[PATCH] libata: inline ata_qc_complete()
[linux-2.6/libata-dev.git] / drivers / scsi / libata-core.c
blobfffbaa9dae7641e7388b456a17cc020373d9f2f4
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
65 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
71 u8 *xfer_mode_out,
72 unsigned int *xfer_shift_out);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 int atapi_enabled = 0;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 MODULE_AUTHOR("Jeff Garzik");
82 MODULE_DESCRIPTION("Library module for ATA devices");
83 MODULE_LICENSE("GPL");
84 MODULE_VERSION(DRV_VERSION);
87 /**
88 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
89 * @tf: Taskfile to convert
90 * @fis: Buffer into which data will output
91 * @pmp: Port multiplier port
93 * Converts a standard ATA taskfile to a Serial ATA
94 * FIS structure (Register - Host to Device).
96 * LOCKING:
97 * Inherited from caller.
100 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
102 fis[0] = 0x27; /* Register - Host to Device FIS */
103 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
104 bit 7 indicates Command FIS */
105 fis[2] = tf->command;
106 fis[3] = tf->feature;
108 fis[4] = tf->lbal;
109 fis[5] = tf->lbam;
110 fis[6] = tf->lbah;
111 fis[7] = tf->device;
113 fis[8] = tf->hob_lbal;
114 fis[9] = tf->hob_lbam;
115 fis[10] = tf->hob_lbah;
116 fis[11] = tf->hob_feature;
118 fis[12] = tf->nsect;
119 fis[13] = tf->hob_nsect;
120 fis[14] = 0;
121 fis[15] = tf->ctl;
123 fis[16] = 0;
124 fis[17] = 0;
125 fis[18] = 0;
126 fis[19] = 0;
130 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
131 * @fis: Buffer from which data will be input
132 * @tf: Taskfile to output
134 * Converts a serial ATA FIS structure to a standard ATA taskfile.
136 * LOCKING:
137 * Inherited from caller.
140 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
142 tf->command = fis[2]; /* status */
143 tf->feature = fis[3]; /* error */
145 tf->lbal = fis[4];
146 tf->lbam = fis[5];
147 tf->lbah = fis[6];
148 tf->device = fis[7];
150 tf->hob_lbal = fis[8];
151 tf->hob_lbam = fis[9];
152 tf->hob_lbah = fis[10];
154 tf->nsect = fis[12];
155 tf->hob_nsect = fis[13];
158 static const u8 ata_rw_cmds[] = {
159 /* pio multi */
160 ATA_CMD_READ_MULTI,
161 ATA_CMD_WRITE_MULTI,
162 ATA_CMD_READ_MULTI_EXT,
163 ATA_CMD_WRITE_MULTI_EXT,
167 ATA_CMD_WRITE_MULTI_FUA_EXT,
168 /* pio */
169 ATA_CMD_PIO_READ,
170 ATA_CMD_PIO_WRITE,
171 ATA_CMD_PIO_READ_EXT,
172 ATA_CMD_PIO_WRITE_EXT,
177 /* dma */
178 ATA_CMD_READ,
179 ATA_CMD_WRITE,
180 ATA_CMD_READ_EXT,
181 ATA_CMD_WRITE_EXT,
185 ATA_CMD_WRITE_FUA_EXT
189 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
190 * @qc: command to examine and configure
192 * Examine the device configuration and tf->flags to calculate
193 * the proper read/write commands and protocol to use.
195 * LOCKING:
196 * caller.
198 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
200 struct ata_taskfile *tf = &qc->tf;
201 struct ata_device *dev = qc->dev;
202 u8 cmd;
204 int index, fua, lba48, write;
206 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
207 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
208 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
210 if (dev->flags & ATA_DFLAG_PIO) {
211 tf->protocol = ATA_PROT_PIO;
212 index = dev->multi_count ? 0 : 8;
213 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
214 /* Unable to use DMA due to host limitation */
215 tf->protocol = ATA_PROT_PIO;
216 index = dev->multi_count ? 0 : 4;
217 } else {
218 tf->protocol = ATA_PROT_DMA;
219 index = 16;
222 cmd = ata_rw_cmds[index + fua + lba48 + write];
223 if (cmd) {
224 tf->command = cmd;
225 return 0;
227 return -1;
230 static const char * const xfer_mode_str[] = {
231 "UDMA/16",
232 "UDMA/25",
233 "UDMA/33",
234 "UDMA/44",
235 "UDMA/66",
236 "UDMA/100",
237 "UDMA/133",
238 "UDMA7",
239 "MWDMA0",
240 "MWDMA1",
241 "MWDMA2",
242 "PIO0",
243 "PIO1",
244 "PIO2",
245 "PIO3",
246 "PIO4",
250 * ata_udma_string - convert UDMA bit offset to string
251 * @mask: mask of bits supported; only highest bit counts.
253 * Determine string which represents the highest speed
254 * (highest bit in @udma_mask).
256 * LOCKING:
257 * None.
259 * RETURNS:
260 * Constant C string representing highest speed listed in
261 * @udma_mask, or the constant C string "<n/a>".
264 static const char *ata_mode_string(unsigned int mask)
266 int i;
268 for (i = 7; i >= 0; i--)
269 if (mask & (1 << i))
270 goto out;
271 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
272 if (mask & (1 << i))
273 goto out;
274 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
275 if (mask & (1 << i))
276 goto out;
278 return "<n/a>";
280 out:
281 return xfer_mode_str[i];
285 * ata_pio_devchk - PATA device presence detection
286 * @ap: ATA channel to examine
287 * @device: Device to examine (starting at zero)
289 * This technique was originally described in
290 * Hale Landis's ATADRVR (www.ata-atapi.com), and
291 * later found its way into the ATA/ATAPI spec.
293 * Write a pattern to the ATA shadow registers,
294 * and if a device is present, it will respond by
295 * correctly storing and echoing back the
296 * ATA shadow register contents.
298 * LOCKING:
299 * caller.
302 static unsigned int ata_pio_devchk(struct ata_port *ap,
303 unsigned int device)
305 struct ata_ioports *ioaddr = &ap->ioaddr;
306 u8 nsect, lbal;
308 ap->ops->dev_select(ap, device);
310 outb(0x55, ioaddr->nsect_addr);
311 outb(0xaa, ioaddr->lbal_addr);
313 outb(0xaa, ioaddr->nsect_addr);
314 outb(0x55, ioaddr->lbal_addr);
316 outb(0x55, ioaddr->nsect_addr);
317 outb(0xaa, ioaddr->lbal_addr);
319 nsect = inb(ioaddr->nsect_addr);
320 lbal = inb(ioaddr->lbal_addr);
322 if ((nsect == 0x55) && (lbal == 0xaa))
323 return 1; /* we found a device */
325 return 0; /* nothing found */
329 * ata_mmio_devchk - PATA device presence detection
330 * @ap: ATA channel to examine
331 * @device: Device to examine (starting at zero)
333 * This technique was originally described in
334 * Hale Landis's ATADRVR (www.ata-atapi.com), and
335 * later found its way into the ATA/ATAPI spec.
337 * Write a pattern to the ATA shadow registers,
338 * and if a device is present, it will respond by
339 * correctly storing and echoing back the
340 * ATA shadow register contents.
342 * LOCKING:
343 * caller.
346 static unsigned int ata_mmio_devchk(struct ata_port *ap,
347 unsigned int device)
349 struct ata_ioports *ioaddr = &ap->ioaddr;
350 u8 nsect, lbal;
352 ap->ops->dev_select(ap, device);
354 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
355 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
357 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
358 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
360 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
361 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
363 nsect = readb((void __iomem *) ioaddr->nsect_addr);
364 lbal = readb((void __iomem *) ioaddr->lbal_addr);
366 if ((nsect == 0x55) && (lbal == 0xaa))
367 return 1; /* we found a device */
369 return 0; /* nothing found */
373 * ata_devchk - PATA device presence detection
374 * @ap: ATA channel to examine
375 * @device: Device to examine (starting at zero)
377 * Dispatch ATA device presence detection, depending
378 * on whether we are using PIO or MMIO to talk to the
379 * ATA shadow registers.
381 * LOCKING:
382 * caller.
385 static unsigned int ata_devchk(struct ata_port *ap,
386 unsigned int device)
388 if (ap->flags & ATA_FLAG_MMIO)
389 return ata_mmio_devchk(ap, device);
390 return ata_pio_devchk(ap, device);
394 * ata_dev_classify - determine device type based on ATA-spec signature
395 * @tf: ATA taskfile register set for device to be identified
397 * Determine from taskfile register contents whether a device is
398 * ATA or ATAPI, as per "Signature and persistence" section
399 * of ATA/PI spec (volume 1, sect 5.14).
401 * LOCKING:
402 * None.
404 * RETURNS:
405 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
406 * the event of failure.
409 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
411 /* Apple's open source Darwin code hints that some devices only
412 * put a proper signature into the LBA mid/high registers,
413 * So, we only check those. It's sufficient for uniqueness.
416 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
417 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
418 DPRINTK("found ATA device by sig\n");
419 return ATA_DEV_ATA;
422 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
423 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
424 DPRINTK("found ATAPI device by sig\n");
425 return ATA_DEV_ATAPI;
428 DPRINTK("unknown device\n");
429 return ATA_DEV_UNKNOWN;
433 * ata_dev_try_classify - Parse returned ATA device signature
434 * @ap: ATA channel to examine
435 * @device: Device to examine (starting at zero)
436 * @r_err: Value of error register on completion
438 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
439 * an ATA/ATAPI-defined set of values is placed in the ATA
440 * shadow registers, indicating the results of device detection
441 * and diagnostics.
443 * Select the ATA device, and read the values from the ATA shadow
444 * registers. Then parse according to the Error register value,
445 * and the spec-defined values examined by ata_dev_classify().
447 * LOCKING:
448 * caller.
450 * RETURNS:
451 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
454 static unsigned int
455 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
457 struct ata_taskfile tf;
458 unsigned int class;
459 u8 err;
461 ap->ops->dev_select(ap, device);
463 memset(&tf, 0, sizeof(tf));
465 ap->ops->tf_read(ap, &tf);
466 err = tf.feature;
467 if (r_err)
468 *r_err = err;
470 /* see if device passed diags */
471 if (err == 1)
472 /* do nothing */ ;
473 else if ((device == 0) && (err == 0x81))
474 /* do nothing */ ;
475 else
476 return ATA_DEV_NONE;
478 /* determine if device is ATA or ATAPI */
479 class = ata_dev_classify(&tf);
481 if (class == ATA_DEV_UNKNOWN)
482 return ATA_DEV_NONE;
483 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
484 return ATA_DEV_NONE;
485 return class;
489 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
490 * @id: IDENTIFY DEVICE results we will examine
491 * @s: string into which data is output
492 * @ofs: offset into identify device page
493 * @len: length of string to return. must be an even number.
495 * The strings in the IDENTIFY DEVICE page are broken up into
496 * 16-bit chunks. Run through the string, and output each
497 * 8-bit chunk linearly, regardless of platform.
499 * LOCKING:
500 * caller.
503 void ata_dev_id_string(const u16 *id, unsigned char *s,
504 unsigned int ofs, unsigned int len)
506 unsigned int c;
508 while (len > 0) {
509 c = id[ofs] >> 8;
510 *s = c;
511 s++;
513 c = id[ofs] & 0xff;
514 *s = c;
515 s++;
517 ofs++;
518 len -= 2;
524 * ata_noop_dev_select - Select device 0/1 on ATA bus
525 * @ap: ATA channel to manipulate
526 * @device: ATA device (numbered from zero) to select
528 * This function performs no actual function.
530 * May be used as the dev_select() entry in ata_port_operations.
532 * LOCKING:
533 * caller.
535 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
541 * ata_std_dev_select - Select device 0/1 on ATA bus
542 * @ap: ATA channel to manipulate
543 * @device: ATA device (numbered from zero) to select
545 * Use the method defined in the ATA specification to
546 * make either device 0, or device 1, active on the
547 * ATA channel. Works with both PIO and MMIO.
549 * May be used as the dev_select() entry in ata_port_operations.
551 * LOCKING:
552 * caller.
555 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
557 u8 tmp;
559 if (device == 0)
560 tmp = ATA_DEVICE_OBS;
561 else
562 tmp = ATA_DEVICE_OBS | ATA_DEV1;
564 if (ap->flags & ATA_FLAG_MMIO) {
565 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
566 } else {
567 outb(tmp, ap->ioaddr.device_addr);
569 ata_pause(ap); /* needed; also flushes, for mmio */
573 * ata_dev_select - Select device 0/1 on ATA bus
574 * @ap: ATA channel to manipulate
575 * @device: ATA device (numbered from zero) to select
576 * @wait: non-zero to wait for Status register BSY bit to clear
577 * @can_sleep: non-zero if context allows sleeping
579 * Use the method defined in the ATA specification to
580 * make either device 0, or device 1, active on the
581 * ATA channel.
583 * This is a high-level version of ata_std_dev_select(),
584 * which additionally provides the services of inserting
585 * the proper pauses and status polling, where needed.
587 * LOCKING:
588 * caller.
591 void ata_dev_select(struct ata_port *ap, unsigned int device,
592 unsigned int wait, unsigned int can_sleep)
594 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
595 ap->id, device, wait);
597 if (wait)
598 ata_wait_idle(ap);
600 ap->ops->dev_select(ap, device);
602 if (wait) {
603 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
604 msleep(150);
605 ata_wait_idle(ap);
610 * ata_dump_id - IDENTIFY DEVICE info debugging output
611 * @dev: Device whose IDENTIFY DEVICE page we will dump
613 * Dump selected 16-bit words from a detected device's
614 * IDENTIFY PAGE page.
616 * LOCKING:
617 * caller.
620 static inline void ata_dump_id(const struct ata_device *dev)
622 DPRINTK("49==0x%04x "
623 "53==0x%04x "
624 "63==0x%04x "
625 "64==0x%04x "
626 "75==0x%04x \n",
627 dev->id[49],
628 dev->id[53],
629 dev->id[63],
630 dev->id[64],
631 dev->id[75]);
632 DPRINTK("80==0x%04x "
633 "81==0x%04x "
634 "82==0x%04x "
635 "83==0x%04x "
636 "84==0x%04x \n",
637 dev->id[80],
638 dev->id[81],
639 dev->id[82],
640 dev->id[83],
641 dev->id[84]);
642 DPRINTK("88==0x%04x "
643 "93==0x%04x\n",
644 dev->id[88],
645 dev->id[93]);
649 * Compute the PIO modes available for this device. This is not as
650 * trivial as it seems if we must consider early devices correctly.
652 * FIXME: pre IDE drive timing (do we care ?).
655 static unsigned int ata_pio_modes(const struct ata_device *adev)
657 u16 modes;
659 /* Usual case. Word 53 indicates word 64 is valid */
660 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
661 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
662 modes <<= 3;
663 modes |= 0x7;
664 return modes;
667 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
668 number for the maximum. Turn it into a mask and return it */
669 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
670 return modes;
671 /* But wait.. there's more. Design your standards by committee and
672 you too can get a free iordy field to process. However its the
673 speeds not the modes that are supported... Note drivers using the
674 timing API will get this right anyway */
677 static inline void
678 ata_queue_packet_task(struct ata_port *ap)
680 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
681 queue_work(ata_wq, &ap->packet_task);
684 static inline void
685 ata_queue_pio_task(struct ata_port *ap)
687 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
688 queue_work(ata_wq, &ap->pio_task);
691 static inline void
692 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
694 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
695 queue_delayed_work(ata_wq, &ap->pio_task, delay);
699 * ata_flush_pio_tasks - Flush pio_task and packet_task
700 * @ap: the target ata_port
702 * After this function completes, pio_task and packet_task are
703 * guranteed not to be running or scheduled.
