asm-generic: architecture independent readq/writeq for 32bit environment
[linux-2.6/libata-dev.git] / drivers / block / nvme.c
blob1f3c1a7d132a59ded61f1859fb83febc5e19609a
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
46 #define NVME_Q_DEPTH 1024
47 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
48 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
49 #define NVME_MINORS 64
50 #define NVME_IO_TIMEOUT (5 * HZ)
51 #define ADMIN_TIMEOUT (60 * HZ)
53 static int nvme_major;
54 module_param(nvme_major, int, 0);
56 static int use_threaded_interrupts;
57 module_param(use_threaded_interrupts, int, 0);
59 static DEFINE_SPINLOCK(dev_list_lock);
60 static LIST_HEAD(dev_list);
61 static struct task_struct *nvme_thread;
64 * Represents an NVM Express device. Each nvme_dev is a PCI function.
66 struct nvme_dev {
67 struct list_head node;
68 struct nvme_queue **queues;
69 u32 __iomem *dbs;
70 struct pci_dev *pci_dev;
71 struct dma_pool *prp_page_pool;
72 struct dma_pool *prp_small_pool;
73 int instance;
74 int queue_count;
75 int db_stride;
76 u32 ctrl_config;
77 struct msix_entry *entry;
78 struct nvme_bar __iomem *bar;
79 struct list_head namespaces;
80 char serial[20];
81 char model[40];
82 char firmware_rev[8];
86 * An NVM Express namespace is equivalent to a SCSI LUN
88 struct nvme_ns {
89 struct list_head list;
91 struct nvme_dev *dev;
92 struct request_queue *queue;
93 struct gendisk *disk;
95 int ns_id;
96 int lba_shift;
100 * An NVM Express queue. Each device has at least two (one for admin
101 * commands and one for I/O commands).
103 struct nvme_queue {
104 struct device *q_dmadev;
105 struct nvme_dev *dev;
106 spinlock_t q_lock;
107 struct nvme_command *sq_cmds;
108 volatile struct nvme_completion *cqes;
109 dma_addr_t sq_dma_addr;
110 dma_addr_t cq_dma_addr;
111 wait_queue_head_t sq_full;
112 wait_queue_t sq_cong_wait;
113 struct bio_list sq_cong;
114 u32 __iomem *q_db;
115 u16 q_depth;
116 u16 cq_vector;
117 u16 sq_head;
118 u16 sq_tail;
119 u16 cq_head;
120 u16 cq_phase;
121 unsigned long cmdid_data[];
125 * Check we didin't inadvertently grow the command struct
127 static inline void _nvme_check_size(void)
129 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
140 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
141 struct nvme_completion *);
143 struct nvme_cmd_info {
144 nvme_completion_fn fn;
145 void *ctx;
146 unsigned long timeout;
149 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
151 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
155 * alloc_cmdid() - Allocate a Command ID
156 * @nvmeq: The queue that will be used for this command
157 * @ctx: A pointer that will be passed to the handler
158 * @handler: The function to call on completion
160 * Allocate a Command ID for a queue. The data passed in will
161 * be passed to the completion handler. This is implemented by using
162 * the bottom two bits of the ctx pointer to store the handler ID.
163 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
164 * We can change this if it becomes a problem.
166 * May be called with local interrupts disabled and the q_lock held,
167 * or with interrupts enabled and no locks held.
169 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
170 nvme_completion_fn handler, unsigned timeout)
172 int depth = nvmeq->q_depth - 1;
173 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
174 int cmdid;
176 do {
177 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
178 if (cmdid >= depth)
179 return -EBUSY;
180 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
182 info[cmdid].fn = handler;
183 info[cmdid].ctx = ctx;
184 info[cmdid].timeout = jiffies + timeout;
185 return cmdid;
188 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
189 nvme_completion_fn handler, unsigned timeout)
191 int cmdid;
192 wait_event_killable(nvmeq->sq_full,
193 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
194 return (cmdid < 0) ? -EINTR : cmdid;
197 /* Special values must be less than 0x1000 */
198 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
199 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
200 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
201 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
202 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
204 static void special_completion(struct nvme_dev *dev, void *ctx,
205 struct nvme_completion *cqe)
207 if (ctx == CMD_CTX_CANCELLED)
208 return;
209 if (ctx == CMD_CTX_FLUSH)
210 return;
211 if (ctx == CMD_CTX_COMPLETED) {
212 dev_warn(&dev->pci_dev->dev,
213 "completed id %d twice on queue %d\n",
214 cqe->command_id, le16_to_cpup(&cqe->sq_id));
215 return;
217 if (ctx == CMD_CTX_INVALID) {
218 dev_warn(&dev->pci_dev->dev,
219 "invalid id %d completed on queue %d\n",
220 cqe->command_id, le16_to_cpup(&cqe->sq_id));
221 return;
224 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
228 * Called with local interrupts disabled and the q_lock held. May not sleep.
