x86: optimize page faults like all other achitectures and kill notifier cruft
[linux-2.6/libata-dev.git] / drivers / scsi / scsi_lib.c
blob207f1aa08869f209be7ba1bde8f727534796701b
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 2
36 struct scsi_host_sg_pool {
37 size_t size;
38 char *name;
39 struct kmem_cache *slab;
40 mempool_t *pool;
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 SP(8),
50 SP(16),
51 SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
79 * Returns: Nothing.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->cmd_flags &= ~REQ_DONTPREP;
86 req->special = NULL;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
101 * Returns: Nothing.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
159 scsi_run_queue(q);
161 return 0;
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req->q, NULL, req, 1);
207 ret = req->errors;
208 out:
209 blk_put_request(req);
211 return ret;
213 EXPORT_SYMBOL(scsi_execute);
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
220 char *sense = NULL;
221 int result;
223 if (sshdr) {
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 if (!sense)
226 return DRIVER_ERROR << 24;
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
230 if (sshdr)
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
233 kfree(sense);
234 return result;
236 EXPORT_SYMBOL(scsi_execute_req);
238 struct scsi_io_context {
239 void *data;
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
244 static struct kmem_cache *scsi_io_context_cache;
246 static void scsi_end_async(struct request *req, int uptodate)
248 struct scsi_io_context *sioc = req->end_io_data;
250 if (sioc->done)
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
259 struct request_queue *q = rq->q;
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
266 return blk_rq_append_bio(q, rq, bio);
269 static void scsi_bi_endio(struct bio *bio, int error)
271 bio_put(bio);
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq: request to fill
277 * @sg: scatterlist
278 * @nsegs: number of elements
279 * @bufflen: len of buffer
280 * @gfp: memory allocation flags
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287 int nsegs, unsigned bufflen, gfp_t gfp)
289 struct request_queue *q = rq->q;
290 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291 unsigned int data_len = bufflen, len, bytes, off;
292 struct page *page;
293 struct bio *bio = NULL;
294 int i, err, nr_vecs = 0;
296 for (i = 0; i < nsegs; i++) {
297 page = sgl[i].page;
298 off = sgl[i].offset;
299 len = sgl[i].length;
301 while (len > 0 && data_len > 0) {
303 * sg sends a scatterlist that is larger than
304 * the data_len it wants transferred for certain
305 * IO sizes
307 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
308 bytes = min(bytes, data_len);
310 if (!bio) {
311 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
312 nr_pages -= nr_vecs;
314 bio = bio_alloc(gfp, nr_vecs);
315 if (!bio) {
316 err = -ENOMEM;
317 goto free_bios;
319 bio->bi_end_io = scsi_bi_endio;
322 if (bio_add_pc_page(q, bio, page, bytes, off) !=
323 bytes) {
324 bio_put(bio);
325 err = -EINVAL;
326 goto free_bios;
329 if (bio->bi_vcnt >= nr_vecs) {
330 err = scsi_merge_bio(rq, bio);
331 if (err) {
332 bio_endio(bio, 0);
333 goto free_bios;
335 bio = NULL;
338 page++;
339 len -= bytes;
340 data_len -=bytes;
341 off = 0;
345 rq->buffer = rq->data = NULL;
346 rq->data_len = bufflen;
347 return 0;
349 free_bios:
350 while ((bio = rq->bio) != NULL) {
351 rq->bio = bio->bi_next;
353 * call endio instead of bio_put incase it was bounced
355 bio_endio(bio, 0);
358 return err;
362 * scsi_execute_async - insert request
363 * @sdev: scsi device
364 * @cmd: scsi command
365 * @cmd_len: length of scsi cdb
366 * @data_direction: data direction
367 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
368 * @bufflen: len of buffer
369 * @use_sg: if buffer is a scatterlist this is the number of elements
370 * @timeout: request timeout in seconds
371 * @retries: number of times to retry request
372 * @flags: or into request flags
374 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
375 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
376 int use_sg, int timeout, int retries, void *privdata,
377 void (*done)(void *, char *, int, int), gfp_t gfp)
379 struct request *req;
380 struct scsi_io_context *sioc;
381 int err = 0;
382 int write = (data_direction == DMA_TO_DEVICE);
384 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
385 if (!sioc)
386 return DRIVER_ERROR << 24;
388 req = blk_get_request(sdev->request_queue, write, gfp);
389 if (!req)
390 goto free_sense;
391 req->cmd_type = REQ_TYPE_BLOCK_PC;
392 req->cmd_flags |= REQ_QUIET;
394 if (use_sg)
395 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
396 else if (bufflen)
397 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
399 if (err)
400 goto free_req;
402 req->cmd_len = cmd_len;
403 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
404 memcpy(req->cmd, cmd, req->cmd_len);
405 req->sense = sioc->sense;
406 req->sense_len = 0;
407 req->timeout = timeout;
408 req->retries = retries;
409 req->end_io_data = sioc;
411 sioc->data = privdata;
412 sioc->done = done;
414 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
415 return 0;
417 free_req:
418 blk_put_request(req);
419 free_sense:
420 kmem_cache_free(scsi_io_context_cache, sioc);
421 return DRIVER_ERROR << 24;
423 EXPORT_SYMBOL_GPL(scsi_execute_async);
426 * Function: scsi_init_cmd_errh()
428 * Purpose: Initialize cmd fields related to error handling.
430 * Arguments: cmd - command that is ready to be queued.
432 * Notes: This function has the job of initializing a number of
433 * fields related to error handling. Typically this will
434 * be called once for each command, as required.
436 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
438 cmd->serial_number = 0;
439 cmd->resid = 0;
440 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
441 if (cmd->cmd_len == 0)
442 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
445 void scsi_device_unbusy(struct scsi_device *sdev)
447 struct Scsi_Host *shost = sdev->host;
448 unsigned long flags;
450 spin_lock_irqsave(shost->host_lock, flags);
451 shost->host_busy--;
452 if (unlikely(scsi_host_in_recovery(shost) &&
453 (shost->host_failed || shost->host_eh_scheduled)))
454 scsi_eh_wakeup(shost);
455 spin_unlock(shost->host_lock);
456 spin_lock(sdev->request_queue->queue_lock);
457 sdev->device_busy--;
458 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
462 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
463 * and call blk_run_queue for all the scsi_devices on the target -
464 * including current_sdev first.
466 * Called with *no* scsi locks held.
468 static void scsi_single_lun_run(struct scsi_device *current_sdev)
470 struct Scsi_Host *shost = current_sdev->host;
471 struct scsi_device *sdev, *tmp;
472 struct scsi_target *starget = scsi_target(current_sdev);
473 unsigned long flags;
475 spin_lock_irqsave(shost->host_lock, flags);
476 starget->starget_sdev_user = NULL;
477 spin_unlock_irqrestore(shost->host_lock, flags);
480 * Call blk_run_queue for all LUNs on the target, starting with
481 * current_sdev. We race with others (to set starget_sdev_user),
482 * but in most cases, we will be first. Ideally, each LU on the
483 * target would get some limited time or requests on the target.
