Merge branch 'drm-nouveau-fixes-3.9' of git://anongit.freedesktop.org/git/nouveau...
[linux-2.6/libata-dev.git] / fs / btrfs / disk-io.c
blob6d19a0a554aadc3aeadbe1df6eff03acd489375e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59 int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61 struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
74 * end_io_wq structs are used to do processing in task context when an IO is
75 * complete. This is used during reads to verify checksums, and it is used
76 * by writes to insert metadata for new file extents after IO is complete.
78 struct end_io_wq {
79 struct bio *bio;
80 bio_end_io_t *end_io;
81 void *private;
82 struct btrfs_fs_info *info;
83 int error;
84 int metadata;
85 struct list_head list;
86 struct btrfs_work work;
90 * async submit bios are used to offload expensive checksumming
91 * onto the worker threads. They checksum file and metadata bios
92 * just before they are sent down the IO stack.
94 struct async_submit_bio {
95 struct inode *inode;
96 struct bio *bio;
97 struct list_head list;
98 extent_submit_bio_hook_t *submit_bio_start;
99 extent_submit_bio_hook_t *submit_bio_done;
100 int rw;
101 int mirror_num;
102 unsigned long bio_flags;
104 * bio_offset is optional, can be used if the pages in the bio
105 * can't tell us where in the file the bio should go
107 u64 bio_offset;
108 struct btrfs_work work;
109 int error;
113 * Lockdep class keys for extent_buffer->lock's in this root. For a given
114 * eb, the lockdep key is determined by the btrfs_root it belongs to and
115 * the level the eb occupies in the tree.
117 * Different roots are used for different purposes and may nest inside each
118 * other and they require separate keysets. As lockdep keys should be
119 * static, assign keysets according to the purpose of the root as indicated
120 * by btrfs_root->objectid. This ensures that all special purpose roots
121 * have separate keysets.
123 * Lock-nesting across peer nodes is always done with the immediate parent
124 * node locked thus preventing deadlock. As lockdep doesn't know this, use
125 * subclass to avoid triggering lockdep warning in such cases.
127 * The key is set by the readpage_end_io_hook after the buffer has passed
128 * csum validation but before the pages are unlocked. It is also set by
129 * btrfs_init_new_buffer on freshly allocated blocks.
131 * We also add a check to make sure the highest level of the tree is the
132 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
133 * needs update as well.
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 # error
138 # endif
140 static struct btrfs_lockdep_keyset {
141 u64 id; /* root objectid */
142 const char *name_stem; /* lock name stem */
143 char names[BTRFS_MAX_LEVEL + 1][20];
144 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
147 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
148 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
149 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
150 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
151 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
152 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
153 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
154 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
155 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
156 { .id = 0, .name_stem = "tree" },
159 void __init btrfs_init_lockdep(void)
161 int i, j;
163 /* initialize lockdep class names */
164 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
167 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168 snprintf(ks->names[j], sizeof(ks->names[j]),
169 "btrfs-%s-%02d", ks->name_stem, j);
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174 int level)
176 struct btrfs_lockdep_keyset *ks;
178 BUG_ON(level >= ARRAY_SIZE(ks->keys));
180 /* find the matching keyset, id 0 is the default entry */
181 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182 if (ks->id == objectid)
183 break;
185 lockdep_set_class_and_name(&eb->lock,
186 &ks->keys[level], ks->names[level]);
189 #endif
192 * extents on the btree inode are pretty simple, there's one extent
193 * that covers the entire device
195 static struct extent_map *btree_get_extent(struct inode *inode,
196 struct page *page, size_t pg_offset, u64 start, u64 len,
197 int create)
199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200 struct extent_map *em;
201 int ret;
203 read_lock(&em_tree->lock);
204 em = lookup_extent_mapping(em_tree, start, len);
205 if (em) {
206 em->bdev =
207 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208 read_unlock(&em_tree->lock);
209 goto out;
211 read_unlock(&em_tree->lock);
213 em = alloc_extent_map();
214 if (!em) {
215 em = ERR_PTR(-ENOMEM);
216 goto out;
218 em->start = 0;
219 em->len = (u64)-1;
220 em->block_len = (u64)-1;
221 em->block_start = 0;
222 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
224 write_lock(&em_tree->lock);
225 ret = add_extent_mapping(em_tree, em);
226 if (ret == -EEXIST) {
227 free_extent_map(em);
228 em = lookup_extent_mapping(em_tree, start, len);
229 if (!em)
230 em = ERR_PTR(-EIO);
231 } else if (ret) {
232 free_extent_map(em);
233 em = ERR_PTR(ret);
235 write_unlock(&em_tree->lock);
237 out:
238 return em;
241 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243 return crc32c(seed, data, len);
246 void btrfs_csum_final(u32 crc, char *result)
248 put_unaligned_le32(~crc, result);
252 * compute the csum for a btree block, and either verify it or write it
253 * into the csum field of the block.
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256 int verify)
258 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259 char *result = NULL;
260 unsigned long len;
261 unsigned long cur_len;
262 unsigned long offset = BTRFS_CSUM_SIZE;
263 char *kaddr;
264 unsigned long map_start;
265 unsigned long map_len;
266 int err;
267 u32 crc = ~(u32)0;
268 unsigned long inline_result;
270 len = buf->len - offset;
271 while (len > 0) {
272 err = map_private_extent_buffer(buf, offset, 32,
273 &kaddr, &map_start, &map_len);
274 if (err)
275 return 1;
276 cur_len = min(len, map_len - (offset - map_start));
277 crc = btrfs_csum_data(root, kaddr + offset - map_start,
278 crc, cur_len);
279 len -= cur_len;
280 offset += cur_len;
282 if (csum_size > sizeof(inline_result)) {
283 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284 if (!result)
285 return 1;
286 } else {
287 result = (char *)&inline_result;
290 btrfs_csum_final(crc, result);
292 if (verify) {
293 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294 u32 val;
295 u32 found = 0;
296 memcpy(&found, result, csum_size);
298 read_extent_buffer(buf, &val, 0, csum_size);
299 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300 "failed on %llu wanted %X found %X "
301 "level %d\n",
302 root->fs_info->sb->s_id,
303 (unsigned long long)buf->start, val, found,
304 btrfs_header_level(buf));
305 if (result != (char *)&inline_result)
306 kfree(result);
307 return 1;
309 } else {
310 write_extent_buffer(buf, result, 0, csum_size);
312 if (result != (char *)&inline_result)
313 kfree(result);
314 return 0;
318 * we can't consider a given block up to date unless the transid of the
319 * block matches the transid in the parent node's pointer. This is how we
320 * detect blocks that either didn't get written at all or got written
321 * in the wrong place.
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 struct extent_buffer *eb, u64 parent_transid,
325 int atomic)
327 struct extent_state *cached_state = NULL;
328 int ret;
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
333 if (atomic)
334 return -EAGAIN;
336 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337 0, &cached_state);
338 if (extent_buffer_uptodate(eb) &&
339 btrfs_header_generation(eb) == parent_transid) {
340 ret = 0;
341 goto out;
343 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344 "found %llu\n",
345 (unsigned long long)eb->start,
346 (unsigned long long)parent_transid,
347 (unsigned long long)btrfs_header_generation(eb));
348 ret = 1;
349 clear_extent_buffer_uptodate(eb);
350 out:
351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 &cached_state, GFP_NOFS);
353 return ret;
357 * helper to read a given tree block, doing retries as required when
358 * the checksums don't match and we have alternate mirrors to try.
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361 struct extent_buffer *eb,
362 u64 start, u64 parent_transid)
364 struct extent_io_tree *io_tree;
365 int failed = 0;
366 int ret;
367 int num_copies = 0;
368 int mirror_num = 0;
369 int failed_mirror = 0;
371 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373 while (1) {
374 ret = read_extent_buffer_pages(io_tree, eb, start,
375 WAIT_COMPLETE,
376 btree_get_extent, mirror_num);
377 if (!ret) {
378 if (!verify_parent_transid(io_tree, eb,
379 parent_transid, 0))
380 break;
381 else
382 ret = -EIO;
386 * This buffer's crc is fine, but its contents are corrupted, so
387 * there is no reason to read the other copies, they won't be
388 * any less wrong.
390 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391 break;
393 num_copies = btrfs_num_copies(root->fs_info,
394 eb->start, eb->len);
395 if (num_copies == 1)
396 break;
398 if (!failed_mirror) {
399 failed = 1;
400 failed_mirror = eb->read_mirror;
403 mirror_num++;
404 if (mirror_num == failed_mirror)
405 mirror_num++;
407 if (mirror_num > num_copies)
408 break;
411 if (failed && !ret && failed_mirror)
412 repair_eb_io_failure(root, eb, failed_mirror);
414 return ret;
418 * checksum a dirty tree block before IO. This has extra checks to make sure
419 * we only fill in the checksum field in the first page of a multi-page block
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
424 struct extent_io_tree *tree;
425 u64 start = page_offset(page);
426 u64 found_start;
427 struct extent_buffer *eb;
429 tree = &BTRFS_I(page->mapping->host)->io_tree;
431 eb = (struct extent_buffer *)page->private;
432 if (page != eb->pages[0])
433 return 0;
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
436 WARN_ON(1);
437 return 0;
439 if (!PageUptodate(page)) {
440 WARN_ON(1);
441 return 0;
443 csum_tree_block(root, eb, 0);
444 return 0;
447 static int check_tree_block_fsid(struct btrfs_root *root,
448 struct extent_buffer *eb)
450 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451 u8 fsid[BTRFS_UUID_SIZE];
452 int ret = 1;
454 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455 BTRFS_FSID_SIZE);
456 while (fs_devices) {
457 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458 ret = 0;
459 break;
461 fs_devices = fs_devices->seed;
463 return ret;
466 #define CORRUPT(reason, eb, root, slot) \
467 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468 "root=%llu, slot=%d\n", reason, \
469 (unsigned long long)btrfs_header_bytenr(eb), \
470 (unsigned long long)root->objectid, slot)
472 static noinline int check_leaf(struct btrfs_root *root,
473 struct extent_buffer *leaf)
475 struct btrfs_key key;
476 struct btrfs_key leaf_key;
477 u32 nritems = btrfs_header_nritems(leaf);
478 int slot;
480 if (nritems == 0)
481 return 0;
483 /* Check the 0 item */
484 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485 BTRFS_LEAF_DATA_SIZE(root)) {
486 CORRUPT("invalid item offset size pair", leaf, root, 0);
487 return -EIO;
491 * Check to make sure each items keys are in the correct order and their
492 * offsets make sense. We only have to loop through nritems-1 because
493 * we check the current slot against the next slot, which verifies the
494 * next slot's offset+size makes sense and that the current's slot
495 * offset is correct.
497 for (slot = 0; slot < nritems - 1; slot++) {
498 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
501 /* Make sure the keys are in the right order */
502 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503 CORRUPT("bad key order", leaf, root, slot);
504 return -EIO;
508 * Make sure the offset and ends are right, remember that the
509 * item data starts at the end of the leaf and grows towards the
510 * front.
512 if (btrfs_item_offset_nr(leaf, slot) !=
513 btrfs_item_end_nr(leaf, slot + 1)) {
514 CORRUPT("slot offset bad", leaf, root, slot);
515 return -EIO;
519 * Check to make sure that we don't point outside of the leaf,
520 * just incase all the items are consistent to eachother, but
521 * all point outside of the leaf.
523 if (btrfs_item_end_nr(leaf, slot) >
524 BTRFS_LEAF_DATA_SIZE(root)) {
525 CORRUPT("slot end outside of leaf", leaf, root, slot);
526 return -EIO;
530 return 0;
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534 struct page *page, int max_walk)
536 struct extent_buffer *eb;
537 u64 start = page_offset(page);
538 u64 target = start;
539 u64 min_start;
541 if (start < max_walk)
542 min_start = 0;
543 else
544 min_start = start - max_walk;
546 while (start >= min_start) {
547 eb = find_extent_buffer(tree, start, 0);
548 if (eb) {
550 * we found an extent buffer and it contains our page
551 * horray!
553 if (eb->start <= target &&
554 eb->start + eb->len > target)
555 return eb;
557 /* we found an extent buffer that wasn't for us */
558 free_extent_buffer(eb);
559 return NULL;
561 if (start == 0)
562 break;
563 start -= PAGE_CACHE_SIZE;
565 return NULL;
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569 struct extent_state *state, int mirror)
571 struct extent_io_tree *tree;
572 u64 found_start;
573 int found_level;
574 struct extent_buffer *eb;
575 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576 int ret = 0;
577 int reads_done;
579 if (!page->private)
580 goto out;
582 tree = &BTRFS_I(page->mapping->host)->io_tree;
583 eb = (struct extent_buffer *)page->private;
585 /* the pending IO might have been the only thing that kept this buffer
586 * in memory. Make sure we have a ref for all this other checks
588 extent_buffer_get(eb);
590 reads_done = atomic_dec_and_test(&eb->io_pages);
591 if (!reads_done)
592 goto err;
594 eb->read_mirror = mirror;
595 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596 ret = -EIO;
597 goto err;
600 found_start = btrfs_header_bytenr(eb);
601 if (found_start != eb->start) {
602 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603 "%llu %llu\n",
604 (unsigned long long)found_start,
605 (unsigned long long)eb->start);
606 ret = -EIO;
607 goto err;
609 if (check_tree_block_fsid(root, eb)) {
610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611 (unsigned long long)eb->start);
612 ret = -EIO;
613 goto err;
615 found_level = btrfs_header_level(eb);
617 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618 eb, found_level);
620 ret = csum_tree_block(root, eb, 1);
621 if (ret) {
622 ret = -EIO;
623 goto err;
627 * If this is a leaf block and it is corrupt, set the corrupt bit so
628 * that we don't try and read the other copies of this block, just
629 * return -EIO.