230 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
231 nvme_completion_fn *fn)
233 void *ctx;
234 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
236 if (cmdid >= nvmeq->q_depth) {
237 *fn = special_completion;
238 return CMD_CTX_INVALID;
240 *fn = info[cmdid].fn;
241 ctx = info[cmdid].ctx;
242 info[cmdid].fn = special_completion;
243 info[cmdid].ctx = CMD_CTX_COMPLETED;
244 clear_bit(cmdid, nvmeq->cmdid_data);
245 wake_up(&nvmeq->sq_full);
246 return ctx;
249 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
250 nvme_completion_fn *fn)
252 void *ctx;
253 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
254 if (fn)
255 *fn = info[cmdid].fn;
256 ctx = info[cmdid].ctx;
257 info[cmdid].fn = special_completion;
258 info[cmdid].ctx = CMD_CTX_CANCELLED;
259 return ctx;
262 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
264 return dev->queues[get_cpu() + 1];
267 static void put_nvmeq(struct nvme_queue *nvmeq)
269 put_cpu();
273 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
274 * @nvmeq: The queue to use
275 * @cmd: The command to send
277 * Safe to use from interrupt context
279 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
281 unsigned long flags;
282 u16 tail;
283 spin_lock_irqsave(&nvmeq->q_lock, flags);
284 tail = nvmeq->sq_tail;
285 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
286 if (++tail == nvmeq->q_depth)
287 tail = 0;
288 writel(tail, nvmeq->q_db);
289 nvmeq->sq_tail = tail;
290 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
292 return 0;
296 * The nvme_iod describes the data in an I/O, including the list of PRP
297 * entries. You can't see it in this data structure because C doesn't let
298 * me express that. Use nvme_alloc_iod to ensure there's enough space
299 * allocated to store the PRP list.
301 struct nvme_iod {
302 void *private; /* For the use of the submitter of the I/O */
303 int npages; /* In the PRP list. 0 means small pool in use */
304 int offset; /* Of PRP list */
305 int nents; /* Used in scatterlist */
306 int length; /* Of data, in bytes */
307 dma_addr_t first_dma;
308 struct scatterlist sg[0];
311 static __le64 **iod_list(struct nvme_iod *iod)
313 return ((void *)iod) + iod->offset;
317 * Will slightly overestimate the number of pages needed. This is OK
318 * as it only leads to a small amount of wasted memory for the lifetime of
319 * the I/O.
321 static int nvme_npages(unsigned size)
323 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
324 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
327 static struct nvme_iod *
328 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
330 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
331 sizeof(__le64 *) * nvme_npages(nbytes) +
332 sizeof(struct scatterlist) * nseg, gfp);
334 if (iod) {
335 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
336 iod->npages = -1;
337 iod->length = nbytes;
340 return iod;
343 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
345 const int last_prp = PAGE_SIZE / 8 - 1;
346 int i;
347 __le64 **list = iod_list(iod);
348 dma_addr_t prp_dma = iod->first_dma;
350 if (iod->npages == 0)
351 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
352 for (i = 0; i < iod->npages; i++) {
353 __le64 *prp_list = list[i];
354 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
355 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
356 prp_dma = next_prp_dma;
358 kfree(iod);
361 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
363 struct nvme_queue *nvmeq = get_nvmeq(dev);
364 if (bio_list_empty(&nvmeq->sq_cong))
365 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
366 bio_list_add(&nvmeq->sq_cong, bio);
367 put_nvmeq(nvmeq);
368 wake_up_process(nvme_thread);
371 static void bio_completion(struct nvme_dev *dev, void *ctx,
372 struct nvme_completion *cqe)
374 struct nvme_iod *iod = ctx;
375 struct bio *bio = iod->private;
376 u16 status = le16_to_cpup(&cqe->status) >> 1;
378 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
379 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
380 nvme_free_iod(dev, iod);
381 if (status) {
382 bio_endio(bio, -EIO);
383 } else if (bio->bi_vcnt > bio->bi_idx) {
384 requeue_bio(dev, bio);
385 } else {
386 bio_endio(bio, 0);
390 /* length is in bytes. gfp flags indicates whether we may sleep. */
391 static int nvme_setup_prps(struct nvme_dev *dev,
392 struct nvme_common_command *cmd, struct nvme_iod *iod,
393 int total_len, gfp_t gfp)
395 struct dma_pool *pool;
396 int length = total_len;
397 struct scatterlist *sg = iod->sg;
398 int dma_len = sg_dma_len(sg);
399 u64 dma_addr = sg_dma_address(sg);
400 int offset = offset_in_page(dma_addr);
401 __le64 *prp_list;
402 __le64 **list = iod_list(iod);
403 dma_addr_t prp_dma;
404 int nprps, i;
406 cmd->prp1 = cpu_to_le64(dma_addr);
407 length -= (PAGE_SIZE - offset);
408 if (length <= 0)
409 return total_len;
411 dma_len -= (PAGE_SIZE - offset);
412 if (dma_len) {
413 dma_addr += (PAGE_SIZE - offset);
414 } else {
415 sg = sg_next(sg);
416 dma_addr = sg_dma_address(sg);
417 dma_len = sg_dma_len(sg);
420 if (length <= PAGE_SIZE) {
421 cmd->prp2 = cpu_to_le64(dma_addr);
422 return total_len;
425 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
426 if (nprps <= (256 / 8)) {
427 pool = dev->prp_small_pool;
428 iod->npages = 0;
429 } else {
430 pool = dev->prp_page_pool;
431 iod->npages = 1;
434 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
435 if (!prp_list) {
436 cmd->prp2 = cpu_to_le64(dma_addr);
437 iod->npages = -1;
438 return (total_len - length) + PAGE_SIZE;
440 list[0] = prp_list;
441 iod->first_dma = prp_dma;
442 cmd->prp2 = cpu_to_le64(prp_dma);
443 i = 0;
444 for (;;) {
445 if (i == PAGE_SIZE / 8) {
446 __le64 *old_prp_list = prp_list;
447 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
