igb: Refactoring of i210 file.
[linux-2.6/libata-dev.git] / fs / exec.c
blob0039055b1fc6533c636ca98dd2b9ad73b52d5de6
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
67 #include <trace/events/sched.h>
69 int suid_dumpable = 0;
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 BUG_ON(!fmt);
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
83 EXPORT_SYMBOL(__register_binfmt);
85 void unregister_binfmt(struct linux_binfmt * fmt)
87 write_lock(&binfmt_lock);
88 list_del(&fmt->lh);
89 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(unregister_binfmt);
94 static inline void put_binfmt(struct linux_binfmt * fmt)
96 module_put(fmt->module);
100 * Note that a shared library must be both readable and executable due to
101 * security reasons.
103 * Also note that we take the address to load from from the file itself.
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 struct file *file;
108 struct filename *tmp = getname(library);
109 int error = PTR_ERR(tmp);
110 static const struct open_flags uselib_flags = {
111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113 .intent = LOOKUP_OPEN
116 if (IS_ERR(tmp))
117 goto out;
119 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
120 putname(tmp);
121 error = PTR_ERR(file);
122 if (IS_ERR(file))
123 goto out;
125 error = -EINVAL;
126 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127 goto exit;
129 error = -EACCES;
130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 goto exit;
133 fsnotify_open(file);
135 error = -ENOEXEC;
136 if(file->f_op) {
137 struct linux_binfmt * fmt;
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
142 continue;
143 if (!try_module_get(fmt->module))
144 continue;
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
148 put_binfmt(fmt);
149 if (error != -ENOEXEC)
150 break;
152 read_unlock(&binfmt_lock);
154 exit:
155 fput(file);
156 out:
157 return error;
160 #ifdef CONFIG_MMU
162 * The nascent bprm->mm is not visible until exec_mmap() but it can
163 * use a lot of memory, account these pages in current->mm temporary
164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165 * change the counter back via acct_arg_size(0).
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
172 if (!mm || !diff)
173 return;
175 bprm->vma_pages = pages;
176 add_mm_counter(mm, MM_ANONPAGES, diff);
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 int write)
182 struct page *page;
183 int ret;
185 #ifdef CONFIG_STACK_GROWSUP
186 if (write) {
187 ret = expand_downwards(bprm->vma, pos);
188 if (ret < 0)
189 return NULL;
191 #endif
192 ret = get_user_pages(current, bprm->mm, pos,
193 1, write, 1, &page, NULL);
194 if (ret <= 0)
195 return NULL;
197 if (write) {
198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 struct rlimit *rlim;
201 acct_arg_size(bprm, size / PAGE_SIZE);
204 * We've historically supported up to 32 pages (ARG_MAX)
205 * of argument strings even with small stacks
207 if (size <= ARG_MAX)
208 return page;
211 * Limit to 1/4-th the stack size for the argv+env strings.
212 * This ensures that:
213 * - the remaining binfmt code will not run out of stack space,
214 * - the program will have a reasonable amount of stack left
215 * to work from.
217 rlim = current->signal->rlim;
218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 put_page(page);
220 return NULL;
224 return page;
227 static void put_arg_page(struct page *page)
229 put_page(page);
232 static void free_arg_page(struct linux_binprm *bprm, int i)
236 static void free_arg_pages(struct linux_binprm *bprm)
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 static int __bprm_mm_init(struct linux_binprm *bprm)
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 if (!vma)
254 return -ENOMEM;
256 down_write(&mm->mmap_sem);
257 vma->vm_mm = mm;
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 INIT_LIST_HEAD(&vma->anon_vma_chain);
272 err = insert_vm_struct(mm, vma);
273 if (err)
274 goto err;
276 mm->stack_vm = mm->total_vm = 1;
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 up_write(&mm->mmap_sem);
282 bprm->vma = NULL;
283 kmem_cache_free(vm_area_cachep, vma);
284 return err;
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 return len <= MAX_ARG_STRLEN;
292 #else
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 int write)
301 struct page *page;
303 page = bprm->page[pos / PAGE_SIZE];
304 if (!page && write) {
305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 if (!page)
307 return NULL;
308 bprm->page[pos / PAGE_SIZE] = page;
311 return page;
314 static void put_arg_page(struct page *page)
318 static void free_arg_page(struct linux_binprm *bprm, int i)
320 if (bprm->page[i]) {
321 __free_page(bprm->page[i]);
322 bprm->page[i] = NULL;
326 static void free_arg_pages(struct linux_binprm *bprm)
328 int i;
330 for (i = 0; i < MAX_ARG_PAGES; i++)
331 free_arg_page(bprm, i);
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 struct page *page)
339 static int __bprm_mm_init(struct linux_binprm *bprm)
341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 return 0;
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 return len <= bprm->p;
350 #endif /* CONFIG_MMU */
353 * Create a new mm_struct and populate it with a temporary stack
354 * vm_area_struct. We don't have enough context at this point to set the stack
355 * flags, permissions, and offset, so we use temporary values. We'll update
356 * them later in setup_arg_pages().
