Btrfs: Optimize compressed writeback and reads
[linux-2.6/libata-dev.git] / fs / btrfs / ordered-data.c
blob027ad6b3839e2e7b37e36f3aa83ec3c27c56257c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
24 #include "ctree.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
29 static u64 entry_end(struct btrfs_ordered_extent *entry)
31 if (entry->file_offset + entry->len < entry->file_offset)
32 return (u64)-1;
33 return entry->file_offset + entry->len;
36 /* returns NULL if the insertion worked, or it returns the node it did find
37 * in the tree
39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 struct rb_node *node)
42 struct rb_node ** p = &root->rb_node;
43 struct rb_node * parent = NULL;
44 struct btrfs_ordered_extent *entry;
46 while(*p) {
47 parent = *p;
48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
50 if (file_offset < entry->file_offset)
51 p = &(*p)->rb_left;
52 else if (file_offset >= entry_end(entry))
53 p = &(*p)->rb_right;
54 else
55 return parent;
58 rb_link_node(node, parent, p);
59 rb_insert_color(node, root);
60 return NULL;
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
70 struct rb_node * n = root->rb_node;
71 struct rb_node *prev = NULL;
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
76 while(n) {
77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 prev = n;
79 prev_entry = entry;
81 if (file_offset < entry->file_offset)
82 n = n->rb_left;
83 else if (file_offset >= entry_end(entry))
84 n = n->rb_right;
85 else
86 return n;
88 if (!prev_ret)
89 return NULL;
91 while(prev && file_offset >= entry_end(prev_entry)) {
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
100 prev = test;
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
105 while(prev && file_offset < entry_end(prev_entry)) {
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
113 *prev_ret = prev;
114 return NULL;
118 * helper to check if a given offset is inside a given entry
120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 u64 file_offset)
135 struct rb_root *root = &tree->tree;
136 struct rb_node *prev;
137 struct rb_node *ret;
138 struct btrfs_ordered_extent *entry;
140 if (tree->last) {
141 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 rb_node);
143 if (offset_in_entry(entry, file_offset))
144 return tree->last;
146 ret = __tree_search(root, file_offset, &prev);
147 if (!ret)
148 ret = prev;
149 if (ret)
150 tree->last = ret;
151 return ret;
154 /* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
160 * len is the length of the extent
162 * This also sets the EXTENT_ORDERED bit on the range in the inode.
164 * The tree is given a single reference on the ordered extent that was
165 * inserted.
167 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
168 u64 start, u64 len, u64 disk_len, int type)
170 struct btrfs_ordered_inode_tree *tree;
171 struct rb_node *node;
172 struct btrfs_ordered_extent *entry;
174 tree = &BTRFS_I(inode)->ordered_tree;
175 entry = kzalloc(sizeof(*entry), GFP_NOFS);
176 if (!entry)
177 return -ENOMEM;
179 mutex_lock(&tree->mutex);
180 entry->file_offset = file_offset;
181 entry->start = start;
182 entry->len = len;
183 entry->disk_len = disk_len;
184 entry->inode = inode;
185 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
186 set_bit(type, &entry->flags);
188 /* one ref for the tree */
189 atomic_set(&entry->refs, 1);
190 init_waitqueue_head(&entry->wait);
191 INIT_LIST_HEAD(&entry->list);
192 INIT_LIST_HEAD(&entry->root_extent_list);
194 node = tree_insert(&tree->tree, file_offset,
195 &entry->rb_node);
196 if (node) {
197 printk("warning dup entry from add_ordered_extent\n");
198 BUG();
200 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
201 entry_end(entry) - 1, GFP_NOFS);
203 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
204 list_add_tail(&entry->root_extent_list,
205 &BTRFS_I(inode)->root->fs_info->ordered_extents);
206 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
208 mutex_unlock(&tree->mutex);
209 BUG_ON(node);
210 return 0;
214 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
215 * when an ordered extent is finished. If the list covers more than one
216 * ordered extent, it is split across multiples.
218 int btrfs_add_ordered_sum(struct inode *inode,
219 struct btrfs_ordered_extent *entry,
220 struct btrfs_ordered_sum *sum)
222 struct btrfs_ordered_inode_tree *tree;
224 tree = &BTRFS_I(inode)->ordered_tree;
225 mutex_lock(&tree->mutex);
226 list_add_tail(&sum->list, &entry->list);
227 mutex_unlock(&tree->mutex);
228 return 0;
232 * this is used to account for finished IO across a given range
233 * of the file. The IO should not span ordered extents. If
234 * a given ordered_extent is completely done, 1 is returned, otherwise
235 * 0.