631 if (found_level == 0 && check_leaf(root, eb)) {
632 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633 ret = -EIO;
636 if (!ret)
637 set_extent_buffer_uptodate(eb);
638 err:
639 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641 btree_readahead_hook(root, eb, eb->start, ret);
644 if (ret) {
646 * our io error hook is going to dec the io pages
647 * again, we have to make sure it has something
648 * to decrement
650 atomic_inc(&eb->io_pages);
651 clear_extent_buffer_uptodate(eb);
653 free_extent_buffer(eb);
654 out:
655 return ret;
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
660 struct extent_buffer *eb;
661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
663 eb = (struct extent_buffer *)page->private;
664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665 eb->read_mirror = failed_mirror;
666 atomic_dec(&eb->io_pages);
667 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
668 btree_readahead_hook(root, eb, eb->start, -EIO);
669 return -EIO; /* we fixed nothing */
672 static void end_workqueue_bio(struct bio *bio, int err)
674 struct end_io_wq *end_io_wq = bio->bi_private;
675 struct btrfs_fs_info *fs_info;
677 fs_info = end_io_wq->info;
678 end_io_wq->error = err;
679 end_io_wq->work.func = end_workqueue_fn;
680 end_io_wq->work.flags = 0;
682 if (bio->bi_rw & REQ_WRITE) {
683 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685 &end_io_wq->work);
686 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
687 btrfs_queue_worker(&fs_info->endio_freespace_worker,
688 &end_io_wq->work);
689 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690 btrfs_queue_worker(&fs_info->endio_raid56_workers,
691 &end_io_wq->work);
692 else
693 btrfs_queue_worker(&fs_info->endio_write_workers,
694 &end_io_wq->work);
695 } else {
696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697 btrfs_queue_worker(&fs_info->endio_raid56_workers,
698 &end_io_wq->work);
699 else if (end_io_wq->metadata)
700 btrfs_queue_worker(&fs_info->endio_meta_workers,
701 &end_io_wq->work);
702 else
703 btrfs_queue_worker(&fs_info->endio_workers,
704 &end_io_wq->work);
709 * For the metadata arg you want
711 * 0 - if data
712 * 1 - if normal metadta
713 * 2 - if writing to the free space cache area
714 * 3 - raid parity work
716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717 int metadata)
719 struct end_io_wq *end_io_wq;
720 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721 if (!end_io_wq)
722 return -ENOMEM;
724 end_io_wq->private = bio->bi_private;
725 end_io_wq->end_io = bio->bi_end_io;
726 end_io_wq->info = info;
727 end_io_wq->error = 0;
728 end_io_wq->bio = bio;
729 end_io_wq->metadata = metadata;
731 bio->bi_private = end_io_wq;
732 bio->bi_end_io = end_workqueue_bio;
733 return 0;
736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
738 unsigned long limit = min_t(unsigned long,
739 info->workers.max_workers,
740 info->fs_devices->open_devices);
741 return 256 * limit;
744 static void run_one_async_start(struct btrfs_work *work)
746 struct async_submit_bio *async;
747 int ret;
749 async = container_of(work, struct async_submit_bio, work);
750 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751 async->mirror_num, async->bio_flags,
752 async->bio_offset);
753 if (ret)
754 async->error = ret;
757 static void run_one_async_done(struct btrfs_work *work)
759 struct btrfs_fs_info *fs_info;
760 struct async_submit_bio *async;
761 int limit;
763 async = container_of(work, struct async_submit_bio, work);
764 fs_info = BTRFS_I(async->inode)->root->fs_info;
766 limit = btrfs_async_submit_limit(fs_info);
767 limit = limit * 2 / 3;
769 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
770 waitqueue_active(&fs_info->async_submit_wait))
771 wake_up(&fs_info->async_submit_wait);
773 /* If an error occured we just want to clean up the bio and move on */
774 if (async->error) {
775 bio_endio(async->bio, async->error);
776 return;
779 async->submit_bio_done(async->inode, async->rw, async->bio,
780 async->mirror_num, async->bio_flags,
781 async->bio_offset);
784 static void run_one_async_free(struct btrfs_work *work)
786 struct async_submit_bio *async;
788 async = container_of(work, struct async_submit_bio, work);
789 kfree(async);
792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793 int rw, struct bio *bio, int mirror_num,
794 unsigned long bio_flags,
795 u64 bio_offset,
796 extent_submit_bio_hook_t *submit_bio_start,
797 extent_submit_bio_hook_t *submit_bio_done)
799 struct async_submit_bio *async;
801 async = kmalloc(sizeof(*async), GFP_NOFS);
802 if (!async)
803 return -ENOMEM;
805 async->inode = inode;
806 async->rw = rw;
807 async->bio = bio;
808 async->mirror_num = mirror_num;
809 async->submit_bio_start = submit_bio_start;
810 async->submit_bio_done = submit_bio_done;
812 async->work.func = run_one_async_start;
813 async->work.ordered_func = run_one_async_done;
814 async->work.ordered_free = run_one_async_free;
816 async->work.flags = 0;
817 async->bio_flags = bio_flags;
818 async->bio_offset = bio_offset;
820 async->error = 0;
822 atomic_inc(&fs_info->nr_async_submits);
824 if (rw & REQ_SYNC)
825 btrfs_set_work_high_prio(&async->work);
827 btrfs_queue_worker(&fs_info->workers, &async->work);
829 while (atomic_read(&fs_info->async_submit_draining) &&
830 atomic_read(&fs_info->nr_async_submits)) {
831 wait_event(fs_info->async_submit_wait,
832 (atomic_read(&fs_info->nr_async_submits) == 0));
835 return 0;
838 static int btree_csum_one_bio(struct bio *bio)
840 struct bio_vec *bvec = bio->bi_io_vec;
841 int bio_index = 0;
842 struct btrfs_root *root;
843 int ret = 0;
845 WARN_ON(bio->bi_vcnt <= 0);
846 while (bio_index < bio->bi_vcnt) {
847 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848 ret = csum_dirty_buffer(root, bvec->bv_page);
849 if (ret)
850 break;
851 bio_index++;
852 bvec++;
854 return ret;
857 static int __btree_submit_bio_start(struct inode *inode, int rw,
858 struct bio *bio, int mirror_num,
859 unsigned long bio_flags,
860 u64 bio_offset)
863 * when we're called for a write, we're already in the async
864 * submission context. Just jump into btrfs_map_bio
866 return btree_csum_one_bio(bio);
869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
873 int ret;
876 * when we're called for a write, we're already in the async
877 * submission context. Just jump into btrfs_map_bio
879 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880 if (ret)
881 bio_endio(bio, ret);
882 return ret;
885 static int check_async_write(struct inode *inode, unsigned long bio_flags)
887 if (bio_flags & EXTENT_BIO_TREE_LOG)
888 return 0;
889 #ifdef CONFIG_X86
890 if (cpu_has_xmm4_2)
891 return 0;
892 #endif
893 return 1;
896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
897 int mirror_num, unsigned long bio_flags,
898 u64 bio_offset)
900 int async = check_async_write(inode, bio_flags);
901 int ret;
903 if (!(rw & REQ_WRITE)) {
905 * called for a read, do the setup so that checksum validation
906 * can happen in the async kernel threads
908 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909 bio, 1);
910 if (ret)
911 goto out_w_error;
912 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913 mirror_num, 0);
914 } else if (!async) {
915 ret = btree_csum_one_bio(bio);
916 if (ret)
917 goto out_w_error;
918 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919 mirror_num, 0);
920 } else {
922 * kthread helpers are used to submit writes so that
923 * checksumming can happen in parallel across all CPUs
925 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926 inode, rw, bio, mirror_num, 0,
927 bio_offset,
928 __btree_submit_bio_start,
929 __btree_submit_bio_done);
932 if (ret) {
933 out_w_error:
934 bio_endio(bio, ret);
936 return ret;
939 #ifdef CONFIG_MIGRATION
940 static int btree_migratepage(struct address_space *mapping,
941 struct page *newpage, struct page *page,
942 enum migrate_mode mode)
945 * we can't safely write a btree page from here,
946 * we haven't done the locking hook
948 if (PageDirty(page))
949 return -EAGAIN;
951 * Buffers may be managed in a filesystem specific way.
952 * We must have no buffers or drop them.
954 if (page_has_private(page) &&
955 !try_to_release_page(page, GFP_KERNEL))
956 return -EAGAIN;
957 return migrate_page(mapping, newpage, page, mode);
959 #endif
962 static int btree_writepages(struct address_space *mapping,
963 struct writeback_control *wbc)
965 struct extent_io_tree *tree;
966 struct btrfs_fs_info *fs_info;
967 int ret;
969 tree = &BTRFS_I(mapping->host)->io_tree;
970 if (wbc->sync_mode == WB_SYNC_NONE) {
972 if (wbc->for_kupdate)
973 return 0;
975 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976 /* this is a bit racy, but that's ok */
977 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978 BTRFS_DIRTY_METADATA_THRESH);
979 if (ret < 0)
980 return 0;
982 return btree_write_cache_pages(mapping, wbc);
985 static int btree_readpage(struct file *file, struct page *page)
987 struct extent_io_tree *tree;
988 tree = &BTRFS_I(page->mapping->host)->io_tree;
989 return extent_read_full_page(tree, page, btree_get_extent, 0);
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
994 if (PageWriteback(page) || PageDirty(page))
995 return 0;
997 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998 * slab allocation from alloc_extent_state down the callchain where
999 * it'd hit a BUG_ON as those flags are not allowed.