358 int bprm_mm_init(struct linux_binprm *bprm)
360 int err;
361 struct mm_struct *mm = NULL;
363 bprm->mm = mm = mm_alloc();
364 err = -ENOMEM;
365 if (!mm)
366 goto err;
368 err = init_new_context(current, mm);
369 if (err)
370 goto err;
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
376 return 0;
378 err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
384 return err;
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 bool is_compat;
390 #endif
391 union {
392 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 const compat_uptr_t __user *compat;
395 #endif
396 } ptr;
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
401 const char __user *native;
403 #ifdef CONFIG_COMPAT
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
410 return compat_ptr(compat);
412 #endif
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
417 return native;
421 * count() counts the number of strings in array ARGV.
423 static int count(struct user_arg_ptr argv, int max)
425 int i = 0;
427 if (argv.ptr.native != NULL) {
428 for (;;) {
429 const char __user *p = get_user_arg_ptr(argv, i);
431 if (!p)
432 break;
434 if (IS_ERR(p))
435 return -EFAULT;
437 if (i++ >= max)
438 return -E2BIG;
440 if (fatal_signal_pending(current))
441 return -ERESTARTNOHAND;
442 cond_resched();
445 return i;
449 * 'copy_strings()' copies argument/environment strings from the old
450 * processes's memory to the new process's stack. The call to get_user_pages()
451 * ensures the destination page is created and not swapped out.
453 static int copy_strings(int argc, struct user_arg_ptr argv,
454 struct linux_binprm *bprm)
456 struct page *kmapped_page = NULL;
457 char *kaddr = NULL;
458 unsigned long kpos = 0;
459 int ret;
461 while (argc-- > 0) {
462 const char __user *str;
463 int len;
464 unsigned long pos;
466 ret = -EFAULT;
467 str = get_user_arg_ptr(argv, argc);
468 if (IS_ERR(str))
469 goto out;
471 len = strnlen_user(str, MAX_ARG_STRLEN);
472 if (!len)
473 goto out;
475 ret = -E2BIG;
476 if (!valid_arg_len(bprm, len))
477 goto out;
479 /* We're going to work our way backwords. */
480 pos = bprm->p;
481 str += len;
482 bprm->p -= len;
484 while (len > 0) {
485 int offset, bytes_to_copy;
487 if (fatal_signal_pending(current)) {
488 ret = -ERESTARTNOHAND;
489 goto out;
491 cond_resched();
493 offset = pos % PAGE_SIZE;
494 if (offset == 0)
495 offset = PAGE_SIZE;
497 bytes_to_copy = offset;
498 if (bytes_to_copy > len)
499 bytes_to_copy = len;
501 offset -= bytes_to_copy;
502 pos -= bytes_to_copy;
503 str -= bytes_to_copy;
504 len -= bytes_to_copy;
506 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
507 struct page *page;
509 page = get_arg_page(bprm, pos, 1);
510 if (!page) {
511 ret = -E2BIG;
512 goto out;
515 if (kmapped_page) {
516 flush_kernel_dcache_page(kmapped_page);
517 kunmap(kmapped_page);
518 put_arg_page(kmapped_page);
520 kmapped_page = page;
521 kaddr = kmap(kmapped_page);
522 kpos = pos & PAGE_MASK;
523 flush_arg_page(bprm, kpos, kmapped_page);
525 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
526 ret = -EFAULT;
527 goto out;
531 ret = 0;
532 out:
533 if (kmapped_page) {
534 flush_kernel_dcache_page(kmapped_page);
535 kunmap(kmapped_page);
536 put_arg_page(kmapped_page);
538 return ret;
542 * Like copy_strings, but get argv and its values from kernel memory.
544 int copy_strings_kernel(int argc, const char *const *__argv,
545 struct linux_binprm *bprm)
547 int r;
548 mm_segment_t oldfs = get_fs();
549 struct user_arg_ptr argv = {
550 .ptr.native = (const char __user *const __user *)__argv,
553 set_fs(KERNEL_DS);
554 r = copy_strings(argc, argv, bprm);
555 set_fs(oldfs);
557 return r;
559 EXPORT_SYMBOL(copy_strings_kernel);
561 #ifdef CONFIG_MMU
564 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
565 * the binfmt code determines where the new stack should reside, we shift it to
566 * its final location. The process proceeds as follows:
568 * 1) Use shift to calculate the new vma endpoints.
569 * 2) Extend vma to cover both the old and new ranges. This ensures the
570 * arguments passed to subsequent functions are consistent.
571 * 3) Move vma's page tables to the new range.
572 * 4) Free up any cleared pgd range.
573 * 5) Shrink the vma to cover only the new range.
575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 struct mm_struct *mm = vma->vm_mm;
578 unsigned long old_start = vma->vm_start;
579 unsigned long old_end = vma->vm_end;
580 unsigned long length = old_end - old_start;
581 unsigned long new_start = old_start - shift;
582 unsigned long new_end = old_end - shift;
583 struct mmu_gather tlb;
585 BUG_ON(new_start > new_end);
588 * ensure there are no vmas between where we want to go
589 * and where we are
591 if (vma != find_vma(mm, new_start))
592 return -EFAULT;
595 * cover the whole range: [new_start, old_end)
597 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
598 return -ENOMEM;
601 * move the page tables downwards, on failure we rely on
602 * process cleanup to remove whatever mess we made.