485 blk_run_queue(current_sdev->request_queue);
487 spin_lock_irqsave(shost->host_lock, flags);
488 if (starget->starget_sdev_user)
489 goto out;
490 list_for_each_entry_safe(sdev, tmp, &starget->devices,
491 same_target_siblings) {
492 if (sdev == current_sdev)
493 continue;
494 if (scsi_device_get(sdev))
495 continue;
497 spin_unlock_irqrestore(shost->host_lock, flags);
498 blk_run_queue(sdev->request_queue);
499 spin_lock_irqsave(shost->host_lock, flags);
501 scsi_device_put(sdev);
503 out:
504 spin_unlock_irqrestore(shost->host_lock, flags);
508 * Function: scsi_run_queue()
510 * Purpose: Select a proper request queue to serve next
512 * Arguments: q - last request's queue
514 * Returns: Nothing
516 * Notes: The previous command was completely finished, start
517 * a new one if possible.
519 static void scsi_run_queue(struct request_queue *q)
521 struct scsi_device *sdev = q->queuedata;
522 struct Scsi_Host *shost = sdev->host;
523 unsigned long flags;
525 if (sdev->single_lun)
526 scsi_single_lun_run(sdev);
528 spin_lock_irqsave(shost->host_lock, flags);
529 while (!list_empty(&shost->starved_list) &&
530 !shost->host_blocked && !shost->host_self_blocked &&
531 !((shost->can_queue > 0) &&
532 (shost->host_busy >= shost->can_queue))) {
534 * As long as shost is accepting commands and we have
535 * starved queues, call blk_run_queue. scsi_request_fn
536 * drops the queue_lock and can add us back to the
537 * starved_list.
539 * host_lock protects the starved_list and starved_entry.
540 * scsi_request_fn must get the host_lock before checking
541 * or modifying starved_list or starved_entry.
543 sdev = list_entry(shost->starved_list.next,
544 struct scsi_device, starved_entry);
545 list_del_init(&sdev->starved_entry);
546 spin_unlock_irqrestore(shost->host_lock, flags);
549 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
550 !test_and_set_bit(QUEUE_FLAG_REENTER,
551 &sdev->request_queue->queue_flags)) {
552 blk_run_queue(sdev->request_queue);
553 clear_bit(QUEUE_FLAG_REENTER,
554 &sdev->request_queue->queue_flags);
555 } else
556 blk_run_queue(sdev->request_queue);
558 spin_lock_irqsave(shost->host_lock, flags);
559 if (unlikely(!list_empty(&sdev->starved_entry)))
561 * sdev lost a race, and was put back on the
562 * starved list. This is unlikely but without this
563 * in theory we could loop forever.
565 break;
567 spin_unlock_irqrestore(shost->host_lock, flags);
569 blk_run_queue(q);
573 * Function: scsi_requeue_command()
575 * Purpose: Handle post-processing of completed commands.
577 * Arguments: q - queue to operate on
578 * cmd - command that may need to be requeued.
580 * Returns: Nothing
582 * Notes: After command completion, there may be blocks left
583 * over which weren't finished by the previous command
584 * this can be for a number of reasons - the main one is
585 * I/O errors in the middle of the request, in which case
586 * we need to request the blocks that come after the bad
587 * sector.
588 * Notes: Upon return, cmd is a stale pointer.
590 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
592 struct request *req = cmd->request;
593 unsigned long flags;
595 scsi_unprep_request(req);
596 spin_lock_irqsave(q->queue_lock, flags);
597 blk_requeue_request(q, req);
598 spin_unlock_irqrestore(q->queue_lock, flags);
600 scsi_run_queue(q);
603 void scsi_next_command(struct scsi_cmnd *cmd)
605 struct scsi_device *sdev = cmd->device;
606 struct request_queue *q = sdev->request_queue;
608 /* need to hold a reference on the device before we let go of the cmd */
609 get_device(&sdev->sdev_gendev);
611 scsi_put_command(cmd);
612 scsi_run_queue(q);
614 /* ok to remove device now */
615 put_device(&sdev->sdev_gendev);
618 void scsi_run_host_queues(struct Scsi_Host *shost)
620 struct scsi_device *sdev;
622 shost_for_each_device(sdev, shost)
623 scsi_run_queue(sdev->request_queue);
627 * Function: scsi_end_request()
629 * Purpose: Post-processing of completed commands (usually invoked at end
630 * of upper level post-processing and scsi_io_completion).
632 * Arguments: cmd - command that is complete.
633 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
634 * bytes - number of bytes of completed I/O
635 * requeue - indicates whether we should requeue leftovers.
637 * Lock status: Assumed that lock is not held upon entry.
639 * Returns: cmd if requeue required, NULL otherwise.
641 * Notes: This is called for block device requests in order to
642 * mark some number of sectors as complete.
644 * We are guaranteeing that the request queue will be goosed
645 * at some point during this call.
646 * Notes: If cmd was requeued, upon return it will be a stale pointer.
648 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
649 int bytes, int requeue)
651 struct request_queue *q = cmd->device->request_queue;
652 struct request *req = cmd->request;
653 unsigned long flags;
656 * If there are blocks left over at the end, set up the command
657 * to queue the remainder of them.
659 if (end_that_request_chunk(req, uptodate, bytes)) {
660 int leftover = (req->hard_nr_sectors << 9);
662 if (blk_pc_request(req))
663 leftover = req->data_len;
665 /* kill remainder if no retrys */
666 if (!uptodate && blk_noretry_request(req))
667 end_that_request_chunk(req, 0, leftover);
668 else {
669 if (requeue) {
671 * Bleah. Leftovers again. Stick the
672 * leftovers in the front of the
673 * queue, and goose the queue again.
675 scsi_requeue_command(q, cmd);
676 cmd = NULL;
678 return cmd;
682 add_disk_randomness(req->rq_disk);
684 spin_lock_irqsave(q->queue_lock, flags);
685 if (blk_rq_tagged(req))
686 blk_queue_end_tag(q, req);
687 end_that_request_last(req, uptodate);
688 spin_unlock_irqrestore(q->queue_lock, flags);
691 * This will goose the queue request function at the end, so we don't
692 * need to worry about launching another command.