448 if (!prp_list)
449 return total_len - length;
450 list[iod->npages++] = prp_list;
451 prp_list[0] = old_prp_list[i - 1];
452 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
453 i = 1;
455 prp_list[i++] = cpu_to_le64(dma_addr);
456 dma_len -= PAGE_SIZE;
457 dma_addr += PAGE_SIZE;
458 length -= PAGE_SIZE;
459 if (length <= 0)
460 break;
461 if (dma_len > 0)
462 continue;
463 BUG_ON(dma_len < 0);
464 sg = sg_next(sg);
465 dma_addr = sg_dma_address(sg);
466 dma_len = sg_dma_len(sg);
469 return total_len;
472 /* NVMe scatterlists require no holes in the virtual address */
473 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
474 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
476 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
477 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
479 struct bio_vec *bvec, *bvprv = NULL;
480 struct scatterlist *sg = NULL;
481 int i, old_idx, length = 0, nsegs = 0;
483 sg_init_table(iod->sg, psegs);
484 old_idx = bio->bi_idx;
485 bio_for_each_segment(bvec, bio, i) {
486 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
487 sg->length += bvec->bv_len;
488 } else {
489 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
490 break;
491 sg = sg ? sg + 1 : iod->sg;
492 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
493 bvec->bv_offset);
494 nsegs++;
496 length += bvec->bv_len;
497 bvprv = bvec;
499 bio->bi_idx = i;
500 iod->nents = nsegs;
501 sg_mark_end(sg);
502 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
503 bio->bi_idx = old_idx;
504 return -ENOMEM;
506 return length;
509 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
510 int cmdid)
512 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
514 memset(cmnd, 0, sizeof(*cmnd));
515 cmnd->common.opcode = nvme_cmd_flush;
516 cmnd->common.command_id = cmdid;
517 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
519 if (++nvmeq->sq_tail == nvmeq->q_depth)
520 nvmeq->sq_tail = 0;
521 writel(nvmeq->sq_tail, nvmeq->q_db);
523 return 0;
526 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
528 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
529 special_completion, NVME_IO_TIMEOUT);
530 if (unlikely(cmdid < 0))
531 return cmdid;
533 return nvme_submit_flush(nvmeq, ns, cmdid);
537 * Called with local interrupts disabled and the q_lock held. May not sleep.
539 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
540 struct bio *bio)
542 struct nvme_command *cmnd;
543 struct nvme_iod *iod;
544 enum dma_data_direction dma_dir;
545 int cmdid, length, result = -ENOMEM;
546 u16 control;
547 u32 dsmgmt;
548 int psegs = bio_phys_segments(ns->queue, bio);
550 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
551 result = nvme_submit_flush_data(nvmeq, ns);
552 if (result)
553 return result;
556 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
557 if (!iod)
558 goto nomem;
559 iod->private = bio;
561 result = -EBUSY;
562 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
563 if (unlikely(cmdid < 0))
564 goto free_iod;
566 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
567 return nvme_submit_flush(nvmeq, ns, cmdid);
569 control = 0;
570 if (bio->bi_rw & REQ_FUA)
571 control |= NVME_RW_FUA;
572 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
573 control |= NVME_RW_LR;
575 dsmgmt = 0;
576 if (bio->bi_rw & REQ_RAHEAD)
577 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
579 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
581 memset(cmnd, 0, sizeof(*cmnd));
582 if (bio_data_dir(bio)) {
583 cmnd->rw.opcode = nvme_cmd_write;
584 dma_dir = DMA_TO_DEVICE;
585 } else {
586 cmnd->rw.opcode = nvme_cmd_read;
587 dma_dir = DMA_FROM_DEVICE;
590 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
591 if (result < 0)
592 goto free_iod;
593 length = result;
595 cmnd->rw.command_id = cmdid;
596 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
597 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
598 GFP_ATOMIC);
599 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
600 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
601 cmnd->rw.control = cpu_to_le16(control);
602 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
604 bio->bi_sector += length >> 9;
606 if (++nvmeq->sq_tail == nvmeq->q_depth)
607 nvmeq->sq_tail = 0;
608 writel(nvmeq->sq_tail, nvmeq->q_db);
610 return 0;
612 free_iod:
613 nvme_free_iod(nvmeq->dev, iod);
614 nomem:
615 return result;
618 static void nvme_make_request(struct request_queue *q, struct bio *bio)
620 struct nvme_ns *ns = q->queuedata;
621 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
622 int result = -EBUSY;
624 spin_lock_irq(&nvmeq->q_lock);
625 if (bio_list_empty(&nvmeq->sq_cong))
626 result = nvme_submit_bio_queue(nvmeq, ns, bio);
627 if (unlikely(result)) {
628 if (bio_list_empty(&nvmeq->sq_cong))
629 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
630 bio_list_add(&nvmeq->sq_cong, bio);
633 spin_unlock_irq(&nvmeq->q_lock);
634 put_nvmeq(nvmeq);
637 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
639 u16 head, phase;
641 head = nvmeq->cq_head;
642 phase = nvmeq->cq_phase;
644 for (;;) {
645 void *ctx;
646 nvme_completion_fn fn;
647 struct nvme_completion cqe = nvmeq->cqes[head];
648 if ((le16_to_cpu(cqe.status) & 1) != phase)
649 break;
650 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
651 if (++head == nvmeq->q_depth) {
652 head = 0;
653 phase = !phase;
656 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
657 fn(nvmeq->dev, ctx, &cqe);
660 /* If the controller ignores the cq head doorbell and continuously
661 * writes to the queue, it is theoretically possible to wrap around
662 * the queue twice and mistakenly return IRQ_NONE. Linux only
663 * requires that 0.1% of your interrupts are handled, so this isn't
664 * a big problem.
