ARM: 6830/1: mach-ux500: force PrimeCell revisions
[linux-2.6/libata-dev.git] / kernel / fork.c
blob8e7e135d08177e9f99e3ecf2c8142d56a1989c85
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/proc_fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
79 #include <trace/events/sched.h>
82 * Protected counters by write_lock_irq(&tasklist_lock)
84 unsigned long total_forks; /* Handle normal Linux uptimes. */
85 int nr_threads; /* The idle threads do not count.. */
87 int max_threads; /* tunable limit on nr_threads */
89 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
91 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
93 #ifdef CONFIG_PROVE_RCU
94 int lockdep_tasklist_lock_is_held(void)
96 return lockdep_is_held(&tasklist_lock);
98 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
99 #endif /* #ifdef CONFIG_PROVE_RCU */
101 int nr_processes(void)
103 int cpu;
104 int total = 0;
106 for_each_possible_cpu(cpu)
107 total += per_cpu(process_counts, cpu);
109 return total;
112 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
113 # define alloc_task_struct_node(node) \
114 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
115 # define free_task_struct(tsk) \
116 kmem_cache_free(task_struct_cachep, (tsk))
117 static struct kmem_cache *task_struct_cachep;
118 #endif
120 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
121 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
122 int node)
124 #ifdef CONFIG_DEBUG_STACK_USAGE
125 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
126 #else
127 gfp_t mask = GFP_KERNEL;
128 #endif
129 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
131 return page ? page_address(page) : NULL;
134 static inline void free_thread_info(struct thread_info *ti)
136 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
138 #endif
140 /* SLAB cache for signal_struct structures (tsk->signal) */
141 static struct kmem_cache *signal_cachep;
143 /* SLAB cache for sighand_struct structures (tsk->sighand) */
144 struct kmem_cache *sighand_cachep;
146 /* SLAB cache for files_struct structures (tsk->files) */
147 struct kmem_cache *files_cachep;
149 /* SLAB cache for fs_struct structures (tsk->fs) */
150 struct kmem_cache *fs_cachep;
152 /* SLAB cache for vm_area_struct structures */
153 struct kmem_cache *vm_area_cachep;
155 /* SLAB cache for mm_struct structures (tsk->mm) */
156 static struct kmem_cache *mm_cachep;
158 static void account_kernel_stack(struct thread_info *ti, int account)
160 struct zone *zone = page_zone(virt_to_page(ti));
162 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 void free_task(struct task_struct *tsk)
167 prop_local_destroy_single(&tsk->dirties);
168 account_kernel_stack(tsk->stack, -1);
169 free_thread_info(tsk->stack);
170 rt_mutex_debug_task_free(tsk);
171 ftrace_graph_exit_task(tsk);
172 free_task_struct(tsk);
174 EXPORT_SYMBOL(free_task);
176 static inline void free_signal_struct(struct signal_struct *sig)
178 taskstats_tgid_free(sig);
179 sched_autogroup_exit(sig);
180 kmem_cache_free(signal_cachep, sig);
183 static inline void put_signal_struct(struct signal_struct *sig)
185 if (atomic_dec_and_test(&sig->sigcnt))
186 free_signal_struct(sig);
189 void __put_task_struct(struct task_struct *tsk)
191 WARN_ON(!tsk->exit_state);
192 WARN_ON(atomic_read(&tsk->usage));
193 WARN_ON(tsk == current);
195 exit_creds(tsk);
196 delayacct_tsk_free(tsk);
197 put_signal_struct(tsk->signal);
199 if (!profile_handoff_task(tsk))
200 free_task(tsk);
202 EXPORT_SYMBOL_GPL(__put_task_struct);
205 * macro override instead of weak attribute alias, to workaround
206 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
208 #ifndef arch_task_cache_init
209 #define arch_task_cache_init()
210 #endif
212 void __init fork_init(unsigned long mempages)
214 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
215 #ifndef ARCH_MIN_TASKALIGN
216 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
217 #endif
218 /* create a slab on which task_structs can be allocated */
219 task_struct_cachep =
220 kmem_cache_create("task_struct", sizeof(struct task_struct),
221 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
222 #endif
224 /* do the arch specific task caches init */
225 arch_task_cache_init();
228 * The default maximum number of threads is set to a safe
229 * value: the thread structures can take up at most half
230 * of memory.