705 * LOCKING:
706 * Kernel thread context (may sleep)
709 static void ata_flush_pio_tasks(struct ata_port *ap)
711 int tmp = 0;
712 unsigned long flags;
714 DPRINTK("ENTER\n");
716 spin_lock_irqsave(&ap->host_set->lock, flags);
717 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
718 spin_unlock_irqrestore(&ap->host_set->lock, flags);
720 DPRINTK("flush #1\n");
721 flush_workqueue(ata_wq);
724 * At this point, if a task is running, it's guaranteed to see
725 * the FLUSH flag; thus, it will never queue pio tasks again.
726 * Cancel and flush.
728 tmp |= cancel_delayed_work(&ap->pio_task);
729 tmp |= cancel_delayed_work(&ap->packet_task);
730 if (!tmp) {
731 DPRINTK("flush #2\n");
732 flush_workqueue(ata_wq);
735 spin_lock_irqsave(&ap->host_set->lock, flags);
736 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
737 spin_unlock_irqrestore(&ap->host_set->lock, flags);
739 DPRINTK("EXIT\n");
742 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
744 struct completion *waiting = qc->private_data;
746 qc->ap->ops->tf_read(qc->ap, &qc->tf);
747 complete(waiting);
751 * ata_exec_internal - execute libata internal command
752 * @ap: Port to which the command is sent
753 * @dev: Device to which the command is sent
754 * @tf: Taskfile registers for the command and the result
755 * @dma_dir: Data tranfer direction of the command
756 * @buf: Data buffer of the command
757 * @buflen: Length of data buffer
759 * Executes libata internal command with timeout. @tf contains
760 * command on entry and result on return. Timeout and error
761 * conditions are reported via return value. No recovery action
762 * is taken after a command times out. It's caller's duty to
763 * clean up after timeout.
765 * LOCKING:
766 * None. Should be called with kernel context, might sleep.
769 static unsigned
770 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
771 struct ata_taskfile *tf,
772 int dma_dir, void *buf, unsigned int buflen)
774 u8 command = tf->command;
775 struct ata_queued_cmd *qc;
776 DECLARE_COMPLETION(wait);
777 unsigned long flags;
778 unsigned int err_mask;
780 spin_lock_irqsave(&ap->host_set->lock, flags);
782 qc = ata_qc_new_init(ap, dev);
783 BUG_ON(qc == NULL);
785 qc->tf = *tf;
786 qc->dma_dir = dma_dir;
787 if (dma_dir != DMA_NONE) {
788 ata_sg_init_one(qc, buf, buflen);
789 qc->nsect = buflen / ATA_SECT_SIZE;
792 qc->private_data = &wait;
793 qc->complete_fn = ata_qc_complete_internal;
795 qc->err_mask = ata_qc_issue(qc);
796 if (qc->err_mask)
797 ata_qc_complete(qc);
799 spin_unlock_irqrestore(&ap->host_set->lock, flags);
801 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
802 spin_lock_irqsave(&ap->host_set->lock, flags);
804 /* We're racing with irq here. If we lose, the
805 * following test prevents us from completing the qc
806 * again. If completion irq occurs after here but
807 * before the caller cleans up, it will result in a
808 * spurious interrupt. We can live with that.
810 if (qc->flags & ATA_QCFLAG_ACTIVE) {
811 qc->err_mask = AC_ERR_TIMEOUT;
812 ata_qc_complete(qc);
813 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
814 ap->id, command);
817 spin_unlock_irqrestore(&ap->host_set->lock, flags);
820 *tf = qc->tf;
821 err_mask = qc->err_mask;
823 ata_qc_free(qc);
825 return err_mask;
829 * ata_pio_need_iordy - check if iordy needed
830 * @adev: ATA device
832 * Check if the current speed of the device requires IORDY. Used
833 * by various controllers for chip configuration.
836 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
838 int pio;
839 int speed = adev->pio_mode - XFER_PIO_0;
841 if (speed < 2)
842 return 0;
843 if (speed > 2)
844 return 1;
846 /* If we have no drive specific rule, then PIO 2 is non IORDY */
848 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
849 pio = adev->id[ATA_ID_EIDE_PIO];
850 /* Is the speed faster than the drive allows non IORDY ? */
851 if (pio) {
852 /* This is cycle times not frequency - watch the logic! */
853 if (pio > 240) /* PIO2 is 240nS per cycle */
854 return 1;
855 return 0;
858 return 0;
862 * ata_dev_identify - obtain IDENTIFY x DEVICE page
863 * @ap: port on which device we wish to probe resides
864 * @device: device bus address, starting at zero
866 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
867 * command, and read back the 512-byte device information page.
868 * The device information page is fed to us via the standard
869 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
870 * using standard PIO-IN paths)
872 * After reading the device information page, we use several
873 * bits of information from it to initialize data structures
874 * that will be used during the lifetime of the ata_device.
875 * Other data from the info page is used to disqualify certain
876 * older ATA devices we do not wish to support.
878 * LOCKING:
879 * Inherited from caller. Some functions called by this function
880 * obtain the host_set lock.
883 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
885 struct ata_device *dev = &ap->device[device];
886 unsigned int major_version;
887 u16 tmp;
888 unsigned long xfer_modes;
889 unsigned int using_edd;
890 struct ata_taskfile tf;
891 unsigned int err_mask;
892 int rc;
894 if (!ata_dev_present(dev)) {
895 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
896 ap->id, device);
897 return;
900 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
901 using_edd = 0;
902 else
903 using_edd = 1;
905 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
907 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
908 dev->class == ATA_DEV_NONE);
910 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
912 retry:
913 ata_tf_init(ap, &tf, device);
915 if (dev->class == ATA_DEV_ATA) {
916 tf.command = ATA_CMD_ID_ATA;
917 DPRINTK("do ATA identify\n");
918 } else {
919 tf.command = ATA_CMD_ID_ATAPI;
920 DPRINTK("do ATAPI identify\n");
923 tf.protocol = ATA_PROT_PIO;
925 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
926 dev->id, sizeof(dev->id));
928 if (err_mask) {
929 if (err_mask & ~AC_ERR_DEV)
930 goto err_out;
933 * arg! EDD works for all test cases, but seems to return
934 * the ATA signature for some ATAPI devices. Until the
935 * reason for this is found and fixed, we fix up the mess
936 * here. If IDENTIFY DEVICE returns command aborted
937 * (as ATAPI devices do), then we issue an
938 * IDENTIFY PACKET DEVICE.
940 * ATA software reset (SRST, the default) does not appear
941 * to have this problem.
943 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
944 u8 err = tf.feature;
945 if (err & ATA_ABORTED) {
946 dev->class = ATA_DEV_ATAPI;
947 goto retry;
950 goto err_out;
953 swap_buf_le16(dev->id, ATA_ID_WORDS);
955 /* print device capabilities */
956 printk(KERN_DEBUG "ata%u: dev %u cfg "
957 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
958 ap->id, device, dev->id[49],
959 dev->id[82], dev->id[83], dev->id[84],
960 dev->id[85], dev->id[86], dev->id[87],
961 dev->id[88]);
964 * common ATA, ATAPI feature tests
967 /* we require DMA support (bits 8 of word 49) */
968 if (!ata_id_has_dma(dev->id)) {
969 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
970 goto err_out_nosup;
973 /* quick-n-dirty find max transfer mode; for printk only */
974 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
975 if (!xfer_modes)
976 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
977 if (!xfer_modes)
978 xfer_modes = ata_pio_modes(dev);
980 ata_dump_id(dev);
982 /* ATA-specific feature tests */
983 if (dev->class == ATA_DEV_ATA) {
984 if (!ata_id_is_ata(dev->id)) /* sanity check */
985 goto err_out_nosup;
987 /* get major version */
988 tmp = dev->id[ATA_ID_MAJOR_VER];
989 for (major_version = 14; major_version >= 1; major_version--)
990 if (tmp & (1 << major_version))
991 break;
994 * The exact sequence expected by certain pre-ATA4 drives is:
995 * SRST RESET
996 * IDENTIFY
997 * INITIALIZE DEVICE PARAMETERS
998 * anything else..
999 * Some drives were very specific about that exact sequence.
1001 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1002 ata_dev_init_params(ap, dev);
1004 /* current CHS translation info (id[53-58]) might be
1005 * changed. reread the identify device info.
1007 ata_dev_reread_id(ap, dev);
1010 if (ata_id_has_lba(dev->id)) {
1011 dev->flags |= ATA_DFLAG_LBA;
1013 if (ata_id_has_lba48(dev->id)) {
1014 dev->flags |= ATA_DFLAG_LBA48;
1015 dev->n_sectors = ata_id_u64(dev->id, 100);
1016 } else {
1017 dev->n_sectors = ata_id_u32(dev->id, 60);
1020 /* print device info to dmesg */
1021 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1022 ap->id, device,
1023 major_version,
1024 ata_mode_string(xfer_modes),
1025 (unsigned long long)dev->n_sectors,
1026 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1027 } else {
1028 /* CHS */
1030 /* Default translation */
1031 dev->cylinders = dev->id[1];
1032 dev->heads = dev->id[3];
1033 dev->sectors = dev->id[6];
1034 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1036 if (ata_id_current_chs_valid(dev->id)) {
1037 /* Current CHS translation is valid. */
1038 dev->cylinders = dev->id[54];
1039 dev->heads = dev->id[55];
1040 dev->sectors = dev->id[56];
1042 dev->n_sectors = ata_id_u32(dev->id, 57);
1045 /* print device info to dmesg */
1046 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1047 ap->id, device,
1048 major_version,
1049 ata_mode_string(xfer_modes),
1050 (unsigned long long)dev->n_sectors,
1051 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1055 ap->host->max_cmd_len = 16;
1058 /* ATAPI-specific feature tests */
1059 else if (dev->class == ATA_DEV_ATAPI) {
1060 if (ata_id_is_ata(dev->id)) /* sanity check */
1061 goto err_out_nosup;
1063 rc = atapi_cdb_len(dev->id);
1064 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1065 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1066 goto err_out_nosup;
1068 ap->cdb_len = (unsigned int) rc;
1069 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1071 /* print device info to dmesg */
1072 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1073 ap->id, device,
1074 ata_mode_string(xfer_modes));
1077 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1078 return;
1080 err_out_nosup:
1081 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1082 ap->id, device);
1083 err_out:
1084 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1085 DPRINTK("EXIT, err\n");
1089 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1091 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1095 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1096 * @ap: Bus
1097 * @i: Device
1099 * LOCKING:
1102 void ata_dev_config(struct ata_port *ap, unsigned int i)
1104 /* limit bridge transfers to udma5, 200 sectors */
1105 if (ata_dev_knobble(ap)) {
1106 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1107 ap->id, ap->device->devno);
1108 ap->udma_mask &= ATA_UDMA5;
1109 ap->host->max_sectors = ATA_MAX_SECTORS;
1110 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1111 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
1114 if (ap->ops->dev_config)
1115 ap->ops->dev_config(ap, &ap->device[i]);
1119 * ata_bus_probe - Reset and probe ATA bus
1120 * @ap: Bus to probe
1122 * Master ATA bus probing function. Initiates a hardware-dependent
1123 * bus reset, then attempts to identify any devices found on
1124 * the bus.
1126 * LOCKING:
1127 * PCI/etc. bus probe sem.
1129 * RETURNS:
1130 * Zero on success, non-zero on error.
1133 static int ata_bus_probe(struct ata_port *ap)
1135 unsigned int i, found = 0;
1137 if (ap->ops->probe_reset) {
1138 unsigned int classes[ATA_MAX_DEVICES];
1139 int rc;
1141 ata_port_probe(ap);
1143 rc = ap->ops->probe_reset(ap, classes);
1144 if (rc == 0) {
1145 for (i = 0; i < ATA_MAX_DEVICES; i++)
1146 ap->device[i].class = classes[i];
1147 } else {
1148 printk(KERN_ERR "ata%u: probe reset failed, "
1149 "disabling port\n", ap->id);
1150 ata_port_disable(ap);
1152 } else
1153 ap->ops->phy_reset(ap);
1155 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1156 goto err_out;
1158 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1159 ata_dev_identify(ap, i);
1160 if (ata_dev_present(&ap->device[i])) {
1161 found = 1;
1162 ata_dev_config(ap,i);
1166 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1167 goto err_out_disable;
1169 ata_set_mode(ap);
1170 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1171 goto err_out_disable;
1173 return 0;
1175 err_out_disable:
1176 ap->ops->port_disable(ap);
1177 err_out:
1178 return -1;
1182 * ata_port_probe - Mark port as enabled
1183 * @ap: Port for which we indicate enablement
1185 * Modify @ap data structure such that the system
1186 * thinks that the entire port is enabled.
1188 * LOCKING: host_set lock, or some other form of
1189 * serialization.
1192 void ata_port_probe(struct ata_port *ap)
1194 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1198 * sata_print_link_status - Print SATA link status
1199 * @ap: SATA port to printk link status about
1201 * This function prints link speed and status of a SATA link.
1203 * LOCKING:
1204 * None.
1206 static void sata_print_link_status(struct ata_port *ap)
1208 u32 sstatus, tmp;
1209 const char *speed;
1211 if (!ap->ops->scr_read)
1212 return;
1214 sstatus = scr_read(ap, SCR_STATUS);
1216 if (sata_dev_present(ap)) {
1217 tmp = (sstatus >> 4) & 0xf;
1218 if (tmp & (1 << 0))
1219 speed = "1.5";
1220 else if (tmp & (1 << 1))
1221 speed = "3.0";
1222 else
1223 speed = "<unknown>";
1224 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1225 ap->id, speed, sstatus);
1226 } else {
1227 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1228 ap->id, sstatus);
1233 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1234 * @ap: SATA port associated with target SATA PHY.
1236 * This function issues commands to standard SATA Sxxx
1237 * PHY registers, to wake up the phy (and device), and
1238 * clear any reset condition.
1240 * LOCKING:
1241 * PCI/etc. bus probe sem.
1244 void __sata_phy_reset(struct ata_port *ap)
1246 u32 sstatus;
1247 unsigned long timeout = jiffies + (HZ * 5);
1249 if (ap->flags & ATA_FLAG_SATA_RESET) {
1250 /* issue phy wake/reset */
1251 scr_write_flush(ap, SCR_CONTROL, 0x301);
1252 /* Couldn't find anything in SATA I/II specs, but
1253 * AHCI-1.1 10.4.2 says at least 1 ms. */
1254 mdelay(1);
1256 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1258 /* wait for phy to become ready, if necessary */
1259 do {
1260 msleep(200);
1261 sstatus = scr_read(ap, SCR_STATUS);
1262 if ((sstatus & 0xf) != 1)
1263 break;
1264 } while (time_before(jiffies, timeout));
1266 /* print link status */
1267 sata_print_link_status(ap);
1269 /* TODO: phy layer with polling, timeouts, etc. */
1270 if (sata_dev_present(ap))
1271 ata_port_probe(ap);
1272 else
1273 ata_port_disable(ap);
1275 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1276 return;
1278 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1279 ata_port_disable(ap);
1280 return;
1283 ap->cbl = ATA_CBL_SATA;
1287 * sata_phy_reset - Reset SATA bus.
1288 * @ap: SATA port associated with target SATA PHY.
1290 * This function resets the SATA bus, and then probes
1291 * the bus for devices.
1293 * LOCKING:
1294 * PCI/etc. bus probe sem.
1297 void sata_phy_reset(struct ata_port *ap)
1299 __sata_phy_reset(ap);
1300 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1301 return;
1302 ata_bus_reset(ap);
1306 * ata_port_disable - Disable port.