666 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
667 return IRQ_NONE;
669 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
670 nvmeq->cq_head = head;
671 nvmeq->cq_phase = phase;
673 return IRQ_HANDLED;
676 static irqreturn_t nvme_irq(int irq, void *data)
678 irqreturn_t result;
679 struct nvme_queue *nvmeq = data;
680 spin_lock(&nvmeq->q_lock);
681 result = nvme_process_cq(nvmeq);
682 spin_unlock(&nvmeq->q_lock);
683 return result;
686 static irqreturn_t nvme_irq_check(int irq, void *data)
688 struct nvme_queue *nvmeq = data;
689 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
690 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
691 return IRQ_NONE;
692 return IRQ_WAKE_THREAD;
695 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
697 spin_lock_irq(&nvmeq->q_lock);
698 cancel_cmdid(nvmeq, cmdid, NULL);
699 spin_unlock_irq(&nvmeq->q_lock);
702 struct sync_cmd_info {
703 struct task_struct *task;
704 u32 result;
705 int status;
708 static void sync_completion(struct nvme_dev *dev, void *ctx,
709 struct nvme_completion *cqe)
711 struct sync_cmd_info *cmdinfo = ctx;
712 cmdinfo->result = le32_to_cpup(&cqe->result);
713 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
714 wake_up_process(cmdinfo->task);
718 * Returns 0 on success. If the result is negative, it's a Linux error code;
719 * if the result is positive, it's an NVM Express status code
721 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
722 struct nvme_command *cmd, u32 *result, unsigned timeout)
724 int cmdid;
725 struct sync_cmd_info cmdinfo;
727 cmdinfo.task = current;
728 cmdinfo.status = -EINTR;
730 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
731 timeout);
732 if (cmdid < 0)
733 return cmdid;
734 cmd->common.command_id = cmdid;
736 set_current_state(TASK_KILLABLE);
737 nvme_submit_cmd(nvmeq, cmd);
738 schedule();
740 if (cmdinfo.status == -EINTR) {
741 nvme_abort_command(nvmeq, cmdid);
742 return -EINTR;
745 if (result)
746 *result = cmdinfo.result;
748 return cmdinfo.status;
751 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
752 u32 *result)
754 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
757 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
759 int status;
760 struct nvme_command c;
762 memset(&c, 0, sizeof(c));
763 c.delete_queue.opcode = opcode;
764 c.delete_queue.qid = cpu_to_le16(id);
766 status = nvme_submit_admin_cmd(dev, &c, NULL);
767 if (status)
768 return -EIO;
769 return 0;
772 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
773 struct nvme_queue *nvmeq)
775 int status;
776 struct nvme_command c;
777 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
779 memset(&c, 0, sizeof(c));
780 c.create_cq.opcode = nvme_admin_create_cq;
781 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
782 c.create_cq.cqid = cpu_to_le16(qid);
783 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
784 c.create_cq.cq_flags = cpu_to_le16(flags);
785 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
787 status = nvme_submit_admin_cmd(dev, &c, NULL);
788 if (status)
789 return -EIO;
790 return 0;
793 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
794 struct nvme_queue *nvmeq)
796 int status;
797 struct nvme_command c;
798 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
800 memset(&c, 0, sizeof(c));
801 c.create_sq.opcode = nvme_admin_create_sq;
802 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
803 c.create_sq.sqid = cpu_to_le16(qid);
804 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
805 c.create_sq.sq_flags = cpu_to_le16(flags);
806 c.create_sq.cqid = cpu_to_le16(qid);
808 status = nvme_submit_admin_cmd(dev, &c, NULL);
809 if (status)
810 return -EIO;
811 return 0;
814 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
816 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
819 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
821 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
824 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
825 dma_addr_t dma_addr)
827 struct nvme_command c;
829 memset(&c, 0, sizeof(c));
830 c.identify.opcode = nvme_admin_identify;
831 c.identify.nsid = cpu_to_le32(nsid);
832 c.identify.prp1 = cpu_to_le64(dma_addr);
833 c.identify.cns = cpu_to_le32(cns);
835 return nvme_submit_admin_cmd(dev, &c, NULL);
838 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
839 unsigned dword11, dma_addr_t dma_addr)
841 struct nvme_command c;
843 memset(&c, 0, sizeof(c));
844 c.features.opcode = nvme_admin_get_features;
845 c.features.prp1 = cpu_to_le64(dma_addr);
846 c.features.fid = cpu_to_le32(fid);
847 c.features.dword11 = cpu_to_le32(dword11);
849 return nvme_submit_admin_cmd(dev, &c, NULL);
852 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
853 unsigned dword11, dma_addr_t dma_addr, u32 *result)
855 struct nvme_command c;
857 memset(&c, 0, sizeof(c));
858 c.features.opcode = nvme_admin_set_features;
859 c.features.prp1 = cpu_to_le64(dma_addr);
860 c.features.fid = cpu_to_le32(fid);
861 c.features.dword11 = cpu_to_le32(dword11);
863 return nvme_submit_admin_cmd(dev, &c, result);
866 static void nvme_free_queue(struct nvme_dev *dev, int qid)
868 struct nvme_queue *nvmeq = dev->queues[qid];
869 int vector = dev->entry[nvmeq->cq_vector].vector;
871 irq_set_affinity_hint(vector, NULL);
872 free_irq(vector, nvmeq);
874 /* Don't tell the adapter to delete the admin queue */
875 if (qid) {
876 adapter_delete_sq(dev, qid);
877 adapter_delete_cq(dev, qid);
880 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
881 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
882 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
883 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
884 kfree(nvmeq);
887 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
888 int depth, int vector)
890 struct device *dmadev = &dev->pci_dev->dev;
891 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
892 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
893 if (!nvmeq)
894 return NULL;
896 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
897 &nvmeq->cq_dma_addr, GFP_KERNEL);
898 if (!nvmeq->cqes)
899 goto free_nvmeq;
900 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
902 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