694 scsi_next_command(cmd);
695 return NULL;
698 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
700 struct scsi_host_sg_pool *sgp;
701 struct scatterlist *sgl;
703 BUG_ON(!cmd->use_sg);
705 switch (cmd->use_sg) {
706 case 1 ... 8:
707 cmd->sglist_len = 0;
708 break;
709 case 9 ... 16:
710 cmd->sglist_len = 1;
711 break;
712 case 17 ... 32:
713 cmd->sglist_len = 2;
714 break;
715 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
716 case 33 ... 64:
717 cmd->sglist_len = 3;
718 break;
719 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
720 case 65 ... 128:
721 cmd->sglist_len = 4;
722 break;
723 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
724 case 129 ... 256:
725 cmd->sglist_len = 5;
726 break;
727 #endif
728 #endif
729 #endif
730 default:
731 return NULL;
734 sgp = scsi_sg_pools + cmd->sglist_len;
735 sgl = mempool_alloc(sgp->pool, gfp_mask);
736 return sgl;
739 EXPORT_SYMBOL(scsi_alloc_sgtable);
741 void scsi_free_sgtable(struct scatterlist *sgl, int index)
743 struct scsi_host_sg_pool *sgp;
745 BUG_ON(index >= SG_MEMPOOL_NR);
747 sgp = scsi_sg_pools + index;
748 mempool_free(sgl, sgp->pool);
751 EXPORT_SYMBOL(scsi_free_sgtable);
754 * Function: scsi_release_buffers()
756 * Purpose: Completion processing for block device I/O requests.
758 * Arguments: cmd - command that we are bailing.
760 * Lock status: Assumed that no lock is held upon entry.
762 * Returns: Nothing
764 * Notes: In the event that an upper level driver rejects a
765 * command, we must release resources allocated during
766 * the __init_io() function. Primarily this would involve
767 * the scatter-gather table, and potentially any bounce
768 * buffers.
770 static void scsi_release_buffers(struct scsi_cmnd *cmd)
772 if (cmd->use_sg)
773 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
776 * Zero these out. They now point to freed memory, and it is
777 * dangerous to hang onto the pointers.
779 cmd->request_buffer = NULL;
780 cmd->request_bufflen = 0;
784 * Function: scsi_io_completion()
786 * Purpose: Completion processing for block device I/O requests.
788 * Arguments: cmd - command that is finished.
790 * Lock status: Assumed that no lock is held upon entry.
792 * Returns: Nothing
794 * Notes: This function is matched in terms of capabilities to
795 * the function that created the scatter-gather list.
796 * In other words, if there are no bounce buffers
797 * (the normal case for most drivers), we don't need
798 * the logic to deal with cleaning up afterwards.
800 * We must do one of several things here:
802 * a) Call scsi_end_request. This will finish off the
803 * specified number of sectors. If we are done, the
804 * command block will be released, and the queue
805 * function will be goosed. If we are not done, then
806 * scsi_end_request will directly goose the queue.
808 * b) We can just use scsi_requeue_command() here. This would
809 * be used if we just wanted to retry, for example.
811 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
813 int result = cmd->result;
814 int this_count = cmd->request_bufflen;
815 struct request_queue *q = cmd->device->request_queue;
816 struct request *req = cmd->request;
817 int clear_errors = 1;
818 struct scsi_sense_hdr sshdr;
819 int sense_valid = 0;
820 int sense_deferred = 0;
822 scsi_release_buffers(cmd);
824 if (result) {
825 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
826 if (sense_valid)
827 sense_deferred = scsi_sense_is_deferred(&sshdr);
830 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
831 req->errors = result;
832 if (result) {
833 clear_errors = 0;
834 if (sense_valid && req->sense) {
836 * SG_IO wants current and deferred errors
838 int len = 8 + cmd->sense_buffer[7];
840 if (len > SCSI_SENSE_BUFFERSIZE)
841 len = SCSI_SENSE_BUFFERSIZE;
842 memcpy(req->sense, cmd->sense_buffer, len);
843 req->sense_len = len;
846 req->data_len = cmd->resid;
850 * Next deal with any sectors which we were able to correctly
851 * handle.
853 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
854 "%d bytes done.\n",
855 req->nr_sectors, good_bytes));
856 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
858 if (clear_errors)
859 req->errors = 0;
861 /* A number of bytes were successfully read. If there
862 * are leftovers and there is some kind of error
863 * (result != 0), retry the rest.
865 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
866 return;
868 /* good_bytes = 0, or (inclusive) there were leftovers and
869 * result = 0, so scsi_end_request couldn't retry.
871 if (sense_valid && !sense_deferred) {
872 switch (sshdr.sense_key) {
873 case UNIT_ATTENTION:
874 if (cmd->device->removable) {
875 /* Detected disc change. Set a bit
876 * and quietly refuse further access.
878 cmd->device->changed = 1;
879 scsi_end_request(cmd, 0, this_count, 1);
880 return;
881 } else {
882 /* Must have been a power glitch, or a
883 * bus reset. Could not have been a
884 * media change, so we just retry the
885 * request and see what happens.
887 scsi_requeue_command(q, cmd);
888 return;
890 break;
891 case ILLEGAL_REQUEST:
892 /* If we had an ILLEGAL REQUEST returned, then
893 * we may have performed an unsupported
894 * command. The only thing this should be
895 * would be a ten byte read where only a six
896 * byte read was supported. Also, on a system
897 * where READ CAPACITY failed, we may have
898 * read past the end of the disk.
900 if ((cmd->device->use_10_for_rw &&
901 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
902 (cmd->cmnd[0] == READ_10 ||
903 cmd->cmnd[0] == WRITE_10)) {
904 cmd->device->use_10_for_rw = 0;
905 /* This will cause a retry with a
906 * 6-byte command.
908 scsi_requeue_command(q, cmd);
909 return;
910 } else {
911 scsi_end_request(cmd, 0, this_count, 1);
912 return;
914 break;
915 case NOT_READY:
916 /* If the device is in the process of becoming
917 * ready, or has a temporary blockage, retry.
919 if (sshdr.asc == 0x04) {
920 switch (sshdr.ascq) {
921 case 0x01: /* becoming ready */
922 case 0x04: /* format in progress */
923 case 0x05: /* rebuild in progress */
924 case 0x06: /* recalculation in progress */
925 case 0x07: /* operation in progress */
926 case 0x08: /* Long write in progress */
927 case 0x09: /* self test in progress */
928 scsi_requeue_command(q, cmd);
929 return;
930 default:
931 break;
934 if (!(req->cmd_flags & REQ_QUIET))
935 scsi_cmd_print_sense_hdr(cmd,
936 "Device not ready",
937 &sshdr);
939 scsi_end_request(cmd, 0, this_count, 1);
940 return;
941 case VOLUME_OVERFLOW:
942 if (!(req->cmd_flags & REQ_QUIET)) {
943 scmd_printk(KERN_INFO, cmd,
944 "Volume overflow, CDB: ");
945 __scsi_print_command(cmd->cmnd);
946 scsi_print_sense("", cmd);
948 /* See SSC3rXX or current. */
949 scsi_end_request(cmd, 0, this_count, 1);
950 return;
951 default:
952 break;
955 if (host_byte(result) == DID_RESET) {
956 /* Third party bus reset or reset for error recovery
957 * reasons. Just retry the request and see what
958 * happens.
960 scsi_requeue_command(q, cmd);
961 return;
963 if (result) {
964 if (!(req->cmd_flags & REQ_QUIET)) {
965 scsi_print_result(cmd);
966 if (driver_byte(result) & DRIVER_SENSE)
967 scsi_print_sense("", cmd);
970 scsi_end_request(cmd, 0, this_count, !result);
974 * Function: scsi_init_io()
976 * Purpose: SCSI I/O initialize function.