232 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
235 * we need to allow at least 20 threads to boot a system
237 if(max_threads < 20)
238 max_threads = 20;
240 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
241 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
242 init_task.signal->rlim[RLIMIT_SIGPENDING] =
243 init_task.signal->rlim[RLIMIT_NPROC];
246 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
247 struct task_struct *src)
249 *dst = *src;
250 return 0;
253 static struct task_struct *dup_task_struct(struct task_struct *orig)
255 struct task_struct *tsk;
256 struct thread_info *ti;
257 unsigned long *stackend;
258 int node = tsk_fork_get_node(orig);
259 int err;
261 prepare_to_copy(orig);
263 tsk = alloc_task_struct_node(node);
264 if (!tsk)
265 return NULL;
267 ti = alloc_thread_info_node(tsk, node);
268 if (!ti) {
269 free_task_struct(tsk);
270 return NULL;
273 err = arch_dup_task_struct(tsk, orig);
274 if (err)
275 goto out;
277 tsk->stack = ti;
279 err = prop_local_init_single(&tsk->dirties);
280 if (err)
281 goto out;
283 setup_thread_stack(tsk, orig);
284 clear_user_return_notifier(tsk);
285 clear_tsk_need_resched(tsk);
286 stackend = end_of_stack(tsk);
287 *stackend = STACK_END_MAGIC; /* for overflow detection */
289 #ifdef CONFIG_CC_STACKPROTECTOR
290 tsk->stack_canary = get_random_int();
291 #endif
293 /* One for us, one for whoever does the "release_task()" (usually parent) */
294 atomic_set(&tsk->usage,2);
295 atomic_set(&tsk->fs_excl, 0);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 tsk->btrace_seq = 0;
298 #endif
299 tsk->splice_pipe = NULL;
301 account_kernel_stack(ti, 1);
303 return tsk;
305 out:
306 free_thread_info(ti);
307 free_task_struct(tsk);
308 return NULL;
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 struct rb_node **rb_link, *rb_parent;
316 int retval;
317 unsigned long charge;
318 struct mempolicy *pol;
320 down_write(&oldmm->mmap_sem);
321 flush_cache_dup_mm(oldmm);
323 * Not linked in yet - no deadlock potential:
325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
327 mm->locked_vm = 0;
328 mm->mmap = NULL;
329 mm->mmap_cache = NULL;
330 mm->free_area_cache = oldmm->mmap_base;
331 mm->cached_hole_size = ~0UL;
332 mm->map_count = 0;
333 cpumask_clear(mm_cpumask(mm));
334 mm->mm_rb = RB_ROOT;
335 rb_link = &mm->mm_rb.rb_node;
336 rb_parent = NULL;
337 pprev = &mm->mmap;
338 retval = ksm_fork(mm, oldmm);
339 if (retval)
340 goto out;
341 retval = khugepaged_fork(mm, oldmm);
342 if (retval)
343 goto out;
345 prev = NULL;
346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 struct file *file;
349 if (mpnt->vm_flags & VM_DONTCOPY) {
350 long pages = vma_pages(mpnt);
351 mm->total_vm -= pages;
352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 -pages);
354 continue;
356 charge = 0;
357 if (mpnt->vm_flags & VM_ACCOUNT) {
358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 if (security_vm_enough_memory(len))
360 goto fail_nomem;
361 charge = len;
363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 if (!tmp)
365 goto fail_nomem;
366 *tmp = *mpnt;
367 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 pol = mpol_dup(vma_policy(mpnt));
369 retval = PTR_ERR(pol);
370 if (IS_ERR(pol))
371 goto fail_nomem_policy;
372 vma_set_policy(tmp, pol);
373 tmp->vm_mm = mm;
374 if (anon_vma_fork(tmp, mpnt))
375 goto fail_nomem_anon_vma_fork;
376 tmp->vm_flags &= ~VM_LOCKED;
377 tmp->vm_next = tmp->vm_prev = NULL;
378 file = tmp->vm_file;
379 if (file) {
380 struct inode *inode = file->f_path.dentry->d_inode;
381 struct address_space *mapping = file->f_mapping;
383 get_file(file);
384 if (tmp->vm_flags & VM_DENYWRITE)
385 atomic_dec(&inode->i_writecount);
386 mutex_lock(&mapping->i_mmap_mutex);
387 if (tmp->vm_flags & VM_SHARED)
388 mapping->i_mmap_writable++;
389 flush_dcache_mmap_lock(mapping);
390 /* insert tmp into the share list, just after mpnt */
391 vma_prio_tree_add(tmp, mpnt);
392 flush_dcache_mmap_unlock(mapping);
393 mutex_unlock(&mapping->i_mmap_mutex);
397 * Clear hugetlb-related page reserves for children. This only
398 * affects MAP_PRIVATE mappings. Faults generated by the child
399 * are not guaranteed to succeed, even if read-only
401 if (is_vm_hugetlb_page(tmp))
402 reset_vma_resv_huge_pages(tmp);
405 * Link in the new vma and copy the page table entries.