1001 gfp_flags &= ~GFP_SLAB_BUG_MASK;
1003 return try_release_extent_buffer(page, gfp_flags);
1006 static void btree_invalidatepage(struct page *page, unsigned long offset)
1008 struct extent_io_tree *tree;
1009 tree = &BTRFS_I(page->mapping->host)->io_tree;
1010 extent_invalidatepage(tree, page, offset);
1011 btree_releasepage(page, GFP_NOFS);
1012 if (PagePrivate(page)) {
1013 printk(KERN_WARNING "btrfs warning page private not zero "
1014 "on page %llu\n", (unsigned long long)page_offset(page));
1015 ClearPagePrivate(page);
1016 set_page_private(page, 0);
1017 page_cache_release(page);
1021 static int btree_set_page_dirty(struct page *page)
1023 #ifdef DEBUG
1024 struct extent_buffer *eb;
1026 BUG_ON(!PagePrivate(page));
1027 eb = (struct extent_buffer *)page->private;
1028 BUG_ON(!eb);
1029 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030 BUG_ON(!atomic_read(&eb->refs));
1031 btrfs_assert_tree_locked(eb);
1032 #endif
1033 return __set_page_dirty_nobuffers(page);
1036 static const struct address_space_operations btree_aops = {
1037 .readpage = btree_readpage,
1038 .writepages = btree_writepages,
1039 .releasepage = btree_releasepage,
1040 .invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042 .migratepage = btree_migratepage,
1043 #endif
1044 .set_page_dirty = btree_set_page_dirty,
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 u64 parent_transid)
1050 struct extent_buffer *buf = NULL;
1051 struct inode *btree_inode = root->fs_info->btree_inode;
1052 int ret = 0;
1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055 if (!buf)
1056 return 0;
1057 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058 buf, 0, WAIT_NONE, btree_get_extent, 0);
1059 free_extent_buffer(buf);
1060 return ret;
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064 int mirror_num, struct extent_buffer **eb)
1066 struct extent_buffer *buf = NULL;
1067 struct inode *btree_inode = root->fs_info->btree_inode;
1068 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069 int ret;
1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072 if (!buf)
1073 return 0;
1075 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1077 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078 btree_get_extent, mirror_num);
1079 if (ret) {
1080 free_extent_buffer(buf);
1081 return ret;
1084 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085 free_extent_buffer(buf);
1086 return -EIO;
1087 } else if (extent_buffer_uptodate(buf)) {
1088 *eb = buf;
1089 } else {
1090 free_extent_buffer(buf);
1092 return 0;
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096 u64 bytenr, u32 blocksize)
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_buffer *eb;
1100 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1101 bytenr, blocksize);
1102 return eb;
1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1111 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112 bytenr, blocksize);
1113 return eb;
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1119 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120 buf->start + buf->len - 1);
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1125 return filemap_fdatawait_range(buf->pages[0]->mapping,
1126 buf->start, buf->start + buf->len - 1);
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130 u32 blocksize, u64 parent_transid)
1132 struct extent_buffer *buf = NULL;
1133 int ret;
1135 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136 if (!buf)
1137 return NULL;
1139 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140 return buf;
1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145 struct extent_buffer *buf)
1147 struct btrfs_fs_info *fs_info = root->fs_info;
1149 if (btrfs_header_generation(buf) ==
1150 fs_info->running_transaction->transid) {
1151 btrfs_assert_tree_locked(buf);
1153 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1154 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155 -buf->len,
1156 fs_info->dirty_metadata_batch);
1157 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1158 btrfs_set_lock_blocking(buf);
1159 clear_extent_buffer_dirty(buf);
1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165 u32 stripesize, struct btrfs_root *root,
1166 struct btrfs_fs_info *fs_info,
1167 u64 objectid)
1169 root->node = NULL;
1170 root->commit_root = NULL;
1171 root->sectorsize = sectorsize;
1172 root->nodesize = nodesize;
1173 root->leafsize = leafsize;
1174 root->stripesize = stripesize;
1175 root->ref_cows = 0;
1176 root->track_dirty = 0;
1177 root->in_radix = 0;
1178 root->orphan_item_inserted = 0;
1179 root->orphan_cleanup_state = 0;
1181 root->objectid = objectid;
1182 root->last_trans = 0;
1183 root->highest_objectid = 0;
1184 root->name = NULL;
1185 root->inode_tree = RB_ROOT;
1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187 root->block_rsv = NULL;
1188 root->orphan_block_rsv = NULL;
1190 INIT_LIST_HEAD(&root->dirty_list);
1191 INIT_LIST_HEAD(&root->root_list);
1192 INIT_LIST_HEAD(&root->logged_list[0]);
1193 INIT_LIST_HEAD(&root->logged_list[1]);
1194 spin_lock_init(&root->orphan_lock);
1195 spin_lock_init(&root->inode_lock);
1196 spin_lock_init(&root->accounting_lock);
1197 spin_lock_init(&root->log_extents_lock[0]);
1198 spin_lock_init(&root->log_extents_lock[1]);
1199 mutex_init(&root->objectid_mutex);
1200 mutex_init(&root->log_mutex);
1201 init_waitqueue_head(&root->log_writer_wait);
1202 init_waitqueue_head(&root->log_commit_wait[0]);
1203 init_waitqueue_head(&root->log_commit_wait[1]);
1204 atomic_set(&root->log_commit[0], 0);
1205 atomic_set(&root->log_commit[1], 0);
1206 atomic_set(&root->log_writers, 0);
1207 atomic_set(&root->log_batch, 0);
1208 atomic_set(&root->orphan_inodes, 0);
1209 root->log_transid = 0;
1210 root->last_log_commit = 0;
1211 extent_io_tree_init(&root->dirty_log_pages,
1212 fs_info->btree_inode->i_mapping);
1214 memset(&root->root_key, 0, sizeof(root->root_key));
1215 memset(&root->root_item, 0, sizeof(root->root_item));
1216 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1217 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1218 root->defrag_trans_start = fs_info->generation;
1219 init_completion(&root->kobj_unregister);
1220 root->defrag_running = 0;
1221 root->root_key.objectid = objectid;
1222 root->anon_dev = 0;
1224 spin_lock_init(&root->root_item_lock);
1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228 struct btrfs_fs_info *fs_info,
1229 u64 objectid,
1230 struct btrfs_root *root)
1232 int ret;
1233 u32 blocksize;
1234 u64 generation;
1236 __setup_root(tree_root->nodesize, tree_root->leafsize,
1237 tree_root->sectorsize, tree_root->stripesize,
1238 root, fs_info, objectid);
1239 ret = btrfs_find_last_root(tree_root, objectid,
1240 &root->root_item, &root->root_key);
1241 if (ret > 0)
1242 return -ENOENT;
1243 else if (ret < 0)
1244 return ret;
1246 generation = btrfs_root_generation(&root->root_item);
1247 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1248 root->commit_root = NULL;
1249 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1250 blocksize, generation);
1251 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1252 free_extent_buffer(root->node);
1253 root->node = NULL;
1254 return -EIO;
1256 root->commit_root = btrfs_root_node(root);
1257 return 0;
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1262 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263 if (root)
1264 root->fs_info = fs_info;
1265 return root;
1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269 struct btrfs_fs_info *fs_info,
1270 u64 objectid)
1272 struct extent_buffer *leaf;
1273 struct btrfs_root *tree_root = fs_info->tree_root;
1274 struct btrfs_root *root;
1275 struct btrfs_key key;
1276 int ret = 0;
1277 u64 bytenr;
1279 root = btrfs_alloc_root(fs_info);
1280 if (!root)
1281 return ERR_PTR(-ENOMEM);
1283 __setup_root(tree_root->nodesize, tree_root->leafsize,
1284 tree_root->sectorsize, tree_root->stripesize,
1285 root, fs_info, objectid);
1286 root->root_key.objectid = objectid;
1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 root->root_key.offset = 0;
1290 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291 0, objectid, NULL, 0, 0, 0);
1292 if (IS_ERR(leaf)) {
1293 ret = PTR_ERR(leaf);
1294 leaf = NULL;
1295 goto fail;
1298 bytenr = leaf->start;
1299 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300 btrfs_set_header_bytenr(leaf, leaf->start);
1301 btrfs_set_header_generation(leaf, trans->transid);
1302 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303 btrfs_set_header_owner(leaf, objectid);
1304 root->node = leaf;
1306 write_extent_buffer(leaf, fs_info->fsid,
1307 (unsigned long)btrfs_header_fsid(leaf),
1308 BTRFS_FSID_SIZE);
1309 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1310 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1311 BTRFS_UUID_SIZE);
1312 btrfs_mark_buffer_dirty(leaf);
1314 root->commit_root = btrfs_root_node(root);
1315 root->track_dirty = 1;
1318 root->root_item.flags = 0;
1319 root->root_item.byte_limit = 0;
1320 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1321 btrfs_set_root_generation(&root->root_item, trans->transid);
1322 btrfs_set_root_level(&root->root_item, 0);
1323 btrfs_set_root_refs(&root->root_item, 1);
1324 btrfs_set_root_used(&root->root_item, leaf->len);
1325 btrfs_set_root_last_snapshot(&root->root_item, 0);
1326 btrfs_set_root_dirid(&root->root_item, 0);
1327 root->root_item.drop_level = 0;
1329 key.objectid = objectid;
1330 key.type = BTRFS_ROOT_ITEM_KEY;
1331 key.offset = 0;
1332 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1333 if (ret)
1334 goto fail;
1336 btrfs_tree_unlock(leaf);
1338 return root;
1340 fail:
1341 if (leaf) {
1342 btrfs_tree_unlock(leaf);
1343 free_extent_buffer(leaf);
1345 kfree(root);
1347 return ERR_PTR(ret);
1350 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1351 struct btrfs_fs_info *fs_info)
1353 struct btrfs_root *root;
1354 struct btrfs_root *tree_root = fs_info->tree_root;
1355 struct extent_buffer *leaf;
1357 root = btrfs_alloc_root(fs_info);
1358 if (!root)
1359 return ERR_PTR(-ENOMEM);
1361 __setup_root(tree_root->nodesize, tree_root->leafsize,
1362 tree_root->sectorsize, tree_root->stripesize,
1363 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1365 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1366 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1367 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1369 * log trees do not get reference counted because they go away
1370 * before a real commit is actually done. They do store pointers
1371 * to file data extents, and those reference counts still get
1372 * updated (along with back refs to the log tree).
1374 root->ref_cows = 0;
1376 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1377 BTRFS_TREE_LOG_OBJECTID, NULL,
1378 0, 0, 0);
1379 if (IS_ERR(leaf)) {
1380 kfree(root);
1381 return ERR_CAST(leaf);
1384 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1385 btrfs_set_header_bytenr(leaf, leaf->start);
1386 btrfs_set_header_generation(leaf, trans->transid);
1387 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1388 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1389 root->node = leaf;
1391 write_extent_buffer(root->node, root->fs_info->fsid,
1392 (unsigned long)btrfs_header_fsid(root->node),
1393 BTRFS_FSID_SIZE);
1394 btrfs_mark_buffer_dirty(root->node);
1395 btrfs_tree_unlock(root->node);
1396 return root;
1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1400 struct btrfs_fs_info *fs_info)
1402 struct btrfs_root *log_root;
1404 log_root = alloc_log_tree(trans, fs_info);
1405 if (IS_ERR(log_root))
1406 return PTR_ERR(log_root);
1407 WARN_ON(fs_info->log_root_tree);
1408 fs_info->log_root_tree = log_root;
1409 return 0;
1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_root *root)
1415 struct btrfs_root *log_root;
1416 struct btrfs_inode_item *inode_item;
1418 log_root = alloc_log_tree(trans, root->fs_info);
1419 if (IS_ERR(log_root))
1420 return PTR_ERR(log_root);
1422 log_root->last_trans = trans->transid;
1423 log_root->root_key.offset = root->root_key.objectid;
1425 inode_item = &log_root->root_item.inode;
1426 inode_item->generation = cpu_to_le64(1);
1427 inode_item->size = cpu_to_le64(3);
1428 inode_item->nlink = cpu_to_le32(1);
1429 inode_item->nbytes = cpu_to_le64(root->leafsize);
1430 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1432 btrfs_set_root_node(&log_root->root_item, log_root->node);
1434 WARN_ON(root->log_root);
1435 root->log_root = log_root;
1436 root->log_transid = 0;
1437 root->last_log_commit = 0;
1438 return 0;
1441 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1442 struct btrfs_key *location)
1444 struct btrfs_root *root;
1445 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1446 struct btrfs_path *path;
1447 struct extent_buffer *l;
1448 u64 generation;
1449 u32 blocksize;
1450 int ret = 0;
1451 int slot;
1453 root = btrfs_alloc_root(fs_info);
1454 if (!root)
1455 return ERR_PTR(-ENOMEM);
1456 if (location->offset == (u64)-1) {
1457 ret = find_and_setup_root(tree_root, fs_info,
1458 location->objectid, root);
1459 if (ret) {
1460 kfree(root);
1461 return ERR_PTR(ret);
1463 goto out;
1466 __setup_root(tree_root->nodesize, tree_root->leafsize,
1467 tree_root->sectorsize, tree_root->stripesize,
1468 root, fs_info, location->objectid);
1470 path = btrfs_alloc_path();
1471 if (!path) {
1472 kfree(root);
1473 return ERR_PTR(-ENOMEM);
1475 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1476 if (ret == 0) {
1477 l = path->nodes[0];
1478 slot = path->slots[0];
1479 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1480 memcpy(&root->root_key, location, sizeof(*location));
1482 btrfs_free_path(path);
1483 if (ret) {
1484 kfree(root);
1485 if (ret > 0)
1486 ret = -ENOENT;
1487 return ERR_PTR(ret);
1490 generation = btrfs_root_generation(&root->root_item);
1491 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1492 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1493 blocksize, generation);
1494 root->commit_root = btrfs_root_node(root);
1495 BUG_ON(!root->node); /* -ENOMEM */
1496 out:
1497 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1498 root->ref_cows = 1;
1499 btrfs_check_and_init_root_item(&root->root_item);
1502 return root;
1505 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1506 struct btrfs_key *location)
1508 struct btrfs_root *root;
1509 int ret;
1511 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1512 return fs_info->tree_root;
1513 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1514 return fs_info->extent_root;
1515 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1516 return fs_info->chunk_root;
1517 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1518 return fs_info->dev_root;
1519 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1520 return fs_info->csum_root;
1521 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1522 return fs_info->quota_root ? fs_info->quota_root :
1523 ERR_PTR(-ENOENT);
1524 again:
1525 spin_lock(&fs_info->fs_roots_radix_lock);
1526 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527 (unsigned long)location->objectid);
1528 spin_unlock(&fs_info->fs_roots_radix_lock);
1529 if (root)
1530 return root;
1532 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1533 if (IS_ERR(root))
1534 return root;
1536 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1537 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1538 GFP_NOFS);
1539 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1540 ret = -ENOMEM;
1541 goto fail;
1544 btrfs_init_free_ino_ctl(root);
1545 mutex_init(&root->fs_commit_mutex);
1546 spin_lock_init(&root->cache_lock);
1547 init_waitqueue_head(&root->cache_wait);
1549 ret = get_anon_bdev(&root->anon_dev);
1550 if (ret)
1551 goto fail;
1553 if (btrfs_root_refs(&root->root_item) == 0) {
1554 ret = -ENOENT;
1555 goto fail;
1558 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1559 if (ret < 0)
1560 goto fail;
1561 if (ret == 0)
1562 root->orphan_item_inserted = 1;
1564 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1565 if (ret)
1566 goto fail;
1568 spin_lock(&fs_info->fs_roots_radix_lock);
1569 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1570 (unsigned long)root->root_key.objectid,
1571 root);
1572 if (ret == 0)
1573 root->in_radix = 1;
1575 spin_unlock(&fs_info->fs_roots_radix_lock);
1576 radix_tree_preload_end();
1577 if (ret) {
1578 if (ret == -EEXIST) {
1579 free_fs_root(root);
1580 goto again;
1582 goto fail;
1585 ret = btrfs_find_dead_roots(fs_info->tree_root,
1586 root->root_key.objectid);
1587 WARN_ON(ret);
1588 return root;
1589 fail:
1590 free_fs_root(root);
1591 return ERR_PTR(ret);
1594 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1596 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1597 int ret = 0;
1598 struct btrfs_device *device;
1599 struct backing_dev_info *bdi;
1601 rcu_read_lock();
1602 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1603 if (!device->bdev)
1604 continue;
1605 bdi = blk_get_backing_dev_info(device->bdev);
1606 if (bdi && bdi_congested(bdi, bdi_bits)) {
1607 ret = 1;
1608 break;
1611 rcu_read_unlock();
1612 return ret;
1616 * If this fails, caller must call bdi_destroy() to get rid of the
1617 * bdi again.