903 &nvmeq->sq_dma_addr, GFP_KERNEL);
904 if (!nvmeq->sq_cmds)
905 goto free_cqdma;
907 nvmeq->q_dmadev = dmadev;
908 nvmeq->dev = dev;
909 spin_lock_init(&nvmeq->q_lock);
910 nvmeq->cq_head = 0;
911 nvmeq->cq_phase = 1;
912 init_waitqueue_head(&nvmeq->sq_full);
913 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
914 bio_list_init(&nvmeq->sq_cong);
915 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
916 nvmeq->q_depth = depth;
917 nvmeq->cq_vector = vector;
919 return nvmeq;
921 free_cqdma:
922 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
923 nvmeq->cq_dma_addr);
924 free_nvmeq:
925 kfree(nvmeq);
926 return NULL;
929 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
930 const char *name)
932 if (use_threaded_interrupts)
933 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
934 nvme_irq_check, nvme_irq,
935 IRQF_DISABLED | IRQF_SHARED,
936 name, nvmeq);
937 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
938 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
941 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
942 int qid, int cq_size, int vector)
944 int result;
945 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
947 if (!nvmeq)
948 return ERR_PTR(-ENOMEM);
950 result = adapter_alloc_cq(dev, qid, nvmeq);
951 if (result < 0)
952 goto free_nvmeq;
954 result = adapter_alloc_sq(dev, qid, nvmeq);
955 if (result < 0)
956 goto release_cq;
958 result = queue_request_irq(dev, nvmeq, "nvme");
959 if (result < 0)
960 goto release_sq;
962 return nvmeq;
964 release_sq:
965 adapter_delete_sq(dev, qid);
966 release_cq:
967 adapter_delete_cq(dev, qid);
968 free_nvmeq:
969 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
970 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
971 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
972 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
973 kfree(nvmeq);
974 return ERR_PTR(result);
977 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
979 int result;
980 u32 aqa;
981 u64 cap;
982 unsigned long timeout;
983 struct nvme_queue *nvmeq;
985 dev->dbs = ((void __iomem *)dev->bar) + 4096;
987 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
988 if (!nvmeq)
989 return -ENOMEM;
991 aqa = nvmeq->q_depth - 1;
992 aqa |= aqa << 16;
994 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
995 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
996 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
997 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
999 writel(0, &dev->bar->cc);
1000 writel(aqa, &dev->bar->aqa);
1001 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1002 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1003 writel(dev->ctrl_config, &dev->bar->cc);
1005 cap = readq(&dev->bar->cap);
1006 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1007 dev->db_stride = NVME_CAP_STRIDE(cap);
1009 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1010 msleep(100);
1011 if (fatal_signal_pending(current))
1012 return -EINTR;
1013 if (time_after(jiffies, timeout)) {
1014 dev_err(&dev->pci_dev->dev,
1015 "Device not ready; aborting initialisation\n");
1016 return -ENODEV;
1020 result = queue_request_irq(dev, nvmeq, "nvme admin");
1021 dev->queues[0] = nvmeq;
1022 return result;
1025 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1026 unsigned long addr, unsigned length)
1028 int i, err, count, nents, offset;
1029 struct scatterlist *sg;
1030 struct page **pages;
1031 struct nvme_iod *iod;
1033 if (addr & 3)
1034 return ERR_PTR(-EINVAL);
1035 if (!length)
1036 return ERR_PTR(-EINVAL);
1038 offset = offset_in_page(addr);
1039 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1040 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1042 err = get_user_pages_fast(addr, count, 1, pages);
1043 if (err < count) {
1044 count = err;
1045 err = -EFAULT;
1046 goto put_pages;
1049 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1050 sg = iod->sg;
1051 sg_init_table(sg, count);
1052 for (i = 0; i < count; i++) {
1053 sg_set_page(&sg[i], pages[i],
1054 min_t(int, length, PAGE_SIZE - offset), offset);
1055 length -= (PAGE_SIZE - offset);
1056 offset = 0;
1058 sg_mark_end(&sg[i - 1]);
1059 iod->nents = count;
1061 err = -ENOMEM;
1062 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1063 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1064 if (!nents)
1065 goto free_iod;
1067 kfree(pages);
1068 return iod;
1070 free_iod:
1071 kfree(iod);
1072 put_pages:
1073 for (i = 0; i < count; i++)
1074 put_page(pages[i]);
1075 kfree(pages);
1076 return ERR_PTR(err);
1079 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1080 struct nvme_iod *iod)
1082 int i;
1084 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1085 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1087 for (i = 0; i < iod->nents; i++)
1088 put_page(sg_page(&iod->sg[i]));
1091 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1093 struct nvme_dev *dev = ns->dev;
1094 struct nvme_queue *nvmeq;
1095 struct nvme_user_io io;
1096 struct nvme_command c;
1097 unsigned length;
1098 int status;
1099 struct nvme_iod *iod;
1101 if (copy_from_user(&io, uio, sizeof(io)))
1102 return -EFAULT;
1103 length = (io.nblocks + 1) << ns->lba_shift;
1105 switch (io.opcode) {
1106 case nvme_cmd_write:
1107 case nvme_cmd_read:
1108 case nvme_cmd_compare:
1109 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1110 break;
1111 default:
1112 return -EINVAL;
1115 if (IS_ERR(iod))
1116 return PTR_ERR(iod);
1118 memset(&c, 0, sizeof(c));
1119 c.rw.opcode = io.opcode;
1120 c.rw.flags = io.flags;
1121 c.rw.nsid = cpu_to_le32(ns->ns_id);
1122 c.rw.slba = cpu_to_le64(io.slba);
1123 c.rw.length = cpu_to_le16(io.nblocks);
1124 c.rw.control = cpu_to_le16(io.control);
1125 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1126 c.rw.reftag = io.reftag;
1127 c.rw.apptag = io.apptag;
1128 c.rw.appmask = io.appmask;
1129 /* XXX: metadata */
1130 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1132 nvmeq = get_nvmeq(dev);
1134 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1135 * disabled. We may be preempted at any point, and be rescheduled
1136 * to a different CPU. That will cause cacheline bouncing, but no
1137 * additional races since q_lock already protects against other CPUs.