604 if (length != move_page_tables(vma, old_start,
605 vma, new_start, length, false))
606 return -ENOMEM;
608 lru_add_drain();
609 tlb_gather_mmu(&tlb, mm, 0);
610 if (new_end > old_start) {
612 * when the old and new regions overlap clear from new_end.
614 free_pgd_range(&tlb, new_end, old_end, new_end,
615 vma->vm_next ? vma->vm_next->vm_start : 0);
616 } else {
618 * otherwise, clean from old_start; this is done to not touch
619 * the address space in [new_end, old_start) some architectures
620 * have constraints on va-space that make this illegal (IA64) -
621 * for the others its just a little faster.
623 free_pgd_range(&tlb, old_start, old_end, new_end,
624 vma->vm_next ? vma->vm_next->vm_start : 0);
626 tlb_finish_mmu(&tlb, new_end, old_end);
629 * Shrink the vma to just the new range. Always succeeds.
631 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633 return 0;
637 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
638 * the stack is optionally relocated, and some extra space is added.
640 int setup_arg_pages(struct linux_binprm *bprm,
641 unsigned long stack_top,
642 int executable_stack)
644 unsigned long ret;
645 unsigned long stack_shift;
646 struct mm_struct *mm = current->mm;
647 struct vm_area_struct *vma = bprm->vma;
648 struct vm_area_struct *prev = NULL;
649 unsigned long vm_flags;
650 unsigned long stack_base;
651 unsigned long stack_size;
652 unsigned long stack_expand;
653 unsigned long rlim_stack;
655 #ifdef CONFIG_STACK_GROWSUP
656 /* Limit stack size to 1GB */
657 stack_base = rlimit_max(RLIMIT_STACK);
658 if (stack_base > (1 << 30))
659 stack_base = 1 << 30;
661 /* Make sure we didn't let the argument array grow too large. */
662 if (vma->vm_end - vma->vm_start > stack_base)
663 return -ENOMEM;
665 stack_base = PAGE_ALIGN(stack_top - stack_base);
667 stack_shift = vma->vm_start - stack_base;
668 mm->arg_start = bprm->p - stack_shift;
669 bprm->p = vma->vm_end - stack_shift;
670 #else
671 stack_top = arch_align_stack(stack_top);
672 stack_top = PAGE_ALIGN(stack_top);
674 if (unlikely(stack_top < mmap_min_addr) ||
675 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
676 return -ENOMEM;
678 stack_shift = vma->vm_end - stack_top;
680 bprm->p -= stack_shift;
681 mm->arg_start = bprm->p;
682 #endif
684 if (bprm->loader)
685 bprm->loader -= stack_shift;
686 bprm->exec -= stack_shift;
688 down_write(&mm->mmap_sem);
689 vm_flags = VM_STACK_FLAGS;
692 * Adjust stack execute permissions; explicitly enable for
693 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
694 * (arch default) otherwise.
696 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
697 vm_flags |= VM_EXEC;
698 else if (executable_stack == EXSTACK_DISABLE_X)
699 vm_flags &= ~VM_EXEC;
700 vm_flags |= mm->def_flags;
701 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
704 vm_flags);
705 if (ret)
706 goto out_unlock;
707 BUG_ON(prev != vma);
709 /* Move stack pages down in memory. */
710 if (stack_shift) {
711 ret = shift_arg_pages(vma, stack_shift);
712 if (ret)
713 goto out_unlock;
716 /* mprotect_fixup is overkill to remove the temporary stack flags */
717 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
720 stack_size = vma->vm_end - vma->vm_start;
722 * Align this down to a page boundary as expand_stack
723 * will align it up.
725 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
726 #ifdef CONFIG_STACK_GROWSUP
727 if (stack_size + stack_expand > rlim_stack)
728 stack_base = vma->vm_start + rlim_stack;
729 else
730 stack_base = vma->vm_end + stack_expand;
731 #else
732 if (stack_size + stack_expand > rlim_stack)
733 stack_base = vma->vm_end - rlim_stack;
734 else
735 stack_base = vma->vm_start - stack_expand;
736 #endif
737 current->mm->start_stack = bprm->p;
738 ret = expand_stack(vma, stack_base);
739 if (ret)
740 ret = -EFAULT;
742 out_unlock:
743 up_write(&mm->mmap_sem);
744 return ret;
746 EXPORT_SYMBOL(setup_arg_pages);
748 #endif /* CONFIG_MMU */
750 struct file *open_exec(const char *name)
752 struct file *file;
753 int err;
754 struct filename tmp = { .name = name };
755 static const struct open_flags open_exec_flags = {
756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757 .acc_mode = MAY_EXEC | MAY_OPEN,
758 .intent = LOOKUP_OPEN
761 file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags, LOOKUP_FOLLOW);
762 if (IS_ERR(file))
763 goto out;
765 err = -EACCES;
766 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
767 goto exit;
769 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
770 goto exit;
772 fsnotify_open(file);
774 err = deny_write_access(file);
775 if (err)
776 goto exit;
778 out:
779 return file;
781 exit:
782 fput(file);
783 return ERR_PTR(err);
785 EXPORT_SYMBOL(open_exec);
787 int kernel_read(struct file *file, loff_t offset,
788 char *addr, unsigned long count)
790 mm_segment_t old_fs;
791 loff_t pos = offset;
792 int result;
794 old_fs = get_fs();
795 set_fs(get_ds());
796 /* The cast to a user pointer is valid due to the set_fs() */
797 result = vfs_read(file, (void __user *)addr, count, &pos);
798 set_fs(old_fs);
799 return result;
802 EXPORT_SYMBOL(kernel_read);
804 static int exec_mmap(struct mm_struct *mm)
806 struct task_struct *tsk;
807 struct mm_struct * old_mm, *active_mm;
809 /* Notify parent that we're no longer interested in the old VM */
810 tsk = current;
811 old_mm = current->mm;
812 mm_release(tsk, old_mm);
814 if (old_mm) {
815 sync_mm_rss(old_mm);
817 * Make sure that if there is a core dump in progress
818 * for the old mm, we get out and die instead of going
819 * through with the exec. We must hold mmap_sem around
820 * checking core_state and changing tsk->mm.