1619 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1621 int err;
1623 bdi->capabilities = BDI_CAP_MAP_COPY;
1624 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1625 if (err)
1626 return err;
1628 bdi->ra_pages = default_backing_dev_info.ra_pages;
1629 bdi->congested_fn = btrfs_congested_fn;
1630 bdi->congested_data = info;
1631 return 0;
1635 * called by the kthread helper functions to finally call the bio end_io
1636 * functions. This is where read checksum verification actually happens
1638 static void end_workqueue_fn(struct btrfs_work *work)
1640 struct bio *bio;
1641 struct end_io_wq *end_io_wq;
1642 struct btrfs_fs_info *fs_info;
1643 int error;
1645 end_io_wq = container_of(work, struct end_io_wq, work);
1646 bio = end_io_wq->bio;
1647 fs_info = end_io_wq->info;
1649 error = end_io_wq->error;
1650 bio->bi_private = end_io_wq->private;
1651 bio->bi_end_io = end_io_wq->end_io;
1652 kfree(end_io_wq);
1653 bio_endio(bio, error);
1656 static int cleaner_kthread(void *arg)
1658 struct btrfs_root *root = arg;
1660 do {
1661 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1662 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1663 btrfs_run_delayed_iputs(root);
1664 btrfs_clean_old_snapshots(root);
1665 mutex_unlock(&root->fs_info->cleaner_mutex);
1666 btrfs_run_defrag_inodes(root->fs_info);
1669 if (!try_to_freeze()) {
1670 set_current_state(TASK_INTERRUPTIBLE);
1671 if (!kthread_should_stop())
1672 schedule();
1673 __set_current_state(TASK_RUNNING);
1675 } while (!kthread_should_stop());
1676 return 0;
1679 static int transaction_kthread(void *arg)
1681 struct btrfs_root *root = arg;
1682 struct btrfs_trans_handle *trans;
1683 struct btrfs_transaction *cur;
1684 u64 transid;
1685 unsigned long now;
1686 unsigned long delay;
1687 bool cannot_commit;
1689 do {
1690 cannot_commit = false;
1691 delay = HZ * 30;
1692 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1694 spin_lock(&root->fs_info->trans_lock);
1695 cur = root->fs_info->running_transaction;
1696 if (!cur) {
1697 spin_unlock(&root->fs_info->trans_lock);
1698 goto sleep;
1701 now = get_seconds();
1702 if (!cur->blocked &&
1703 (now < cur->start_time || now - cur->start_time < 30)) {
1704 spin_unlock(&root->fs_info->trans_lock);
1705 delay = HZ * 5;
1706 goto sleep;
1708 transid = cur->transid;
1709 spin_unlock(&root->fs_info->trans_lock);
1711 /* If the file system is aborted, this will always fail. */
1712 trans = btrfs_attach_transaction(root);
1713 if (IS_ERR(trans)) {
1714 if (PTR_ERR(trans) != -ENOENT)
1715 cannot_commit = true;
1716 goto sleep;
1718 if (transid == trans->transid) {
1719 btrfs_commit_transaction(trans, root);
1720 } else {
1721 btrfs_end_transaction(trans, root);
1723 sleep:
1724 wake_up_process(root->fs_info->cleaner_kthread);
1725 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1727 if (!try_to_freeze()) {
1728 set_current_state(TASK_INTERRUPTIBLE);
1729 if (!kthread_should_stop() &&
1730 (!btrfs_transaction_blocked(root->fs_info) ||
1731 cannot_commit))
1732 schedule_timeout(delay);
1733 __set_current_state(TASK_RUNNING);
1735 } while (!kthread_should_stop());
1736 return 0;
1740 * this will find the highest generation in the array of
1741 * root backups. The index of the highest array is returned,
1742 * or -1 if we can't find anything.
1744 * We check to make sure the array is valid by comparing the
1745 * generation of the latest root in the array with the generation
1746 * in the super block. If they don't match we pitch it.
1748 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1750 u64 cur;
1751 int newest_index = -1;
1752 struct btrfs_root_backup *root_backup;
1753 int i;
1755 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1756 root_backup = info->super_copy->super_roots + i;
1757 cur = btrfs_backup_tree_root_gen(root_backup);
1758 if (cur == newest_gen)
1759 newest_index = i;
1762 /* check to see if we actually wrapped around */
1763 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1764 root_backup = info->super_copy->super_roots;
1765 cur = btrfs_backup_tree_root_gen(root_backup);
1766 if (cur == newest_gen)
1767 newest_index = 0;
1769 return newest_index;
1774 * find the oldest backup so we know where to store new entries
1775 * in the backup array. This will set the backup_root_index
1776 * field in the fs_info struct
1778 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1779 u64 newest_gen)
1781 int newest_index = -1;
1783 newest_index = find_newest_super_backup(info, newest_gen);
1784 /* if there was garbage in there, just move along */
1785 if (newest_index == -1) {
1786 info->backup_root_index = 0;
1787 } else {
1788 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1793 * copy all the root pointers into the super backup array.
1794 * this will bump the backup pointer by one when it is
1795 * done
1797 static void backup_super_roots(struct btrfs_fs_info *info)
1799 int next_backup;
1800 struct btrfs_root_backup *root_backup;
1801 int last_backup;
1803 next_backup = info->backup_root_index;
1804 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1805 BTRFS_NUM_BACKUP_ROOTS;
1808 * just overwrite the last backup if we're at the same generation
1809 * this happens only at umount
1811 root_backup = info->super_for_commit->super_roots + last_backup;
1812 if (btrfs_backup_tree_root_gen(root_backup) ==
1813 btrfs_header_generation(info->tree_root->node))
1814 next_backup = last_backup;
1816 root_backup = info->super_for_commit->super_roots + next_backup;
1819 * make sure all of our padding and empty slots get zero filled
1820 * regardless of which ones we use today
1822 memset(root_backup, 0, sizeof(*root_backup));
1824 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1826 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1827 btrfs_set_backup_tree_root_gen(root_backup,
1828 btrfs_header_generation(info->tree_root->node));
1830 btrfs_set_backup_tree_root_level(root_backup,
1831 btrfs_header_level(info->tree_root->node));
1833 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1834 btrfs_set_backup_chunk_root_gen(root_backup,
1835 btrfs_header_generation(info->chunk_root->node));
1836 btrfs_set_backup_chunk_root_level(root_backup,
1837 btrfs_header_level(info->chunk_root->node));
1839 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1840 btrfs_set_backup_extent_root_gen(root_backup,
1841 btrfs_header_generation(info->extent_root->node));
1842 btrfs_set_backup_extent_root_level(root_backup,
1843 btrfs_header_level(info->extent_root->node));
1846 * we might commit during log recovery, which happens before we set
1847 * the fs_root. Make sure it is valid before we fill it in.
1849 if (info->fs_root && info->fs_root->node) {
1850 btrfs_set_backup_fs_root(root_backup,
1851 info->fs_root->node->start);
1852 btrfs_set_backup_fs_root_gen(root_backup,
1853 btrfs_header_generation(info->fs_root->node));
1854 btrfs_set_backup_fs_root_level(root_backup,
1855 btrfs_header_level(info->fs_root->node));
1858 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1859 btrfs_set_backup_dev_root_gen(root_backup,
1860 btrfs_header_generation(info->dev_root->node));
1861 btrfs_set_backup_dev_root_level(root_backup,
1862 btrfs_header_level(info->dev_root->node));
1864 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1865 btrfs_set_backup_csum_root_gen(root_backup,
1866 btrfs_header_generation(info->csum_root->node));
1867 btrfs_set_backup_csum_root_level(root_backup,
1868 btrfs_header_level(info->csum_root->node));
1870 btrfs_set_backup_total_bytes(root_backup,
1871 btrfs_super_total_bytes(info->super_copy));
1872 btrfs_set_backup_bytes_used(root_backup,
1873 btrfs_super_bytes_used(info->super_copy));
1874 btrfs_set_backup_num_devices(root_backup,
1875 btrfs_super_num_devices(info->super_copy));
1878 * if we don't copy this out to the super_copy, it won't get remembered
1879 * for the next commit
1881 memcpy(&info->super_copy->super_roots,
1882 &info->super_for_commit->super_roots,
1883 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1887 * this copies info out of the root backup array and back into
1888 * the in-memory super block. It is meant to help iterate through
1889 * the array, so you send it the number of backups you've already
1890 * tried and the last backup index you used.
1892 * this returns -1 when it has tried all the backups
1894 static noinline int next_root_backup(struct btrfs_fs_info *info,
1895 struct btrfs_super_block *super,
1896 int *num_backups_tried, int *backup_index)
1898 struct btrfs_root_backup *root_backup;
1899 int newest = *backup_index;
1901 if (*num_backups_tried == 0) {
1902 u64 gen = btrfs_super_generation(super);
1904 newest = find_newest_super_backup(info, gen);
1905 if (newest == -1)
1906 return -1;
1908 *backup_index = newest;
1909 *num_backups_tried = 1;
1910 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1911 /* we've tried all the backups, all done */
1912 return -1;
1913 } else {
1914 /* jump to the next oldest backup */
1915 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1916 BTRFS_NUM_BACKUP_ROOTS;
1917 *backup_index = newest;
1918 *num_backups_tried += 1;
1920 root_backup = super->super_roots + newest;
1922 btrfs_set_super_generation(super,
1923 btrfs_backup_tree_root_gen(root_backup));
1924 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925 btrfs_set_super_root_level(super,
1926 btrfs_backup_tree_root_level(root_backup));
1927 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1930 * fixme: the total bytes and num_devices need to match or we should
1931 * need a fsck
1933 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935 return 0;
1938 /* helper to cleanup tree roots */
1939 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1941 free_extent_buffer(info->tree_root->node);
1942 free_extent_buffer(info->tree_root->commit_root);
1943 free_extent_buffer(info->dev_root->node);
1944 free_extent_buffer(info->dev_root->commit_root);
1945 free_extent_buffer(info->extent_root->node);
1946 free_extent_buffer(info->extent_root->commit_root);
1947 free_extent_buffer(info->csum_root->node);
1948 free_extent_buffer(info->csum_root->commit_root);
1949 if (info->quota_root) {
1950 free_extent_buffer(info->quota_root->node);
1951 free_extent_buffer(info->quota_root->commit_root);
1954 info->tree_root->node = NULL;
1955 info->tree_root->commit_root = NULL;
1956 info->dev_root->node = NULL;
1957 info->dev_root->commit_root = NULL;
1958 info->extent_root->node = NULL;
1959 info->extent_root->commit_root = NULL;
1960 info->csum_root->node = NULL;
1961 info->csum_root->commit_root = NULL;
1962 if (info->quota_root) {
1963 info->quota_root->node = NULL;
1964 info->quota_root->commit_root = NULL;
1967 if (chunk_root) {
1968 free_extent_buffer(info->chunk_root->node);
1969 free_extent_buffer(info->chunk_root->commit_root);
1970 info->chunk_root->node = NULL;
1971 info->chunk_root->commit_root = NULL;
1976 int open_ctree(struct super_block *sb,
1977 struct btrfs_fs_devices *fs_devices,
1978 char *options)
1980 u32 sectorsize;
1981 u32 nodesize;
1982 u32 leafsize;
1983 u32 blocksize;
1984 u32 stripesize;
1985 u64 generation;
1986 u64 features;
1987 struct btrfs_key location;
1988 struct buffer_head *bh;
1989 struct btrfs_super_block *disk_super;
1990 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1991 struct btrfs_root *tree_root;
1992 struct btrfs_root *extent_root;
1993 struct btrfs_root *csum_root;
1994 struct btrfs_root *chunk_root;
1995 struct btrfs_root *dev_root;
1996 struct btrfs_root *quota_root;
1997 struct btrfs_root *log_tree_root;
1998 int ret;
1999 int err = -EINVAL;
2000 int num_backups_tried = 0;
2001 int backup_index = 0;
2003 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2004 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2005 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2006 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2007 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2008 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2010 if (!tree_root || !extent_root || !csum_root ||
2011 !chunk_root || !dev_root || !quota_root) {
2012 err = -ENOMEM;
2013 goto fail;
2016 ret = init_srcu_struct(&fs_info->subvol_srcu);
2017 if (ret) {
2018 err = ret;
2019 goto fail;
2022 ret = setup_bdi(fs_info, &fs_info->bdi);
2023 if (ret) {
2024 err = ret;
2025 goto fail_srcu;
2028 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2029 if (ret) {
2030 err = ret;
2031 goto fail_bdi;
2033 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2034 (1 + ilog2(nr_cpu_ids));
2036 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2037 if (ret) {
2038 err = ret;
2039 goto fail_dirty_metadata_bytes;
2042 fs_info->btree_inode = new_inode(sb);
2043 if (!fs_info->btree_inode) {
2044 err = -ENOMEM;
2045 goto fail_delalloc_bytes;
2048 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2050 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2051 INIT_LIST_HEAD(&fs_info->trans_list);
2052 INIT_LIST_HEAD(&fs_info->dead_roots);
2053 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2054 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2055 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2056 spin_lock_init(&fs_info->delalloc_lock);
2057 spin_lock_init(&fs_info->trans_lock);
2058 spin_lock_init(&fs_info->fs_roots_radix_lock);
2059 spin_lock_init(&fs_info->delayed_iput_lock);
2060 spin_lock_init(&fs_info->defrag_inodes_lock);
2061 spin_lock_init(&fs_info->free_chunk_lock);
2062 spin_lock_init(&fs_info->tree_mod_seq_lock);
2063 rwlock_init(&fs_info->tree_mod_log_lock);
2064 mutex_init(&fs_info->reloc_mutex);
2065 seqlock_init(&fs_info->profiles_lock);
2067 init_completion(&fs_info->kobj_unregister);
2068 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2069 INIT_LIST_HEAD(&fs_info->space_info);
2070 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2071 btrfs_mapping_init(&fs_info->mapping_tree);
2072 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2073 BTRFS_BLOCK_RSV_GLOBAL);
2074 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2075 BTRFS_BLOCK_RSV_DELALLOC);
2076 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2077 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2078 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2079 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2080 BTRFS_BLOCK_RSV_DELOPS);
2081 atomic_set(&fs_info->nr_async_submits, 0);
2082 atomic_set(&fs_info->async_delalloc_pages, 0);
2083 atomic_set(&fs_info->async_submit_draining, 0);
2084 atomic_set(&fs_info->nr_async_bios, 0);
2085 atomic_set(&fs_info->defrag_running, 0);
2086 atomic_set(&fs_info->tree_mod_seq, 0);
2087 fs_info->sb = sb;
2088 fs_info->max_inline = 8192 * 1024;
2089 fs_info->metadata_ratio = 0;
2090 fs_info->defrag_inodes = RB_ROOT;
2091 fs_info->trans_no_join = 0;
2092 fs_info->free_chunk_space = 0;
2093 fs_info->tree_mod_log = RB_ROOT;
2095 /* readahead state */
2096 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2097 spin_lock_init(&fs_info->reada_lock);
2099 fs_info->thread_pool_size = min_t(unsigned long,
2100 num_online_cpus() + 2, 8);
2102 INIT_LIST_HEAD(&fs_info->ordered_extents);
2103 spin_lock_init(&fs_info->ordered_extent_lock);
2104 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2105 GFP_NOFS);
2106 if (!fs_info->delayed_root) {
2107 err = -ENOMEM;
2108 goto fail_iput;
2110 btrfs_init_delayed_root(fs_info->delayed_root);
2112 mutex_init(&fs_info->scrub_lock);
2113 atomic_set(&fs_info->scrubs_running, 0);
2114 atomic_set(&fs_info->scrub_pause_req, 0);
2115 atomic_set(&fs_info->scrubs_paused, 0);
2116 atomic_set(&fs_info->scrub_cancel_req, 0);
2117 init_waitqueue_head(&fs_info->scrub_pause_wait);
2118 init_rwsem(&fs_info->scrub_super_lock);
2119 fs_info->scrub_workers_refcnt = 0;
2120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2121 fs_info->check_integrity_print_mask = 0;
2122 #endif
2124 spin_lock_init(&fs_info->balance_lock);
2125 mutex_init(&fs_info->balance_mutex);
2126 atomic_set(&fs_info->balance_running, 0);
2127 atomic_set(&fs_info->balance_pause_req, 0);
2128 atomic_set(&fs_info->balance_cancel_req, 0);
2129 fs_info->balance_ctl = NULL;
2130 init_waitqueue_head(&fs_info->balance_wait_q);
2132 sb->s_blocksize = 4096;
2133 sb->s_blocksize_bits = blksize_bits(4096);
2134 sb->s_bdi = &fs_info->bdi;
2136 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2137 set_nlink(fs_info->btree_inode, 1);
2139 * we set the i_size on the btree inode to the max possible int.