978 * Arguments: cmd - Command descriptor we wish to initialize
980 * Returns: 0 on success
981 * BLKPREP_DEFER if the failure is retryable
982 * BLKPREP_KILL if the failure is fatal
984 static int scsi_init_io(struct scsi_cmnd *cmd)
986 struct request *req = cmd->request;
987 struct scatterlist *sgpnt;
988 int count;
991 * We used to not use scatter-gather for single segment request,
992 * but now we do (it makes highmem I/O easier to support without
993 * kmapping pages)
995 cmd->use_sg = req->nr_phys_segments;
998 * If sg table allocation fails, requeue request later.
1000 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1001 if (unlikely(!sgpnt)) {
1002 scsi_unprep_request(req);
1003 return BLKPREP_DEFER;
1006 req->buffer = NULL;
1007 cmd->request_buffer = (char *) sgpnt;
1008 if (blk_pc_request(req))
1009 cmd->request_bufflen = req->data_len;
1010 else
1011 cmd->request_bufflen = req->nr_sectors << 9;
1014 * Next, walk the list, and fill in the addresses and sizes of
1015 * each segment.
1017 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1018 if (likely(count <= cmd->use_sg)) {
1019 cmd->use_sg = count;
1020 return BLKPREP_OK;
1023 printk(KERN_ERR "Incorrect number of segments after building list\n");
1024 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1025 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1026 req->current_nr_sectors);
1028 return BLKPREP_KILL;
1031 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1032 struct request *req)
1034 struct scsi_cmnd *cmd;
1036 if (!req->special) {
1037 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1038 if (unlikely(!cmd))
1039 return NULL;
1040 req->special = cmd;
1041 } else {
1042 cmd = req->special;
1045 /* pull a tag out of the request if we have one */
1046 cmd->tag = req->tag;
1047 cmd->request = req;
1049 return cmd;
1052 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1054 struct scsi_cmnd *cmd;
1055 int ret = scsi_prep_state_check(sdev, req);
1057 if (ret != BLKPREP_OK)
1058 return ret;
1060 cmd = scsi_get_cmd_from_req(sdev, req);
1061 if (unlikely(!cmd))
1062 return BLKPREP_DEFER;
1065 * BLOCK_PC requests may transfer data, in which case they must
1066 * a bio attached to them. Or they might contain a SCSI command
1067 * that does not transfer data, in which case they may optionally
1068 * submit a request without an attached bio.
1070 if (req->bio) {
1071 int ret;
1073 BUG_ON(!req->nr_phys_segments);
1075 ret = scsi_init_io(cmd);
1076 if (unlikely(ret))
1077 return ret;
1078 } else {
1079 BUG_ON(req->data_len);
1080 BUG_ON(req->data);
1082 cmd->request_bufflen = 0;
1083 cmd->request_buffer = NULL;
1084 cmd->use_sg = 0;
1085 req->buffer = NULL;
1088 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1089 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1090 cmd->cmd_len = req->cmd_len;
1091 if (!req->data_len)
1092 cmd->sc_data_direction = DMA_NONE;
1093 else if (rq_data_dir(req) == WRITE)
1094 cmd->sc_data_direction = DMA_TO_DEVICE;
1095 else
1096 cmd->sc_data_direction = DMA_FROM_DEVICE;
1098 cmd->transfersize = req->data_len;
1099 cmd->allowed = req->retries;
1100 cmd->timeout_per_command = req->timeout;
1101 return BLKPREP_OK;
1103 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1106 * Setup a REQ_TYPE_FS command. These are simple read/write request
1107 * from filesystems that still need to be translated to SCSI CDBs from
1108 * the ULD.
1110 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1112 struct scsi_cmnd *cmd;
1113 int ret = scsi_prep_state_check(sdev, req);
1115 if (ret != BLKPREP_OK)
1116 return ret;
1118 * Filesystem requests must transfer data.
1120 BUG_ON(!req->nr_phys_segments);
1122 cmd = scsi_get_cmd_from_req(sdev, req);
1123 if (unlikely(!cmd))
1124 return BLKPREP_DEFER;
1126 return scsi_init_io(cmd);
1128 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1130 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1132 int ret = BLKPREP_OK;
1135 * If the device is not in running state we will reject some
1136 * or all commands.
1138 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1139 switch (sdev->sdev_state) {
1140 case SDEV_OFFLINE:
1142 * If the device is offline we refuse to process any
1143 * commands. The device must be brought online
1144 * before trying any recovery commands.
1146 sdev_printk(KERN_ERR, sdev,
1147 "rejecting I/O to offline device\n");
1148 ret = BLKPREP_KILL;
1149 break;
1150 case SDEV_DEL:
1152 * If the device is fully deleted, we refuse to
1153 * process any commands as well.
1155 sdev_printk(KERN_ERR, sdev,
1156 "rejecting I/O to dead device\n");
1157 ret = BLKPREP_KILL;
1158 break;
1159 case SDEV_QUIESCE:
1160 case SDEV_BLOCK:
1162 * If the devices is blocked we defer normal commands.
1164 if (!(req->cmd_flags & REQ_PREEMPT))
1165 ret = BLKPREP_DEFER;
1166 break;
1167 default:
1169 * For any other not fully online state we only allow
1170 * special commands. In particular any user initiated
1171 * command is not allowed.
1173 if (!(req->cmd_flags & REQ_PREEMPT))
1174 ret = BLKPREP_KILL;
1175 break;
1178 return ret;
1180 EXPORT_SYMBOL(scsi_prep_state_check);
1182 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1184 struct scsi_device *sdev = q->queuedata;
1186 switch (ret) {
1187 case BLKPREP_KILL:
1188 req->errors = DID_NO_CONNECT << 16;
1189 /* release the command and kill it */
1190 if (req->special) {
1191 struct scsi_cmnd *cmd = req->special;
1192 scsi_release_buffers(cmd);
1193 scsi_put_command(cmd);
1194 req->special = NULL;
1196 break;
1197 case BLKPREP_DEFER:
1199 * If we defer, the elv_next_request() returns NULL, but the
1200 * queue must be restarted, so we plug here if no returning
1201 * command will automatically do that.
1203 if (sdev->device_busy == 0)
1204 blk_plug_device(q);
1205 break;
1206 default:
1207 req->cmd_flags |= REQ_DONTPREP;
1210 return ret;
1212 EXPORT_SYMBOL(scsi_prep_return);
1214 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1216 struct scsi_device *sdev = q->queuedata;
1217 int ret = BLKPREP_KILL;
1219 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1220 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1221 return scsi_prep_return(q, req, ret);
1225 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1226 * return 0.
1228 * Called with the queue_lock held.