1307 * @ap: Port to be disabled.
1309 * Modify @ap data structure such that the system
1310 * thinks that the entire port is disabled, and should
1311 * never attempt to probe or communicate with devices
1312 * on this port.
1314 * LOCKING: host_set lock, or some other form of
1315 * serialization.
1318 void ata_port_disable(struct ata_port *ap)
1320 ap->device[0].class = ATA_DEV_NONE;
1321 ap->device[1].class = ATA_DEV_NONE;
1322 ap->flags |= ATA_FLAG_PORT_DISABLED;
1326 * This mode timing computation functionality is ported over from
1327 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1330 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1331 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1332 * for PIO 5, which is a nonstandard extension and UDMA6, which
1333 * is currently supported only by Maxtor drives.
1336 static const struct ata_timing ata_timing[] = {
1338 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1339 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1340 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1341 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1343 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1344 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1345 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1347 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1349 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1350 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1351 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1353 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1354 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1355 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1357 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1358 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1359 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1361 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1362 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1363 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1365 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1367 { 0xFF }
1370 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1371 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1373 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1375 q->setup = EZ(t->setup * 1000, T);
1376 q->act8b = EZ(t->act8b * 1000, T);
1377 q->rec8b = EZ(t->rec8b * 1000, T);
1378 q->cyc8b = EZ(t->cyc8b * 1000, T);
1379 q->active = EZ(t->active * 1000, T);
1380 q->recover = EZ(t->recover * 1000, T);
1381 q->cycle = EZ(t->cycle * 1000, T);
1382 q->udma = EZ(t->udma * 1000, UT);
1385 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1386 struct ata_timing *m, unsigned int what)
1388 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1389 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1390 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1391 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1392 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1393 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1394 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1395 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1398 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1400 const struct ata_timing *t;
1402 for (t = ata_timing; t->mode != speed; t++)
1403 if (t->mode == 0xFF)
1404 return NULL;
1405 return t;
1408 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1409 struct ata_timing *t, int T, int UT)
1411 const struct ata_timing *s;
1412 struct ata_timing p;
1415 * Find the mode.
1418 if (!(s = ata_timing_find_mode(speed)))
1419 return -EINVAL;
1421 memcpy(t, s, sizeof(*s));
1424 * If the drive is an EIDE drive, it can tell us it needs extended
1425 * PIO/MW_DMA cycle timing.
1428 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1429 memset(&p, 0, sizeof(p));
1430 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1431 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1432 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1433 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1434 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1436 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1440 * Convert the timing to bus clock counts.
1443 ata_timing_quantize(t, t, T, UT);
1446 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1447 * S.M.A.R.T * and some other commands. We have to ensure that the
1448 * DMA cycle timing is slower/equal than the fastest PIO timing.
1451 if (speed > XFER_PIO_4) {
1452 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1453 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1457 * Lengthen active & recovery time so that cycle time is correct.
1460 if (t->act8b + t->rec8b < t->cyc8b) {
1461 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1462 t->rec8b = t->cyc8b - t->act8b;
1465 if (t->active + t->recover < t->cycle) {
1466 t->active += (t->cycle - (t->active + t->recover)) / 2;
1467 t->recover = t->cycle - t->active;
1470 return 0;
1473 static const struct {
1474 unsigned int shift;
1475 u8 base;
1476 } xfer_mode_classes[] = {
1477 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1478 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1479 { ATA_SHIFT_PIO, XFER_PIO_0 },
1482 static u8 base_from_shift(unsigned int shift)
1484 int i;
1486 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1487 if (xfer_mode_classes[i].shift == shift)
1488 return xfer_mode_classes[i].base;
1490 return 0xff;
1493 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1495 int ofs, idx;
1496 u8 base;
1498 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1499 return;
1501 if (dev->xfer_shift == ATA_SHIFT_PIO)
1502 dev->flags |= ATA_DFLAG_PIO;
1504 ata_dev_set_xfermode(ap, dev);
1506 base = base_from_shift(dev->xfer_shift);
1507 ofs = dev->xfer_mode - base;
1508 idx = ofs + dev->xfer_shift;
1509 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1511 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1512 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1514 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1515 ap->id, dev->devno, xfer_mode_str[idx]);
1518 static int ata_host_set_pio(struct ata_port *ap)
1520 unsigned int mask;
1521 int x, i;
1522 u8 base, xfer_mode;
1524 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1525 x = fgb(mask);
1526 if (x < 0) {
1527 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1528 return -1;
1531 base = base_from_shift(ATA_SHIFT_PIO);
1532 xfer_mode = base + x;
1534 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1535 (int)base, (int)xfer_mode, mask, x);
1537 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1538 struct ata_device *dev = &ap->device[i];
1539 if (ata_dev_present(dev)) {
1540 dev->pio_mode = xfer_mode;
1541 dev->xfer_mode = xfer_mode;
1542 dev->xfer_shift = ATA_SHIFT_PIO;
1543 if (ap->ops->set_piomode)
1544 ap->ops->set_piomode(ap, dev);
1548 return 0;
1551 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1552 unsigned int xfer_shift)
1554 int i;
1556 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1557 struct ata_device *dev = &ap->device[i];
1558 if (ata_dev_present(dev)) {
1559 dev->dma_mode = xfer_mode;
1560 dev->xfer_mode = xfer_mode;
1561 dev->xfer_shift = xfer_shift;
1562 if (ap->ops->set_dmamode)
1563 ap->ops->set_dmamode(ap, dev);
1569 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1570 * @ap: port on which timings will be programmed
1572 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1574 * LOCKING:
1575 * PCI/etc. bus probe sem.
1577 static void ata_set_mode(struct ata_port *ap)
1579 unsigned int xfer_shift;
1580 u8 xfer_mode;
1581 int rc;
1583 /* step 1: always set host PIO timings */
1584 rc = ata_host_set_pio(ap);
1585 if (rc)
1586 goto err_out;
1588 /* step 2: choose the best data xfer mode */
1589 xfer_mode = xfer_shift = 0;
1590 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1591 if (rc)
1592 goto err_out;
1594 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1595 if (xfer_shift != ATA_SHIFT_PIO)
1596 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1598 /* step 4: update devices' xfer mode */
1599 ata_dev_set_mode(ap, &ap->device[0]);
1600 ata_dev_set_mode(ap, &ap->device[1]);
1602 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1603 return;
1605 if (ap->ops->post_set_mode)
1606 ap->ops->post_set_mode(ap);
1608 return;
1610 err_out:
1611 ata_port_disable(ap);
1615 * ata_tf_to_host - issue ATA taskfile to host controller
1616 * @ap: port to which command is being issued
1617 * @tf: ATA taskfile register set
1619 * Issues ATA taskfile register set to ATA host controller,
1620 * with proper synchronization with interrupt handler and
1621 * other threads.
1623 * LOCKING:
1624 * spin_lock_irqsave(host_set lock)
1627 static inline void ata_tf_to_host(struct ata_port *ap,
1628 const struct ata_taskfile *tf)
1630 ap->ops->tf_load(ap, tf);
1631 ap->ops->exec_command(ap, tf);
1635 * ata_busy_sleep - sleep until BSY clears, or timeout
1636 * @ap: port containing status register to be polled
1637 * @tmout_pat: impatience timeout
1638 * @tmout: overall timeout
1640 * Sleep until ATA Status register bit BSY clears,
1641 * or a timeout occurs.
1643 * LOCKING: None.
1646 unsigned int ata_busy_sleep (struct ata_port *ap,
1647 unsigned long tmout_pat, unsigned long tmout)
1649 unsigned long timer_start, timeout;
1650 u8 status;
1652 status = ata_busy_wait(ap, ATA_BUSY, 300);
1653 timer_start = jiffies;
1654 timeout = timer_start + tmout_pat;
1655 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1656 msleep(50);
1657 status = ata_busy_wait(ap, ATA_BUSY, 3);
1660 if (status & ATA_BUSY)
1661 printk(KERN_WARNING "ata%u is slow to respond, "
1662 "please be patient\n", ap->id);
1664 timeout = timer_start + tmout;
1665 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1666 msleep(50);
1667 status = ata_chk_status(ap);
1670 if (status & ATA_BUSY) {
1671 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1672 ap->id, tmout / HZ);
1673 return 1;
1676 return 0;
1679 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1681 struct ata_ioports *ioaddr = &ap->ioaddr;
1682 unsigned int dev0 = devmask & (1 << 0);
1683 unsigned int dev1 = devmask & (1 << 1);
1684 unsigned long timeout;
1686 /* if device 0 was found in ata_devchk, wait for its
1687 * BSY bit to clear
1689 if (dev0)
1690 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1692 /* if device 1 was found in ata_devchk, wait for
1693 * register access, then wait for BSY to clear
1695 timeout = jiffies + ATA_TMOUT_BOOT;
1696 while (dev1) {
1697 u8 nsect, lbal;
1699 ap->ops->dev_select(ap, 1);
1700 if (ap->flags & ATA_FLAG_MMIO) {
1701 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1702 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1703 } else {
1704 nsect = inb(ioaddr->nsect_addr);
1705 lbal = inb(ioaddr->lbal_addr);
1707 if ((nsect == 1) && (lbal == 1))
1708 break;
1709 if (time_after(jiffies, timeout)) {
1710 dev1 = 0;
1711 break;
1713 msleep(50); /* give drive a breather */
1715 if (dev1)
1716 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1718 /* is all this really necessary? */
1719 ap->ops->dev_select(ap, 0);
1720 if (dev1)
1721 ap->ops->dev_select(ap, 1);
1722 if (dev0)
1723 ap->ops->dev_select(ap, 0);
1727 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1728 * @ap: Port to reset and probe
1730 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1731 * probe the bus. Not often used these days.
1733 * LOCKING:
1734 * PCI/etc. bus probe sem.
1735 * Obtains host_set lock.
1739 static unsigned int ata_bus_edd(struct ata_port *ap)
1741 struct ata_taskfile tf;
1742 unsigned long flags;
1744 /* set up execute-device-diag (bus reset) taskfile */
1745 /* also, take interrupts to a known state (disabled) */
1746 DPRINTK("execute-device-diag\n");
1747 ata_tf_init(ap, &tf, 0);
1748 tf.ctl |= ATA_NIEN;
1749 tf.command = ATA_CMD_EDD;
1750 tf.protocol = ATA_PROT_NODATA;
1752 /* do bus reset */
1753 spin_lock_irqsave(&ap->host_set->lock, flags);
1754 ata_tf_to_host(ap, &tf);
1755 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1757 /* spec says at least 2ms. but who knows with those
1758 * crazy ATAPI devices...
1760 msleep(150);
1762 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1765 static unsigned int ata_bus_softreset(struct ata_port *ap,
1766 unsigned int devmask)
1768 struct ata_ioports *ioaddr = &ap->ioaddr;
1770 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1772 /* software reset. causes dev0 to be selected */
1773 if (ap->flags & ATA_FLAG_MMIO) {
1774 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1775 udelay(20); /* FIXME: flush */
1776 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1777 udelay(20); /* FIXME: flush */
1778 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1779 } else {
1780 outb(ap->ctl, ioaddr->ctl_addr);
1781 udelay(10);
1782 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1783 udelay(10);
1784 outb(ap->ctl, ioaddr->ctl_addr);
1787 /* spec mandates ">= 2ms" before checking status.
1788 * We wait 150ms, because that was the magic delay used for
1789 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1790 * between when the ATA command register is written, and then
1791 * status is checked. Because waiting for "a while" before
1792 * checking status is fine, post SRST, we perform this magic
1793 * delay here as well.
1795 msleep(150);
1797 ata_bus_post_reset(ap, devmask);
1799 return 0;
1803 * ata_bus_reset - reset host port and associated ATA channel
1804 * @ap: port to reset
1806 * This is typically the first time we actually start issuing
1807 * commands to the ATA channel. We wait for BSY to clear, then
1808 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1809 * result. Determine what devices, if any, are on the channel
1810 * by looking at the device 0/1 error register. Look at the signature
1811 * stored in each device's taskfile registers, to determine if
1812 * the device is ATA or ATAPI.
1814 * LOCKING:
1815 * PCI/etc. bus probe sem.
1816 * Obtains host_set lock.
1818 * SIDE EFFECTS:
1819 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1822 void ata_bus_reset(struct ata_port *ap)
1824 struct ata_ioports *ioaddr = &ap->ioaddr;
1825 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1826 u8 err;
1827 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1829 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1831 /* determine if device 0/1 are present */
1832 if (ap->flags & ATA_FLAG_SATA_RESET)
1833 dev0 = 1;
1834 else {
1835 dev0 = ata_devchk(ap, 0);
1836 if (slave_possible)
1837 dev1 = ata_devchk(ap, 1);
1840 if (dev0)
1841 devmask |= (1 << 0);
1842 if (dev1)
1843 devmask |= (1 << 1);
1845 /* select device 0 again */
1846 ap->ops->dev_select(ap, 0);
1848 /* issue bus reset */
1849 if (ap->flags & ATA_FLAG_SRST)
1850 rc = ata_bus_softreset(ap, devmask);
1851 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1852 /* set up device control */
1853 if (ap->flags & ATA_FLAG_MMIO)
1854 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1855 else
1856 outb(ap->ctl, ioaddr->ctl_addr);
1857 rc = ata_bus_edd(ap);
1860 if (rc)
1861 goto err_out;
1864 * determine by signature whether we have ATA or ATAPI devices
1866 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1867 if ((slave_possible) && (err != 0x81))
1868 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1870 /* re-enable interrupts */
1871 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1872 ata_irq_on(ap);
1874 /* is double-select really necessary? */
1875 if (ap->device[1].class != ATA_DEV_NONE)
1876 ap->ops->dev_select(ap, 1);
1877 if (ap->device[0].class != ATA_DEV_NONE)
1878 ap->ops->dev_select(ap, 0);
1880 /* if no devices were detected, disable this port */
1881 if ((ap->device[0].class == ATA_DEV_NONE) &&
1882 (ap->device[1].class == ATA_DEV_NONE))
1883 goto err_out;
1885 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1886 /* set up device control for ATA_FLAG_SATA_RESET */
1887 if (ap->flags & ATA_FLAG_MMIO)
1888 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1889 else
1890 outb(ap->ctl, ioaddr->ctl_addr);
1893 DPRINTK("EXIT\n");
1894 return;
1896 err_out:
1897 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1898 ap->ops->port_disable(ap);
1900 DPRINTK("EXIT\n");
1903 static int sata_phy_resume(struct ata_port *ap)
1905 unsigned long timeout = jiffies + (HZ * 5);
1906 u32 sstatus;
1908 scr_write_flush(ap, SCR_CONTROL, 0x300);
1910 /* Wait for phy to become ready, if necessary. */
1911 do {
1912 msleep(200);
1913 sstatus = scr_read(ap, SCR_STATUS);
1914 if ((sstatus & 0xf) != 1)
1915 return 0;
1916 } while (time_before(jiffies, timeout));
1918 return -1;
1922 * ata_std_probeinit - initialize probing
1923 * @ap: port to be probed
1925 * @ap is about to be probed. Initialize it. This function is
1926 * to be used as standard callback for ata_drive_probe_reset().
1928 * NOTE!!! Do not use this function as probeinit if a low level
1929 * driver implements only hardreset. Just pass NULL as probeinit
1930 * in that case. Using this function is probably okay but doing
1931 * so makes reset sequence different from the original
1932 * ->phy_reset implementation and Jeff nervous. :-P
1934 extern void ata_std_probeinit(struct ata_port *ap)
1936 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
1937 sata_phy_resume(ap);
1938 if (sata_dev_present(ap))
1939 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1944 * ata_std_softreset - reset host port via ATA SRST
1945 * @ap: port to reset
1946 * @verbose: fail verbosely
1947 * @classes: resulting classes of attached devices
1949 * Reset host port using ATA SRST. This function is to be used
1950 * as standard callback for ata_drive_*_reset() functions.