1139 put_nvmeq(nvmeq);
1140 if (length != (io.nblocks + 1) << ns->lba_shift)
1141 status = -ENOMEM;
1142 else
1143 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1145 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1146 nvme_free_iod(dev, iod);
1147 return status;
1150 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1151 struct nvme_admin_cmd __user *ucmd)
1153 struct nvme_dev *dev = ns->dev;
1154 struct nvme_admin_cmd cmd;
1155 struct nvme_command c;
1156 int status, length;
1157 struct nvme_iod *iod;
1159 if (!capable(CAP_SYS_ADMIN))
1160 return -EACCES;
1161 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1162 return -EFAULT;
1164 memset(&c, 0, sizeof(c));
1165 c.common.opcode = cmd.opcode;
1166 c.common.flags = cmd.flags;
1167 c.common.nsid = cpu_to_le32(cmd.nsid);
1168 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1169 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1170 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1171 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1172 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1173 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1174 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1175 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1177 length = cmd.data_len;
1178 if (cmd.data_len) {
1179 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1180 length);
1181 if (IS_ERR(iod))
1182 return PTR_ERR(iod);
1183 length = nvme_setup_prps(dev, &c.common, iod, length,
1184 GFP_KERNEL);
1187 if (length != cmd.data_len)
1188 status = -ENOMEM;
1189 else
1190 status = nvme_submit_admin_cmd(dev, &c, NULL);
1192 if (cmd.data_len) {
1193 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1194 nvme_free_iod(dev, iod);
1196 return status;
1199 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1200 unsigned long arg)
1202 struct nvme_ns *ns = bdev->bd_disk->private_data;
1204 switch (cmd) {
1205 case NVME_IOCTL_ID:
1206 return ns->ns_id;
1207 case NVME_IOCTL_ADMIN_CMD:
1208 return nvme_user_admin_cmd(ns, (void __user *)arg);
1209 case NVME_IOCTL_SUBMIT_IO:
1210 return nvme_submit_io(ns, (void __user *)arg);
1211 default:
1212 return -ENOTTY;
1216 static const struct block_device_operations nvme_fops = {
1217 .owner = THIS_MODULE,
1218 .ioctl = nvme_ioctl,
1219 .compat_ioctl = nvme_ioctl,
1222 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1224 int depth = nvmeq->q_depth - 1;
1225 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1226 unsigned long now = jiffies;
1227 int cmdid;
1229 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1230 void *ctx;
1231 nvme_completion_fn fn;
1232 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1234 if (!time_after(now, info[cmdid].timeout))
1235 continue;
1236 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1237 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1238 fn(nvmeq->dev, ctx, &cqe);
1242 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1244 while (bio_list_peek(&nvmeq->sq_cong)) {
1245 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1246 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1247 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1248 bio_list_add_head(&nvmeq->sq_cong, bio);
1249 break;
1251 if (bio_list_empty(&nvmeq->sq_cong))
1252 remove_wait_queue(&nvmeq->sq_full,
1253 &nvmeq->sq_cong_wait);
1257 static int nvme_kthread(void *data)
1259 struct nvme_dev *dev;
1261 while (!kthread_should_stop()) {
1262 __set_current_state(TASK_RUNNING);
1263 spin_lock(&dev_list_lock);
1264 list_for_each_entry(dev, &dev_list, node) {
1265 int i;
1266 for (i = 0; i < dev->queue_count; i++) {
1267 struct nvme_queue *nvmeq = dev->queues[i];
1268 if (!nvmeq)
1269 continue;
1270 spin_lock_irq(&nvmeq->q_lock);
1271 if (nvme_process_cq(nvmeq))
1272 printk("process_cq did something\n");
1273 nvme_timeout_ios(nvmeq);
1274 nvme_resubmit_bios(nvmeq);
1275 spin_unlock_irq(&nvmeq->q_lock);
1278 spin_unlock(&dev_list_lock);
1279 set_current_state(TASK_INTERRUPTIBLE);
1280 schedule_timeout(HZ);
1282 return 0;
1285 static DEFINE_IDA(nvme_index_ida);
1287 static int nvme_get_ns_idx(void)
1289 int index, error;
1291 do {
1292 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1293 return -1;
1295 spin_lock(&dev_list_lock);
1296 error = ida_get_new(&nvme_index_ida, &index);
1297 spin_unlock(&dev_list_lock);
1298 } while (error == -EAGAIN);
1300 if (error)
1301 index = -1;
1302 return index;
1305 static void nvme_put_ns_idx(int index)
1307 spin_lock(&dev_list_lock);
1308 ida_remove(&nvme_index_ida, index);
1309 spin_unlock(&dev_list_lock);
1312 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1313 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1315 struct nvme_ns *ns;
1316 struct gendisk *disk;
1317 int lbaf;
1319 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1320 return NULL;
1322 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1323 if (!ns)
1324 return NULL;
1325 ns->queue = blk_alloc_queue(GFP_KERNEL);
1326 if (!ns->queue)
1327 goto out_free_ns;