1230 static inline int scsi_dev_queue_ready(struct request_queue *q,
1231 struct scsi_device *sdev)
1233 if (sdev->device_busy >= sdev->queue_depth)
1234 return 0;
1235 if (sdev->device_busy == 0 && sdev->device_blocked) {
1237 * unblock after device_blocked iterates to zero
1239 if (--sdev->device_blocked == 0) {
1240 SCSI_LOG_MLQUEUE(3,
1241 sdev_printk(KERN_INFO, sdev,
1242 "unblocking device at zero depth\n"));
1243 } else {
1244 blk_plug_device(q);
1245 return 0;
1248 if (sdev->device_blocked)
1249 return 0;
1251 return 1;
1255 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1256 * return 0. We must end up running the queue again whenever 0 is
1257 * returned, else IO can hang.
1259 * Called with host_lock held.
1261 static inline int scsi_host_queue_ready(struct request_queue *q,
1262 struct Scsi_Host *shost,
1263 struct scsi_device *sdev)
1265 if (scsi_host_in_recovery(shost))
1266 return 0;
1267 if (shost->host_busy == 0 && shost->host_blocked) {
1269 * unblock after host_blocked iterates to zero
1271 if (--shost->host_blocked == 0) {
1272 SCSI_LOG_MLQUEUE(3,
1273 printk("scsi%d unblocking host at zero depth\n",
1274 shost->host_no));
1275 } else {
1276 blk_plug_device(q);
1277 return 0;
1280 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1281 shost->host_blocked || shost->host_self_blocked) {
1282 if (list_empty(&sdev->starved_entry))
1283 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1284 return 0;
1287 /* We're OK to process the command, so we can't be starved */
1288 if (!list_empty(&sdev->starved_entry))
1289 list_del_init(&sdev->starved_entry);
1291 return 1;
1295 * Kill a request for a dead device
1297 static void scsi_kill_request(struct request *req, struct request_queue *q)
1299 struct scsi_cmnd *cmd = req->special;
1300 struct scsi_device *sdev = cmd->device;
1301 struct Scsi_Host *shost = sdev->host;
1303 blkdev_dequeue_request(req);
1305 if (unlikely(cmd == NULL)) {
1306 printk(KERN_CRIT "impossible request in %s.\n",
1307 __FUNCTION__);
1308 BUG();
1311 scsi_init_cmd_errh(cmd);
1312 cmd->result = DID_NO_CONNECT << 16;
1313 atomic_inc(&cmd->device->iorequest_cnt);
1316 * SCSI request completion path will do scsi_device_unbusy(),
1317 * bump busy counts. To bump the counters, we need to dance
1318 * with the locks as normal issue path does.
1320 sdev->device_busy++;
1321 spin_unlock(sdev->request_queue->queue_lock);
1322 spin_lock(shost->host_lock);
1323 shost->host_busy++;
1324 spin_unlock(shost->host_lock);
1325 spin_lock(sdev->request_queue->queue_lock);
1327 __scsi_done(cmd);
1330 static void scsi_softirq_done(struct request *rq)
1332 struct scsi_cmnd *cmd = rq->completion_data;
1333 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1334 int disposition;
1336 INIT_LIST_HEAD(&cmd->eh_entry);
1338 disposition = scsi_decide_disposition(cmd);
1339 if (disposition != SUCCESS &&
1340 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1341 sdev_printk(KERN_ERR, cmd->device,
1342 "timing out command, waited %lus\n",
1343 wait_for/HZ);
1344 disposition = SUCCESS;
1347 scsi_log_completion(cmd, disposition);
1349 switch (disposition) {
1350 case SUCCESS:
1351 scsi_finish_command(cmd);
1352 break;
1353 case NEEDS_RETRY:
1354 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1355 break;
1356 case ADD_TO_MLQUEUE:
1357 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1358 break;
1359 default:
1360 if (!scsi_eh_scmd_add(cmd, 0))
1361 scsi_finish_command(cmd);
1366 * Function: scsi_request_fn()
1368 * Purpose: Main strategy routine for SCSI.
1370 * Arguments: q - Pointer to actual queue.
1372 * Returns: Nothing
1374 * Lock status: IO request lock assumed to be held when called.
1376 static void scsi_request_fn(struct request_queue *q)
1378 struct scsi_device *sdev = q->queuedata;
1379 struct Scsi_Host *shost;
1380 struct scsi_cmnd *cmd;
1381 struct request *req;
1383 if (!sdev) {
1384 printk("scsi: killing requests for dead queue\n");
1385 while ((req = elv_next_request(q)) != NULL)
1386 scsi_kill_request(req, q);
1387 return;
1390 if(!get_device(&sdev->sdev_gendev))
1391 /* We must be tearing the block queue down already */
1392 return;
1395 * To start with, we keep looping until the queue is empty, or until
1396 * the host is no longer able to accept any more requests.
1398 shost = sdev->host;
1399 while (!blk_queue_plugged(q)) {
1400 int rtn;
1402 * get next queueable request. We do this early to make sure
1403 * that the request is fully prepared even if we cannot
1404 * accept it.
1406 req = elv_next_request(q);
1407 if (!req || !scsi_dev_queue_ready(q, sdev))
1408 break;
1410 if (unlikely(!scsi_device_online(sdev))) {
1411 sdev_printk(KERN_ERR, sdev,
1412 "rejecting I/O to offline device\n");
1413 scsi_kill_request(req, q);
1414 continue;
1419 * Remove the request from the request list.
1421 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1422 blkdev_dequeue_request(req);
1423 sdev->device_busy++;
1425 spin_unlock(q->queue_lock);
1426 cmd = req->special;
1427 if (unlikely(cmd == NULL)) {
1428 printk(KERN_CRIT "impossible request in %s.\n"
1429 "please mail a stack trace to "
1430 "linux-scsi@vger.kernel.org\n",
1431 __FUNCTION__);
1432 blk_dump_rq_flags(req, "foo");
1433 BUG();
1435 spin_lock(shost->host_lock);
1437 if (!scsi_host_queue_ready(q, shost, sdev))
1438 goto not_ready;
1439 if (sdev->single_lun) {
1440 if (scsi_target(sdev)->starget_sdev_user &&
1441 scsi_target(sdev)->starget_sdev_user != sdev)
1442 goto not_ready;
1443 scsi_target(sdev)->starget_sdev_user = sdev;
1445 shost->host_busy++;
1448 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1449 * take the lock again.
1451 spin_unlock_irq(shost->host_lock);
1454 * Finally, initialize any error handling parameters, and set up
1455 * the timers for timeouts.
1457 scsi_init_cmd_errh(cmd);
1460 * Dispatch the command to the low-level driver.
1462 rtn = scsi_dispatch_cmd(cmd);
1463 spin_lock_irq(q->queue_lock);
1464 if(rtn) {
1465 /* we're refusing the command; because of
1466 * the way locks get dropped, we need to
1467 * check here if plugging is required */
1468 if(sdev->device_busy == 0)
1469 blk_plug_device(q);
1471 break;
1475 goto out;
1477 not_ready:
1478 spin_unlock_irq(shost->host_lock);
1481 * lock q, handle tag, requeue req, and decrement device_busy. We
1482 * must return with queue_lock held.