1952 * LOCKING:
1953 * Kernel thread context (may sleep)
1955 * RETURNS:
1956 * 0 on success, -errno otherwise.
1958 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
1960 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1961 unsigned int devmask = 0, err_mask;
1962 u8 err;
1964 DPRINTK("ENTER\n");
1966 if (ap->ops->scr_read && !sata_dev_present(ap)) {
1967 classes[0] = ATA_DEV_NONE;
1968 goto out;
1971 /* determine if device 0/1 are present */
1972 if (ata_devchk(ap, 0))
1973 devmask |= (1 << 0);
1974 if (slave_possible && ata_devchk(ap, 1))
1975 devmask |= (1 << 1);
1977 /* select device 0 again */
1978 ap->ops->dev_select(ap, 0);
1980 /* issue bus reset */
1981 DPRINTK("about to softreset, devmask=%x\n", devmask);
1982 err_mask = ata_bus_softreset(ap, devmask);
1983 if (err_mask) {
1984 if (verbose)
1985 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
1986 ap->id, err_mask);
1987 else
1988 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
1989 err_mask);
1990 return -EIO;
1993 /* determine by signature whether we have ATA or ATAPI devices */
1994 classes[0] = ata_dev_try_classify(ap, 0, &err);
1995 if (slave_possible && err != 0x81)
1996 classes[1] = ata_dev_try_classify(ap, 1, &err);
1998 out:
1999 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2000 return 0;
2004 * sata_std_hardreset - reset host port via SATA phy reset
2005 * @ap: port to reset
2006 * @verbose: fail verbosely
2007 * @class: resulting class of attached device
2009 * SATA phy-reset host port using DET bits of SControl register.
2010 * This function is to be used as standard callback for
2011 * ata_drive_*_reset().
2013 * LOCKING:
2014 * Kernel thread context (may sleep)
2016 * RETURNS:
2017 * 0 on success, -errno otherwise.
2019 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2021 DPRINTK("ENTER\n");
2023 /* Issue phy wake/reset */
2024 scr_write_flush(ap, SCR_CONTROL, 0x301);
2027 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2028 * 10.4.2 says at least 1 ms.
2030 msleep(1);
2032 /* Bring phy back */
2033 sata_phy_resume(ap);
2035 /* TODO: phy layer with polling, timeouts, etc. */
2036 if (!sata_dev_present(ap)) {
2037 *class = ATA_DEV_NONE;
2038 DPRINTK("EXIT, link offline\n");
2039 return 0;
2042 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2043 if (verbose)
2044 printk(KERN_ERR "ata%u: COMRESET failed "
2045 "(device not ready)\n", ap->id);
2046 else
2047 DPRINTK("EXIT, device not ready\n");
2048 return -EIO;
2051 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2053 *class = ata_dev_try_classify(ap, 0, NULL);
2055 DPRINTK("EXIT, class=%u\n", *class);
2056 return 0;
2060 * ata_std_postreset - standard postreset callback
2061 * @ap: the target ata_port
2062 * @classes: classes of attached devices
2064 * This function is invoked after a successful reset. Note that
2065 * the device might have been reset more than once using
2066 * different reset methods before postreset is invoked.
2067 * postreset is also reponsible for setting cable type.
2069 * This function is to be used as standard callback for
2070 * ata_drive_*_reset().
2072 * LOCKING:
2073 * Kernel thread context (may sleep)
2075 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2077 DPRINTK("ENTER\n");
2079 /* set cable type */
2080 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2081 ap->cbl = ATA_CBL_SATA;
2083 /* print link status */
2084 if (ap->cbl == ATA_CBL_SATA)
2085 sata_print_link_status(ap);
2087 /* re-enable interrupts */
2088 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2089 ata_irq_on(ap);
2091 /* is double-select really necessary? */
2092 if (classes[0] != ATA_DEV_NONE)
2093 ap->ops->dev_select(ap, 1);
2094 if (classes[1] != ATA_DEV_NONE)
2095 ap->ops->dev_select(ap, 0);
2097 /* bail out if no device is present */
2098 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2099 DPRINTK("EXIT, no device\n");
2100 return;
2103 /* set up device control */
2104 if (ap->ioaddr.ctl_addr) {
2105 if (ap->flags & ATA_FLAG_MMIO)
2106 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2107 else
2108 outb(ap->ctl, ap->ioaddr.ctl_addr);
2111 DPRINTK("EXIT\n");
2115 * ata_std_probe_reset - standard probe reset method
2116 * @ap: prot to perform probe-reset
2117 * @classes: resulting classes of attached devices
2119 * The stock off-the-shelf ->probe_reset method.
2121 * LOCKING:
2122 * Kernel thread context (may sleep)
2124 * RETURNS:
2125 * 0 on success, -errno otherwise.
2127 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2129 ata_reset_fn_t hardreset;
2131 hardreset = NULL;
2132 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2133 hardreset = sata_std_hardreset;
2135 return ata_drive_probe_reset(ap, ata_std_probeinit,
2136 ata_std_softreset, hardreset,
2137 ata_std_postreset, classes);
2140 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2141 ata_postreset_fn_t postreset,
2142 unsigned int *classes)
2144 int i, rc;
2146 for (i = 0; i < ATA_MAX_DEVICES; i++)
2147 classes[i] = ATA_DEV_UNKNOWN;
2149 rc = reset(ap, 0, classes);
2150 if (rc)
2151 return rc;
2153 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2154 * is complete and convert all ATA_DEV_UNKNOWN to
2155 * ATA_DEV_NONE.
2157 for (i = 0; i < ATA_MAX_DEVICES; i++)
2158 if (classes[i] != ATA_DEV_UNKNOWN)
2159 break;
2161 if (i < ATA_MAX_DEVICES)
2162 for (i = 0; i < ATA_MAX_DEVICES; i++)
2163 if (classes[i] == ATA_DEV_UNKNOWN)
2164 classes[i] = ATA_DEV_NONE;
2166 if (postreset)
2167 postreset(ap, classes);
2169 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2173 * ata_drive_probe_reset - Perform probe reset with given methods
2174 * @ap: port to reset
2175 * @probeinit: probeinit method (can be NULL)
2176 * @softreset: softreset method (can be NULL)
2177 * @hardreset: hardreset method (can be NULL)
2178 * @postreset: postreset method (can be NULL)
2179 * @classes: resulting classes of attached devices
2181 * Reset the specified port and classify attached devices using
2182 * given methods. This function prefers softreset but tries all
2183 * possible reset sequences to reset and classify devices. This
2184 * function is intended to be used for constructing ->probe_reset
2185 * callback by low level drivers.
2187 * Reset methods should follow the following rules.
2189 * - Return 0 on sucess, -errno on failure.
2190 * - If classification is supported, fill classes[] with
2191 * recognized class codes.
2192 * - If classification is not supported, leave classes[] alone.
2193 * - If verbose is non-zero, print error message on failure;
2194 * otherwise, shut up.
2196 * LOCKING:
2197 * Kernel thread context (may sleep)
2199 * RETURNS:
2200 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2201 * if classification fails, and any error code from reset
2202 * methods.
2204 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2205 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2206 ata_postreset_fn_t postreset, unsigned int *classes)
2208 int rc = -EINVAL;
2210 if (probeinit)
2211 probeinit(ap);
2213 if (softreset) {
2214 rc = do_probe_reset(ap, softreset, postreset, classes);
2215 if (rc == 0)
2216 return 0;
2219 if (!hardreset)
2220 return rc;
2222 rc = do_probe_reset(ap, hardreset, postreset, classes);
2223 if (rc == 0 || rc != -ENODEV)
2224 return rc;
2226 if (softreset)
2227 rc = do_probe_reset(ap, softreset, postreset, classes);
2229 return rc;
2232 static void ata_pr_blacklisted(const struct ata_port *ap,
2233 const struct ata_device *dev)
2235 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2236 ap->id, dev->devno);
2239 static const char * const ata_dma_blacklist [] = {
2240 "WDC AC11000H",
2241 "WDC AC22100H",
2242 "WDC AC32500H",
2243 "WDC AC33100H",
2244 "WDC AC31600H",
2245 "WDC AC32100H",
2246 "WDC AC23200L",
2247 "Compaq CRD-8241B",
2248 "CRD-8400B",
2249 "CRD-8480B",
2250 "CRD-8482B",
2251 "CRD-84",
2252 "SanDisk SDP3B",
2253 "SanDisk SDP3B-64",
2254 "SANYO CD-ROM CRD",
2255 "HITACHI CDR-8",
2256 "HITACHI CDR-8335",
2257 "HITACHI CDR-8435",
2258 "Toshiba CD-ROM XM-6202B",
2259 "TOSHIBA CD-ROM XM-1702BC",
2260 "CD-532E-A",
2261 "E-IDE CD-ROM CR-840",
2262 "CD-ROM Drive/F5A",
2263 "WPI CDD-820",
2264 "SAMSUNG CD-ROM SC-148C",
2265 "SAMSUNG CD-ROM SC",
2266 "SanDisk SDP3B-64",
2267 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2268 "_NEC DV5800A",
2271 static int ata_dma_blacklisted(const struct ata_device *dev)
2273 unsigned char model_num[40];
2274 char *s;
2275 unsigned int len;
2276 int i;
2278 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2279 sizeof(model_num));
2280 s = &model_num[0];
2281 len = strnlen(s, sizeof(model_num));
2283 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2284 while ((len > 0) && (s[len - 1] == ' ')) {
2285 len--;
2286 s[len] = 0;
2289 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2290 if (!strncmp(ata_dma_blacklist[i], s, len))
2291 return 1;
2293 return 0;
2296 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2298 const struct ata_device *master, *slave;
2299 unsigned int mask;
2301 master = &ap->device[0];
2302 slave = &ap->device[1];
2304 assert (ata_dev_present(master) || ata_dev_present(slave));
2306 if (shift == ATA_SHIFT_UDMA) {
2307 mask = ap->udma_mask;
2308 if (ata_dev_present(master)) {
2309 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2310 if (ata_dma_blacklisted(master)) {
2311 mask = 0;
2312 ata_pr_blacklisted(ap, master);
2315 if (ata_dev_present(slave)) {
2316 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2317 if (ata_dma_blacklisted(slave)) {
2318 mask = 0;
2319 ata_pr_blacklisted(ap, slave);
2323 else if (shift == ATA_SHIFT_MWDMA) {
2324 mask = ap->mwdma_mask;
2325 if (ata_dev_present(master)) {
2326 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2327 if (ata_dma_blacklisted(master)) {
2328 mask = 0;
2329 ata_pr_blacklisted(ap, master);
2332 if (ata_dev_present(slave)) {
2333 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2334 if (ata_dma_blacklisted(slave)) {
2335 mask = 0;
2336 ata_pr_blacklisted(ap, slave);
2340 else if (shift == ATA_SHIFT_PIO) {
2341 mask = ap->pio_mask;
2342 if (ata_dev_present(master)) {
2343 /* spec doesn't return explicit support for
2344 * PIO0-2, so we fake it
2346 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2347 tmp_mode <<= 3;
2348 tmp_mode |= 0x7;
2349 mask &= tmp_mode;
2351 if (ata_dev_present(slave)) {
2352 /* spec doesn't return explicit support for
2353 * PIO0-2, so we fake it
2355 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2356 tmp_mode <<= 3;
2357 tmp_mode |= 0x7;
2358 mask &= tmp_mode;
2361 else {
2362 mask = 0xffffffff; /* shut up compiler warning */
2363 BUG();
2366 return mask;
2369 /* find greatest bit */
2370 static int fgb(u32 bitmap)
2372 unsigned int i;
2373 int x = -1;
2375 for (i = 0; i < 32; i++)
2376 if (bitmap & (1 << i))
2377 x = i;
2379 return x;
2383 * ata_choose_xfer_mode - attempt to find best transfer mode
2384 * @ap: Port for which an xfer mode will be selected
2385 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2386 * @xfer_shift_out: (output) bit shift that selects this mode
2388 * Based on host and device capabilities, determine the
2389 * maximum transfer mode that is amenable to all.
2391 * LOCKING:
2392 * PCI/etc. bus probe sem.
2394 * RETURNS:
2395 * Zero on success, negative on error.
2398 static int ata_choose_xfer_mode(const struct ata_port *ap,
2399 u8 *xfer_mode_out,
2400 unsigned int *xfer_shift_out)
2402 unsigned int mask, shift;
2403 int x, i;
2405 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2406 shift = xfer_mode_classes[i].shift;
2407 mask = ata_get_mode_mask(ap, shift);
2409 x = fgb(mask);
2410 if (x >= 0) {
2411 *xfer_mode_out = xfer_mode_classes[i].base + x;
2412 *xfer_shift_out = shift;
2413 return 0;
2417 return -1;
2421 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2422 * @ap: Port associated with device @dev
2423 * @dev: Device to which command will be sent
2425 * Issue SET FEATURES - XFER MODE command to device @dev
2426 * on port @ap.
2428 * LOCKING:
2429 * PCI/etc. bus probe sem.
2432 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2434 struct ata_taskfile tf;
2436 /* set up set-features taskfile */
2437 DPRINTK("set features - xfer mode\n");
2439 ata_tf_init(ap, &tf, dev->devno);
2440 tf.command = ATA_CMD_SET_FEATURES;
2441 tf.feature = SETFEATURES_XFER;
2442 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2443 tf.protocol = ATA_PROT_NODATA;
2444 tf.nsect = dev->xfer_mode;
2446 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2447 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2448 ap->id);
2449 ata_port_disable(ap);
2452 DPRINTK("EXIT\n");
2456 * ata_dev_reread_id - Reread the device identify device info
2457 * @ap: port where the device is
2458 * @dev: device to reread the identify device info
2460 * LOCKING:
2463 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2465 struct ata_taskfile tf;
2467 ata_tf_init(ap, &tf, dev->devno);
2469 if (dev->class == ATA_DEV_ATA) {
2470 tf.command = ATA_CMD_ID_ATA;
2471 DPRINTK("do ATA identify\n");
2472 } else {
2473 tf.command = ATA_CMD_ID_ATAPI;
2474 DPRINTK("do ATAPI identify\n");
2477 tf.flags |= ATA_TFLAG_DEVICE;
2478 tf.protocol = ATA_PROT_PIO;
2480 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2481 dev->id, sizeof(dev->id)))
2482 goto err_out;
2484 swap_buf_le16(dev->id, ATA_ID_WORDS);
2486 ata_dump_id(dev);
2488 DPRINTK("EXIT\n");
2490 return;
2491 err_out:
2492 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2493 ata_port_disable(ap);
2497 * ata_dev_init_params - Issue INIT DEV PARAMS command
2498 * @ap: Port associated with device @dev
2499 * @dev: Device to which command will be sent
2501 * LOCKING:
2504 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2506 struct ata_taskfile tf;
2507 u16 sectors = dev->id[6];
2508 u16 heads = dev->id[3];
2510 /* Number of sectors per track 1-255. Number of heads 1-16 */
2511 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2512 return;
2514 /* set up init dev params taskfile */
2515 DPRINTK("init dev params \n");
2517 ata_tf_init(ap, &tf, dev->devno);
2518 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2519 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2520 tf.protocol = ATA_PROT_NODATA;
2521 tf.nsect = sectors;
2522 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2524 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2525 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2526 ap->id);
2527 ata_port_disable(ap);
2530 DPRINTK("EXIT\n");
2534 * ata_sg_clean - Unmap DMA memory associated with command
2535 * @qc: Command containing DMA memory to be released
2537 * Unmap all mapped DMA memory associated with this command.