237 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
238 * to make sure this function only returns 1 once for a given ordered extent.
240 int btrfs_dec_test_ordered_pending(struct inode *inode,
241 u64 file_offset, u64 io_size)
243 struct btrfs_ordered_inode_tree *tree;
244 struct rb_node *node;
245 struct btrfs_ordered_extent *entry;
246 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
247 int ret;
249 tree = &BTRFS_I(inode)->ordered_tree;
250 mutex_lock(&tree->mutex);
251 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
252 GFP_NOFS);
253 node = tree_search(tree, file_offset);
254 if (!node) {
255 ret = 1;
256 goto out;
259 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
260 if (!offset_in_entry(entry, file_offset)) {
261 ret = 1;
262 goto out;
265 ret = test_range_bit(io_tree, entry->file_offset,
266 entry->file_offset + entry->len - 1,
267 EXTENT_ORDERED, 0);
268 if (ret == 0)
269 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
270 out:
271 mutex_unlock(&tree->mutex);
272 return ret == 0;
276 * used to drop a reference on an ordered extent. This will free
277 * the extent if the last reference is dropped
279 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
281 struct list_head *cur;
282 struct btrfs_ordered_sum *sum;
284 if (atomic_dec_and_test(&entry->refs)) {
285 while(!list_empty(&entry->list)) {
286 cur = entry->list.next;
287 sum = list_entry(cur, struct btrfs_ordered_sum, list);
288 list_del(&sum->list);
289 kfree(sum);
291 kfree(entry);
293 return 0;
297 * remove an ordered extent from the tree. No references are dropped
298 * but, anyone waiting on this extent is woken up.
300 int btrfs_remove_ordered_extent(struct inode *inode,
301 struct btrfs_ordered_extent *entry)
303 struct btrfs_ordered_inode_tree *tree;
304 struct rb_node *node;
306 tree = &BTRFS_I(inode)->ordered_tree;
307 mutex_lock(&tree->mutex);
308 node = &entry->rb_node;
309 rb_erase(node, &tree->tree);
310 tree->last = NULL;
311 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
313 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
314 list_del_init(&entry->root_extent_list);
315 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
317 mutex_unlock(&tree->mutex);
318 wake_up(&entry->wait);
319 return 0;
323 * wait for all the ordered extents in a root. This is done when balancing
324 * space between drives.
326 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
328 struct list_head splice;
329 struct list_head *cur;
330 struct btrfs_ordered_extent *ordered;
331 struct inode *inode;
333 INIT_LIST_HEAD(&splice);
335 spin_lock(&root->fs_info->ordered_extent_lock);
336 list_splice_init(&root->fs_info->ordered_extents, &splice);
337 while (!list_empty(&splice)) {
338 cur = splice.next;
339 ordered = list_entry(cur, struct btrfs_ordered_extent,
340 root_extent_list);
341 if (nocow_only &&
342 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
343 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
344 list_move(&ordered->root_extent_list,
345 &root->fs_info->ordered_extents);
346 cond_resched_lock(&root->fs_info->ordered_extent_lock);
347 continue;
350 list_del_init(&ordered->root_extent_list);
351 atomic_inc(&ordered->refs);
354 * the inode may be getting freed (in sys_unlink path).
356 inode = igrab(ordered->inode);
358 spin_unlock(&root->fs_info->ordered_extent_lock);
360 if (inode) {
361 btrfs_start_ordered_extent(inode, ordered, 1);
362 btrfs_put_ordered_extent(ordered);
363 iput(inode);
364 } else {
365 btrfs_put_ordered_extent(ordered);
368 spin_lock(&root->fs_info->ordered_extent_lock);
370 spin_unlock(&root->fs_info->ordered_extent_lock);
371 return 0;
375 * Used to start IO or wait for a given ordered extent to finish.
377 * If wait is one, this effectively waits on page writeback for all the pages
378 * in the extent, and it waits on the io completion code to insert
379 * metadata into the btree corresponding to the extent
381 void btrfs_start_ordered_extent(struct inode *inode,
382 struct btrfs_ordered_extent *entry,
383 int wait)
385 u64 start = entry->file_offset;
386 u64 end = start + entry->len - 1;
389 * pages in the range can be dirty, clean or writeback. We
390 * start IO on any dirty ones so the wait doesn't stall waiting
391 * for pdflush to find them
393 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL);
394 if (wait) {
395 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
396 &entry->flags));
401 * Used to wait on ordered extents across a large range of bytes.