1328 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1329 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1330 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1331 /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1332 blk_queue_make_request(ns->queue, nvme_make_request);
1333 ns->dev = dev;
1334 ns->queue->queuedata = ns;
1336 disk = alloc_disk(NVME_MINORS);
1337 if (!disk)
1338 goto out_free_queue;
1339 ns->ns_id = nsid;
1340 ns->disk = disk;
1341 lbaf = id->flbas & 0xf;
1342 ns->lba_shift = id->lbaf[lbaf].ds;
1344 disk->major = nvme_major;
1345 disk->minors = NVME_MINORS;
1346 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1347 disk->fops = &nvme_fops;
1348 disk->private_data = ns;
1349 disk->queue = ns->queue;
1350 disk->driverfs_dev = &dev->pci_dev->dev;
1351 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1352 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1354 return ns;
1356 out_free_queue:
1357 blk_cleanup_queue(ns->queue);
1358 out_free_ns:
1359 kfree(ns);
1360 return NULL;
1363 static void nvme_ns_free(struct nvme_ns *ns)
1365 int index = ns->disk->first_minor / NVME_MINORS;
1366 put_disk(ns->disk);
1367 nvme_put_ns_idx(index);
1368 blk_cleanup_queue(ns->queue);
1369 kfree(ns);
1372 static int set_queue_count(struct nvme_dev *dev, int count)
1374 int status;
1375 u32 result;
1376 u32 q_count = (count - 1) | ((count - 1) << 16);
1378 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1379 &result);
1380 if (status)
1381 return -EIO;
1382 return min(result & 0xffff, result >> 16) + 1;
1385 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1387 int result, cpu, i, nr_io_queues, db_bar_size;
1389 nr_io_queues = num_online_cpus();
1390 result = set_queue_count(dev, nr_io_queues);
1391 if (result < 0)
1392 return result;
1393 if (result < nr_io_queues)
1394 nr_io_queues = result;
1396 /* Deregister the admin queue's interrupt */
1397 free_irq(dev->entry[0].vector, dev->queues[0]);
1399 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1400 if (db_bar_size > 8192) {
1401 iounmap(dev->bar);
1402 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1403 db_bar_size);
1404 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1405 dev->queues[0]->q_db = dev->dbs;
1408 for (i = 0; i < nr_io_queues; i++)
1409 dev->entry[i].entry = i;
1410 for (;;) {
1411 result = pci_enable_msix(dev->pci_dev, dev->entry,
1412 nr_io_queues);
1413 if (result == 0) {
1414 break;
1415 } else if (result > 0) {
1416 nr_io_queues = result;
1417 continue;
1418 } else {
1419 nr_io_queues = 1;
1420 break;
1424 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1425 /* XXX: handle failure here */
1427 cpu = cpumask_first(cpu_online_mask);
1428 for (i = 0; i < nr_io_queues; i++) {
1429 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1430 cpu = cpumask_next(cpu, cpu_online_mask);
1433 for (i = 0; i < nr_io_queues; i++) {
1434 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1435 NVME_Q_DEPTH, i);
1436 if (IS_ERR(dev->queues[i + 1]))
1437 return PTR_ERR(dev->queues[i + 1]);
1438 dev->queue_count++;
1441 for (; i < num_possible_cpus(); i++) {
1442 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1443 dev->queues[i + 1] = dev->queues[target + 1];
1446 return 0;
1449 static void nvme_free_queues(struct nvme_dev *dev)
1451 int i;
1453 for (i = dev->queue_count - 1; i >= 0; i--)
1454 nvme_free_queue(dev, i);
1457 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1459 int res, nn, i;
1460 struct nvme_ns *ns, *next;
1461 struct nvme_id_ctrl *ctrl;
1462 struct nvme_id_ns *id_ns;
1463 void *mem;
1464 dma_addr_t dma_addr;
1466 res = nvme_setup_io_queues(dev);
1467 if (res)
1468 return res;
1470 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1471 GFP_KERNEL);
1473 res = nvme_identify(dev, 0, 1, dma_addr);
1474 if (res) {
1475 res = -EIO;
1476 goto out_free;
1479 ctrl = mem;
1480 nn = le32_to_cpup(&ctrl->nn);
1481 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1482 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1483 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1485 id_ns = mem;
1486 for (i = 1; i <= nn; i++) {
1487 res = nvme_identify(dev, i, 0, dma_addr);
1488 if (res)
1489 continue;
1491 if (id_ns->ncap == 0)
1492 continue;
1494 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1495 dma_addr + 4096);
1496 if (res)
1497 continue;
1499 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1500 if (ns)
1501 list_add_tail(&ns->list, &dev->namespaces);
1503 list_for_each_entry(ns, &dev->namespaces, list)
1504 add_disk(ns->disk);
1506 goto out;
1508 out_free:
1509 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1510 list_del(&ns->list);
1511 nvme_ns_free(ns);
1514 out:
1515 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1516 return res;
1519 static int nvme_dev_remove(struct nvme_dev *dev)
1521 struct nvme_ns *ns, *next;
1523 spin_lock(&dev_list_lock);
1524 list_del(&dev->node);
1525 spin_unlock(&dev_list_lock);
1527 /* TODO: wait all I/O finished or cancel them */
1529 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1530 list_del(&ns->list);
1531 del_gendisk(ns->disk);
1532 nvme_ns_free(ns);
1535 nvme_free_queues(dev);
1537 return 0;