2539 * LOCKING:
2540 * spin_lock_irqsave(host_set lock)
2543 static void ata_sg_clean(struct ata_queued_cmd *qc)
2545 struct ata_port *ap = qc->ap;
2546 struct scatterlist *sg = qc->__sg;
2547 int dir = qc->dma_dir;
2548 void *pad_buf = NULL;
2550 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2551 assert(sg != NULL);
2553 if (qc->flags & ATA_QCFLAG_SINGLE)
2554 assert(qc->n_elem == 1);
2556 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2558 /* if we padded the buffer out to 32-bit bound, and data
2559 * xfer direction is from-device, we must copy from the
2560 * pad buffer back into the supplied buffer
2562 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2563 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2565 if (qc->flags & ATA_QCFLAG_SG) {
2566 if (qc->n_elem)
2567 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2568 /* restore last sg */
2569 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2570 if (pad_buf) {
2571 struct scatterlist *psg = &qc->pad_sgent;
2572 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2573 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2574 kunmap_atomic(addr, KM_IRQ0);
2576 } else {
2577 if (sg_dma_len(&sg[0]) > 0)
2578 dma_unmap_single(ap->host_set->dev,
2579 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2580 dir);
2581 /* restore sg */
2582 sg->length += qc->pad_len;
2583 if (pad_buf)
2584 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2585 pad_buf, qc->pad_len);
2588 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2589 qc->__sg = NULL;
2593 * ata_fill_sg - Fill PCI IDE PRD table
2594 * @qc: Metadata associated with taskfile to be transferred
2596 * Fill PCI IDE PRD (scatter-gather) table with segments
2597 * associated with the current disk command.
2599 * LOCKING:
2600 * spin_lock_irqsave(host_set lock)
2603 static void ata_fill_sg(struct ata_queued_cmd *qc)
2605 struct ata_port *ap = qc->ap;
2606 struct scatterlist *sg;
2607 unsigned int idx;
2609 assert(qc->__sg != NULL);
2610 assert(qc->n_elem > 0);
2612 idx = 0;
2613 ata_for_each_sg(sg, qc) {
2614 u32 addr, offset;
2615 u32 sg_len, len;
2617 /* determine if physical DMA addr spans 64K boundary.
2618 * Note h/w doesn't support 64-bit, so we unconditionally
2619 * truncate dma_addr_t to u32.
2621 addr = (u32) sg_dma_address(sg);
2622 sg_len = sg_dma_len(sg);
2624 while (sg_len) {
2625 offset = addr & 0xffff;
2626 len = sg_len;
2627 if ((offset + sg_len) > 0x10000)
2628 len = 0x10000 - offset;
2630 ap->prd[idx].addr = cpu_to_le32(addr);
2631 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2632 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2634 idx++;
2635 sg_len -= len;
2636 addr += len;
2640 if (idx)
2641 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2644 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2645 * @qc: Metadata associated with taskfile to check
2647 * Allow low-level driver to filter ATA PACKET commands, returning
2648 * a status indicating whether or not it is OK to use DMA for the
2649 * supplied PACKET command.
2651 * LOCKING:
2652 * spin_lock_irqsave(host_set lock)
2654 * RETURNS: 0 when ATAPI DMA can be used
2655 * nonzero otherwise
2657 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2659 struct ata_port *ap = qc->ap;
2660 int rc = 0; /* Assume ATAPI DMA is OK by default */
2662 if (ap->ops->check_atapi_dma)
2663 rc = ap->ops->check_atapi_dma(qc);
2665 return rc;
2668 * ata_qc_prep - Prepare taskfile for submission
2669 * @qc: Metadata associated with taskfile to be prepared
2671 * Prepare ATA taskfile for submission.
2673 * LOCKING:
2674 * spin_lock_irqsave(host_set lock)
2676 void ata_qc_prep(struct ata_queued_cmd *qc)
2678 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2679 return;
2681 ata_fill_sg(qc);
2685 * ata_sg_init_one - Associate command with memory buffer
2686 * @qc: Command to be associated
2687 * @buf: Memory buffer
2688 * @buflen: Length of memory buffer, in bytes.
2690 * Initialize the data-related elements of queued_cmd @qc
2691 * to point to a single memory buffer, @buf of byte length @buflen.
2693 * LOCKING:
2694 * spin_lock_irqsave(host_set lock)
2697 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2699 struct scatterlist *sg;
2701 qc->flags |= ATA_QCFLAG_SINGLE;
2703 memset(&qc->sgent, 0, sizeof(qc->sgent));
2704 qc->__sg = &qc->sgent;
2705 qc->n_elem = 1;
2706 qc->orig_n_elem = 1;
2707 qc->buf_virt = buf;
2709 sg = qc->__sg;
2710 sg_init_one(sg, buf, buflen);
2714 * ata_sg_init - Associate command with scatter-gather table.
2715 * @qc: Command to be associated
2716 * @sg: Scatter-gather table.
2717 * @n_elem: Number of elements in s/g table.
2719 * Initialize the data-related elements of queued_cmd @qc
2720 * to point to a scatter-gather table @sg, containing @n_elem
2721 * elements.
2723 * LOCKING:
2724 * spin_lock_irqsave(host_set lock)
2727 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2728 unsigned int n_elem)
2730 qc->flags |= ATA_QCFLAG_SG;
2731 qc->__sg = sg;
2732 qc->n_elem = n_elem;
2733 qc->orig_n_elem = n_elem;
2737 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2738 * @qc: Command with memory buffer to be mapped.
2740 * DMA-map the memory buffer associated with queued_cmd @qc.
2742 * LOCKING:
2743 * spin_lock_irqsave(host_set lock)
2745 * RETURNS:
2746 * Zero on success, negative on error.
2749 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2751 struct ata_port *ap = qc->ap;
2752 int dir = qc->dma_dir;
2753 struct scatterlist *sg = qc->__sg;
2754 dma_addr_t dma_address;
2756 /* we must lengthen transfers to end on a 32-bit boundary */
2757 qc->pad_len = sg->length & 3;
2758 if (qc->pad_len) {
2759 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2760 struct scatterlist *psg = &qc->pad_sgent;
2762 assert(qc->dev->class == ATA_DEV_ATAPI);
2764 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2766 if (qc->tf.flags & ATA_TFLAG_WRITE)
2767 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2768 qc->pad_len);
2770 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2771 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2772 /* trim sg */
2773 sg->length -= qc->pad_len;
2775 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2776 sg->length, qc->pad_len);
2779 if (!sg->length) {
2780 sg_dma_address(sg) = 0;
2781 goto skip_map;
2784 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2785 sg->length, dir);
2786 if (dma_mapping_error(dma_address)) {
2787 /* restore sg */
2788 sg->length += qc->pad_len;
2789 return -1;
2792 sg_dma_address(sg) = dma_address;
2793 skip_map:
2794 sg_dma_len(sg) = sg->length;
2796 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2797 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2799 return 0;
2803 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2804 * @qc: Command with scatter-gather table to be mapped.
2806 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2808 * LOCKING:
2809 * spin_lock_irqsave(host_set lock)
2811 * RETURNS:
2812 * Zero on success, negative on error.
2816 static int ata_sg_setup(struct ata_queued_cmd *qc)
2818 struct ata_port *ap = qc->ap;
2819 struct scatterlist *sg = qc->__sg;
2820 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2821 int n_elem, pre_n_elem, dir, trim_sg = 0;
2823 VPRINTK("ENTER, ata%u\n", ap->id);
2824 assert(qc->flags & ATA_QCFLAG_SG);
2826 /* we must lengthen transfers to end on a 32-bit boundary */
2827 qc->pad_len = lsg->length & 3;
2828 if (qc->pad_len) {
2829 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2830 struct scatterlist *psg = &qc->pad_sgent;
2831 unsigned int offset;
2833 assert(qc->dev->class == ATA_DEV_ATAPI);
2835 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2838 * psg->page/offset are used to copy to-be-written
2839 * data in this function or read data in ata_sg_clean.
2841 offset = lsg->offset + lsg->length - qc->pad_len;
2842 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2843 psg->offset = offset_in_page(offset);
2845 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2846 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2847 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2848 kunmap_atomic(addr, KM_IRQ0);
2851 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2852 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2853 /* trim last sg */
2854 lsg->length -= qc->pad_len;
2855 if (lsg->length == 0)
2856 trim_sg = 1;
2858 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2859 qc->n_elem - 1, lsg->length, qc->pad_len);
2862 pre_n_elem = qc->n_elem;
2863 if (trim_sg && pre_n_elem)
2864 pre_n_elem--;
2866 if (!pre_n_elem) {
2867 n_elem = 0;
2868 goto skip_map;
2871 dir = qc->dma_dir;
2872 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2873 if (n_elem < 1) {
2874 /* restore last sg */
2875 lsg->length += qc->pad_len;
2876 return -1;
2879 DPRINTK("%d sg elements mapped\n", n_elem);
2881 skip_map:
2882 qc->n_elem = n_elem;
2884 return 0;
2888 * ata_poll_qc_complete - turn irq back on and finish qc
2889 * @qc: Command to complete
2890 * @err_mask: ATA status register content
2892 * LOCKING:
2893 * None. (grabs host lock)
2896 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2898 struct ata_port *ap = qc->ap;
2899 unsigned long flags;
2901 spin_lock_irqsave(&ap->host_set->lock, flags);
2902 ap->flags &= ~ATA_FLAG_NOINTR;
2903 ata_irq_on(ap);
2904 ata_qc_complete(qc);
2905 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2909 * ata_pio_poll - poll using PIO, depending on current state
2910 * @ap: the target ata_port
2912 * LOCKING:
2913 * None. (executing in kernel thread context)
2915 * RETURNS:
2916 * timeout value to use
2919 static unsigned long ata_pio_poll(struct ata_port *ap)
2921 struct ata_queued_cmd *qc;
2922 u8 status;
2923 unsigned int poll_state = HSM_ST_UNKNOWN;
2924 unsigned int reg_state = HSM_ST_UNKNOWN;
2926 qc = ata_qc_from_tag(ap, ap->active_tag);
2927 assert(qc != NULL);
2929 switch (ap->hsm_task_state) {
2930 case HSM_ST:
2931 case HSM_ST_POLL:
2932 poll_state = HSM_ST_POLL;
2933 reg_state = HSM_ST;
2934 break;
2935 case HSM_ST_LAST:
2936 case HSM_ST_LAST_POLL:
2937 poll_state = HSM_ST_LAST_POLL;
2938 reg_state = HSM_ST_LAST;
2939 break;
2940 default:
2941 BUG();
2942 break;
2945 status = ata_chk_status(ap);
2946 if (status & ATA_BUSY) {
2947 if (time_after(jiffies, ap->pio_task_timeout)) {
2948 qc->err_mask |= AC_ERR_TIMEOUT;
2949 ap->hsm_task_state = HSM_ST_TMOUT;
2950 return 0;
2952 ap->hsm_task_state = poll_state;
2953 return ATA_SHORT_PAUSE;
2956 ap->hsm_task_state = reg_state;
2957 return 0;
2961 * ata_pio_complete - check if drive is busy or idle
2962 * @ap: the target ata_port
2964 * LOCKING:
2965 * None. (executing in kernel thread context)
2967 * RETURNS:
2968 * Non-zero if qc completed, zero otherwise.
2971 static int ata_pio_complete (struct ata_port *ap)
2973 struct ata_queued_cmd *qc;
2974 u8 drv_stat;
2977 * This is purely heuristic. This is a fast path. Sometimes when
2978 * we enter, BSY will be cleared in a chk-status or two. If not,
2979 * the drive is probably seeking or something. Snooze for a couple
2980 * msecs, then chk-status again. If still busy, fall back to
2981 * HSM_ST_POLL state.
2983 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2984 if (drv_stat & ATA_BUSY) {
2985 msleep(2);
2986 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2987 if (drv_stat & ATA_BUSY) {
2988 ap->hsm_task_state = HSM_ST_LAST_POLL;
2989 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2990 return 0;
2994 qc = ata_qc_from_tag(ap, ap->active_tag);
2995 assert(qc != NULL);
2997 drv_stat = ata_wait_idle(ap);
2998 if (!ata_ok(drv_stat)) {
2999 qc->err_mask |= __ac_err_mask(drv_stat);
3000 ap->hsm_task_state = HSM_ST_ERR;
3001 return 0;
3004 ap->hsm_task_state = HSM_ST_IDLE;
3006 assert(qc->err_mask == 0);
3007 ata_poll_qc_complete(qc);
3009 /* another command may start at this point */
3011 return 1;
3016 * swap_buf_le16 - swap halves of 16-bit words in place
3017 * @buf: Buffer to swap
3018 * @buf_words: Number of 16-bit words in buffer.
3020 * Swap halves of 16-bit words if needed to convert from
3021 * little-endian byte order to native cpu byte order, or
3022 * vice-versa.
3024 * LOCKING:
3025 * Inherited from caller.
3027 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3029 #ifdef __BIG_ENDIAN
3030 unsigned int i;
3032 for (i = 0; i < buf_words; i++)
3033 buf[i] = le16_to_cpu(buf[i]);
3034 #endif /* __BIG_ENDIAN */
3038 * ata_mmio_data_xfer - Transfer data by MMIO
3039 * @ap: port to read/write
3040 * @buf: data buffer
3041 * @buflen: buffer length
3042 * @write_data: read/write
3044 * Transfer data from/to the device data register by MMIO.
3046 * LOCKING:
3047 * Inherited from caller.
3050 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3051 unsigned int buflen, int write_data)
3053 unsigned int i;
3054 unsigned int words = buflen >> 1;
3055 u16 *buf16 = (u16 *) buf;
3056 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3058 /* Transfer multiple of 2 bytes */
3059 if (write_data) {
3060 for (i = 0; i < words; i++)
3061 writew(le16_to_cpu(buf16[i]), mmio);
3062 } else {
3063 for (i = 0; i < words; i++)
3064 buf16[i] = cpu_to_le16(readw(mmio));
3067 /* Transfer trailing 1 byte, if any. */
3068 if (unlikely(buflen & 0x01)) {
3069 u16 align_buf[1] = { 0 };
3070 unsigned char *trailing_buf = buf + buflen - 1;
3072 if (write_data) {
3073 memcpy(align_buf, trailing_buf, 1);
3074 writew(le16_to_cpu(align_buf[0]), mmio);
3075 } else {
3076 align_buf[0] = cpu_to_le16(readw(mmio));
3077 memcpy(trailing_buf, align_buf, 1);
3083 * ata_pio_data_xfer - Transfer data by PIO
3084 * @ap: port to read/write
3085 * @buf: data buffer
3086 * @buflen: buffer length
3087 * @write_data: read/write
3089 * Transfer data from/to the device data register by PIO.
3091 * LOCKING:
3092 * Inherited from caller.
3095 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3096 unsigned int buflen, int write_data)
3098 unsigned int words = buflen >> 1;
3100 /* Transfer multiple of 2 bytes */
3101 if (write_data)
3102 outsw(ap->ioaddr.data_addr, buf, words);
3103 else
3104 insw(ap->ioaddr.data_addr, buf, words);
3106 /* Transfer trailing 1 byte, if any. */
3107 if (unlikely(buflen & 0x01)) {
3108 u16 align_buf[1] = { 0 };
3109 unsigned char *trailing_buf = buf + buflen - 1;
3111 if (write_data) {
3112 memcpy(align_buf, trailing_buf, 1);
3113 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3114 } else {
3115 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3116 memcpy(trailing_buf, align_buf, 1);
3122 * ata_data_xfer - Transfer data from/to the data register.