2140 * the real end of the address space is determined by all of
2141 * the devices in the system
2143 fs_info->btree_inode->i_size = OFFSET_MAX;
2144 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2145 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2147 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2148 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2149 fs_info->btree_inode->i_mapping);
2150 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2151 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2153 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2155 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2156 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2157 sizeof(struct btrfs_key));
2158 set_bit(BTRFS_INODE_DUMMY,
2159 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2160 insert_inode_hash(fs_info->btree_inode);
2162 spin_lock_init(&fs_info->block_group_cache_lock);
2163 fs_info->block_group_cache_tree = RB_ROOT;
2164 fs_info->first_logical_byte = (u64)-1;
2166 extent_io_tree_init(&fs_info->freed_extents[0],
2167 fs_info->btree_inode->i_mapping);
2168 extent_io_tree_init(&fs_info->freed_extents[1],
2169 fs_info->btree_inode->i_mapping);
2170 fs_info->pinned_extents = &fs_info->freed_extents[0];
2171 fs_info->do_barriers = 1;
2174 mutex_init(&fs_info->ordered_operations_mutex);
2175 mutex_init(&fs_info->tree_log_mutex);
2176 mutex_init(&fs_info->chunk_mutex);
2177 mutex_init(&fs_info->transaction_kthread_mutex);
2178 mutex_init(&fs_info->cleaner_mutex);
2179 mutex_init(&fs_info->volume_mutex);
2180 init_rwsem(&fs_info->extent_commit_sem);
2181 init_rwsem(&fs_info->cleanup_work_sem);
2182 init_rwsem(&fs_info->subvol_sem);
2183 fs_info->dev_replace.lock_owner = 0;
2184 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2185 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2186 mutex_init(&fs_info->dev_replace.lock_management_lock);
2187 mutex_init(&fs_info->dev_replace.lock);
2189 spin_lock_init(&fs_info->qgroup_lock);
2190 fs_info->qgroup_tree = RB_ROOT;
2191 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2192 fs_info->qgroup_seq = 1;
2193 fs_info->quota_enabled = 0;
2194 fs_info->pending_quota_state = 0;
2196 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2197 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2199 init_waitqueue_head(&fs_info->transaction_throttle);
2200 init_waitqueue_head(&fs_info->transaction_wait);
2201 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2202 init_waitqueue_head(&fs_info->async_submit_wait);
2204 ret = btrfs_alloc_stripe_hash_table(fs_info);
2205 if (ret) {
2206 err = ret;
2207 goto fail_alloc;
2210 __setup_root(4096, 4096, 4096, 4096, tree_root,
2211 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2213 invalidate_bdev(fs_devices->latest_bdev);
2214 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2215 if (!bh) {
2216 err = -EINVAL;
2217 goto fail_alloc;
2220 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2221 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2222 sizeof(*fs_info->super_for_commit));
2223 brelse(bh);
2225 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2227 disk_super = fs_info->super_copy;
2228 if (!btrfs_super_root(disk_super))
2229 goto fail_alloc;
2231 /* check FS state, whether FS is broken. */
2232 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2233 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2235 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2236 if (ret) {
2237 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2238 err = ret;
2239 goto fail_alloc;
2243 * run through our array of backup supers and setup
2244 * our ring pointer to the oldest one
2246 generation = btrfs_super_generation(disk_super);
2247 find_oldest_super_backup(fs_info, generation);
2250 * In the long term, we'll store the compression type in the super
2251 * block, and it'll be used for per file compression control.
2253 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2255 ret = btrfs_parse_options(tree_root, options);
2256 if (ret) {
2257 err = ret;
2258 goto fail_alloc;
2261 features = btrfs_super_incompat_flags(disk_super) &
2262 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2263 if (features) {
2264 printk(KERN_ERR "BTRFS: couldn't mount because of "
2265 "unsupported optional features (%Lx).\n",
2266 (unsigned long long)features);
2267 err = -EINVAL;
2268 goto fail_alloc;
2271 if (btrfs_super_leafsize(disk_super) !=
2272 btrfs_super_nodesize(disk_super)) {
2273 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2274 "blocksizes don't match. node %d leaf %d\n",
2275 btrfs_super_nodesize(disk_super),
2276 btrfs_super_leafsize(disk_super));
2277 err = -EINVAL;
2278 goto fail_alloc;
2280 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2281 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2282 "blocksize (%d) was too large\n",
2283 btrfs_super_leafsize(disk_super));
2284 err = -EINVAL;
2285 goto fail_alloc;
2288 features = btrfs_super_incompat_flags(disk_super);
2289 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2290 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2291 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2294 * flag our filesystem as having big metadata blocks if
2295 * they are bigger than the page size
2297 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2298 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2299 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2300 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2303 nodesize = btrfs_super_nodesize(disk_super);
2304 leafsize = btrfs_super_leafsize(disk_super);
2305 sectorsize = btrfs_super_sectorsize(disk_super);
2306 stripesize = btrfs_super_stripesize(disk_super);
2307 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2308 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2311 * mixed block groups end up with duplicate but slightly offset
2312 * extent buffers for the same range. It leads to corruptions
2314 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2315 (sectorsize != leafsize)) {
2316 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2317 "are not allowed for mixed block groups on %s\n",
2318 sb->s_id);
2319 goto fail_alloc;
2322 btrfs_set_super_incompat_flags(disk_super, features);
2324 features = btrfs_super_compat_ro_flags(disk_super) &
2325 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2326 if (!(sb->s_flags & MS_RDONLY) && features) {
2327 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2328 "unsupported option features (%Lx).\n",
2329 (unsigned long long)features);
2330 err = -EINVAL;
2331 goto fail_alloc;
2334 btrfs_init_workers(&fs_info->generic_worker,
2335 "genwork", 1, NULL);
2337 btrfs_init_workers(&fs_info->workers, "worker",
2338 fs_info->thread_pool_size,
2339 &fs_info->generic_worker);
2341 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2342 fs_info->thread_pool_size,
2343 &fs_info->generic_worker);
2345 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2346 fs_info->thread_pool_size,
2347 &fs_info->generic_worker);
2349 btrfs_init_workers(&fs_info->submit_workers, "submit",
2350 min_t(u64, fs_devices->num_devices,
2351 fs_info->thread_pool_size),
2352 &fs_info->generic_worker);
2354 btrfs_init_workers(&fs_info->caching_workers, "cache",
2355 2, &fs_info->generic_worker);
2357 /* a higher idle thresh on the submit workers makes it much more
2358 * likely that bios will be send down in a sane order to the
2359 * devices
2361 fs_info->submit_workers.idle_thresh = 64;
2363 fs_info->workers.idle_thresh = 16;
2364 fs_info->workers.ordered = 1;
2366 fs_info->delalloc_workers.idle_thresh = 2;
2367 fs_info->delalloc_workers.ordered = 1;
2369 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2370 &fs_info->generic_worker);
2371 btrfs_init_workers(&fs_info->endio_workers, "endio",
2372 fs_info->thread_pool_size,
2373 &fs_info->generic_worker);
2374 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2375 fs_info->thread_pool_size,
2376 &fs_info->generic_worker);
2377 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2378 "endio-meta-write", fs_info->thread_pool_size,
2379 &fs_info->generic_worker);
2380 btrfs_init_workers(&fs_info->endio_raid56_workers,
2381 "endio-raid56", fs_info->thread_pool_size,
2382 &fs_info->generic_worker);
2383 btrfs_init_workers(&fs_info->rmw_workers,
2384 "rmw", fs_info->thread_pool_size,
2385 &fs_info->generic_worker);
2386 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2387 fs_info->thread_pool_size,
2388 &fs_info->generic_worker);
2389 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2390 1, &fs_info->generic_worker);
2391 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2392 fs_info->thread_pool_size,
2393 &fs_info->generic_worker);
2394 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2395 fs_info->thread_pool_size,
2396 &fs_info->generic_worker);
2399 * endios are largely parallel and should have a very
2400 * low idle thresh
2402 fs_info->endio_workers.idle_thresh = 4;
2403 fs_info->endio_meta_workers.idle_thresh = 4;
2404 fs_info->endio_raid56_workers.idle_thresh = 4;
2405 fs_info->rmw_workers.idle_thresh = 2;
2407 fs_info->endio_write_workers.idle_thresh = 2;
2408 fs_info->endio_meta_write_workers.idle_thresh = 2;
2409 fs_info->readahead_workers.idle_thresh = 2;
2412 * btrfs_start_workers can really only fail because of ENOMEM so just
2413 * return -ENOMEM if any of these fail.