407 *pprev = tmp;
408 pprev = &tmp->vm_next;
409 tmp->vm_prev = prev;
410 prev = tmp;
412 __vma_link_rb(mm, tmp, rb_link, rb_parent);
413 rb_link = &tmp->vm_rb.rb_right;
414 rb_parent = &tmp->vm_rb;
416 mm->map_count++;
417 retval = copy_page_range(mm, oldmm, mpnt);
419 if (tmp->vm_ops && tmp->vm_ops->open)
420 tmp->vm_ops->open(tmp);
422 if (retval)
423 goto out;
425 /* a new mm has just been created */
426 arch_dup_mmap(oldmm, mm);
427 retval = 0;
428 out:
429 up_write(&mm->mmap_sem);
430 flush_tlb_mm(oldmm);
431 up_write(&oldmm->mmap_sem);
432 return retval;
433 fail_nomem_anon_vma_fork:
434 mpol_put(pol);
435 fail_nomem_policy:
436 kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 retval = -ENOMEM;
439 vm_unacct_memory(charge);
440 goto out;
443 static inline int mm_alloc_pgd(struct mm_struct * mm)
445 mm->pgd = pgd_alloc(mm);
446 if (unlikely(!mm->pgd))
447 return -ENOMEM;
448 return 0;
451 static inline void mm_free_pgd(struct mm_struct * mm)
453 pgd_free(mm, mm->pgd);
455 #else
456 #define dup_mmap(mm, oldmm) (0)
457 #define mm_alloc_pgd(mm) (0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
463 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
468 static int __init coredump_filter_setup(char *s)
470 default_dump_filter =
471 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 MMF_DUMP_FILTER_MASK;
473 return 1;
476 __setup("coredump_filter=", coredump_filter_setup);
478 #include <linux/init_task.h>
480 static void mm_init_aio(struct mm_struct *mm)
482 #ifdef CONFIG_AIO
483 spin_lock_init(&mm->ioctx_lock);
484 INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
488 int mm_init_cpumask(struct mm_struct *mm, struct mm_struct *oldmm)
490 #ifdef CONFIG_CPUMASK_OFFSTACK
491 if (!alloc_cpumask_var(&mm->cpu_vm_mask_var, GFP_KERNEL))
492 return -ENOMEM;
494 if (oldmm)
495 cpumask_copy(mm_cpumask(mm), mm_cpumask(oldmm));
496 else
497 memset(mm_cpumask(mm), 0, cpumask_size());
498 #endif
499 return 0;
502 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
504 atomic_set(&mm->mm_users, 1);
505 atomic_set(&mm->mm_count, 1);
506 init_rwsem(&mm->mmap_sem);
507 INIT_LIST_HEAD(&mm->mmlist);
508 mm->flags = (current->mm) ?