822 down_read(&old_mm->mmap_sem);
823 if (unlikely(old_mm->core_state)) {
824 up_read(&old_mm->mmap_sem);
825 return -EINTR;
828 task_lock(tsk);
829 active_mm = tsk->active_mm;
830 tsk->mm = mm;
831 tsk->active_mm = mm;
832 activate_mm(active_mm, mm);
833 task_unlock(tsk);
834 arch_pick_mmap_layout(mm);
835 if (old_mm) {
836 up_read(&old_mm->mmap_sem);
837 BUG_ON(active_mm != old_mm);
838 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
839 mm_update_next_owner(old_mm);
840 mmput(old_mm);
841 return 0;
843 mmdrop(active_mm);
844 return 0;
848 * This function makes sure the current process has its own signal table,
849 * so that flush_signal_handlers can later reset the handlers without
850 * disturbing other processes. (Other processes might share the signal
851 * table via the CLONE_SIGHAND option to clone().)
853 static int de_thread(struct task_struct *tsk)
855 struct signal_struct *sig = tsk->signal;
856 struct sighand_struct *oldsighand = tsk->sighand;
857 spinlock_t *lock = &oldsighand->siglock;
859 if (thread_group_empty(tsk))
860 goto no_thread_group;
863 * Kill all other threads in the thread group.
865 spin_lock_irq(lock);
866 if (signal_group_exit(sig)) {
868 * Another group action in progress, just
869 * return so that the signal is processed.
871 spin_unlock_irq(lock);
872 return -EAGAIN;
875 sig->group_exit_task = tsk;
876 sig->notify_count = zap_other_threads(tsk);
877 if (!thread_group_leader(tsk))
878 sig->notify_count--;
880 while (sig->notify_count) {
881 __set_current_state(TASK_KILLABLE);
882 spin_unlock_irq(lock);
883 schedule();
884 if (unlikely(__fatal_signal_pending(tsk)))
885 goto killed;
886 spin_lock_irq(lock);
888 spin_unlock_irq(lock);
891 * At this point all other threads have exited, all we have to
892 * do is to wait for the thread group leader to become inactive,
893 * and to assume its PID:
895 if (!thread_group_leader(tsk)) {
896 struct task_struct *leader = tsk->group_leader;
898 sig->notify_count = -1; /* for exit_notify() */
899 for (;;) {
900 write_lock_irq(&tasklist_lock);
901 if (likely(leader->exit_state))
902 break;
903 __set_current_state(TASK_KILLABLE);
904 write_unlock_irq(&tasklist_lock);
905 schedule();
906 if (unlikely(__fatal_signal_pending(tsk)))
907 goto killed;
911 * The only record we have of the real-time age of a
912 * process, regardless of execs it's done, is start_time.
913 * All the past CPU time is accumulated in signal_struct
914 * from sister threads now dead. But in this non-leader
915 * exec, nothing survives from the original leader thread,
916 * whose birth marks the true age of this process now.
917 * When we take on its identity by switching to its PID, we
918 * also take its birthdate (always earlier than our own).
920 tsk->start_time = leader->start_time;
922 BUG_ON(!same_thread_group(leader, tsk));
923 BUG_ON(has_group_leader_pid(tsk));
925 * An exec() starts a new thread group with the
926 * TGID of the previous thread group. Rehash the
927 * two threads with a switched PID, and release
928 * the former thread group leader:
931 /* Become a process group leader with the old leader's pid.
932 * The old leader becomes a thread of the this thread group.
933 * Note: The old leader also uses this pid until release_task
934 * is called. Odd but simple and correct.
936 detach_pid(tsk, PIDTYPE_PID);
937 tsk->pid = leader->pid;
938 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
939 transfer_pid(leader, tsk, PIDTYPE_PGID);
940 transfer_pid(leader, tsk, PIDTYPE_SID);
942 list_replace_rcu(&leader->tasks, &tsk->tasks);
943 list_replace_init(&leader->sibling, &tsk->sibling);
945 tsk->group_leader = tsk;
946 leader->group_leader = tsk;
948 tsk->exit_signal = SIGCHLD;
949 leader->exit_signal = -1;
951 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
952 leader->exit_state = EXIT_DEAD;
955 * We are going to release_task()->ptrace_unlink() silently,
956 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
957 * the tracer wont't block again waiting for this thread.