2415 ret = btrfs_start_workers(&fs_info->workers);
2416 ret |= btrfs_start_workers(&fs_info->generic_worker);
2417 ret |= btrfs_start_workers(&fs_info->submit_workers);
2418 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2419 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2420 ret |= btrfs_start_workers(&fs_info->endio_workers);
2421 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2422 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2423 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2424 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2425 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2426 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2427 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2428 ret |= btrfs_start_workers(&fs_info->caching_workers);
2429 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2430 ret |= btrfs_start_workers(&fs_info->flush_workers);
2431 if (ret) {
2432 err = -ENOMEM;
2433 goto fail_sb_buffer;
2436 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2437 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2438 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2440 tree_root->nodesize = nodesize;
2441 tree_root->leafsize = leafsize;
2442 tree_root->sectorsize = sectorsize;
2443 tree_root->stripesize = stripesize;
2445 sb->s_blocksize = sectorsize;
2446 sb->s_blocksize_bits = blksize_bits(sectorsize);
2448 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2449 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2450 goto fail_sb_buffer;
2453 if (sectorsize != PAGE_SIZE) {
2454 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2455 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2456 goto fail_sb_buffer;
2459 mutex_lock(&fs_info->chunk_mutex);
2460 ret = btrfs_read_sys_array(tree_root);
2461 mutex_unlock(&fs_info->chunk_mutex);
2462 if (ret) {
2463 printk(KERN_WARNING "btrfs: failed to read the system "
2464 "array on %s\n", sb->s_id);
2465 goto fail_sb_buffer;
2468 blocksize = btrfs_level_size(tree_root,
2469 btrfs_super_chunk_root_level(disk_super));
2470 generation = btrfs_super_chunk_root_generation(disk_super);
2472 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2473 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2475 chunk_root->node = read_tree_block(chunk_root,
2476 btrfs_super_chunk_root(disk_super),
2477 blocksize, generation);
2478 BUG_ON(!chunk_root->node); /* -ENOMEM */
2479 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2480 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2481 sb->s_id);
2482 goto fail_tree_roots;
2484 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2485 chunk_root->commit_root = btrfs_root_node(chunk_root);
2487 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2488 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2489 BTRFS_UUID_SIZE);
2491 ret = btrfs_read_chunk_tree(chunk_root);
2492 if (ret) {
2493 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2494 sb->s_id);
2495 goto fail_tree_roots;
2499 * keep the device that is marked to be the target device for the
2500 * dev_replace procedure
2502 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2504 if (!fs_devices->latest_bdev) {
2505 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2506 sb->s_id);
2507 goto fail_tree_roots;
2510 retry_root_backup:
2511 blocksize = btrfs_level_size(tree_root,
2512 btrfs_super_root_level(disk_super));
2513 generation = btrfs_super_generation(disk_super);
2515 tree_root->node = read_tree_block(tree_root,
2516 btrfs_super_root(disk_super),
2517 blocksize, generation);
2518 if (!tree_root->node ||
2519 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2520 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2521 sb->s_id);
2523 goto recovery_tree_root;
2526 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2527 tree_root->commit_root = btrfs_root_node(tree_root);
2529 ret = find_and_setup_root(tree_root, fs_info,
2530 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2531 if (ret)
2532 goto recovery_tree_root;
2533 extent_root->track_dirty = 1;
2535 ret = find_and_setup_root(tree_root, fs_info,
2536 BTRFS_DEV_TREE_OBJECTID, dev_root);
2537 if (ret)
2538 goto recovery_tree_root;
2539 dev_root->track_dirty = 1;
2541 ret = find_and_setup_root(tree_root, fs_info,
2542 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2543 if (ret)
2544 goto recovery_tree_root;
2545 csum_root->track_dirty = 1;
2547 ret = find_and_setup_root(tree_root, fs_info,
2548 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2549 if (ret) {
2550 kfree(quota_root);
2551 quota_root = fs_info->quota_root = NULL;
2552 } else {
2553 quota_root->track_dirty = 1;
2554 fs_info->quota_enabled = 1;
2555 fs_info->pending_quota_state = 1;
2558 fs_info->generation = generation;
2559 fs_info->last_trans_committed = generation;
2561 ret = btrfs_recover_balance(fs_info);
2562 if (ret) {
2563 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2564 goto fail_block_groups;
2567 ret = btrfs_init_dev_stats(fs_info);
2568 if (ret) {
2569 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2570 ret);
2571 goto fail_block_groups;
2574 ret = btrfs_init_dev_replace(fs_info);
2575 if (ret) {
2576 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2577 goto fail_block_groups;
2580 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2582 ret = btrfs_init_space_info(fs_info);
2583 if (ret) {
2584 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2585 goto fail_block_groups;
2588 ret = btrfs_read_block_groups(extent_root);
2589 if (ret) {
2590 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2591 goto fail_block_groups;
2593 fs_info->num_tolerated_disk_barrier_failures =
2594 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2595 if (fs_info->fs_devices->missing_devices >
2596 fs_info->num_tolerated_disk_barrier_failures &&
2597 !(sb->s_flags & MS_RDONLY)) {
2598 printk(KERN_WARNING
2599 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2600 goto fail_block_groups;
2603 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2604 "btrfs-cleaner");
2605 if (IS_ERR(fs_info->cleaner_kthread))
2606 goto fail_block_groups;
2608 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2609 tree_root,
2610 "btrfs-transaction");
2611 if (IS_ERR(fs_info->transaction_kthread))
2612 goto fail_cleaner;
2614 if (!btrfs_test_opt(tree_root, SSD) &&
2615 !btrfs_test_opt(tree_root, NOSSD) &&
2616 !fs_info->fs_devices->rotating) {
2617 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2618 "mode\n");
2619 btrfs_set_opt(fs_info->mount_opt, SSD);
2622 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2623 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2624 ret = btrfsic_mount(tree_root, fs_devices,
2625 btrfs_test_opt(tree_root,
2626 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2627 1 : 0,
2628 fs_info->check_integrity_print_mask);
2629 if (ret)
2630 printk(KERN_WARNING "btrfs: failed to initialize"
2631 " integrity check module %s\n", sb->s_id);
2633 #endif
2634 ret = btrfs_read_qgroup_config(fs_info);
2635 if (ret)
2636 goto fail_trans_kthread;
2638 /* do not make disk changes in broken FS */
2639 if (btrfs_super_log_root(disk_super) != 0) {
2640 u64 bytenr = btrfs_super_log_root(disk_super);
2642 if (fs_devices->rw_devices == 0) {
2643 printk(KERN_WARNING "Btrfs log replay required "
2644 "on RO media\n");
2645 err = -EIO;
2646 goto fail_qgroup;
2648 blocksize =
2649 btrfs_level_size(tree_root,
2650 btrfs_super_log_root_level(disk_super));
2652 log_tree_root = btrfs_alloc_root(fs_info);
2653 if (!log_tree_root) {
2654 err = -ENOMEM;
2655 goto fail_qgroup;
2658 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2659 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2661 log_tree_root->node = read_tree_block(tree_root, bytenr,
2662 blocksize,
2663 generation + 1);
2664 /* returns with log_tree_root freed on success */
2665 ret = btrfs_recover_log_trees(log_tree_root);
2666 if (ret) {
2667 btrfs_error(tree_root->fs_info, ret,
2668 "Failed to recover log tree");
2669 free_extent_buffer(log_tree_root->node);
2670 kfree(log_tree_root);
2671 goto fail_trans_kthread;
2674 if (sb->s_flags & MS_RDONLY) {
2675 ret = btrfs_commit_super(tree_root);
2676 if (ret)
2677 goto fail_trans_kthread;
2681 ret = btrfs_find_orphan_roots(tree_root);
2682 if (ret)
2683 goto fail_trans_kthread;
2685 if (!(sb->s_flags & MS_RDONLY)) {
2686 ret = btrfs_cleanup_fs_roots(fs_info);
2687 if (ret)
2688 goto fail_trans_kthread;
2690 ret = btrfs_recover_relocation(tree_root);
2691 if (ret < 0) {
2692 printk(KERN_WARNING
2693 "btrfs: failed to recover relocation\n");
2694 err = -EINVAL;
2695 goto fail_qgroup;
2699 location.objectid = BTRFS_FS_TREE_OBJECTID;
2700 location.type = BTRFS_ROOT_ITEM_KEY;
2701 location.offset = (u64)-1;
2703 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2704 if (!fs_info->fs_root)
2705 goto fail_qgroup;
2706 if (IS_ERR(fs_info->fs_root)) {
2707 err = PTR_ERR(fs_info->fs_root);
2708 goto fail_qgroup;
2711 if (sb->s_flags & MS_RDONLY)
2712 return 0;
2714 down_read(&fs_info->cleanup_work_sem);
2715 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2716 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2717 up_read(&fs_info->cleanup_work_sem);
2718 close_ctree(tree_root);
2719 return ret;
2721 up_read(&fs_info->cleanup_work_sem);
2723 ret = btrfs_resume_balance_async(fs_info);
2724 if (ret) {
2725 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2726 close_ctree(tree_root);
2727 return ret;
2730 ret = btrfs_resume_dev_replace_async(fs_info);
2731 if (ret) {
2732 pr_warn("btrfs: failed to resume dev_replace\n");
2733 close_ctree(tree_root);
2734 return ret;
2737 return 0;
2739 fail_qgroup:
2740 btrfs_free_qgroup_config(fs_info);
2741 fail_trans_kthread:
2742 kthread_stop(fs_info->transaction_kthread);
2743 fail_cleaner:
2744 kthread_stop(fs_info->cleaner_kthread);
2747 * make sure we're done with the btree inode before we stop our
2748 * kthreads
2750 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2752 fail_block_groups:
2753 btrfs_free_block_groups(fs_info);
2755 fail_tree_roots:
2756 free_root_pointers(fs_info, 1);
2757 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2759 fail_sb_buffer:
2760 btrfs_stop_workers(&fs_info->generic_worker);
2761 btrfs_stop_workers(&fs_info->readahead_workers);
2762 btrfs_stop_workers(&fs_info->fixup_workers);
2763 btrfs_stop_workers(&fs_info->delalloc_workers);
2764 btrfs_stop_workers(&fs_info->workers);
2765 btrfs_stop_workers(&fs_info->endio_workers);
2766 btrfs_stop_workers(&fs_info->endio_meta_workers);
2767 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2768 btrfs_stop_workers(&fs_info->rmw_workers);
2769 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2770 btrfs_stop_workers(&fs_info->endio_write_workers);
2771 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2772 btrfs_stop_workers(&fs_info->submit_workers);
2773 btrfs_stop_workers(&fs_info->delayed_workers);
2774 btrfs_stop_workers(&fs_info->caching_workers);
2775 btrfs_stop_workers(&fs_info->flush_workers);
2776 fail_alloc:
2777 fail_iput:
2778 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2780 iput(fs_info->btree_inode);
2781 fail_delalloc_bytes:
2782 percpu_counter_destroy(&fs_info->delalloc_bytes);
2783 fail_dirty_metadata_bytes:
2784 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2785 fail_bdi:
2786 bdi_destroy(&fs_info->bdi);
2787 fail_srcu:
2788 cleanup_srcu_struct(&fs_info->subvol_srcu);
2789 fail:
2790 btrfs_free_stripe_hash_table(fs_info);
2791 btrfs_close_devices(fs_info->fs_devices);
2792 return err;
2794 recovery_tree_root:
2795 if (!btrfs_test_opt(tree_root, RECOVERY))
2796 goto fail_tree_roots;
2798 free_root_pointers(fs_info, 0);
2800 /* don't use the log in recovery mode, it won't be valid */
2801 btrfs_set_super_log_root(disk_super, 0);
2803 /* we can't trust the free space cache either */
2804 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2806 ret = next_root_backup(fs_info, fs_info->super_copy,
2807 &num_backups_tried, &backup_index);
2808 if (ret == -1)
2809 goto fail_block_groups;
2810 goto retry_root_backup;
2813 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2815 if (uptodate) {
2816 set_buffer_uptodate(bh);
2817 } else {
2818 struct btrfs_device *device = (struct btrfs_device *)
2819 bh->b_private;
2821 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2822 "I/O error on %s\n",
2823 rcu_str_deref(device->name));
2824 /* note, we dont' set_buffer_write_io_error because we have
2825 * our own ways of dealing with the IO errors
2827 clear_buffer_uptodate(bh);
2828 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2830 unlock_buffer(bh);
2831 put_bh(bh);
2834 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2836 struct buffer_head *bh;
2837 struct buffer_head *latest = NULL;
2838 struct btrfs_super_block *super;
2839 int i;
2840 u64 transid = 0;
2841 u64 bytenr;
2843 /* we would like to check all the supers, but that would make
2844 * a btrfs mount succeed after a mkfs from a different FS.
2845 * So, we need to add a special mount option to scan for
2846 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2848 for (i = 0; i < 1; i++) {
2849 bytenr = btrfs_sb_offset(i);
2850 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2851 break;
2852 bh = __bread(bdev, bytenr / 4096, 4096);
2853 if (!bh)
2854 continue;
2856 super = (struct btrfs_super_block *)bh->b_data;
2857 if (btrfs_super_bytenr(super) != bytenr ||
2858 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2859 brelse(bh);
2860 continue;
2863 if (!latest || btrfs_super_generation(super) > transid) {
2864 brelse(latest);
2865 latest = bh;
2866 transid = btrfs_super_generation(super);
2867 } else {
2868 brelse(bh);
2871 return latest;
2875 * this should be called twice, once with wait == 0 and
2876 * once with wait == 1. When wait == 0 is done, all the buffer heads
2877 * we write are pinned.
2879 * They are released when wait == 1 is done.
2880 * max_mirrors must be the same for both runs, and it indicates how
2881 * many supers on this one device should be written.
2883 * max_mirrors == 0 means to write them all.
2885 static int write_dev_supers(struct btrfs_device *device,
2886 struct btrfs_super_block *sb,
2887 int do_barriers, int wait, int max_mirrors)
2889 struct buffer_head *bh;
2890 int i;
2891 int ret;
2892 int errors = 0;
2893 u32 crc;
2894 u64 bytenr;
2896 if (max_mirrors == 0)
2897 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2899 for (i = 0; i < max_mirrors; i++) {
2900 bytenr = btrfs_sb_offset(i);
2901 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2902 break;
2904 if (wait) {
2905 bh = __find_get_block(device->bdev, bytenr / 4096,
2906 BTRFS_SUPER_INFO_SIZE);
2907 BUG_ON(!bh);
2908 wait_on_buffer(bh);
2909 if (!buffer_uptodate(bh))
2910 errors++;
2912 /* drop our reference */
2913 brelse(bh);
2915 /* drop the reference from the wait == 0 run */
2916 brelse(bh);
2917 continue;
2918 } else {
2919 btrfs_set_super_bytenr(sb, bytenr);
2921 crc = ~(u32)0;
2922 crc = btrfs_csum_data(NULL, (char *)sb +
2923 BTRFS_CSUM_SIZE, crc,
2924 BTRFS_SUPER_INFO_SIZE -
2925 BTRFS_CSUM_SIZE);
2926 btrfs_csum_final(crc, sb->csum);
2929 * one reference for us, and we leave it for the
2930 * caller
2932 bh = __getblk(device->bdev, bytenr / 4096,
2933 BTRFS_SUPER_INFO_SIZE);
2934 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2936 /* one reference for submit_bh */
2937 get_bh(bh);
2939 set_buffer_uptodate(bh);
2940 lock_buffer(bh);
2941 bh->b_end_io = btrfs_end_buffer_write_sync;
2942 bh->b_private = device;
2946 * we fua the first super. The others we allow
2947 * to go down lazy.
2949 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2950 if (ret)
2951 errors++;
2953 return errors < i ? 0 : -1;
2957 * endio for the write_dev_flush, this will wake anyone waiting
2958 * for the barrier when it is done
2960 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2962 if (err) {
2963 if (err == -EOPNOTSUPP)
2964 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2965 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2967 if (bio->bi_private)
2968 complete(bio->bi_private);
2969 bio_put(bio);
2973 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2974 * sent down. With wait == 1, it waits for the previous flush.