403 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
405 u64 end;
406 u64 orig_end;
407 u64 wait_end;
408 struct btrfs_ordered_extent *ordered;
410 if (start + len < start) {
411 orig_end = INT_LIMIT(loff_t);
412 } else {
413 orig_end = start + len - 1;
414 if (orig_end > INT_LIMIT(loff_t))
415 orig_end = INT_LIMIT(loff_t);
417 wait_end = orig_end;
418 again:
419 /* start IO across the range first to instantiate any delalloc
420 * extents
422 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
424 /* The compression code will leave pages locked but return from
425 * writepage without setting the page writeback. Starting again
426 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
428 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);
430 btrfs_wait_on_page_writeback_range(inode->i_mapping,
431 start >> PAGE_CACHE_SHIFT,
432 orig_end >> PAGE_CACHE_SHIFT);
434 end = orig_end;
435 while(1) {
436 ordered = btrfs_lookup_first_ordered_extent(inode, end);
437 if (!ordered) {
438 break;
440 if (ordered->file_offset > orig_end) {
441 btrfs_put_ordered_extent(ordered);
442 break;
444 if (ordered->file_offset + ordered->len < start) {
445 btrfs_put_ordered_extent(ordered);
446 break;
448 btrfs_start_ordered_extent(inode, ordered, 1);
449 end = ordered->file_offset;
450 btrfs_put_ordered_extent(ordered);
451 if (end == 0 || end == start)
452 break;
453 end--;
455 if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
456 EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
457 schedule_timeout(1);
458 goto again;
460 return 0;
464 * find an ordered extent corresponding to file_offset. return NULL if
465 * nothing is found, otherwise take a reference on the extent and return it
467 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
468 u64 file_offset)
470 struct btrfs_ordered_inode_tree *tree;
471 struct rb_node *node;
472 struct btrfs_ordered_extent *entry = NULL;
474 tree = &BTRFS_I(inode)->ordered_tree;
475 mutex_lock(&tree->mutex);
476 node = tree_search(tree, file_offset);
477 if (!node)
478 goto out;
480 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
481 if (!offset_in_entry(entry, file_offset))
482 entry = NULL;
483 if (entry)
484 atomic_inc(&entry->refs);
485 out:
486 mutex_unlock(&tree->mutex);
487 return entry;
491 * lookup and return any extent before 'file_offset'. NULL is returned
492 * if none is found
494 struct btrfs_ordered_extent *
495 btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
497 struct btrfs_ordered_inode_tree *tree;
498 struct rb_node *node;
499 struct btrfs_ordered_extent *entry = NULL;
501 tree = &BTRFS_I(inode)->ordered_tree;
502 mutex_lock(&tree->mutex);
503 node = tree_search(tree, file_offset);
504 if (!node)
505 goto out;
507 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
508 atomic_inc(&entry->refs);
509 out:
510 mutex_unlock(&tree->mutex);
511 return entry;
515 * After an extent is done, call this to conditionally update the on disk
516 * i_size. i_size is updated to cover any fully written part of the file.
518 int btrfs_ordered_update_i_size(struct inode *inode,
519 struct btrfs_ordered_extent *ordered)
521 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
522 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
523 u64 disk_i_size;
524 u64 new_i_size;
525 u64 i_size_test;
526 struct rb_node *node;
527 struct btrfs_ordered_extent *test;
529 mutex_lock(&tree->mutex);
530 disk_i_size = BTRFS_I(inode)->disk_i_size;
533 * if the disk i_size is already at the inode->i_size, or
534 * this ordered extent is inside the disk i_size, we're done
536 if (disk_i_size >= inode->i_size ||
537 ordered->file_offset + ordered->len <= disk_i_size) {
538 goto out;
542 * we can't update the disk_isize if there are delalloc bytes
543 * between disk_i_size and this ordered extent
545 if (test_range_bit(io_tree, disk_i_size,
546 ordered->file_offset + ordered->len - 1,
547 EXTENT_DELALLOC, 0)) {
548 goto out;
551 * walk backward from this ordered extent to disk_i_size.
552 * if we find an ordered extent then we can't update disk i_size
553 * yet
555 node = &ordered->rb_node;
556 while(1) {
557 node = rb_prev(node);
558 if (!node)
559 break;
560 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
561 if (test->file_offset + test->len <= disk_i_size)
562 break;
563 if (test->file_offset >= inode->i_size)
564 break;
565 if (test->file_offset >= disk_i_size)
566 goto out;
568 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
571 * at this point, we know we can safely update i_size to at least
572 * the offset from this ordered extent. But, we need to
573 * walk forward and see if ios from higher up in the file have
574 * finished.