1540 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1542 struct device *dmadev = &dev->pci_dev->dev;
1543 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1544 PAGE_SIZE, PAGE_SIZE, 0);
1545 if (!dev->prp_page_pool)
1546 return -ENOMEM;
1548 /* Optimisation for I/Os between 4k and 128k */
1549 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1550 256, 256, 0);
1551 if (!dev->prp_small_pool) {
1552 dma_pool_destroy(dev->prp_page_pool);
1553 return -ENOMEM;
1555 return 0;
1558 static void nvme_release_prp_pools(struct nvme_dev *dev)
1560 dma_pool_destroy(dev->prp_page_pool);
1561 dma_pool_destroy(dev->prp_small_pool);
1564 /* XXX: Use an ida or something to let remove / add work correctly */
1565 static void nvme_set_instance(struct nvme_dev *dev)
1567 static int instance;
1568 dev->instance = instance++;
1571 static void nvme_release_instance(struct nvme_dev *dev)
1575 static int __devinit nvme_probe(struct pci_dev *pdev,
1576 const struct pci_device_id *id)
1578 int bars, result = -ENOMEM;
1579 struct nvme_dev *dev;
1581 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1582 if (!dev)
1583 return -ENOMEM;
1584 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1585 GFP_KERNEL);
1586 if (!dev->entry)
1587 goto free;
1588 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1589 GFP_KERNEL);
1590 if (!dev->queues)
1591 goto free;
1593 if (pci_enable_device_mem(pdev))
1594 goto free;
1595 pci_set_master(pdev);
1596 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1597 if (pci_request_selected_regions(pdev, bars, "nvme"))
1598 goto disable;
1600 INIT_LIST_HEAD(&dev->namespaces);
1601 dev->pci_dev = pdev;
1602 pci_set_drvdata(pdev, dev);
1603 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1604 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1605 nvme_set_instance(dev);
1606 dev->entry[0].vector = pdev->irq;
1608 result = nvme_setup_prp_pools(dev);
1609 if (result)
1610 goto disable_msix;
1612 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1613 if (!dev->bar) {
1614 result = -ENOMEM;
1615 goto disable_msix;
1618 result = nvme_configure_admin_queue(dev);
1619 if (result)
1620 goto unmap;
1621 dev->queue_count++;
1623 spin_lock(&dev_list_lock);
1624 list_add(&dev->node, &dev_list);
1625 spin_unlock(&dev_list_lock);
1627 result = nvme_dev_add(dev);
1628 if (result)
1629 goto delete;
1631 return 0;
1633 delete:
1634 spin_lock(&dev_list_lock);
1635 list_del(&dev->node);
1636 spin_unlock(&dev_list_lock);
1638 nvme_free_queues(dev);
1639 unmap:
1640 iounmap(dev->bar);
1641 disable_msix:
1642 pci_disable_msix(pdev);
1643 nvme_release_instance(dev);
1644 nvme_release_prp_pools(dev);
1645 disable:
1646 pci_disable_device(pdev);
1647 pci_release_regions(pdev);
1648 free:
1649 kfree(dev->queues);
1650 kfree(dev->entry);
1651 kfree(dev);
1652 return result;
1655 static void __devexit nvme_remove(struct pci_dev *pdev)
1657 struct nvme_dev *dev = pci_get_drvdata(pdev);
1658 nvme_dev_remove(dev);
1659 pci_disable_msix(pdev);
1660 iounmap(dev->bar);
1661 nvme_release_instance(dev);
1662 nvme_release_prp_pools(dev);
1663 pci_disable_device(pdev);
1664 pci_release_regions(pdev);
1665 kfree(dev->queues);
1666 kfree(dev->entry);
1667 kfree(dev);
1670 /* These functions are yet to be implemented */
1671 #define nvme_error_detected NULL
1672 #define nvme_dump_registers NULL
1673 #define nvme_link_reset NULL
1674 #define nvme_slot_reset NULL
1675 #define nvme_error_resume NULL
1676 #define nvme_suspend NULL
1677 #define nvme_resume NULL
1679 static struct pci_error_handlers nvme_err_handler = {
1680 .error_detected = nvme_error_detected,
1681 .mmio_enabled = nvme_dump_registers,
1682 .link_reset = nvme_link_reset,
1683 .slot_reset = nvme_slot_reset,
1684 .resume = nvme_error_resume,
1687 /* Move to pci_ids.h later */
1688 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1690 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1691 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1692 { 0, }
1694 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1696 static struct pci_driver nvme_driver = {
1697 .name = "nvme",
1698 .id_table = nvme_id_table,
1699 .probe = nvme_probe,
1700 .remove = __devexit_p(nvme_remove),
1701 .suspend = nvme_suspend,
1702 .resume = nvme_resume,
1703 .err_handler = &nvme_err_handler,
1706 static int __init nvme_init(void)
1708 int result = -EBUSY;
1710 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1711 if (IS_ERR(nvme_thread))
1712 return PTR_ERR(nvme_thread);
1714 nvme_major = register_blkdev(nvme_major, "nvme");
1715 if (nvme_major <= 0)
1716 goto kill_kthread;
1718 result = pci_register_driver(&nvme_driver);
1719 if (result)
1720 goto unregister_blkdev;
1721 return 0;
1723 unregister_blkdev:
1724 unregister_blkdev(nvme_major, "nvme");
1725 kill_kthread:
1726 kthread_stop(nvme_thread);
1727 return result;
1730 static void __exit nvme_exit(void)
1732 pci_unregister_driver(&nvme_driver);
1733 unregister_blkdev(nvme_major, "nvme");
1734 kthread_stop(nvme_thread);
1737 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1738 MODULE_LICENSE("GPL");
1739 MODULE_VERSION("0.8");
1740 module_init(nvme_init);
1741 module_exit(nvme_exit);