509 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
510 mm->core_state = NULL;
511 mm->nr_ptes = 0;
512 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
513 spin_lock_init(&mm->page_table_lock);
514 mm->free_area_cache = TASK_UNMAPPED_BASE;
515 mm->cached_hole_size = ~0UL;
516 mm_init_aio(mm);
517 mm_init_owner(mm, p);
518 atomic_set(&mm->oom_disable_count, 0);
520 if (likely(!mm_alloc_pgd(mm))) {
521 mm->def_flags = 0;
522 mmu_notifier_mm_init(mm);
523 return mm;
526 free_mm(mm);
527 return NULL;
531 * Allocate and initialize an mm_struct.
533 struct mm_struct * mm_alloc(void)
535 struct mm_struct * mm;
537 mm = allocate_mm();
538 if (!mm)
539 return NULL;
541 memset(mm, 0, sizeof(*mm));
542 mm = mm_init(mm, current);
543 if (!mm)
544 return NULL;
546 if (mm_init_cpumask(mm, NULL)) {
547 mm_free_pgd(mm);
548 free_mm(mm);
549 return NULL;
552 return mm;
556 * Called when the last reference to the mm
557 * is dropped: either by a lazy thread or by
558 * mmput. Free the page directory and the mm.
560 void __mmdrop(struct mm_struct *mm)
562 BUG_ON(mm == &init_mm);
563 free_cpumask_var(mm->cpu_vm_mask_var);
564 mm_free_pgd(mm);
565 destroy_context(mm);
566 mmu_notifier_mm_destroy(mm);
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 VM_BUG_ON(mm->pmd_huge_pte);
569 #endif
570 free_mm(mm);
572 EXPORT_SYMBOL_GPL(__mmdrop);
575 * Decrement the use count and release all resources for an mm.
577 void mmput(struct mm_struct *mm)
579 might_sleep();
581 if (atomic_dec_and_test(&mm->mm_users)) {
582 exit_aio(mm);
583 ksm_exit(mm);
584 khugepaged_exit(mm); /* must run before exit_mmap */
585 exit_mmap(mm);
586 set_mm_exe_file(mm, NULL);
587 if (!list_empty(&mm->mmlist)) {
588 spin_lock(&mmlist_lock);
589 list_del(&mm->mmlist);
590 spin_unlock(&mmlist_lock);
592 put_swap_token(mm);
593 if (mm->binfmt)
594 module_put(mm->binfmt->module);
595 mmdrop(mm);
598 EXPORT_SYMBOL_GPL(mmput);
601 * get_task_mm - acquire a reference to the task's mm
603 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
604 * this kernel workthread has transiently adopted a user mm with use_mm,
605 * to do its AIO) is not set and if so returns a reference to it, after
606 * bumping up the use count. User must release the mm via mmput()
607 * after use. Typically used by /proc and ptrace.
609 struct mm_struct *get_task_mm(struct task_struct *task)
611 struct mm_struct *mm;
613 task_lock(task);
614 mm = task->mm;
615 if (mm) {
616 if (task->flags & PF_KTHREAD)
617 mm = NULL;
618 else
619 atomic_inc(&mm->mm_users);
621 task_unlock(task);
622 return mm;
624 EXPORT_SYMBOL_GPL(get_task_mm);
626 /* Please note the differences between mmput and mm_release.
627 * mmput is called whenever we stop holding onto a mm_struct,
628 * error success whatever.
630 * mm_release is called after a mm_struct has been removed
631 * from the current process.
633 * This difference is important for error handling, when we
634 * only half set up a mm_struct for a new process and need to restore
635 * the old one. Because we mmput the new mm_struct before
636 * restoring the old one. . .
637 * Eric Biederman 10 January 1998
639 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
641 struct completion *vfork_done = tsk->vfork_done;
643 /* Get rid of any futexes when releasing the mm */
644 #ifdef CONFIG_FUTEX
645 if (unlikely(tsk->robust_list)) {
646 exit_robust_list(tsk);
647 tsk->robust_list = NULL;
649 #ifdef CONFIG_COMPAT
650 if (unlikely(tsk->compat_robust_list)) {
651 compat_exit_robust_list(tsk);
652 tsk->compat_robust_list = NULL;
654 #endif
655 if (unlikely(!list_empty(&tsk->pi_state_list)))
656 exit_pi_state_list(tsk);
657 #endif
659 /* Get rid of any cached register state */
660 deactivate_mm(tsk, mm);
662 /* notify parent sleeping on vfork() */
663 if (vfork_done) {
664 tsk->vfork_done = NULL;
665 complete(vfork_done);
669 * If we're exiting normally, clear a user-space tid field if
670 * requested. We leave this alone when dying by signal, to leave
671 * the value intact in a core dump, and to save the unnecessary
672 * trouble otherwise. Userland only wants this done for a sys_exit.