959 if (unlikely(leader->ptrace))
960 __wake_up_parent(leader, leader->parent);
961 write_unlock_irq(&tasklist_lock);
963 release_task(leader);
966 sig->group_exit_task = NULL;
967 sig->notify_count = 0;
969 no_thread_group:
970 /* we have changed execution domain */
971 tsk->exit_signal = SIGCHLD;
973 exit_itimers(sig);
974 flush_itimer_signals();
976 if (atomic_read(&oldsighand->count) != 1) {
977 struct sighand_struct *newsighand;
979 * This ->sighand is shared with the CLONE_SIGHAND
980 * but not CLONE_THREAD task, switch to the new one.
982 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
983 if (!newsighand)
984 return -ENOMEM;
986 atomic_set(&newsighand->count, 1);
987 memcpy(newsighand->action, oldsighand->action,
988 sizeof(newsighand->action));
990 write_lock_irq(&tasklist_lock);
991 spin_lock(&oldsighand->siglock);
992 rcu_assign_pointer(tsk->sighand, newsighand);
993 spin_unlock(&oldsighand->siglock);
994 write_unlock_irq(&tasklist_lock);
996 __cleanup_sighand(oldsighand);
999 BUG_ON(!thread_group_leader(tsk));
1000 return 0;
1002 killed:
1003 /* protects against exit_notify() and __exit_signal() */
1004 read_lock(&tasklist_lock);
1005 sig->group_exit_task = NULL;
1006 sig->notify_count = 0;
1007 read_unlock(&tasklist_lock);
1008 return -EAGAIN;
1011 char *get_task_comm(char *buf, struct task_struct *tsk)
1013 /* buf must be at least sizeof(tsk->comm) in size */
1014 task_lock(tsk);
1015 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1016 task_unlock(tsk);
1017 return buf;
1019 EXPORT_SYMBOL_GPL(get_task_comm);
1022 * These functions flushes out all traces of the currently running executable
1023 * so that a new one can be started
1026 void set_task_comm(struct task_struct *tsk, char *buf)
1028 task_lock(tsk);
1030 trace_task_rename(tsk, buf);
1033 * Threads may access current->comm without holding
1034 * the task lock, so write the string carefully.
1035 * Readers without a lock may see incomplete new
1036 * names but are safe from non-terminating string reads.
1038 memset(tsk->comm, 0, TASK_COMM_LEN);
1039 wmb();
1040 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1041 task_unlock(tsk);
1042 perf_event_comm(tsk);
1045 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1047 int i, ch;
1049 /* Copies the binary name from after last slash */
1050 for (i = 0; (ch = *(fn++)) != '\0';) {
1051 if (ch == '/')
1052 i = 0; /* overwrite what we wrote */
1053 else
1054 if (i < len - 1)
1055 tcomm[i++] = ch;
1057 tcomm[i] = '\0';
1060 int flush_old_exec(struct linux_binprm * bprm)
1062 int retval;
1065 * Make sure we have a private signal table and that
1066 * we are unassociated from the previous thread group.
1068 retval = de_thread(current);
1069 if (retval)
1070 goto out;
1072 set_mm_exe_file(bprm->mm, bprm->file);
1074 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1076 * Release all of the old mmap stuff
1078 acct_arg_size(bprm, 0);
1079 retval = exec_mmap(bprm->mm);
1080 if (retval)
1081 goto out;
1083 bprm->mm = NULL; /* We're using it now */
1085 set_fs(USER_DS);
1086 current->flags &=
1087 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1088 flush_thread();
1089 current->personality &= ~bprm->per_clear;
1091 return 0;
1093 out:
1094 return retval;
1096 EXPORT_SYMBOL(flush_old_exec);
1098 void would_dump(struct linux_binprm *bprm, struct file *file)
1100 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1101 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1103 EXPORT_SYMBOL(would_dump);
1105 void setup_new_exec(struct linux_binprm * bprm)
1107 arch_pick_mmap_layout(current->mm);
1109 /* This is the point of no return */
1110 current->sas_ss_sp = current->sas_ss_size = 0;
1112 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1113 set_dumpable(current->mm, SUID_DUMPABLE_ENABLED);
1114 else
1115 set_dumpable(current->mm, suid_dumpable);
1117 set_task_comm(current, bprm->tcomm);
1119 /* Set the new mm task size. We have to do that late because it may
1120 * depend on TIF_32BIT which is only updated in flush_thread() on
1121 * some architectures like powerpc
1123 current->mm->task_size = TASK_SIZE;
1125 /* install the new credentials */
1126 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1127 !gid_eq(bprm->cred->gid, current_egid())) {
1128 current->pdeath_signal = 0;
1129 } else {
1130 would_dump(bprm, bprm->file);
1131 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1132 set_dumpable(current->mm, suid_dumpable);
1136 * Flush performance counters when crossing a
1137 * security domain:
1139 if (!get_dumpable(current->mm))
1140 perf_event_exit_task(current);
1142 /* An exec changes our domain. We are no longer part of the thread
1143 group */
1145 current->self_exec_id++;
1147 flush_signal_handlers(current, 0);
1148 do_close_on_exec(current->files);
1150 EXPORT_SYMBOL(setup_new_exec);
1153 * Prepare credentials and lock ->cred_guard_mutex.