3123 * @ap: port to read/write
3124 * @buf: data buffer
3125 * @buflen: buffer length
3126 * @do_write: read/write
3128 * Transfer data from/to the device data register.
3130 * LOCKING:
3131 * Inherited from caller.
3134 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3135 unsigned int buflen, int do_write)
3137 /* Make the crap hardware pay the costs not the good stuff */
3138 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3139 unsigned long flags;
3140 local_irq_save(flags);
3141 if (ap->flags & ATA_FLAG_MMIO)
3142 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3143 else
3144 ata_pio_data_xfer(ap, buf, buflen, do_write);
3145 local_irq_restore(flags);
3146 } else {
3147 if (ap->flags & ATA_FLAG_MMIO)
3148 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3149 else
3150 ata_pio_data_xfer(ap, buf, buflen, do_write);
3155 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3156 * @qc: Command on going
3158 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3160 * LOCKING:
3161 * Inherited from caller.
3164 static void ata_pio_sector(struct ata_queued_cmd *qc)
3166 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3167 struct scatterlist *sg = qc->__sg;
3168 struct ata_port *ap = qc->ap;
3169 struct page *page;
3170 unsigned int offset;
3171 unsigned char *buf;
3173 if (qc->cursect == (qc->nsect - 1))
3174 ap->hsm_task_state = HSM_ST_LAST;
3176 page = sg[qc->cursg].page;
3177 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3179 /* get the current page and offset */
3180 page = nth_page(page, (offset >> PAGE_SHIFT));
3181 offset %= PAGE_SIZE;
3183 buf = kmap(page) + offset;
3185 qc->cursect++;
3186 qc->cursg_ofs++;
3188 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3189 qc->cursg++;
3190 qc->cursg_ofs = 0;
3193 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3195 /* do the actual data transfer */
3196 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3197 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3199 kunmap(page);
3203 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3204 * @qc: Command on going
3205 * @bytes: number of bytes
3207 * Transfer Transfer data from/to the ATAPI device.
3209 * LOCKING:
3210 * Inherited from caller.
3214 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3216 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3217 struct scatterlist *sg = qc->__sg;
3218 struct ata_port *ap = qc->ap;
3219 struct page *page;
3220 unsigned char *buf;
3221 unsigned int offset, count;
3223 if (qc->curbytes + bytes >= qc->nbytes)
3224 ap->hsm_task_state = HSM_ST_LAST;
3226 next_sg:
3227 if (unlikely(qc->cursg >= qc->n_elem)) {
3229 * The end of qc->sg is reached and the device expects
3230 * more data to transfer. In order not to overrun qc->sg
3231 * and fulfill length specified in the byte count register,
3232 * - for read case, discard trailing data from the device
3233 * - for write case, padding zero data to the device
3235 u16 pad_buf[1] = { 0 };
3236 unsigned int words = bytes >> 1;
3237 unsigned int i;
3239 if (words) /* warning if bytes > 1 */
3240 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3241 ap->id, bytes);
3243 for (i = 0; i < words; i++)
3244 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3246 ap->hsm_task_state = HSM_ST_LAST;
3247 return;
3250 sg = &qc->__sg[qc->cursg];
3252 page = sg->page;
3253 offset = sg->offset + qc->cursg_ofs;
3255 /* get the current page and offset */
3256 page = nth_page(page, (offset >> PAGE_SHIFT));
3257 offset %= PAGE_SIZE;
3259 /* don't overrun current sg */
3260 count = min(sg->length - qc->cursg_ofs, bytes);
3262 /* don't cross page boundaries */
3263 count = min(count, (unsigned int)PAGE_SIZE - offset);
3265 buf = kmap(page) + offset;
3267 bytes -= count;
3268 qc->curbytes += count;
3269 qc->cursg_ofs += count;
3271 if (qc->cursg_ofs == sg->length) {
3272 qc->cursg++;
3273 qc->cursg_ofs = 0;
3276 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3278 /* do the actual data transfer */
3279 ata_data_xfer(ap, buf, count, do_write);
3281 kunmap(page);
3283 if (bytes)
3284 goto next_sg;
3288 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3289 * @qc: Command on going
3291 * Transfer Transfer data from/to the ATAPI device.
3293 * LOCKING:
3294 * Inherited from caller.
3297 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3299 struct ata_port *ap = qc->ap;
3300 struct ata_device *dev = qc->dev;
3301 unsigned int ireason, bc_lo, bc_hi, bytes;
3302 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3304 ap->ops->tf_read(ap, &qc->tf);
3305 ireason = qc->tf.nsect;
3306 bc_lo = qc->tf.lbam;
3307 bc_hi = qc->tf.lbah;
3308 bytes = (bc_hi << 8) | bc_lo;
3310 /* shall be cleared to zero, indicating xfer of data */
3311 if (ireason & (1 << 0))
3312 goto err_out;
3314 /* make sure transfer direction matches expected */
3315 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3316 if (do_write != i_write)
3317 goto err_out;
3319 __atapi_pio_bytes(qc, bytes);
3321 return;
3323 err_out:
3324 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3325 ap->id, dev->devno);
3326 qc->err_mask |= AC_ERR_HSM;
3327 ap->hsm_task_state = HSM_ST_ERR;
3331 * ata_pio_block - start PIO on a block
3332 * @ap: the target ata_port
3334 * LOCKING:
3335 * None. (executing in kernel thread context)
3338 static void ata_pio_block(struct ata_port *ap)
3340 struct ata_queued_cmd *qc;
3341 u8 status;
3344 * This is purely heuristic. This is a fast path.
3345 * Sometimes when we enter, BSY will be cleared in
3346 * a chk-status or two. If not, the drive is probably seeking
3347 * or something. Snooze for a couple msecs, then
3348 * chk-status again. If still busy, fall back to
3349 * HSM_ST_POLL state.
3351 status = ata_busy_wait(ap, ATA_BUSY, 5);
3352 if (status & ATA_BUSY) {
3353 msleep(2);
3354 status = ata_busy_wait(ap, ATA_BUSY, 10);
3355 if (status & ATA_BUSY) {
3356 ap->hsm_task_state = HSM_ST_POLL;
3357 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3358 return;
3362 qc = ata_qc_from_tag(ap, ap->active_tag);
3363 assert(qc != NULL);
3365 /* check error */
3366 if (status & (ATA_ERR | ATA_DF)) {
3367 qc->err_mask |= AC_ERR_DEV;
3368 ap->hsm_task_state = HSM_ST_ERR;
3369 return;
3372 /* transfer data if any */
3373 if (is_atapi_taskfile(&qc->tf)) {
3374 /* DRQ=0 means no more data to transfer */
3375 if ((status & ATA_DRQ) == 0) {
3376 ap->hsm_task_state = HSM_ST_LAST;
3377 return;
3380 atapi_pio_bytes(qc);
3381 } else {
3382 /* handle BSY=0, DRQ=0 as error */
3383 if ((status & ATA_DRQ) == 0) {
3384 qc->err_mask |= AC_ERR_HSM;
3385 ap->hsm_task_state = HSM_ST_ERR;
3386 return;
3389 ata_pio_sector(qc);
3393 static void ata_pio_error(struct ata_port *ap)
3395 struct ata_queued_cmd *qc;
3397 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3399 qc = ata_qc_from_tag(ap, ap->active_tag);
3400 assert(qc != NULL);
3402 /* make sure qc->err_mask is available to
3403 * know what's wrong and recover
3405 assert(qc->err_mask);
3407 ap->hsm_task_state = HSM_ST_IDLE;
3409 ata_poll_qc_complete(qc);
3412 static void ata_pio_task(void *_data)
3414 struct ata_port *ap = _data;
3415 unsigned long timeout;
3416 int qc_completed;
3418 fsm_start:
3419 timeout = 0;
3420 qc_completed = 0;
3422 switch (ap->hsm_task_state) {
3423 case HSM_ST_IDLE:
3424 return;
3426 case HSM_ST:
3427 ata_pio_block(ap);
3428 break;
3430 case HSM_ST_LAST:
3431 qc_completed = ata_pio_complete(ap);
3432 break;
3434 case HSM_ST_POLL:
3435 case HSM_ST_LAST_POLL:
3436 timeout = ata_pio_poll(ap);
3437 break;
3439 case HSM_ST_TMOUT:
3440 case HSM_ST_ERR:
3441 ata_pio_error(ap);
3442 return;
3445 if (timeout)
3446 ata_queue_delayed_pio_task(ap, timeout);
3447 else if (!qc_completed)
3448 goto fsm_start;
3452 * ata_qc_timeout - Handle timeout of queued command
3453 * @qc: Command that timed out
3455 * Some part of the kernel (currently, only the SCSI layer)
3456 * has noticed that the active command on port @ap has not
3457 * completed after a specified length of time. Handle this
3458 * condition by disabling DMA (if necessary) and completing
3459 * transactions, with error if necessary.
3461 * This also handles the case of the "lost interrupt", where
3462 * for some reason (possibly hardware bug, possibly driver bug)
3463 * an interrupt was not delivered to the driver, even though the
3464 * transaction completed successfully.
3466 * LOCKING:
3467 * Inherited from SCSI layer (none, can sleep)
3470 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3472 struct ata_port *ap = qc->ap;
3473 struct ata_host_set *host_set = ap->host_set;
3474 u8 host_stat = 0, drv_stat;
3475 unsigned long flags;
3477 DPRINTK("ENTER\n");
3479 ata_flush_pio_tasks(ap);
3480 ap->hsm_task_state = HSM_ST_IDLE;
3482 spin_lock_irqsave(&host_set->lock, flags);
3484 switch (qc->tf.protocol) {
3486 case ATA_PROT_DMA:
3487 case ATA_PROT_ATAPI_DMA:
3488 host_stat = ap->ops->bmdma_status(ap);
3490 /* before we do anything else, clear DMA-Start bit */
3491 ap->ops->bmdma_stop(qc);
3493 /* fall through */
3495 default:
3496 ata_altstatus(ap);
3497 drv_stat = ata_chk_status(ap);
3499 /* ack bmdma irq events */
3500 ap->ops->irq_clear(ap);
3502 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3503 ap->id, qc->tf.command, drv_stat, host_stat);
3505 /* complete taskfile transaction */
3506 qc->err_mask |= ac_err_mask(drv_stat);
3507 break;
3510 spin_unlock_irqrestore(&host_set->lock, flags);
3512 ata_eh_qc_complete(qc);
3514 DPRINTK("EXIT\n");
3518 * ata_eng_timeout - Handle timeout of queued command
3519 * @ap: Port on which timed-out command is active
3521 * Some part of the kernel (currently, only the SCSI layer)
3522 * has noticed that the active command on port @ap has not
3523 * completed after a specified length of time. Handle this
3524 * condition by disabling DMA (if necessary) and completing
3525 * transactions, with error if necessary.
3527 * This also handles the case of the "lost interrupt", where
3528 * for some reason (possibly hardware bug, possibly driver bug)
3529 * an interrupt was not delivered to the driver, even though the
3530 * transaction completed successfully.
3532 * LOCKING:
3533 * Inherited from SCSI layer (none, can sleep)
3536 void ata_eng_timeout(struct ata_port *ap)
3538 DPRINTK("ENTER\n");
3540 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3542 DPRINTK("EXIT\n");
3546 * ata_qc_new - Request an available ATA command, for queueing
3547 * @ap: Port associated with device @dev
3548 * @dev: Device from whom we request an available command structure
3550 * LOCKING:
3551 * None.
3554 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3556 struct ata_queued_cmd *qc = NULL;
3557 unsigned int i;
3559 for (i = 0; i < ATA_MAX_QUEUE; i++)
3560 if (!test_and_set_bit(i, &ap->qactive)) {
3561 qc = ata_qc_from_tag(ap, i);
3562 break;
3565 if (qc)
3566 qc->tag = i;
3568 return qc;
3572 * ata_qc_new_init - Request an available ATA command, and initialize it
3573 * @ap: Port associated with device @dev
3574 * @dev: Device from whom we request an available command structure
3576 * LOCKING:
3577 * None.
3580 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3581 struct ata_device *dev)
3583 struct ata_queued_cmd *qc;
3585 qc = ata_qc_new(ap);
3586 if (qc) {
3587 qc->scsicmd = NULL;
3588 qc->ap = ap;
3589 qc->dev = dev;
3591 ata_qc_reinit(qc);
3594 return qc;
3598 * ata_qc_free - free unused ata_queued_cmd
3599 * @qc: Command to complete
3601 * Designed to free unused ata_queued_cmd object
3602 * in case something prevents using it.
3604 * LOCKING:
3605 * spin_lock_irqsave(host_set lock)
3607 void ata_qc_free(struct ata_queued_cmd *qc)
3609 struct ata_port *ap = qc->ap;
3610 unsigned int tag;
3612 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3614 qc->flags = 0;
3615 tag = qc->tag;
3616 if (likely(ata_tag_valid(tag))) {
3617 if (tag == ap->active_tag)
3618 ap->active_tag = ATA_TAG_POISON;
3619 qc->tag = ATA_TAG_POISON;
3620 clear_bit(tag, &ap->qactive);
3624 void __ata_qc_complete(struct ata_queued_cmd *qc)
3626 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3627 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3629 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3630 ata_sg_clean(qc);
3632 /* atapi: mark qc as inactive to prevent the interrupt handler
3633 * from completing the command twice later, before the error handler
3634 * is called. (when rc != 0 and atapi request sense is needed)
3636 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3638 /* call completion callback */
3639 qc->complete_fn(qc);
3642 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3644 struct ata_port *ap = qc->ap;
3646 switch (qc->tf.protocol) {
3647 case ATA_PROT_DMA:
3648 case ATA_PROT_ATAPI_DMA:
3649 return 1;
3651 case ATA_PROT_ATAPI:
3652 case ATA_PROT_PIO:
3653 case ATA_PROT_PIO_MULT:
3654 if (ap->flags & ATA_FLAG_PIO_DMA)
3655 return 1;
3657 /* fall through */
3659 default:
3660 return 0;
3663 /* never reached */
3667 * ata_qc_issue - issue taskfile to device
3668 * @qc: command to issue to device
3670 * Prepare an ATA command to submission to device.
3671 * This includes mapping the data into a DMA-able
3672 * area, filling in the S/G table, and finally
3673 * writing the taskfile to hardware, starting the command.
3675 * LOCKING:
3676 * spin_lock_irqsave(host_set lock)
3678 * RETURNS:
3679 * Zero on success, AC_ERR_* mask on failure
3682 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3684 struct ata_port *ap = qc->ap;
3686 if (ata_should_dma_map(qc)) {
3687 if (qc->flags & ATA_QCFLAG_SG) {
3688 if (ata_sg_setup(qc))
3689 goto sg_err;
3690 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3691 if (ata_sg_setup_one(qc))
3692 goto sg_err;
3694 } else {
3695 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3698 ap->ops->qc_prep(qc);
3700 qc->ap->active_tag = qc->tag;
3701 qc->flags |= ATA_QCFLAG_ACTIVE;
3703 return ap->ops->qc_issue(qc);
3705 sg_err:
3706 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3707 return AC_ERR_SYSTEM;
3712 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3713 * @qc: command to issue to device
3715 * Using various libata functions and hooks, this function
3716 * starts an ATA command. ATA commands are grouped into
3717 * classes called "protocols", and issuing each type of protocol
3718 * is slightly different.
3720 * May be used as the qc_issue() entry in ata_port_operations.