674 if (tsk->clear_child_tid) {
675 if (!(tsk->flags & PF_SIGNALED) &&
676 atomic_read(&mm->mm_users) > 1) {
678 * We don't check the error code - if userspace has
679 * not set up a proper pointer then tough luck.
681 put_user(0, tsk->clear_child_tid);
682 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
683 1, NULL, NULL, 0);
685 tsk->clear_child_tid = NULL;
690 * Allocate a new mm structure and copy contents from the
691 * mm structure of the passed in task structure.
693 struct mm_struct *dup_mm(struct task_struct *tsk)
695 struct mm_struct *mm, *oldmm = current->mm;
696 int err;
698 if (!oldmm)
699 return NULL;
701 mm = allocate_mm();
702 if (!mm)
703 goto fail_nomem;
705 memcpy(mm, oldmm, sizeof(*mm));
707 /* Initializing for Swap token stuff */
708 mm->token_priority = 0;
709 mm->last_interval = 0;
711 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
712 mm->pmd_huge_pte = NULL;
713 #endif
715 if (!mm_init(mm, tsk))
716 goto fail_nomem;
718 if (mm_init_cpumask(mm, oldmm))
719 goto fail_nocpumask;
721 if (init_new_context(tsk, mm))
722 goto fail_nocontext;
724 dup_mm_exe_file(oldmm, mm);
726 err = dup_mmap(mm, oldmm);
727 if (err)
728 goto free_pt;
730 mm->hiwater_rss = get_mm_rss(mm);
731 mm->hiwater_vm = mm->total_vm;
733 if (mm->binfmt && !try_module_get(mm->binfmt->module))
734 goto free_pt;
736 return mm;
738 free_pt:
739 /* don't put binfmt in mmput, we haven't got module yet */
740 mm->binfmt = NULL;
741 mmput(mm);
743 fail_nomem:
744 return NULL;
746 fail_nocontext:
747 free_cpumask_var(mm->cpu_vm_mask_var);
749 fail_nocpumask:
751 * If init_new_context() failed, we cannot use mmput() to free the mm
752 * because it calls destroy_context()
754 mm_free_pgd(mm);
755 free_mm(mm);
756 return NULL;
759 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
761 struct mm_struct * mm, *oldmm;
762 int retval;
764 tsk->min_flt = tsk->maj_flt = 0;
765 tsk->nvcsw = tsk->nivcsw = 0;
766 #ifdef CONFIG_DETECT_HUNG_TASK
767 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
768 #endif
770 tsk->mm = NULL;
771 tsk->active_mm = NULL;
774 * Are we cloning a kernel thread?
776 * We need to steal a active VM for that..
778 oldmm = current->mm;
779 if (!oldmm)
780 return 0;
782 if (clone_flags & CLONE_VM) {
783 atomic_inc(&oldmm->mm_users);
784 mm = oldmm;
785 goto good_mm;
788 retval = -ENOMEM;
789 mm = dup_mm(tsk);
790 if (!mm)
791 goto fail_nomem;
793 good_mm:
794 /* Initializing for Swap token stuff */
795 mm->token_priority = 0;
796 mm->last_interval = 0;
797 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
798 atomic_inc(&mm->oom_disable_count);
800 tsk->mm = mm;
801 tsk->active_mm = mm;
802 return 0;
804 fail_nomem:
805 return retval;
808 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
810 struct fs_struct *fs = current->fs;
811 if (clone_flags & CLONE_FS) {
812 /* tsk->fs is already what we want */
813 spin_lock(&fs->lock);
814 if (fs->in_exec) {
815 spin_unlock(&fs->lock);
816 return -EAGAIN;
818 fs->users++;
819 spin_unlock(&fs->lock);
820 return 0;
822 tsk->fs = copy_fs_struct(fs);
823 if (!tsk->fs)
824 return -ENOMEM;
825 return 0;
828 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
830 struct files_struct *oldf, *newf;
831 int error = 0;
834 * A background process may not have any files ...