1154 * install_exec_creds() commits the new creds and drops the lock.
1155 * Or, if exec fails before, free_bprm() should release ->cred and
1156 * and unlock.
1158 int prepare_bprm_creds(struct linux_binprm *bprm)
1160 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1161 return -ERESTARTNOINTR;
1163 bprm->cred = prepare_exec_creds();
1164 if (likely(bprm->cred))
1165 return 0;
1167 mutex_unlock(&current->signal->cred_guard_mutex);
1168 return -ENOMEM;
1171 void free_bprm(struct linux_binprm *bprm)
1173 free_arg_pages(bprm);
1174 if (bprm->cred) {
1175 mutex_unlock(&current->signal->cred_guard_mutex);
1176 abort_creds(bprm->cred);
1178 kfree(bprm);
1182 * install the new credentials for this executable
1184 void install_exec_creds(struct linux_binprm *bprm)
1186 security_bprm_committing_creds(bprm);
1188 commit_creds(bprm->cred);
1189 bprm->cred = NULL;
1191 * cred_guard_mutex must be held at least to this point to prevent
1192 * ptrace_attach() from altering our determination of the task's
1193 * credentials; any time after this it may be unlocked.
1195 security_bprm_committed_creds(bprm);
1196 mutex_unlock(&current->signal->cred_guard_mutex);
1198 EXPORT_SYMBOL(install_exec_creds);
1201 * determine how safe it is to execute the proposed program
1202 * - the caller must hold ->cred_guard_mutex to protect against
1203 * PTRACE_ATTACH
1205 static int check_unsafe_exec(struct linux_binprm *bprm)
1207 struct task_struct *p = current, *t;
1208 unsigned n_fs;
1209 int res = 0;
1211 if (p->ptrace) {
1212 if (p->ptrace & PT_PTRACE_CAP)
1213 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1214 else
1215 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1219 * This isn't strictly necessary, but it makes it harder for LSMs to
1220 * mess up.
1222 if (current->no_new_privs)
1223 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1225 n_fs = 1;
1226 spin_lock(&p->fs->lock);
1227 rcu_read_lock();
1228 for (t = next_thread(p); t != p; t = next_thread(t)) {
1229 if (t->fs == p->fs)
1230 n_fs++;
1232 rcu_read_unlock();
1234 if (p->fs->users > n_fs) {
1235 bprm->unsafe |= LSM_UNSAFE_SHARE;
1236 } else {
1237 res = -EAGAIN;
1238 if (!p->fs->in_exec) {
1239 p->fs->in_exec = 1;
1240 res = 1;
1243 spin_unlock(&p->fs->lock);
1245 return res;
1249 * Fill the binprm structure from the inode.
1250 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1252 * This may be called multiple times for binary chains (scripts for example).
1254 int prepare_binprm(struct linux_binprm *bprm)
1256 umode_t mode;
1257 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1258 int retval;
1260 mode = inode->i_mode;
1261 if (bprm->file->f_op == NULL)
1262 return -EACCES;
1264 /* clear any previous set[ug]id data from a previous binary */
1265 bprm->cred->euid = current_euid();
1266 bprm->cred->egid = current_egid();
1268 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1269 !current->no_new_privs) {
1270 /* Set-uid? */
1271 if (mode & S_ISUID) {
1272 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1273 return -EPERM;
1274 bprm->per_clear |= PER_CLEAR_ON_SETID;
1275 bprm->cred->euid = inode->i_uid;
1279 /* Set-gid? */
1281 * If setgid is set but no group execute bit then this
1282 * is a candidate for mandatory locking, not a setgid
1283 * executable.
1285 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1286 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1287 return -EPERM;
1288 bprm->per_clear |= PER_CLEAR_ON_SETID;
1289 bprm->cred->egid = inode->i_gid;
1293 /* fill in binprm security blob */
1294 retval = security_bprm_set_creds(bprm);
1295 if (retval)
1296 return retval;
1297 bprm->cred_prepared = 1;
1299 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1300 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1303 EXPORT_SYMBOL(prepare_binprm);
1306 * Arguments are '\0' separated strings found at the location bprm->p
1307 * points to; chop off the first by relocating brpm->p to right after
1308 * the first '\0' encountered.