576 node = rb_next(&ordered->rb_node);
577 i_size_test = 0;
578 if (node) {
580 * do we have an area where IO might have finished
581 * between our ordered extent and the next one.
583 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
584 if (test->file_offset > entry_end(ordered)) {
585 i_size_test = test->file_offset;
587 } else {
588 i_size_test = i_size_read(inode);
592 * i_size_test is the end of a region after this ordered
593 * extent where there are no ordered extents. As long as there
594 * are no delalloc bytes in this area, it is safe to update
595 * disk_i_size to the end of the region.
597 if (i_size_test > entry_end(ordered) &&
598 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
599 EXTENT_DELALLOC, 0)) {
600 new_i_size = min_t(u64, i_size_test, i_size_read(inode));
602 BTRFS_I(inode)->disk_i_size = new_i_size;
603 out:
604 mutex_unlock(&tree->mutex);
605 return 0;
609 * search the ordered extents for one corresponding to 'offset' and
610 * try to find a checksum. This is used because we allow pages to
611 * be reclaimed before their checksum is actually put into the btree
613 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
615 struct btrfs_ordered_sum *ordered_sum;
616 struct btrfs_sector_sum *sector_sums;
617 struct btrfs_ordered_extent *ordered;
618 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
619 struct list_head *cur;
620 unsigned long num_sectors;
621 unsigned long i;
622 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
623 int ret = 1;
625 ordered = btrfs_lookup_ordered_extent(inode, offset);
626 if (!ordered)
627 return 1;
629 mutex_lock(&tree->mutex);
630 list_for_each_prev(cur, &ordered->list) {
631 ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
632 if (offset >= ordered_sum->file_offset) {
633 num_sectors = ordered_sum->len / sectorsize;
634 sector_sums = ordered_sum->sums;
635 for (i = 0; i < num_sectors; i++) {
636 if (sector_sums[i].offset == offset) {
637 *sum = sector_sums[i].sum;
638 ret = 0;
639 goto out;
644 out:
645 mutex_unlock(&tree->mutex);
646 btrfs_put_ordered_extent(ordered);
647 return ret;
652 * taken from mm/filemap.c because it isn't exported
654 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
655 * @mapping: address space structure to write
656 * @start: offset in bytes where the range starts
657 * @end: offset in bytes where the range ends (inclusive)
658 * @sync_mode: enable synchronous operation
660 * Start writeback against all of a mapping's dirty pages that lie
661 * within the byte offsets <start, end> inclusive.
663 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
664 * opposed to a regular memory cleansing writeback. The difference between
665 * these two operations is that if a dirty page/buffer is encountered, it must
666 * be waited upon, and not just skipped over.
668 int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
669 loff_t end, int sync_mode)
671 struct writeback_control wbc = {
672 .sync_mode = sync_mode,
673 .nr_to_write = mapping->nrpages * 2,
674 .range_start = start,
675 .range_end = end,
676 .for_writepages = 1,
678 return btrfs_writepages(mapping, &wbc);
682 * taken from mm/filemap.c because it isn't exported
684 * wait_on_page_writeback_range - wait for writeback to complete
685 * @mapping: target address_space
686 * @start: beginning page index
687 * @end: ending page index
689 * Wait for writeback to complete against pages indexed by start->end
690 * inclusive
692 int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
693 pgoff_t start, pgoff_t end)
695 struct pagevec pvec;
696 int nr_pages;
697 int ret = 0;
698 pgoff_t index;
700 if (end < start)
701 return 0;
703 pagevec_init(&pvec, 0);
704 index = start;
705 while ((index <= end) &&
706 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
707 PAGECACHE_TAG_WRITEBACK,
708 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
709 unsigned i;
711 for (i = 0; i < nr_pages; i++) {
712 struct page *page = pvec.pages[i];
714 /* until radix tree lookup accepts end_index */
715 if (page->index > end)
716 continue;
718 wait_on_page_writeback(page);
719 if (PageError(page))
720 ret = -EIO;
722 pagevec_release(&pvec);
723 cond_resched();
726 /* Check for outstanding write errors */
727 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
728 ret = -ENOSPC;
729 if (test_and_clear_bit(AS_EIO, &mapping->flags))
730 ret = -EIO;
732 return ret;