1484 * Decrementing device_busy without checking it is OK, as all such
1485 * cases (host limits or settings) should run the queue at some
1486 * later time.
1488 spin_lock_irq(q->queue_lock);
1489 blk_requeue_request(q, req);
1490 sdev->device_busy--;
1491 if(sdev->device_busy == 0)
1492 blk_plug_device(q);
1493 out:
1494 /* must be careful here...if we trigger the ->remove() function
1495 * we cannot be holding the q lock */
1496 spin_unlock_irq(q->queue_lock);
1497 put_device(&sdev->sdev_gendev);
1498 spin_lock_irq(q->queue_lock);
1501 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1503 struct device *host_dev;
1504 u64 bounce_limit = 0xffffffff;
1506 if (shost->unchecked_isa_dma)
1507 return BLK_BOUNCE_ISA;
1509 * Platforms with virtual-DMA translation
1510 * hardware have no practical limit.
1512 if (!PCI_DMA_BUS_IS_PHYS)
1513 return BLK_BOUNCE_ANY;
1515 host_dev = scsi_get_device(shost);
1516 if (host_dev && host_dev->dma_mask)
1517 bounce_limit = *host_dev->dma_mask;
1519 return bounce_limit;
1521 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1523 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1524 request_fn_proc *request_fn)
1526 struct request_queue *q;
1528 q = blk_init_queue(request_fn, NULL);
1529 if (!q)
1530 return NULL;
1532 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1533 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1534 blk_queue_max_sectors(q, shost->max_sectors);
1535 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1536 blk_queue_segment_boundary(q, shost->dma_boundary);
1538 if (!shost->use_clustering)
1539 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1540 return q;
1542 EXPORT_SYMBOL(__scsi_alloc_queue);
1544 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1546 struct request_queue *q;
1548 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1549 if (!q)
1550 return NULL;
1552 blk_queue_prep_rq(q, scsi_prep_fn);
1553 blk_queue_softirq_done(q, scsi_softirq_done);
1554 return q;
1557 void scsi_free_queue(struct request_queue *q)
1559 blk_cleanup_queue(q);
1563 * Function: scsi_block_requests()
1565 * Purpose: Utility function used by low-level drivers to prevent further
1566 * commands from being queued to the device.
1568 * Arguments: shost - Host in question
1570 * Returns: Nothing
1572 * Lock status: No locks are assumed held.
1574 * Notes: There is no timer nor any other means by which the requests
1575 * get unblocked other than the low-level driver calling
1576 * scsi_unblock_requests().
1578 void scsi_block_requests(struct Scsi_Host *shost)
1580 shost->host_self_blocked = 1;
1582 EXPORT_SYMBOL(scsi_block_requests);
1585 * Function: scsi_unblock_requests()
1587 * Purpose: Utility function used by low-level drivers to allow further
1588 * commands from being queued to the device.
1590 * Arguments: shost - Host in question
1592 * Returns: Nothing
1594 * Lock status: No locks are assumed held.
1596 * Notes: There is no timer nor any other means by which the requests
1597 * get unblocked other than the low-level driver calling
1598 * scsi_unblock_requests().
1600 * This is done as an API function so that changes to the
1601 * internals of the scsi mid-layer won't require wholesale
1602 * changes to drivers that use this feature.
1604 void scsi_unblock_requests(struct Scsi_Host *shost)
1606 shost->host_self_blocked = 0;
1607 scsi_run_host_queues(shost);
1609 EXPORT_SYMBOL(scsi_unblock_requests);
1611 int __init scsi_init_queue(void)
1613 int i;
1615 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1616 sizeof(struct scsi_io_context),
1617 0, 0, NULL);
1618 if (!scsi_io_context_cache) {
1619 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1620 return -ENOMEM;
1623 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1624 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1625 int size = sgp->size * sizeof(struct scatterlist);
1627 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1628 SLAB_HWCACHE_ALIGN, NULL);
1629 if (!sgp->slab) {
1630 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1631 sgp->name);
1634 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1635 sgp->slab);
1636 if (!sgp->pool) {
1637 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1638 sgp->name);
1642 return 0;
1645 void scsi_exit_queue(void)
1647 int i;
1649 kmem_cache_destroy(scsi_io_context_cache);
1651 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1652 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1653 mempool_destroy(sgp->pool);
1654 kmem_cache_destroy(sgp->slab);
1659 * scsi_mode_select - issue a mode select
1660 * @sdev: SCSI device to be queried
1661 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1662 * @sp: Save page bit (0 == don't save, 1 == save)
1663 * @modepage: mode page being requested
1664 * @buffer: request buffer (may not be smaller than eight bytes)
1665 * @len: length of request buffer.
1666 * @timeout: command timeout
1667 * @retries: number of retries before failing
1668 * @data: returns a structure abstracting the mode header data
1669 * @sense: place to put sense data (or NULL if no sense to be collected).
1670 * must be SCSI_SENSE_BUFFERSIZE big.
1672 * Returns zero if successful; negative error number or scsi
1673 * status on error
1677 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1678 unsigned char *buffer, int len, int timeout, int retries,
1679 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1681 unsigned char cmd[10];
1682 unsigned char *real_buffer;
1683 int ret;
1685 memset(cmd, 0, sizeof(cmd));
1686 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1688 if (sdev->use_10_for_ms) {
1689 if (len > 65535)
1690 return -EINVAL;
1691 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1692 if (!real_buffer)
1693 return -ENOMEM;
1694 memcpy(real_buffer + 8, buffer, len);
1695 len += 8;
1696 real_buffer[0] = 0;
1697 real_buffer[1] = 0;
1698 real_buffer[2] = data->medium_type;
1699 real_buffer[3] = data->device_specific;
1700 real_buffer[4] = data->longlba ? 0x01 : 0;
1701 real_buffer[5] = 0;
1702 real_buffer[6] = data->block_descriptor_length >> 8;
1703 real_buffer[7] = data->block_descriptor_length;
1705 cmd[0] = MODE_SELECT_10;
1706 cmd[7] = len >> 8;
1707 cmd[8] = len;
1708 } else {
1709 if (len > 255 || data->block_descriptor_length > 255 ||
1710 data->longlba)
1711 return -EINVAL;
1713 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1714 if (!real_buffer)
1715 return -ENOMEM;
1716 memcpy(real_buffer + 4, buffer, len);
1717 len += 4;
1718 real_buffer[0] = 0;
1719 real_buffer[1] = data->medium_type;
1720 real_buffer[2] = data->device_specific;
1721 real_buffer[3] = data->block_descriptor_length;
1724 cmd[0] = MODE_SELECT;
1725 cmd[4] = len;
1728 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1729 sshdr, timeout, retries);
1730 kfree(real_buffer);
1731 return ret;
1733 EXPORT_SYMBOL_GPL(scsi_mode_select);
1736 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1737 * six bytes if necessary.