1310 int remove_arg_zero(struct linux_binprm *bprm)
1312 int ret = 0;
1313 unsigned long offset;
1314 char *kaddr;
1315 struct page *page;
1317 if (!bprm->argc)
1318 return 0;
1320 do {
1321 offset = bprm->p & ~PAGE_MASK;
1322 page = get_arg_page(bprm, bprm->p, 0);
1323 if (!page) {
1324 ret = -EFAULT;
1325 goto out;
1327 kaddr = kmap_atomic(page);
1329 for (; offset < PAGE_SIZE && kaddr[offset];
1330 offset++, bprm->p++)
1333 kunmap_atomic(kaddr);
1334 put_arg_page(page);
1336 if (offset == PAGE_SIZE)
1337 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1338 } while (offset == PAGE_SIZE);
1340 bprm->p++;
1341 bprm->argc--;
1342 ret = 0;
1344 out:
1345 return ret;
1347 EXPORT_SYMBOL(remove_arg_zero);
1350 * cycle the list of binary formats handler, until one recognizes the image
1352 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1354 unsigned int depth = bprm->recursion_depth;
1355 int try,retval;
1356 struct linux_binfmt *fmt;
1357 pid_t old_pid, old_vpid;
1359 retval = security_bprm_check(bprm);
1360 if (retval)
1361 return retval;
1363 retval = audit_bprm(bprm);
1364 if (retval)
1365 return retval;
1367 /* Need to fetch pid before load_binary changes it */
1368 old_pid = current->pid;
1369 rcu_read_lock();
1370 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1371 rcu_read_unlock();
1373 retval = -ENOENT;
1374 for (try=0; try<2; try++) {
1375 read_lock(&binfmt_lock);
1376 list_for_each_entry(fmt, &formats, lh) {
1377 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1378 if (!fn)
1379 continue;
1380 if (!try_module_get(fmt->module))
1381 continue;
1382 read_unlock(&binfmt_lock);
1383 retval = fn(bprm, regs);
1385 * Restore the depth counter to its starting value
1386 * in this call, so we don't have to rely on every
1387 * load_binary function to restore it on return.
1389 bprm->recursion_depth = depth;
1390 if (retval >= 0) {
1391 if (depth == 0) {
1392 trace_sched_process_exec(current, old_pid, bprm);
1393 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1395 put_binfmt(fmt);
1396 allow_write_access(bprm->file);
1397 if (bprm->file)
1398 fput(bprm->file);
1399 bprm->file = NULL;
1400 current->did_exec = 1;
1401 proc_exec_connector(current);
1402 return retval;
1404 read_lock(&binfmt_lock);
1405 put_binfmt(fmt);
1406 if (retval != -ENOEXEC || bprm->mm == NULL)
1407 break;
1408 if (!bprm->file) {
1409 read_unlock(&binfmt_lock);
1410 return retval;
1413 read_unlock(&binfmt_lock);
1414 #ifdef CONFIG_MODULES
1415 if (retval != -ENOEXEC || bprm->mm == NULL) {
1416 break;
1417 } else {
1418 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1419 if (printable(bprm->buf[0]) &&
1420 printable(bprm->buf[1]) &&
1421 printable(bprm->buf[2]) &&
1422 printable(bprm->buf[3]))
1423 break; /* -ENOEXEC */
1424 if (try)
1425 break; /* -ENOEXEC */
1426 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1428 #else
1429 break;
1430 #endif
1432 return retval;
1435 EXPORT_SYMBOL(search_binary_handler);
1438 * sys_execve() executes a new program.
1440 static int do_execve_common(const char *filename,
1441 struct user_arg_ptr argv,
1442 struct user_arg_ptr envp,
1443 struct pt_regs *regs)
1445 struct linux_binprm *bprm;
1446 struct file *file;
1447 struct files_struct *displaced;
1448 bool clear_in_exec;
1449 int retval;
1450 const struct cred *cred = current_cred();
1453 * We move the actual failure in case of RLIMIT_NPROC excess from
1454 * set*uid() to execve() because too many poorly written programs
1455 * don't check setuid() return code. Here we additionally recheck
1456 * whether NPROC limit is still exceeded.
1458 if ((current->flags & PF_NPROC_EXCEEDED) &&
1459 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1460 retval = -EAGAIN;
1461 goto out_ret;
1464 /* We're below the limit (still or again), so we don't want to make
1465 * further execve() calls fail. */
1466 current->flags &= ~PF_NPROC_EXCEEDED;
1468 retval = unshare_files(&displaced);
1469 if (retval)
1470 goto out_ret;
1472 retval = -ENOMEM;
1473 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1474 if (!bprm)
1475 goto out_files;
1477 retval = prepare_bprm_creds(bprm);
1478 if (retval)
1479 goto out_free;
1481 retval = check_unsafe_exec(bprm);
1482 if (retval < 0)
1483 goto out_free;
1484 clear_in_exec = retval;
1485 current->in_execve = 1;
1487 file = open_exec(filename);
1488 retval = PTR_ERR(file);
1489 if (IS_ERR(file))
1490 goto out_unmark;
1492 sched_exec();
1494 bprm->file = file;
1495 bprm->filename = filename;
1496 bprm->interp = filename;
1498 retval = bprm_mm_init(bprm);
1499 if (retval)
1500 goto out_file;
1502 bprm->argc = count(argv, MAX_ARG_STRINGS);
1503 if ((retval = bprm->argc) < 0)
1504 goto out;
1506 bprm->envc = count(envp, MAX_ARG_STRINGS);
1507 if ((retval = bprm->envc) < 0)
1508 goto out;
1510 retval = prepare_binprm(bprm);
1511 if (retval < 0)
1512 goto out;
