs_info->trans_no_join = 0;
1803 spin_unlock(&root->fs_info->trans_lock);
1804 mutex_unlock(&root->fs_info->reloc_mutex);
1806 wake_up(&root->fs_info->transaction_wait);
1808 ret = btrfs_write_and_wait_transaction(trans, root);
1809 if (ret) {
1810 btrfs_error(root->fs_info, ret,
1811 "Error while writing out transaction.");
1812 mutex_unlock(&root->fs_info->tree_log_mutex);
1813 goto cleanup_transaction;
1816 ret = write_ctree_super(trans, root, 0);
1817 if (ret) {
1818 mutex_unlock(&root->fs_info->tree_log_mutex);
1819 goto cleanup_transaction;
1823 * the super is written, we can safely allow the tree-loggers
1824 * to go about their business
1826 mutex_unlock(&root->fs_info->tree_log_mutex);
1828 btrfs_finish_extent_commit(trans, root);
1830 cur_trans->commit_done = 1;
1832 root->fs_info->last_trans_committed = cur_trans->transid;
1834 wake_up(&cur_trans->commit_wait);
1836 spin_lock(&root->fs_info->trans_lock);
1837 list_del_init(&cur_trans->list);
1838 spin_unlock(&root->fs_info->trans_lock);
1840 put_transaction(cur_trans);
1841 put_transaction(cur_trans);
1843 if (trans->type < TRANS_JOIN_NOLOCK)
1844 sb_end_intwrite(root->fs_info->sb);
1846 trace_btrfs_transaction_commit(root);
1848 btrfs_scrub_continue(root);
1850 if (current->journal_info == trans)
1851 current->journal_info = NULL;
1853 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1855 if (current != root->fs_info->transaction_kthread)
1856 btrfs_run_delayed_iputs(root);
1858 return ret;
1860 cleanup_transaction:
1861 btrfs_trans_release_metadata(trans, root);
1862 trans->block_rsv = NULL;
1863 if (trans->qgroup_reserved) {
1864 btrfs_qgroup_free(root, trans->qgroup_reserved);
1865 trans->qgroup_reserved = 0;
1867 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1868 // WARN_ON(1);
1869 if (current->journal_info == trans)
1870 current->journal_info = NULL;
1871 cleanup_transaction(trans, root, ret);
1873 return ret;
1877 * interface function to delete all the snapshots we have scheduled for deletion
1879 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1881 LIST_HEAD(list);
1882 struct btrfs_fs_info *fs_info = root->fs_info;
1884 spin_lock(&fs_info->trans_lock);
1885 list_splice_init(&fs_info->dead_roots, &list);
1886 spin_unlock(&fs_info->trans_lock);
1888 while (!list_empty(&list)) {
1889 int ret;
1891 root = list_entry(list.next, struct btrfs_root, root_list);
1892 list_del(&root->root_list);
1894 btrfs_kill_all_delayed_nodes(root);
1896 if (btrfs_header_backref_rev(root->node) <
1897 BTRFS_MIXED_BACKREF_REV)
1898 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1899 else
1900 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1901 BUG_ON(ret < 0);
1903 return 0;