1738 * @sdev: SCSI device to be queried
1739 * @dbd: set if mode sense will allow block descriptors to be returned
1740 * @modepage: mode page being requested
1741 * @buffer: request buffer (may not be smaller than eight bytes)
1742 * @len: length of request buffer.
1743 * @timeout: command timeout
1744 * @retries: number of retries before failing
1745 * @data: returns a structure abstracting the mode header data
1746 * @sense: place to put sense data (or NULL if no sense to be collected).
1747 * must be SCSI_SENSE_BUFFERSIZE big.
1749 * Returns zero if unsuccessful, or the header offset (either 4
1750 * or 8 depending on whether a six or ten byte command was
1751 * issued) if successful.
1754 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1755 unsigned char *buffer, int len, int timeout, int retries,
1756 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1758 unsigned char cmd[12];
1759 int use_10_for_ms;
1760 int header_length;
1761 int result;
1762 struct scsi_sense_hdr my_sshdr;
1764 memset(data, 0, sizeof(*data));
1765 memset(&cmd[0], 0, 12);
1766 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1767 cmd[2] = modepage;
1769 /* caller might not be interested in sense, but we need it */
1770 if (!sshdr)
1771 sshdr = &my_sshdr;
1773 retry:
1774 use_10_for_ms = sdev->use_10_for_ms;
1776 if (use_10_for_ms) {
1777 if (len < 8)
1778 len = 8;
1780 cmd[0] = MODE_SENSE_10;
1781 cmd[8] = len;
1782 header_length = 8;
1783 } else {
1784 if (len < 4)
1785 len = 4;
1787 cmd[0] = MODE_SENSE;
1788 cmd[4] = len;
1789 header_length = 4;
1792 memset(buffer, 0, len);
1794 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1795 sshdr, timeout, retries);
1797 /* This code looks awful: what it's doing is making sure an
1798 * ILLEGAL REQUEST sense return identifies the actual command
1799 * byte as the problem. MODE_SENSE commands can return
1800 * ILLEGAL REQUEST if the code page isn't supported */
1802 if (use_10_for_ms && !scsi_status_is_good(result) &&
1803 (driver_byte(result) & DRIVER_SENSE)) {
1804 if (scsi_sense_valid(sshdr)) {
1805 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1806 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1808 * Invalid command operation code
1810 sdev->use_10_for_ms = 0;
1811 goto retry;
1816 if(scsi_status_is_good(result)) {
1817 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1818 (modepage == 6 || modepage == 8))) {
1819 /* Initio breakage? */
1820 header_length = 0;
1821 data->length = 13;
1822 data->medium_type = 0;
1823 data->device_specific = 0;
1824 data->longlba = 0;
1825 data->block_descriptor_length = 0;
1826 } else if(use_10_for_ms) {
1827 data->length = buffer[0]*256 + buffer[1] + 2;
1828 data->medium_type = buffer[2];
1829 data->device_specific = buffer[3];
1830 data->longlba = buffer[4] & 0x01;
1831 data->block_descriptor_length = buffer[6]*256
1832 + buffer[7];
1833 } else {
1834 data->length = buffer[0] + 1;
1835 data->medium_type = buffer[1];
1836 data->device_specific = buffer[2];
1837 data->block_descriptor_length = buffer[3];
1839 data->header_length = header_length;
1842 return result;
1844 EXPORT_SYMBOL(scsi_mode_sense);
1847 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1849 char cmd[] = {
1850 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1852 struct scsi_sense_hdr sshdr;
1853 int result;
1855 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1856 timeout, retries);
1858 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1860 if ((scsi_sense_valid(&sshdr)) &&
1861 ((sshdr.sense_key == UNIT_ATTENTION) ||
1862 (sshdr.sense_key == NOT_READY))) {
1863 sdev->changed = 1;
1864 result = 0;
1867 return result;
1869 EXPORT_SYMBOL(scsi_test_unit_ready);
1872 * scsi_device_set_state - Take the given device through the device
1873 * state model.
1874 * @sdev: scsi device to change the state of.
1875 * @state: state to change to.
1877 * Returns zero if unsuccessful or an error if the requested
1878 * transition is illegal.
1881 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1883 enum scsi_device_state oldstate = sdev->sdev_state;
1885 if (state == oldstate)
1886 return 0;
1888 switch (state) {
1889 case SDEV_CREATED:
1890 /* There are no legal states that come back to
1891 * created. This is the manually initialised start
1892 * state */
1893 goto illegal;
1895 case SDEV_RUNNING:
1896 switch (oldstate) {
1897 case SDEV_CREATED:
1898 case SDEV_OFFLINE:
1899 case SDEV_QUIESCE:
1900 case SDEV_BLOCK:
1901 break;
1902 default:
1903 goto illegal;
1905 break;
1907 case SDEV_QUIESCE:
1908 switch (oldstate) {
1909 case SDEV_RUNNING:
1910 case SDEV_OFFLINE:
1911 break;
1912 default:
1913 goto illegal;
1915 break;
1917 case SDEV_OFFLINE:
1918 switch (oldstate) {
1919 case SDEV_CREATED:
1920 case SDEV_RUNNING:
1921 case SDEV_QUIESCE:
1922 case SDEV_BLOCK:
1923 break;
1924 default:
1925 goto illegal;
1927 break;
1929 case SDEV_BLOCK:
1930 switch (oldstate) {
1931 case SDEV_CREATED:
1932 case SDEV_RUNNING:
1933 break;
1934 default:
1935 goto illegal;
1937 break;
1939 case SDEV_CANCEL:
1940 switch (oldstate) {
1941 case SDEV_CREATED:
1942 case SDEV_RUNNING:
1943 case SDEV_QUIESCE:
1944 case SDEV_OFFLINE:
1945 case SDEV_BLOCK:
1946 break;
1947 default:
1948 goto illegal;
1950 break;
1952 case SDEV_DEL:
1953 switch (oldstate) {
1954 case SDEV_CREATED:
1955 case SDEV_RUNNING:
1956 case SDEV_OFFLINE:
1957 case SDEV_CANCEL:
1958 break;
1959 default:
1960 goto illegal;
1962 break;
1965 sdev->sdev_state = state;
1966 return 0;
1968 illegal:
1969 SCSI_LOG_ERROR_RECOVERY(1,
1970 sdev_printk(KERN_ERR, sdev,
1971 "Illegal state transition %s->%s\n",
1972 scsi_device_state_name(oldstate),
1973 scsi_device_state_name(state))
1975 return -EINVAL;
1977 EXPORT_SYMBOL(scsi_device_set_state);
1980 * scsi_device_quiesce - Block user issued commands.
1981 * @sdev: scsi device to quiesce.
1983 * This works by trying to transition to the SDEV_QUIESCE state
1984 * (which must be a legal transition). When the device is in this
1985 * state, only special requests will be accepted, all others will
1986 * be deferred. Since special requests may also be requeued requests,
1987 * a successful return doesn't guarantee the device will be
1988 * totally quiescent.