3722 * LOCKING:
3723 * spin_lock_irqsave(host_set lock)
3725 * RETURNS:
3726 * Zero on success, AC_ERR_* mask on failure
3729 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3731 struct ata_port *ap = qc->ap;
3733 ata_dev_select(ap, qc->dev->devno, 1, 0);
3735 switch (qc->tf.protocol) {
3736 case ATA_PROT_NODATA:
3737 ata_tf_to_host(ap, &qc->tf);
3738 break;
3740 case ATA_PROT_DMA:
3741 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3742 ap->ops->bmdma_setup(qc); /* set up bmdma */
3743 ap->ops->bmdma_start(qc); /* initiate bmdma */
3744 break;
3746 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3747 ata_qc_set_polling(qc);
3748 ata_tf_to_host(ap, &qc->tf);
3749 ap->hsm_task_state = HSM_ST;
3750 ata_queue_pio_task(ap);
3751 break;
3753 case ATA_PROT_ATAPI:
3754 ata_qc_set_polling(qc);
3755 ata_tf_to_host(ap, &qc->tf);
3756 ata_queue_packet_task(ap);
3757 break;
3759 case ATA_PROT_ATAPI_NODATA:
3760 ap->flags |= ATA_FLAG_NOINTR;
3761 ata_tf_to_host(ap, &qc->tf);
3762 ata_queue_packet_task(ap);
3763 break;
3765 case ATA_PROT_ATAPI_DMA:
3766 ap->flags |= ATA_FLAG_NOINTR;
3767 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3768 ap->ops->bmdma_setup(qc); /* set up bmdma */
3769 ata_queue_packet_task(ap);
3770 break;
3772 default:
3773 WARN_ON(1);
3774 return AC_ERR_SYSTEM;
3777 return 0;
3781 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3782 * @qc: Info associated with this ATA transaction.
3784 * LOCKING:
3785 * spin_lock_irqsave(host_set lock)
3788 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3790 struct ata_port *ap = qc->ap;
3791 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3792 u8 dmactl;
3793 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3795 /* load PRD table addr. */
3796 mb(); /* make sure PRD table writes are visible to controller */
3797 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3799 /* specify data direction, triple-check start bit is clear */
3800 dmactl = readb(mmio + ATA_DMA_CMD);
3801 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3802 if (!rw)
3803 dmactl |= ATA_DMA_WR;
3804 writeb(dmactl, mmio + ATA_DMA_CMD);
3806 /* issue r/w command */
3807 ap->ops->exec_command(ap, &qc->tf);
3811 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3812 * @qc: Info associated with this ATA transaction.
3814 * LOCKING:
3815 * spin_lock_irqsave(host_set lock)
3818 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3820 struct ata_port *ap = qc->ap;
3821 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3822 u8 dmactl;
3824 /* start host DMA transaction */
3825 dmactl = readb(mmio + ATA_DMA_CMD);
3826 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3828 /* Strictly, one may wish to issue a readb() here, to
3829 * flush the mmio write. However, control also passes
3830 * to the hardware at this point, and it will interrupt
3831 * us when we are to resume control. So, in effect,
3832 * we don't care when the mmio write flushes.
3833 * Further, a read of the DMA status register _immediately_
3834 * following the write may not be what certain flaky hardware
3835 * is expected, so I think it is best to not add a readb()
3836 * without first all the MMIO ATA cards/mobos.
3837 * Or maybe I'm just being paranoid.
3842 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3843 * @qc: Info associated with this ATA transaction.
3845 * LOCKING:
3846 * spin_lock_irqsave(host_set lock)
3849 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3851 struct ata_port *ap = qc->ap;
3852 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3853 u8 dmactl;
3855 /* load PRD table addr. */
3856 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3858 /* specify data direction, triple-check start bit is clear */
3859 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3860 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3861 if (!rw)
3862 dmactl |= ATA_DMA_WR;
3863 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3865 /* issue r/w command */
3866 ap->ops->exec_command(ap, &qc->tf);
3870 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3871 * @qc: Info associated with this ATA transaction.
3873 * LOCKING:
3874 * spin_lock_irqsave(host_set lock)
3877 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3879 struct ata_port *ap = qc->ap;
3880 u8 dmactl;
3882 /* start host DMA transaction */
3883 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3884 outb(dmactl | ATA_DMA_START,
3885 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3890 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3891 * @qc: Info associated with this ATA transaction.
3893 * Writes the ATA_DMA_START flag to the DMA command register.
3895 * May be used as the bmdma_start() entry in ata_port_operations.
3897 * LOCKING:
3898 * spin_lock_irqsave(host_set lock)
3900 void ata_bmdma_start(struct ata_queued_cmd *qc)
3902 if (qc->ap->flags & ATA_FLAG_MMIO)
3903 ata_bmdma_start_mmio(qc);
3904 else
3905 ata_bmdma_start_pio(qc);
3910 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3911 * @qc: Info associated with this ATA transaction.
3913 * Writes address of PRD table to device's PRD Table Address
3914 * register, sets the DMA control register, and calls
3915 * ops->exec_command() to start the transfer.
3917 * May be used as the bmdma_setup() entry in ata_port_operations.
3919 * LOCKING:
3920 * spin_lock_irqsave(host_set lock)
3922 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3924 if (qc->ap->flags & ATA_FLAG_MMIO)
3925 ata_bmdma_setup_mmio(qc);
3926 else
3927 ata_bmdma_setup_pio(qc);
3932 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3933 * @ap: Port associated with this ATA transaction.
3935 * Clear interrupt and error flags in DMA status register.
3937 * May be used as the irq_clear() entry in ata_port_operations.
3939 * LOCKING:
3940 * spin_lock_irqsave(host_set lock)
3943 void ata_bmdma_irq_clear(struct ata_port *ap)
3945 if (ap->flags & ATA_FLAG_MMIO) {
3946 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3947 writeb(readb(mmio), mmio);
3948 } else {
3949 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3950 outb(inb(addr), addr);
3957 * ata_bmdma_status - Read PCI IDE BMDMA status
3958 * @ap: Port associated with this ATA transaction.
3960 * Read and return BMDMA status register.
3962 * May be used as the bmdma_status() entry in ata_port_operations.
3964 * LOCKING:
3965 * spin_lock_irqsave(host_set lock)
3968 u8 ata_bmdma_status(struct ata_port *ap)
3970 u8 host_stat;
3971 if (ap->flags & ATA_FLAG_MMIO) {
3972 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3973 host_stat = readb(mmio + ATA_DMA_STATUS);
3974 } else
3975 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3976 return host_stat;
3981 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3982 * @qc: Command we are ending DMA for
3984 * Clears the ATA_DMA_START flag in the dma control register
3986 * May be used as the bmdma_stop() entry in ata_port_operations.
3988 * LOCKING:
3989 * spin_lock_irqsave(host_set lock)
3992 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3994 struct ata_port *ap = qc->ap;
3995 if (ap->flags & ATA_FLAG_MMIO) {
3996 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3998 /* clear start/stop bit */
3999 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4000 mmio + ATA_DMA_CMD);
4001 } else {
4002 /* clear start/stop bit */
4003 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4004 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4007 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4008 ata_altstatus(ap); /* dummy read */
4012 * ata_host_intr - Handle host interrupt for given (port, task)
4013 * @ap: Port on which interrupt arrived (possibly...)
4014 * @qc: Taskfile currently active in engine
4016 * Handle host interrupt for given queued command. Currently,
4017 * only DMA interrupts are handled. All other commands are
4018 * handled via polling with interrupts disabled (nIEN bit).
4020 * LOCKING:
4021 * spin_lock_irqsave(host_set lock)
4023 * RETURNS:
4024 * One if interrupt was handled, zero if not (shared irq).
4027 inline unsigned int ata_host_intr (struct ata_port *ap,
4028 struct ata_queued_cmd *qc)
4030 u8 status, host_stat;
4032 switch (qc->tf.protocol) {
4034 case ATA_PROT_DMA:
4035 case ATA_PROT_ATAPI_DMA:
4036 case ATA_PROT_ATAPI:
4037 /* check status of DMA engine */
4038 host_stat = ap->ops->bmdma_status(ap);
4039 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4041 /* if it's not our irq... */
4042 if (!(host_stat & ATA_DMA_INTR))
4043 goto idle_irq;
4045 /* before we do anything else, clear DMA-Start bit */
4046 ap->ops->bmdma_stop(qc);
4048 /* fall through */
4050 case ATA_PROT_ATAPI_NODATA:
4051 case ATA_PROT_NODATA:
4052 /* check altstatus */
4053 status = ata_altstatus(ap);
4054 if (status & ATA_BUSY)
4055 goto idle_irq;
4057 /* check main status, clearing INTRQ */
4058 status = ata_chk_status(ap);
4059 if (unlikely(status & ATA_BUSY))
4060 goto idle_irq;
4061 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4062 ap->id, qc->tf.protocol, status);
4064 /* ack bmdma irq events */
4065 ap->ops->irq_clear(ap);
4067 /* complete taskfile transaction */
4068 qc->err_mask |= ac_err_mask(status);
4069 ata_qc_complete(qc);
4070 break;
4072 default:
4073 goto idle_irq;
4076 return 1; /* irq handled */
4078 idle_irq:
4079 ap->stats.idle_irq++;
4081 #ifdef ATA_IRQ_TRAP
4082 if ((ap->stats.idle_irq % 1000) == 0) {
4083 handled = 1;
4084 ata_irq_ack(ap, 0); /* debug trap */
4085 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4087 #endif
4088 return 0; /* irq not handled */
4092 * ata_interrupt - Default ATA host interrupt handler
4093 * @irq: irq line (unused)
4094 * @dev_instance: pointer to our ata_host_set information structure
4095 * @regs: unused
4097 * Default interrupt handler for PCI IDE devices. Calls
4098 * ata_host_intr() for each port that is not disabled.
4100 * LOCKING:
4101 * Obtains host_set lock during operation.
4103 * RETURNS:
4104 * IRQ_NONE or IRQ_HANDLED.
4107 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4109 struct ata_host_set *host_set = dev_instance;
4110 unsigned int i;
4111 unsigned int handled = 0;
4112 unsigned long flags;
4114 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4115 spin_lock_irqsave(&host_set->lock, flags);
4117 for (i = 0; i < host_set->n_ports; i++) {
4118 struct ata_port *ap;
4120 ap = host_set->ports[i];
4121 if (ap &&
4122 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4123 struct ata_queued_cmd *qc;
4125 qc = ata_qc_from_tag(ap, ap->active_tag);
4126 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4127 (qc->flags & ATA_QCFLAG_ACTIVE))
4128 handled |= ata_host_intr(ap, qc);
4132 spin_unlock_irqrestore(&host_set->lock, flags);
4134 return IRQ_RETVAL(handled);
4138 * atapi_packet_task - Write CDB bytes to hardware
4139 * @_data: Port to which ATAPI device is attached.
4141 * When device has indicated its readiness to accept
4142 * a CDB, this function is called. Send the CDB.
4143 * If DMA is to be performed, exit immediately.
4144 * Otherwise, we are in polling mode, so poll
4145 * status under operation succeeds or fails.
4147 * LOCKING:
4148 * Kernel thread context (may sleep)
4151 static void atapi_packet_task(void *_data)
4153 struct ata_port *ap = _data;
4154 struct ata_queued_cmd *qc;
4155 u8 status;
4157 qc = ata_qc_from_tag(ap, ap->active_tag);
4158 assert(qc != NULL);
4159 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4161 /* sleep-wait for BSY to clear */
4162 DPRINTK("busy wait\n");
4163 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4164 qc->err_mask |= AC_ERR_TIMEOUT;
4165 goto err_out;
4168 /* make sure DRQ is set */
4169 status = ata_chk_status(ap);
4170 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4171 qc->err_mask |= AC_ERR_HSM;
4172 goto err_out;
4175 /* send SCSI cdb */
4176 DPRINTK("send cdb\n");
4177 assert(ap->cdb_len >= 12);
4179 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4180 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4181 unsigned long flags;
4183 /* Once we're done issuing command and kicking bmdma,
4184 * irq handler takes over. To not lose irq, we need
4185 * to clear NOINTR flag before sending cdb, but
4186 * interrupt handler shouldn't be invoked before we're
4187 * finished. Hence, the following locking.
4189 spin_lock_irqsave(&ap->host_set->lock, flags);
4190 ap->flags &= ~ATA_FLAG_NOINTR;
4191 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4192 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4193 ap->ops->bmdma_start(qc); /* initiate bmdma */
4194 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4195 } else {
4196 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4198 /* PIO commands are handled by polling */
4199 ap->hsm_task_state = HSM_ST;
4200 ata_queue_pio_task(ap);
4203 return;
4205 err_out:
4206 ata_poll_qc_complete(qc);
4211 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4212 * without filling any other registers
4214 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4215 u8 cmd)
4217 struct ata_taskfile tf;
4218 int err;
4220 ata_tf_init(ap, &tf, dev->devno);
4222 tf.command = cmd;
4223 tf.flags |= ATA_TFLAG_DEVICE;
4224 tf.protocol = ATA_PROT_NODATA;
4226 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4227 if (err)
4228 printk(KERN_ERR "%s: ata command failed: %d\n",
4229 __FUNCTION__, err);
4231 return err;
4234 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4236 u8 cmd;
4238 if (!ata_try_flush_cache(dev))
4239 return 0;
4241 if (ata_id_has_flush_ext(dev->id))
4242 cmd = ATA_CMD_FLUSH_EXT;
4243 else
4244 cmd = ATA_CMD_FLUSH;
4246 return ata_do_simple_cmd(ap, dev, cmd);
4249 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4251 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4254 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4256 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4260 * ata_device_resume - wakeup a previously suspended devices
4261 * @ap: port the device is connected to
4262 * @dev: the device to resume
4264 * Kick the drive back into action, by sending it an idle immediate
4265 * command and making sure its transfer mode matches between drive
4266 * and host.
4269 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4271 if (ap->flags & ATA_FLAG_SUSPENDED) {
4272 ap->flags &= ~ATA_FLAG_SUSPENDED;
4273 ata_set_mode(ap);
4275 if (!ata_dev_present(dev))
4276 return 0;
4277 if (dev->class == ATA_DEV_ATA)
4278 ata_start_drive(ap, dev);
4280 return 0;
4284 * ata_device_suspend - prepare a device for suspend
4285 * @ap: port the device is connected to
4286 * @dev: the device to suspend
4288 * Flush the cache on the drive, if appropriate, then issue a
4289 * standbynow command.
4291 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4293 if (!ata_dev_present(dev))
4294 return 0;
4295 if (dev->class == ATA_DEV_ATA)
4296 ata_flush_cache(ap, dev);
4298 ata_standby_drive(ap, dev);
4299 ap->flags |= ATA_FLAG_SUSPENDED;
4300 return 0;
4304 * ata_port_start - Set port up for dma.
4305 * @ap: Port to initialize
4307 * Called just after data structures for each port are
4308 * initialized. Allocates space for PRD table.
4310 * May be used as the port_start() entry in ata_port_operations.
4312 * LOCKING:
4313 * Inherited from caller.
4316 int ata_port_start (struct ata_port *ap)
4318 struct device *dev = ap->host_set->dev;
4319 int rc;
4321 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4322 if (!ap->prd)
4323 return -ENOMEM;
4325 rc = ata_pad_alloc(ap, dev);
4326 if (rc) {
4327 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4328 return rc;
4331 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4333 return 0;
4338 * ata_port_stop - Undo ata_port_start()
4339 * @ap: Port to shut down
4341 * Frees the PRD table.
4343 * May be used as the port_stop() entry in ata_port_operations.
4345 * LOCKING:
4346 * Inherited from caller.
4349 void ata_port_stop (struct ata_port *ap)
4351 struct device *dev = ap->host_set->dev;
4353 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4354 ata_pad_free(ap, dev);
4357 void ata_host_stop (struct ata_host_set *host_set)
4359 if (host_set->mmio_base)
4360 iounmap(host_set->mmio_base);
4365 * ata_host_remove - Unregister SCSI host structure with upper layers
4366 * @ap: Port to unregister
4367 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4369 * LOCKING:
4370 * Inherited from caller.