836 oldf = current->files;
837 if (!oldf)
838 goto out;
840 if (clone_flags & CLONE_FILES) {
841 atomic_inc(&oldf->count);
842 goto out;
845 newf = dup_fd(oldf, &error);
846 if (!newf)
847 goto out;
849 tsk->files = newf;
850 error = 0;
851 out:
852 return error;
855 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
857 #ifdef CONFIG_BLOCK
858 struct io_context *ioc = current->io_context;
860 if (!ioc)
861 return 0;
863 * Share io context with parent, if CLONE_IO is set
865 if (clone_flags & CLONE_IO) {
866 tsk->io_context = ioc_task_link(ioc);
867 if (unlikely(!tsk->io_context))
868 return -ENOMEM;
869 } else if (ioprio_valid(ioc->ioprio)) {
870 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
871 if (unlikely(!tsk->io_context))
872 return -ENOMEM;
874 tsk->io_context->ioprio = ioc->ioprio;
876 #endif
877 return 0;
880 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
882 struct sighand_struct *sig;
884 if (clone_flags & CLONE_SIGHAND) {
885 atomic_inc(&current->sighand->count);
886 return 0;
888 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
889 rcu_assign_pointer(tsk->sighand, sig);
890 if (!sig)
891 return -ENOMEM;
892 atomic_set(&sig->count, 1);
893 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
894 return 0;
897 void __cleanup_sighand(struct sighand_struct *sighand)
899 if (atomic_dec_and_test(&sighand->count))
900 kmem_cache_free(sighand_cachep, sighand);
905 * Initialize POSIX timer handling for a thread group.
907 static void posix_cpu_timers_init_group(struct signal_struct *sig)
909 unsigned long cpu_limit;
911 /* Thread group counters. */
912 thread_group_cputime_init(sig);
914 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
915 if (cpu_limit != RLIM_INFINITY) {
916 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
917 sig->cputimer.running = 1;
920 /* The timer lists. */
921 INIT_LIST_HEAD(&sig->cpu_timers[0]);
922 INIT_LIST_HEAD(&sig->cpu_timers[1]);
923 INIT_LIST_HEAD(&sig->cpu_timers[2]);
926 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
928 struct signal_struct *sig;
930 if (clone_flags & CLONE_THREAD)
931 return 0;
933 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
934 tsk->signal = sig;
935 if (!sig)
936 return -ENOMEM;
938 sig->nr_threads = 1;
939 atomic_set(&sig->live, 1);
940 atomic_set(&sig->sigcnt, 1);
941 init_waitqueue_head(&sig->wait_chldexit);
942 if (clone_flags & CLONE_NEWPID)
943 sig->flags |= SIGNAL_UNKILLABLE;
944 sig->curr_target = tsk;
945 init_sigpending(&sig->shared_pending);
946 INIT_LIST_HEAD(&sig->posix_timers);
948 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
949 sig->real_timer.function = it_real_fn;
951 task_lock(current->group_leader);
952 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
953 task_unlock(current->group_leader);
955 posix_cpu_timers_init_group(sig);
957 tty_audit_fork(sig);
958 sched_autogroup_fork(sig);
960 sig->oom_adj = current->signal->oom_adj;
961 sig->oom_score_adj = current->signal->oom_score_adj;
962 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
964 mutex_init(&sig->cred_guard_mutex);
966 return 0;
969 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
971 unsigned long new_flags = p->flags;
973 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
974 new_flags |= PF_FORKNOEXEC;
975 new_flags |= PF_STARTING;
976 p->flags = new_flags;
977 clear_freeze_flag(p);
980 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
982 current->clear_child_tid = tidptr;
984 return task_pid_vnr(current);
987 static void rt_mutex_init_task(struct task_struct *p)
989 raw_spin_lock_init(&p->pi_lock);
990 #ifdef CONFIG_RT_MUTEXES
991 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
992 p->pi_blocked_on = NULL;
993 #endif
996 #ifdef CONFIG_MM_OWNER
997 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
999 mm->owner = p;
1001 #endif /* CONFIG_MM_OWNER */
1004 * Initialize POSIX timer handling for a single task.