1990 * Must be called with user context, may sleep.
1992 * Returns zero if unsuccessful or an error if not.
1995 scsi_device_quiesce(struct scsi_device *sdev)
1997 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1998 if (err)
1999 return err;
2001 scsi_run_queue(sdev->request_queue);
2002 while (sdev->device_busy) {
2003 msleep_interruptible(200);
2004 scsi_run_queue(sdev->request_queue);
2006 return 0;
2008 EXPORT_SYMBOL(scsi_device_quiesce);
2011 * scsi_device_resume - Restart user issued commands to a quiesced device.
2012 * @sdev: scsi device to resume.
2014 * Moves the device from quiesced back to running and restarts the
2015 * queues.
2017 * Must be called with user context, may sleep.
2019 void
2020 scsi_device_resume(struct scsi_device *sdev)
2022 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2023 return;
2024 scsi_run_queue(sdev->request_queue);
2026 EXPORT_SYMBOL(scsi_device_resume);
2028 static void
2029 device_quiesce_fn(struct scsi_device *sdev, void *data)
2031 scsi_device_quiesce(sdev);
2034 void
2035 scsi_target_quiesce(struct scsi_target *starget)
2037 starget_for_each_device(starget, NULL, device_quiesce_fn);
2039 EXPORT_SYMBOL(scsi_target_quiesce);
2041 static void
2042 device_resume_fn(struct scsi_device *sdev, void *data)
2044 scsi_device_resume(sdev);
2047 void
2048 scsi_target_resume(struct scsi_target *starget)
2050 starget_for_each_device(starget, NULL, device_resume_fn);
2052 EXPORT_SYMBOL(scsi_target_resume);
2055 * scsi_internal_device_block - internal function to put a device
2056 * temporarily into the SDEV_BLOCK state
2057 * @sdev: device to block
2059 * Block request made by scsi lld's to temporarily stop all
2060 * scsi commands on the specified device. Called from interrupt
2061 * or normal process context.
2063 * Returns zero if successful or error if not
2065 * Notes:
2066 * This routine transitions the device to the SDEV_BLOCK state
2067 * (which must be a legal transition). When the device is in this
2068 * state, all commands are deferred until the scsi lld reenables
2069 * the device with scsi_device_unblock or device_block_tmo fires.
2070 * This routine assumes the host_lock is held on entry.
2073 scsi_internal_device_block(struct scsi_device *sdev)
2075 struct request_queue *q = sdev->request_queue;
2076 unsigned long flags;
2077 int err = 0;
2079 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2080 if (err)
2081 return err;
2084 * The device has transitioned to SDEV_BLOCK. Stop the
2085 * block layer from calling the midlayer with this device's
2086 * request queue.
2088 spin_lock_irqsave(q->queue_lock, flags);
2089 blk_stop_queue(q);
2090 spin_unlock_irqrestore(q->queue_lock, flags);
2092 return 0;
2094 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2097 * scsi_internal_device_unblock - resume a device after a block request
2098 * @sdev: device to resume
2100 * Called by scsi lld's or the midlayer to restart the device queue
2101 * for the previously suspended scsi device. Called from interrupt or
2102 * normal process context.
2104 * Returns zero if successful or error if not.
2106 * Notes:
2107 * This routine transitions the device to the SDEV_RUNNING state
2108 * (which must be a legal transition) allowing the midlayer to
2109 * goose the queue for this device. This routine assumes the
2110 * host_lock is held upon entry.
2113 scsi_internal_device_unblock(struct scsi_device *sdev)
2115 struct request_queue *q = sdev->request_queue;
2116 int err;
2117 unsigned long flags;
2120 * Try to transition the scsi device to SDEV_RUNNING
2121 * and goose the device queue if successful.
2123 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2124 if (err)
2125 return err;
2127 spin_lock_irqsave(q->queue_lock, flags);
2128 blk_start_queue(q);
2129 spin_unlock_irqrestore(q->queue_lock, flags);
2131 return 0;
2133 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2135 static void
2136 device_block(struct scsi_device *sdev, void *data)
2138 scsi_internal_device_block(sdev);
2141 static int
2142 target_block(struct device *dev, void *data)
2144 if (scsi_is_target_device(dev))
2145 starget_for_each_device(to_scsi_target(dev), NULL,
2146 device_block);
2147 return 0;
2150 void
2151 scsi_target_block(struct device *dev)
2153 if (scsi_is_target_device(dev))
2154 starget_for_each_device(to_scsi_target(dev), NULL,
2155 device_block);
2156 else
2157 device_for_each_child(dev, NULL, target_block);
2159 EXPORT_SYMBOL_GPL(scsi_target_block);
2161 static void
2162 device_unblock(struct scsi_device *sdev, void *data)
2164 scsi_internal_device_unblock(sdev);
2167 static int
2168 target_unblock(struct device *dev, void *data)
2170 if (scsi_is_target_device(dev))
2171 starget_for_each_device(to_scsi_target(dev), NULL,
2172 device_unblock);
2173 return 0;
2176 void
2177 scsi_target_unblock(struct device *dev)
2179 if (scsi_is_target_device(dev))
2180 starget_for_each_device(to_scsi_target(dev), NULL,
2181 device_unblock);
2182 else
2183 device_for_each_child(dev, NULL, target_unblock);
2185 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2188 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2189 * @sg: scatter-gather list
2190 * @sg_count: number of segments in sg
2191 * @offset: offset in bytes into sg, on return offset into the mapped area
2192 * @len: bytes to map, on return number of bytes mapped
2194 * Returns virtual address of the start of the mapped page
2196 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2197 size_t *offset, size_t *len)
2199 int i;
2200 size_t sg_len = 0, len_complete = 0;
2201 struct page *page;
2203 WARN_ON(!irqs_disabled());
2205 for (i = 0; i < sg_count; i++) {
2206 len_complete = sg_len; /* Complete sg-entries */
2207 sg_len += sg[i].length;
2208 if (sg_len > *offset)
2209 break;
2212 if (unlikely(i == sg_count)) {
2213 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2214 "elements %d\n",
2215 __FUNCTION__, sg_len, *offset, sg_count);
2216 WARN_ON(1);
2217 return NULL;
2220 /* Offset starting from the beginning of first page in this sg-entry */
2221 *offset = *offset - len_complete + sg[i].offset;
2223 /* Assumption: contiguous pages can be accessed as "page + i" */
2224 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2225 *offset &= ~PAGE_MASK;
2227 /* Bytes in this sg-entry from *offset to the end of the page */
2228 sg_len = PAGE_SIZE - *offset;
2229 if (*len > sg_len)
2230 *len = sg_len;
2232 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2234 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2237 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2238 * mapped with scsi_kmap_atomic_sg
2239 * @virt: virtual address to be unmapped
2241 void scsi_kunmap_atomic_sg(void *virt)
2243 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2245 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);