2976 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2977 * capable
2979 static int write_dev_flush(struct btrfs_device *device, int wait)
2981 struct bio *bio;
2982 int ret = 0;
2984 if (device->nobarriers)
2985 return 0;
2987 if (wait) {
2988 bio = device->flush_bio;
2989 if (!bio)
2990 return 0;
2992 wait_for_completion(&device->flush_wait);
2994 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2995 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2996 rcu_str_deref(device->name));
2997 device->nobarriers = 1;
2998 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2999 ret = -EIO;
3000 btrfs_dev_stat_inc_and_print(device,
3001 BTRFS_DEV_STAT_FLUSH_ERRS);
3004 /* drop the reference from the wait == 0 run */
3005 bio_put(bio);
3006 device->flush_bio = NULL;
3008 return ret;
3012 * one reference for us, and we leave it for the
3013 * caller
3015 device->flush_bio = NULL;
3016 bio = bio_alloc(GFP_NOFS, 0);
3017 if (!bio)
3018 return -ENOMEM;
3020 bio->bi_end_io = btrfs_end_empty_barrier;
3021 bio->bi_bdev = device->bdev;
3022 init_completion(&device->flush_wait);
3023 bio->bi_private = &device->flush_wait;
3024 device->flush_bio = bio;
3026 bio_get(bio);
3027 btrfsic_submit_bio(WRITE_FLUSH, bio);
3029 return 0;
3033 * send an empty flush down to each device in parallel,
3034 * then wait for them
3036 static int barrier_all_devices(struct btrfs_fs_info *info)
3038 struct list_head *head;
3039 struct btrfs_device *dev;
3040 int errors_send = 0;
3041 int errors_wait = 0;
3042 int ret;
3044 /* send down all the barriers */
3045 head = &info->fs_devices->devices;
3046 list_for_each_entry_rcu(dev, head, dev_list) {
3047 if (!dev->bdev) {
3048 errors_send++;
3049 continue;
3051 if (!dev->in_fs_metadata || !dev->writeable)
3052 continue;
3054 ret = write_dev_flush(dev, 0);
3055 if (ret)
3056 errors_send++;
3059 /* wait for all the barriers */
3060 list_for_each_entry_rcu(dev, head, dev_list) {
3061 if (!dev->bdev) {
3062 errors_wait++;
3063 continue;
3065 if (!dev->in_fs_metadata || !dev->writeable)
3066 continue;
3068 ret = write_dev_flush(dev, 1);
3069 if (ret)
3070 errors_wait++;
3072 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3073 errors_wait > info->num_tolerated_disk_barrier_failures)
3074 return -EIO;
3075 return 0;
3078 int btrfs_calc_num_tolerated_disk_barrier_failures(
3079 struct btrfs_fs_info *fs_info)
3081 struct btrfs_ioctl_space_info space;
3082 struct btrfs_space_info *sinfo;
3083 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3084 BTRFS_BLOCK_GROUP_SYSTEM,
3085 BTRFS_BLOCK_GROUP_METADATA,
3086 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3087 int num_types = 4;
3088 int i;
3089 int c;
3090 int num_tolerated_disk_barrier_failures =
3091 (int)fs_info->fs_devices->num_devices;
3093 for (i = 0; i < num_types; i++) {
3094 struct btrfs_space_info *tmp;
3096 sinfo = NULL;
3097 rcu_read_lock();
3098 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3099 if (tmp->flags == types[i]) {
3100 sinfo = tmp;
3101 break;
3104 rcu_read_unlock();
3106 if (!sinfo)
3107 continue;
3109 down_read(&sinfo->groups_sem);
3110 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3111 if (!list_empty(&sinfo->block_groups[c])) {
3112 u64 flags;
3114 btrfs_get_block_group_info(
3115 &sinfo->block_groups[c], &space);
3116 if (space.total_bytes == 0 ||
3117 space.used_bytes == 0)
3118 continue;
3119 flags = space.flags;
3121 * return
3122 * 0: if dup, single or RAID0 is configured for
3123 * any of metadata, system or data, else
3124 * 1: if RAID5 is configured, or if RAID1 or
3125 * RAID10 is configured and only two mirrors
3126 * are used, else
3127 * 2: if RAID6 is configured, else
3128 * num_mirrors - 1: if RAID1 or RAID10 is
3129 * configured and more than
3130 * 2 mirrors are used.
3132 if (num_tolerated_disk_barrier_failures > 0 &&
3133 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3134 BTRFS_BLOCK_GROUP_RAID0)) ||
3135 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3136 == 0)))
3137 num_tolerated_disk_barrier_failures = 0;
3138 else if (num_tolerated_disk_barrier_failures > 1) {
3139 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3140 BTRFS_BLOCK_GROUP_RAID5 |
3141 BTRFS_BLOCK_GROUP_RAID10)) {
3142 num_tolerated_disk_barrier_failures = 1;
3143 } else if (flags &
3144 BTRFS_BLOCK_GROUP_RAID5) {
3145 num_tolerated_disk_barrier_failures = 2;
3150 up_read(&sinfo->groups_sem);
3153 return num_tolerated_disk_barrier_failures;
3156 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3158 struct list_head *head;
3159 struct btrfs_device *dev;
3160 struct btrfs_super_block *sb;
3161 struct btrfs_dev_item *dev_item;
3162 int ret;
3163 int do_barriers;
3164 int max_errors;
3165 int total_errors = 0;
3166 u64 flags;
3168 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3169 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3170 backup_super_roots(root->fs_info);
3172 sb = root->fs_info->super_for_commit;
3173 dev_item = &sb->dev_item;
3175 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3176 head = &root->fs_info->fs_devices->devices;
3178 if (do_barriers) {
3179 ret = barrier_all_devices(root->fs_info);
3180 if (ret) {
3181 mutex_unlock(
3182 &root->fs_info->fs_devices->device_list_mutex);
3183 btrfs_error(root->fs_info, ret,
3184 "errors while submitting device barriers.");
3185 return ret;
3189 list_for_each_entry_rcu(dev, head, dev_list) {
3190 if (!dev->bdev) {
3191 total_errors++;
3192 continue;
3194 if (!dev->in_fs_metadata || !dev->writeable)
3195 continue;
3197 btrfs_set_stack_device_generation(dev_item, 0);
3198 btrfs_set_stack_device_type(dev_item, dev->type);
3199 btrfs_set_stack_device_id(dev_item, dev->devid);
3200 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3201 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3202 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3203 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3204 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3205 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3206 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3208 flags = btrfs_super_flags(sb);
3209 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3211 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3212 if (ret)
3213 total_errors++;
3215 if (total_errors > max_errors) {
3216 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3217 total_errors);
3219 /* This shouldn't happen. FUA is masked off if unsupported */
3220 BUG();
3223 total_errors = 0;
3224 list_for_each_entry_rcu(dev, head, dev_list) {
3225 if (!dev->bdev)
3226 continue;
3227 if (!dev->in_fs_metadata || !dev->writeable)
3228 continue;
3230 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3231 if (ret)
3232 total_errors++;
3234 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3235 if (total_errors > max_errors) {
3236 btrfs_error(root->fs_info, -EIO,
3237 "%d errors while writing supers", total_errors);
3238 return -EIO;
3240 return 0;
3243 int write_ctree_super(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *root, int max_mirrors)
3246 int ret;
3248 ret = write_all_supers(root, max_mirrors);
3249 return ret;
3252 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3254 spin_lock(&fs_info->fs_roots_radix_lock);
3255 radix_tree_delete(&fs_info->fs_roots_radix,
3256 (unsigned long)root->root_key.objectid);
3257 spin_unlock(&fs_info->fs_roots_radix_lock);
3259 if (btrfs_root_refs(&root->root_item) == 0)
3260 synchronize_srcu(&fs_info->subvol_srcu);
3262 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3263 btrfs_free_log(NULL, root);
3264 btrfs_free_log_root_tree(NULL, fs_info);
3267 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3268 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3269 free_fs_root(root);
3272 static void free_fs_root(struct btrfs_root *root)
3274 iput(root->cache_inode);
3275 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3276 if (root->anon_dev)
3277 free_anon_bdev(root->anon_dev);
3278 free_extent_buffer(root->node);
3279 free_extent_buffer(root->commit_root);
3280 kfree(root->free_ino_ctl);
3281 kfree(root->free_ino_pinned);
3282 kfree(root->name);
3283 kfree(root);
3286 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3288 int ret;
3289 struct btrfs_root *gang[8];
3290 int i;
3292 while (!list_empty(&fs_info->dead_roots)) {
3293 gang[0] = list_entry(fs_info->dead_roots.next,
3294 struct btrfs_root, root_list);
3295 list_del(&gang[0]->root_list);
3297 if (gang[0]->in_radix) {
3298 btrfs_free_fs_root(fs_info, gang[0]);
3299 } else {
3300 free_extent_buffer(gang[0]->node);
3301 free_extent_buffer(gang[0]->commit_root);
3302 kfree(gang[0]);
3306 while (1) {
3307 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3308 (void **)gang, 0,
3309 ARRAY_SIZE(gang));
3310 if (!ret)
3311 break;
3312 for (i = 0; i < ret; i++)
3313 btrfs_free_fs_root(fs_info, gang[i]);
3317 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3319 u64 root_objectid = 0;
3320 struct btrfs_root *gang[8];
3321 int i;
3322 int ret;
3324 while (1) {
3325 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3326 (void **)gang, root_objectid,
3327 ARRAY_SIZE(gang));
3328 if (!ret)
3329 break;
3331 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3332 for (i = 0; i < ret; i++) {
3333 int err;
3335 root_objectid = gang[i]->root_key.objectid;
3336 err = btrfs_orphan_cleanup(gang[i]);
3337 if (err)
3338 return err;
3340 root_objectid++;
3342 return 0;
3345 int btrfs_commit_super(struct btrfs_root *root)
3347 struct btrfs_trans_handle *trans;
3348 int ret;
3350 mutex_lock(&root->fs_info->cleaner_mutex);
3351 btrfs_run_delayed_iputs(root);
3352 btrfs_clean_old_snapshots(root);
3353 mutex_unlock(&root->fs_info->cleaner_mutex);
3355 /* wait until ongoing cleanup work done */
3356 down_write(&root->fs_info->cleanup_work_sem);
3357 up_write(&root->fs_info->cleanup_work_sem);
3359 trans = btrfs_join_transaction(root);
3360 if (IS_ERR(trans))
3361 return PTR_ERR(trans);
3362 ret = btrfs_commit_transaction(trans, root);
3363 if (ret)
3364 return ret;
3365 /* run commit again to drop the original snapshot */
3366 trans = btrfs_join_transaction(root);
3367 if (IS_ERR(trans))
3368 return PTR_ERR(trans);
3369 ret = btrfs_commit_transaction(trans, root);
3370 if (ret)
3371 return ret;
3372 ret = btrfs_write_and_wait_transaction(NULL, root);
3373 if (ret) {
3374 btrfs_error(root->fs_info, ret,
3375 "Failed to sync btree inode to disk.");
3376 return ret;
3379 ret = write_ctree_super(NULL, root, 0);
3380 return ret;
3383 int close_ctree(struct btrfs_root *root)
3385 struct btrfs_fs_info *fs_info = root->fs_info;
3386 int ret;
3388 fs_info->closing = 1;
3389 smp_mb();
3391 /* pause restriper - we want to resume on mount */
3392 btrfs_pause_balance(fs_info);
3394 btrfs_dev_replace_suspend_for_unmount(fs_info);
3396 btrfs_scrub_cancel(fs_info);
3398 /* wait for any defraggers to finish */
3399 wait_event(fs_info->transaction_wait,
3400 (atomic_read(&fs_info->defrag_running) == 0));
3402 /* clear out the rbtree of defraggable inodes */
3403 btrfs_cleanup_defrag_inodes(fs_info);
3405 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3406 ret = btrfs_commit_super(root);
3407 if (ret)
3408 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3411 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3412 btrfs_error_commit_super(root);
3414 btrfs_put_block_group_cache(fs_info);
3416 kthread_stop(fs_info->transaction_kthread);
3417 kthread_stop(fs_info->cleaner_kthread);
3419 fs_info->closing = 2;
3420 smp_mb();
3422 btrfs_free_qgroup_config(root->fs_info);
3424 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3425 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3426 percpu_counter_sum(&fs_info->delalloc_bytes));
3429 free_extent_buffer(fs_info->extent_root->node);
3430 free_extent_buffer(fs_info->extent_root->commit_root);
3431 free_extent_buffer(fs_info->tree_root->node);
3432 free_extent_buffer(fs_info->tree_root->commit_root);
3433 free_extent_buffer(fs_info->chunk_root->node);
3434 free_extent_buffer(fs_info->chunk_root->commit_root);
3435 free_extent_buffer(fs_info->dev_root->node);
3436 free_extent_buffer(fs_info->dev_root->commit_root);
3437 free_extent_buffer(fs_info->csum_root->node);
3438 free_extent_buffer(fs_info->csum_root->commit_root);
3439 if (fs_info->quota_root) {
3440 free_extent_buffer(fs_info->quota_root->node);
3441 free_extent_buffer(fs_info->quota_root->commit_root);
3444 btrfs_free_block_groups(fs_info);
3446 del_fs_roots(fs_info);
3448 iput(fs_info->btree_inode);
3450 btrfs_stop_workers(&fs_info->generic_worker);
3451 btrfs_stop_workers(&fs_info->fixup_workers);
3452 btrfs_stop_workers(&fs_info->delalloc_workers);
3453 btrfs_stop_workers(&fs_info->workers);
3454 btrfs_stop_workers(&fs_info->endio_workers);
3455 btrfs_stop_workers(&fs_info->endio_meta_workers);
3456 btrfs_stop_workers(&fs_info->endio_raid56_workers);
3457 btrfs_stop_workers(&fs_info->rmw_workers);
3458 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3459 btrfs_stop_workers(&fs_info->endio_write_workers);