1514 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1515 if (retval < 0)
1516 goto out;
1518 bprm->exec = bprm->p;
1519 retval = copy_strings(bprm->envc, envp, bprm);
1520 if (retval < 0)
1521 goto out;
1523 retval = copy_strings(bprm->argc, argv, bprm);
1524 if (retval < 0)
1525 goto out;
1527 retval = search_binary_handler(bprm,regs);
1528 if (retval < 0)
1529 goto out;
1531 /* execve succeeded */
1532 current->fs->in_exec = 0;
1533 current->in_execve = 0;
1534 acct_update_integrals(current);
1535 free_bprm(bprm);
1536 if (displaced)
1537 put_files_struct(displaced);
1538 return retval;
1540 out:
1541 if (bprm->mm) {
1542 acct_arg_size(bprm, 0);
1543 mmput(bprm->mm);
1546 out_file:
1547 if (bprm->file) {
1548 allow_write_access(bprm->file);
1549 fput(bprm->file);
1552 out_unmark:
1553 if (clear_in_exec)
1554 current->fs->in_exec = 0;
1555 current->in_execve = 0;
1557 out_free:
1558 free_bprm(bprm);
1560 out_files:
1561 if (displaced)
1562 reset_files_struct(displaced);
1563 out_ret:
1564 return retval;
1567 int do_execve(const char *filename,
1568 const char __user *const __user *__argv,
1569 const char __user *const __user *__envp,
1570 struct pt_regs *regs)
1572 struct user_arg_ptr argv = { .ptr.native = __argv };
1573 struct user_arg_ptr envp = { .ptr.native = __envp };
1574 return do_execve_common(filename, argv, envp, regs);
1577 #ifdef CONFIG_COMPAT
1578 int compat_do_execve(const char *filename,
1579 const compat_uptr_t __user *__argv,
1580 const compat_uptr_t __user *__envp,
1581 struct pt_regs *regs)
1583 struct user_arg_ptr argv = {
1584 .is_compat = true,
1585 .ptr.compat = __argv,
1587 struct user_arg_ptr envp = {
1588 .is_compat = true,
1589 .ptr.compat = __envp,
1591 return do_execve_common(filename, argv, envp, regs);
1593 #endif
1595 void set_binfmt(struct linux_binfmt *new)
1597 struct mm_struct *mm = current->mm;
1599 if (mm->binfmt)
1600 module_put(mm->binfmt->module);
1602 mm->binfmt = new;
1603 if (new)
1604 __module_get(new->module);
1607 EXPORT_SYMBOL(set_binfmt);
1610 * set_dumpable converts traditional three-value dumpable to two flags and
1611 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1612 * these bits are not changed atomically. So get_dumpable can observe the
1613 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1614 * return either old dumpable or new one by paying attention to the order of
1615 * modifying the bits.
1617 * dumpable | mm->flags (binary)
1618 * old new | initial interim final
1619 * ---------+-----------------------
1620 * 0 1 | 00 01 01
1621 * 0 2 | 00 10(*) 11
1622 * 1 0 | 01 00 00
1623 * 1 2 | 01 11 11
1624 * 2 0 | 11 10(*) 00
1625 * 2 1 | 11 11 01
1627 * (*) get_dumpable regards interim value of 10 as 11.
1629 void set_dumpable(struct mm_struct *mm, int value)
1631 switch (value) {
1632 case SUID_DUMPABLE_DISABLED:
1633 clear_bit(MMF_DUMPABLE, &mm->flags);
1634 smp_wmb();
1635 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1636 break;
1637 case SUID_DUMPABLE_ENABLED:
1638 set_bit(MMF_DUMPABLE, &mm->flags);
1639 smp_wmb();
1640 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1641 break;
1642 case SUID_DUMPABLE_SAFE:
1643 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1644 smp_wmb();
1645 set_bit(MMF_DUMPABLE, &mm->flags);
1646 break;
1650 int __get_dumpable(unsigned long mm_flags)
1652 int ret;
1654 ret = mm_flags & MMF_DUMPABLE_MASK;
1655 return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1658 int get_dumpable(struct mm_struct *mm)
1660 return __get_dumpable(mm->flags);
1663 #ifdef __ARCH_WANT_SYS_EXECVE
1664 SYSCALL_DEFINE3(execve,
1665 const char __user *, filename,
1666 const char __user *const __user *, argv,
1667 const char __user *const __user *, envp)
1669 struct filename *path = getname(filename);
1670 int error = PTR_ERR(path);
1671 if (!IS_ERR(path)) {
1672 error = do_execve(path->name, argv, envp, current_pt_regs());
1673 putname(path);
1675 return error;
1677 #ifdef CONFIG_COMPAT
1678 asmlinkage long compat_sys_execve(const char __user * filename,
1679 const compat_uptr_t __user * argv,
1680 const compat_uptr_t __user * envp)
1682 struct filename *path = getname(filename);
1683 int error = PTR_ERR(path);
1684 if (!IS_ERR(path)) {
1685 error = compat_do_execve(path->name, argv, envp,
1686 current_pt_regs());
1687 putname(path);
1689 return error;
1691 #endif
1692 #endif
1694 #ifdef __ARCH_WANT_KERNEL_EXECVE
1695 int kernel_execve(const char *filename,
1696 const char *const argv[],
1697 const char *const envp[])
1699 struct pt_regs *p = current_pt_regs();
1700 int ret;
1702 ret = do_execve(filename,
1703 (const char __user *const __user *)argv,
1704 (const char __user *const __user *)envp, p);
1705 if (ret < 0)
1706 return ret;
1709 * We were successful. We won't be returning to our caller, but
1710 * instead to user space by manipulating the kernel stack.
1712 ret_from_kernel_execve(p);
1714 #endif