4373 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4375 struct Scsi_Host *sh = ap->host;
4377 DPRINTK("ENTER\n");
4379 if (do_unregister)
4380 scsi_remove_host(sh);
4382 ap->ops->port_stop(ap);
4386 * ata_host_init - Initialize an ata_port structure
4387 * @ap: Structure to initialize
4388 * @host: associated SCSI mid-layer structure
4389 * @host_set: Collection of hosts to which @ap belongs
4390 * @ent: Probe information provided by low-level driver
4391 * @port_no: Port number associated with this ata_port
4393 * Initialize a new ata_port structure, and its associated
4394 * scsi_host.
4396 * LOCKING:
4397 * Inherited from caller.
4400 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4401 struct ata_host_set *host_set,
4402 const struct ata_probe_ent *ent, unsigned int port_no)
4404 unsigned int i;
4406 host->max_id = 16;
4407 host->max_lun = 1;
4408 host->max_channel = 1;
4409 host->unique_id = ata_unique_id++;
4410 host->max_cmd_len = 12;
4412 ap->flags = ATA_FLAG_PORT_DISABLED;
4413 ap->id = host->unique_id;
4414 ap->host = host;
4415 ap->ctl = ATA_DEVCTL_OBS;
4416 ap->host_set = host_set;
4417 ap->port_no = port_no;
4418 ap->hard_port_no =
4419 ent->legacy_mode ? ent->hard_port_no : port_no;
4420 ap->pio_mask = ent->pio_mask;
4421 ap->mwdma_mask = ent->mwdma_mask;
4422 ap->udma_mask = ent->udma_mask;
4423 ap->flags |= ent->host_flags;
4424 ap->ops = ent->port_ops;
4425 ap->cbl = ATA_CBL_NONE;
4426 ap->active_tag = ATA_TAG_POISON;
4427 ap->last_ctl = 0xFF;
4429 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4430 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4431 INIT_LIST_HEAD(&ap->eh_done_q);
4433 for (i = 0; i < ATA_MAX_DEVICES; i++)
4434 ap->device[i].devno = i;
4436 #ifdef ATA_IRQ_TRAP
4437 ap->stats.unhandled_irq = 1;
4438 ap->stats.idle_irq = 1;
4439 #endif
4441 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4445 * ata_host_add - Attach low-level ATA driver to system
4446 * @ent: Information provided by low-level driver
4447 * @host_set: Collections of ports to which we add
4448 * @port_no: Port number associated with this host
4450 * Attach low-level ATA driver to system.
4452 * LOCKING:
4453 * PCI/etc. bus probe sem.
4455 * RETURNS:
4456 * New ata_port on success, for NULL on error.
4459 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4460 struct ata_host_set *host_set,
4461 unsigned int port_no)
4463 struct Scsi_Host *host;
4464 struct ata_port *ap;
4465 int rc;
4467 DPRINTK("ENTER\n");
4468 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4469 if (!host)
4470 return NULL;
4472 ap = (struct ata_port *) &host->hostdata[0];
4474 ata_host_init(ap, host, host_set, ent, port_no);
4476 rc = ap->ops->port_start(ap);
4477 if (rc)
4478 goto err_out;
4480 return ap;
4482 err_out:
4483 scsi_host_put(host);
4484 return NULL;
4488 * ata_device_add - Register hardware device with ATA and SCSI layers
4489 * @ent: Probe information describing hardware device to be registered
4491 * This function processes the information provided in the probe
4492 * information struct @ent, allocates the necessary ATA and SCSI
4493 * host information structures, initializes them, and registers
4494 * everything with requisite kernel subsystems.
4496 * This function requests irqs, probes the ATA bus, and probes
4497 * the SCSI bus.
4499 * LOCKING:
4500 * PCI/etc. bus probe sem.
4502 * RETURNS:
4503 * Number of ports registered. Zero on error (no ports registered).
4506 int ata_device_add(const struct ata_probe_ent *ent)
4508 unsigned int count = 0, i;
4509 struct device *dev = ent->dev;
4510 struct ata_host_set *host_set;
4512 DPRINTK("ENTER\n");
4513 /* alloc a container for our list of ATA ports (buses) */
4514 host_set = kzalloc(sizeof(struct ata_host_set) +
4515 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4516 if (!host_set)
4517 return 0;
4518 spin_lock_init(&host_set->lock);
4520 host_set->dev = dev;
4521 host_set->n_ports = ent->n_ports;
4522 host_set->irq = ent->irq;
4523 host_set->mmio_base = ent->mmio_base;
4524 host_set->private_data = ent->private_data;
4525 host_set->ops = ent->port_ops;
4527 /* register each port bound to this device */
4528 for (i = 0; i < ent->n_ports; i++) {
4529 struct ata_port *ap;
4530 unsigned long xfer_mode_mask;
4532 ap = ata_host_add(ent, host_set, i);
4533 if (!ap)
4534 goto err_out;
4536 host_set->ports[i] = ap;
4537 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4538 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4539 (ap->pio_mask << ATA_SHIFT_PIO);
4541 /* print per-port info to dmesg */
4542 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4543 "bmdma 0x%lX irq %lu\n",
4544 ap->id,
4545 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4546 ata_mode_string(xfer_mode_mask),
4547 ap->ioaddr.cmd_addr,
4548 ap->ioaddr.ctl_addr,
4549 ap->ioaddr.bmdma_addr,
4550 ent->irq);
4552 ata_chk_status(ap);
4553 host_set->ops->irq_clear(ap);
4554 count++;
4557 if (!count)
4558 goto err_free_ret;
4560 /* obtain irq, that is shared between channels */
4561 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4562 DRV_NAME, host_set))
4563 goto err_out;
4565 /* perform each probe synchronously */
4566 DPRINTK("probe begin\n");
4567 for (i = 0; i < count; i++) {
4568 struct ata_port *ap;
4569 int rc;
4571 ap = host_set->ports[i];
4573 DPRINTK("ata%u: bus probe begin\n", ap->id);
4574 rc = ata_bus_probe(ap);
4575 DPRINTK("ata%u: bus probe end\n", ap->id);
4577 if (rc) {
4578 /* FIXME: do something useful here?
4579 * Current libata behavior will
4580 * tear down everything when
4581 * the module is removed
4582 * or the h/w is unplugged.
4586 rc = scsi_add_host(ap->host, dev);
4587 if (rc) {
4588 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4589 ap->id);
4590 /* FIXME: do something useful here */
4591 /* FIXME: handle unconditional calls to
4592 * scsi_scan_host and ata_host_remove, below,
4593 * at the very least
4598 /* probes are done, now scan each port's disk(s) */
4599 DPRINTK("host probe begin\n");
4600 for (i = 0; i < count; i++) {
4601 struct ata_port *ap = host_set->ports[i];
4603 ata_scsi_scan_host(ap);
4606 dev_set_drvdata(dev, host_set);
4608 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4609 return ent->n_ports; /* success */
4611 err_out:
4612 for (i = 0; i < count; i++) {
4613 ata_host_remove(host_set->ports[i], 1);
4614 scsi_host_put(host_set->ports[i]->host);
4616 err_free_ret:
4617 kfree(host_set);
4618 VPRINTK("EXIT, returning 0\n");
4619 return 0;
4623 * ata_host_set_remove - PCI layer callback for device removal
4624 * @host_set: ATA host set that was removed
4626 * Unregister all objects associated with this host set. Free those
4627 * objects.
4629 * LOCKING:
4630 * Inherited from calling layer (may sleep).
4633 void ata_host_set_remove(struct ata_host_set *host_set)
4635 struct ata_port *ap;
4636 unsigned int i;
4638 for (i = 0; i < host_set->n_ports; i++) {
4639 ap = host_set->ports[i];
4640 scsi_remove_host(ap->host);
4643 free_irq(host_set->irq, host_set);
4645 for (i = 0; i < host_set->n_ports; i++) {
4646 ap = host_set->ports[i];
4648 ata_scsi_release(ap->host);
4650 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4651 struct ata_ioports *ioaddr = &ap->ioaddr;
4653 if (ioaddr->cmd_addr == 0x1f0)
4654 release_region(0x1f0, 8);
4655 else if (ioaddr->cmd_addr == 0x170)
4656 release_region(0x170, 8);
4659 scsi_host_put(ap->host);
4662 if (host_set->ops->host_stop)
4663 host_set->ops->host_stop(host_set);
4665 kfree(host_set);
4669 * ata_scsi_release - SCSI layer callback hook for host unload
4670 * @host: libata host to be unloaded
4672 * Performs all duties necessary to shut down a libata port...
4673 * Kill port kthread, disable port, and release resources.
4675 * LOCKING:
4676 * Inherited from SCSI layer.
4678 * RETURNS:
4679 * One.
4682 int ata_scsi_release(struct Scsi_Host *host)
4684 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4686 DPRINTK("ENTER\n");
4688 ap->ops->port_disable(ap);
4689 ata_host_remove(ap, 0);
4691 DPRINTK("EXIT\n");
4692 return 1;
4696 * ata_std_ports - initialize ioaddr with standard port offsets.
4697 * @ioaddr: IO address structure to be initialized
4699 * Utility function which initializes data_addr, error_addr,
4700 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4701 * device_addr, status_addr, and command_addr to standard offsets
4702 * relative to cmd_addr.
4704 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4707 void ata_std_ports(struct ata_ioports *ioaddr)
4709 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4710 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4711 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4712 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4713 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4714 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4715 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4716 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4717 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4718 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4722 #ifdef CONFIG_PCI
4724 void ata_pci_host_stop (struct ata_host_set *host_set)
4726 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4728 pci_iounmap(pdev, host_set->mmio_base);
4732 * ata_pci_remove_one - PCI layer callback for device removal
4733 * @pdev: PCI device that was removed
4735 * PCI layer indicates to libata via this hook that
4736 * hot-unplug or module unload event has occurred.
4737 * Handle this by unregistering all objects associated
4738 * with this PCI device. Free those objects. Then finally
4739 * release PCI resources and disable device.
4741 * LOCKING:
4742 * Inherited from PCI layer (may sleep).
4745 void ata_pci_remove_one (struct pci_dev *pdev)
4747 struct device *dev = pci_dev_to_dev(pdev);
4748 struct ata_host_set *host_set = dev_get_drvdata(dev);
4750 ata_host_set_remove(host_set);
4751 pci_release_regions(pdev);
4752 pci_disable_device(pdev);
4753 dev_set_drvdata(dev, NULL);
4756 /* move to PCI subsystem */
4757 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4759 unsigned long tmp = 0;
4761 switch (bits->width) {
4762 case 1: {
4763 u8 tmp8 = 0;
4764 pci_read_config_byte(pdev, bits->reg, &tmp8);
4765 tmp = tmp8;
4766 break;
4768 case 2: {
4769 u16 tmp16 = 0;
4770 pci_read_config_word(pdev, bits->reg, &tmp16);
4771 tmp = tmp16;
4772 break;
4774 case 4: {
4775 u32 tmp32 = 0;
4776 pci_read_config_dword(pdev, bits->reg, &tmp32);
4777 tmp = tmp32;
4778 break;
4781 default:
4782 return -EINVAL;
4785 tmp &= bits->mask;
4787 return (tmp == bits->val) ? 1 : 0;
4790 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4792 pci_save_state(pdev);
4793 pci_disable_device(pdev);
4794 pci_set_power_state(pdev, PCI_D3hot);
4795 return 0;
4798 int ata_pci_device_resume(struct pci_dev *pdev)
4800 pci_set_power_state(pdev, PCI_D0);
4801 pci_restore_state(pdev);
4802 pci_enable_device(pdev);
4803 pci_set_master(pdev);
4804 return 0;
4806 #endif /* CONFIG_PCI */
4809 static int __init ata_init(void)
4811 ata_wq = create_workqueue("ata");
4812 if (!ata_wq)
4813 return -ENOMEM;
4815 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4816 return 0;
4819 static void __exit ata_exit(void)
4821 destroy_workqueue(ata_wq);
4824 module_init(ata_init);
4825 module_exit(ata_exit);
4827 static unsigned long ratelimit_time;
4828 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4830 int ata_ratelimit(void)
4832 int rc;
4833 unsigned long flags;
4835 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4837 if (time_after(jiffies, ratelimit_time)) {
4838 rc = 1;
4839 ratelimit_time = jiffies + (HZ/5);
4840 } else
4841 rc = 0;
4843 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4845 return rc;
4849 * libata is essentially a library of internal helper functions for
4850 * low-level ATA host controller drivers. As such, the API/ABI is
4851 * likely to change as new drivers are added and updated.
4852 * Do not depend on ABI/API stability.
4855 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4856 EXPORT_SYMBOL_GPL(ata_std_ports);
4857 EXPORT_SYMBOL_GPL(ata_device_add);
4858 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4859 EXPORT_SYMBOL_GPL(ata_sg_init);
4860 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4861 EXPORT_SYMBOL_GPL(__ata_qc_complete);
4862 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4863 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4864 EXPORT_SYMBOL_GPL(ata_tf_load);
4865 EXPORT_SYMBOL_GPL(ata_tf_read);
4866 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4867 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4868 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4869 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4870 EXPORT_SYMBOL_GPL(ata_check_status);
4871 EXPORT_SYMBOL_GPL(ata_altstatus);
4872 EXPORT_SYMBOL_GPL(ata_exec_command);
4873 EXPORT_SYMBOL_GPL(ata_port_start);
4874 EXPORT_SYMBOL_GPL(ata_port_stop);
4875 EXPORT_SYMBOL_GPL(ata_host_stop);
4876 EXPORT_SYMBOL_GPL(ata_interrupt);
4877 EXPORT_SYMBOL_GPL(ata_qc_prep);
4878 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4879 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4880 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4881 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4882 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4883 EXPORT_SYMBOL_GPL(ata_port_probe);
4884 EXPORT_SYMBOL_GPL(sata_phy_reset);
4885 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4886 EXPORT_SYMBOL_GPL(ata_bus_reset);
4887 EXPORT_SYMBOL_GPL(ata_std_probeinit);
4888 EXPORT_SYMBOL_GPL(ata_std_softreset);
4889 EXPORT_SYMBOL_GPL(sata_std_hardreset);
4890 EXPORT_SYMBOL_GPL(ata_std_postreset);
4891 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
4892 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
4893 EXPORT_SYMBOL_GPL(ata_port_disable);
4894 EXPORT_SYMBOL_GPL(ata_ratelimit);
4895 EXPORT_SYMBOL_GPL(ata_busy_sleep);
4896 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4897 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4898 EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
4899 EXPORT_SYMBOL_GPL(ata_scsi_error);
4900 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4901 EXPORT_SYMBOL_GPL(ata_scsi_release);
4902 EXPORT_SYMBOL_GPL(ata_host_intr);
4903 EXPORT_SYMBOL_GPL(ata_dev_classify);
4904 EXPORT_SYMBOL_GPL(ata_dev_id_string);
4905 EXPORT_SYMBOL_GPL(ata_dev_config);
4906 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4907 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4908 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
4910 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
4911 EXPORT_SYMBOL_GPL(ata_timing_compute);
4912 EXPORT_SYMBOL_GPL(ata_timing_merge);
4914 #ifdef CONFIG_PCI
4915 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4916 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4917 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4918 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4919 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4920 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4921 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
4922 #endif /* CONFIG_PCI */
4924 EXPORT_SYMBOL_GPL(ata_device_suspend);
4925 EXPORT_SYMBOL_GPL(ata_device_resume);
4926 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4927 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);