3460 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3461 btrfs_stop_workers(&fs_info->submit_workers);
3462 btrfs_stop_workers(&fs_info->delayed_workers);
3463 btrfs_stop_workers(&fs_info->caching_workers);
3464 btrfs_stop_workers(&fs_info->readahead_workers);
3465 btrfs_stop_workers(&fs_info->flush_workers);
3467 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3468 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3469 btrfsic_unmount(root, fs_info->fs_devices);
3470 #endif
3472 btrfs_close_devices(fs_info->fs_devices);
3473 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3475 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3476 percpu_counter_destroy(&fs_info->delalloc_bytes);
3477 bdi_destroy(&fs_info->bdi);
3478 cleanup_srcu_struct(&fs_info->subvol_srcu);
3480 btrfs_free_stripe_hash_table(fs_info);
3482 return 0;
3485 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3486 int atomic)
3488 int ret;
3489 struct inode *btree_inode = buf->pages[0]->mapping->host;
3491 ret = extent_buffer_uptodate(buf);
3492 if (!ret)
3493 return ret;
3495 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3496 parent_transid, atomic);
3497 if (ret == -EAGAIN)
3498 return ret;
3499 return !ret;
3502 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3504 return set_extent_buffer_uptodate(buf);
3507 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3509 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3510 u64 transid = btrfs_header_generation(buf);
3511 int was_dirty;
3513 btrfs_assert_tree_locked(buf);
3514 if (transid != root->fs_info->generation)
3515 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3516 "found %llu running %llu\n",
3517 (unsigned long long)buf->start,
3518 (unsigned long long)transid,
3519 (unsigned long long)root->fs_info->generation);
3520 was_dirty = set_extent_buffer_dirty(buf);
3521 if (!was_dirty)
3522 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3523 buf->len,
3524 root->fs_info->dirty_metadata_batch);
3527 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3528 int flush_delayed)
3531 * looks as though older kernels can get into trouble with
3532 * this code, they end up stuck in balance_dirty_pages forever
3534 int ret;
3536 if (current->flags & PF_MEMALLOC)
3537 return;
3539 if (flush_delayed)
3540 btrfs_balance_delayed_items(root);
3542 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3543 BTRFS_DIRTY_METADATA_THRESH);
3544 if (ret > 0) {
3545 balance_dirty_pages_ratelimited(
3546 root->fs_info->btree_inode->i_mapping);
3548 return;
3551 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3553 __btrfs_btree_balance_dirty(root, 1);
3556 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3558 __btrfs_btree_balance_dirty(root, 0);
3561 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3563 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3564 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3567 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3568 int read_only)
3570 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3571 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3572 return -EINVAL;
3575 if (read_only)
3576 return 0;
3578 return 0;
3581 void btrfs_error_commit_super(struct btrfs_root *root)
3583 mutex_lock(&root->fs_info->cleaner_mutex);
3584 btrfs_run_delayed_iputs(root);
3585 mutex_unlock(&root->fs_info->cleaner_mutex);
3587 down_write(&root->fs_info->cleanup_work_sem);
3588 up_write(&root->fs_info->cleanup_work_sem);
3590 /* cleanup FS via transaction */
3591 btrfs_cleanup_transaction(root);
3594 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3595 struct btrfs_root *root)
3597 struct btrfs_inode *btrfs_inode;
3598 struct list_head splice;
3600 INIT_LIST_HEAD(&splice);
3602 mutex_lock(&root->fs_info->ordered_operations_mutex);
3603 spin_lock(&root->fs_info->ordered_extent_lock);
3605 list_splice_init(&t->ordered_operations, &splice);
3606 while (!list_empty(&splice)) {
3607 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3608 ordered_operations);
3610 list_del_init(&btrfs_inode->ordered_operations);
3612 btrfs_invalidate_inodes(btrfs_inode->root);
3615 spin_unlock(&root->fs_info->ordered_extent_lock);
3616 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3619 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3621 struct btrfs_ordered_extent *ordered;
3623 spin_lock(&root->fs_info->ordered_extent_lock);
3625 * This will just short circuit the ordered completion stuff which will
3626 * make sure the ordered extent gets properly cleaned up.
3628 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3629 root_extent_list)
3630 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3631 spin_unlock(&root->fs_info->ordered_extent_lock);
3634 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3635 struct btrfs_root *root)
3637 struct rb_node *node;
3638 struct btrfs_delayed_ref_root *delayed_refs;
3639 struct btrfs_delayed_ref_node *ref;
3640 int ret = 0;
3642 delayed_refs = &trans->delayed_refs;
3644 spin_lock(&delayed_refs->lock);
3645 if (delayed_refs->num_entries == 0) {
3646 spin_unlock(&delayed_refs->lock);
3647 printk(KERN_INFO "delayed_refs has NO entry\n");
3648 return ret;
3651 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3652 struct btrfs_delayed_ref_head *head = NULL;
3654 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3655 atomic_set(&ref->refs, 1);
3656 if (btrfs_delayed_ref_is_head(ref)) {
3658 head = btrfs_delayed_node_to_head(ref);
3659 if (!mutex_trylock(&head->mutex)) {
3660 atomic_inc(&ref->refs);
3661 spin_unlock(&delayed_refs->lock);
3663 /* Need to wait for the delayed ref to run */
3664 mutex_lock(&head->mutex);
3665 mutex_unlock(&head->mutex);
3666 btrfs_put_delayed_ref(ref);
3668 spin_lock(&delayed_refs->lock);
3669 continue;
3672 btrfs_free_delayed_extent_op(head->extent_op);
3673 delayed_refs->num_heads--;
3674 if (list_empty(&head->cluster))
3675 delayed_refs->num_heads_ready--;
3676 list_del_init(&head->cluster);
3679 ref->in_tree = 0;
3680 rb_erase(&ref->rb_node, &delayed_refs->root);
3681 delayed_refs->num_entries--;
3682 if (head)
3683 mutex_unlock(&head->mutex);
3684 spin_unlock(&delayed_refs->lock);
3685 btrfs_put_delayed_ref(ref);
3687 cond_resched();
3688 spin_lock(&delayed_refs->lock);
3691 spin_unlock(&delayed_refs->lock);
3693 return ret;
3696 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3698 struct btrfs_pending_snapshot *snapshot;
3699 struct list_head splice;
3701 INIT_LIST_HEAD(&splice);
3703 list_splice_init(&t->pending_snapshots, &splice);
3705 while (!list_empty(&splice)) {
3706 snapshot = list_entry(splice.next,
3707 struct btrfs_pending_snapshot,
3708 list);
3709 snapshot->error = -ECANCELED;
3710 list_del_init(&snapshot->list);
3714 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3716 struct btrfs_inode *btrfs_inode;
3717 struct list_head splice;
3719 INIT_LIST_HEAD(&splice);
3721 spin_lock(&root->fs_info->delalloc_lock);
3722 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3724 while (!list_empty(&splice)) {
3725 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3726 delalloc_inodes);
3728 list_del_init(&btrfs_inode->delalloc_inodes);
3729 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3730 &btrfs_inode->runtime_flags);
3732 btrfs_invalidate_inodes(btrfs_inode->root);
3735 spin_unlock(&root->fs_info->delalloc_lock);
3738 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3739 struct extent_io_tree *dirty_pages,
3740 int mark)
3742 int ret;
3743 struct page *page;
3744 struct inode *btree_inode = root->fs_info->btree_inode;
3745 struct extent_buffer *eb;
3746 u64 start = 0;
3747 u64 end;
3748 u64 offset;
3749 unsigned long index;
3751 while (1) {
3752 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3753 mark, NULL);
3754 if (ret)
3755 break;
3757 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3758 while (start <= end) {
3759 index = start >> PAGE_CACHE_SHIFT;
3760 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3761 page = find_get_page(btree_inode->i_mapping, index);
3762 if (!page)
3763 continue;
3764 offset = page_offset(page);
3766 spin_lock(&dirty_pages->buffer_lock);
3767 eb = radix_tree_lookup(
3768 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3769 offset >> PAGE_CACHE_SHIFT);
3770 spin_unlock(&dirty_pages->buffer_lock);
3771 if (eb)
3772 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3773 &eb->bflags);
3774 if (PageWriteback(page))
3775 end_page_writeback(page);
3777 lock_page(page);
3778 if (PageDirty(page)) {
3779 clear_page_dirty_for_io(page);
3780 spin_lock_irq(&page->mapping->tree_lock);
3781 radix_tree_tag_clear(&page->mapping->page_tree,
3782 page_index(page),
3783 PAGECACHE_TAG_DIRTY);
3784 spin_unlock_irq(&page->mapping->tree_lock);
3787 unlock_page(page);
3788 page_cache_release(page);
3792 return ret;
3795 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3796 struct extent_io_tree *pinned_extents)
3798 struct extent_io_tree *unpin;
3799 u64 start;
3800 u64 end;
3801 int ret;
3802 bool loop = true;
3804 unpin = pinned_extents;
3805 again:
3806 while (1) {
3807 ret = find_first_extent_bit(unpin, 0, &start, &end,
3808 EXTENT_DIRTY, NULL);
3809 if (ret)
3810 break;
3812 /* opt_discard */
3813 if (btrfs_test_opt(root, DISCARD))
3814 ret = btrfs_error_discard_extent(root, start,
3815 end + 1 - start,
3816 NULL);
3818 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3819 btrfs_error_unpin_extent_range(root, start, end);
3820 cond_resched();
3823 if (loop) {
3824 if (unpin == &root->fs_info->freed_extents[0])
3825 unpin = &root->fs_info->freed_extents[1];
3826 else
3827 unpin = &root->fs_info->freed_extents[0];
3828 loop = false;
3829 goto again;
3832 return 0;
3835 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3836 struct btrfs_root *root)
3838 btrfs_destroy_delayed_refs(cur_trans, root);
3839 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3840 cur_trans->dirty_pages.dirty_bytes);
3842 /* FIXME: cleanup wait for commit */
3843 cur_trans->in_commit = 1;
3844 cur_trans->blocked = 1;
3845 wake_up(&root->fs_info->transaction_blocked_wait);
3847 btrfs_evict_pending_snapshots(cur_trans);
3849 cur_trans->blocked = 0;
3850 wake_up(&root->fs_info->transaction_wait);
3852 cur_trans->commit_done = 1;
3853 wake_up(&cur_trans->commit_wait);
3855 btrfs_destroy_delayed_inodes(root);
3856 btrfs_assert_delayed_root_empty(root);
3858 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3859 EXTENT_DIRTY);
3860 btrfs_destroy_pinned_extent(root,
3861 root->fs_info->pinned_extents);
3864 memset(cur_trans, 0, sizeof(*cur_trans));
3865 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3869 int btrfs_cleanup_transaction(struct btrfs_root *root)
3871 struct btrfs_transaction *t;
3872 LIST_HEAD(list);
3874 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3876 spin_lock(&root->fs_info->trans_lock);
3877 list_splice_init(&root->fs_info->trans_list, &list);
3878 root->fs_info->trans_no_join = 1;
3879 spin_unlock(&root->fs_info->trans_lock);
3881 while (!list_empty(&list)) {
3882 t = list_entry(list.next, struct btrfs_transaction, list);
3884 btrfs_destroy_ordered_operations(t, root);
3886 btrfs_destroy_ordered_extents(root);
3888 btrfs_destroy_delayed_refs(t, root);
3890 btrfs_block_rsv_release(root,
3891 &root->fs_info->trans_block_rsv,
3892 t->dirty_pages.dirty_bytes);
3894 /* FIXME: cleanup wait for commit */
3895 t->in_commit = 1;
3896 t->blocked = 1;
3897 smp_mb();
3898 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3899 wake_up(&root->fs_info->transaction_blocked_wait);
3901 btrfs_evict_pending_snapshots(t);
3903 t->blocked = 0;
3904 smp_mb();
3905 if (waitqueue_active(&root->fs_info->transaction_wait))
3906 wake_up(&root->fs_info->transaction_wait);
3908 t->commit_done = 1;
3909 smp_mb();
3910 if (waitqueue_active(&t->commit_wait))
3911 wake_up(&t->commit_wait);
3913 btrfs_destroy_delayed_inodes(root);
3914 btrfs_assert_delayed_root_empty(root);
3916 btrfs_destroy_delalloc_inodes(root);
3918 spin_lock(&root->fs_info->trans_lock);
3919 root->fs_info->running_transaction = NULL;
3920 spin_unlock(&root->fs_info->trans_lock);
3922 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3923 EXTENT_DIRTY);
3925 btrfs_destroy_pinned_extent(root,
3926 root->fs_info->pinned_extents);
3928 atomic_set(&t->use_count, 0);
3929 list_del_init(&t->list);
3930 memset(t, 0, sizeof(*t));
3931 kmem_cache_free(btrfs_transaction_cachep, t);
3934 spin_lock(&root->fs_info->trans_lock);
3935 root->fs_info->trans_no_join = 0;
3936 spin_unlock(&root->fs_info->trans_lock);
3937 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3939 return 0;
3942 static struct extent_io_ops btree_extent_io_ops = {
3943 .readpage_end_io_hook = btree_readpage_end_io_hook,
3944 .readpage_io_failed_hook = btree_io_failed_hook,
3945 .submit_bio_hook = btree_submit_bio_hook,
3946 /* note we're sharing with inode.c for the merge bio hook */
3947 .merge_bio_hook = btrfs_merge_bio_hook,