1006 static void posix_cpu_timers_init(struct task_struct *tsk)
1008 tsk->cputime_expires.prof_exp = cputime_zero;
1009 tsk->cputime_expires.virt_exp = cputime_zero;
1010 tsk->cputime_expires.sched_exp = 0;
1011 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1012 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1013 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1017 * This creates a new process as a copy of the old one,
1018 * but does not actually start it yet.
1020 * It copies the registers, and all the appropriate
1021 * parts of the process environment (as per the clone
1022 * flags). The actual kick-off is left to the caller.
1024 static struct task_struct *copy_process(unsigned long clone_flags,
1025 unsigned long stack_start,
1026 struct pt_regs *regs,
1027 unsigned long stack_size,
1028 int __user *child_tidptr,
1029 struct pid *pid,
1030 int trace)
1032 int retval;
1033 struct task_struct *p;
1034 int cgroup_callbacks_done = 0;
1036 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1037 return ERR_PTR(-EINVAL);
1040 * Thread groups must share signals as well, and detached threads
1041 * can only be started up within the thread group.
1043 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1044 return ERR_PTR(-EINVAL);
1047 * Shared signal handlers imply shared VM. By way of the above,
1048 * thread groups also imply shared VM. Blocking this case allows
1049 * for various simplifications in other code.
1051 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1052 return ERR_PTR(-EINVAL);
1055 * Siblings of global init remain as zombies on exit since they are
1056 * not reaped by their parent (swapper). To solve this and to avoid
1057 * multi-rooted process trees, prevent global and container-inits
1058 * from creating siblings.
1060 if ((clone_flags & CLONE_PARENT) &&
1061 current->signal->flags & SIGNAL_UNKILLABLE)
1062 return ERR_PTR(-EINVAL);
1064 retval = security_task_create(clone_flags);
1065 if (retval)
1066 goto fork_out;
1068 retval = -ENOMEM;
1069 p = dup_task_struct(current);
1070 if (!p)
1071 goto fork_out;
1073 ftrace_graph_init_task(p);
1075 rt_mutex_init_task(p);
1077 #ifdef CONFIG_PROVE_LOCKING
1078 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1079 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1080 #endif
1081 retval = -EAGAIN;
1082 if (atomic_read(&p->real_cred->user->processes) >=
1083 task_rlimit(p, RLIMIT_NPROC)) {
1084 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1085 p->real_cred->user != INIT_USER)
1086 goto bad_fork_free;
1089 retval = copy_creds(p, clone_flags);
1090 if (retval < 0)
1091 goto bad_fork_free;
1094 * If multiple threads are within copy_process(), then this check
1095 * triggers too late. This doesn't hurt, the check is only there
1096 * to stop root fork bombs.
1098 retval = -EAGAIN;
1099 if (nr_threads >= max_threads)
1100 goto bad_fork_cleanup_count;
1102 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1103 goto bad_fork_cleanup_count;
1105 p->did_exec = 0;
1106 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1107 copy_flags(clone_flags, p);
1108 INIT_LIST_HEAD(&p->children);
1109 INIT_LIST_HEAD(&p->sibling);
1110 rcu_copy_process(p);
1111 p->vfork_done = NULL;
1112 spin_lock_init(&p->alloc_lock);
1114 init_sigpending(&p->pending);
1116 p->utime = cputime_zero;
1117 p->stime = cputime_zero;
1118 p->gtime = cputime_zero;
1119 p->utimescaled = cputime_zero;
1120 p->stimescaled = cputime_zero;
1121 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1122 p->prev_utime = cputime_zero;
1123 p->prev_stime = cputime_zero;
1124 #endif
1125 #if defined(SPLIT_RSS_COUNTING)
1126 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1127 #endif
1129 p->default_timer_slack_ns = current->timer_slack_ns;
1131 task_io_accounting_init(&p->ioac);
1132 acct_clear_integrals(p);
1134 posix_cpu_timers_init(p);
1136 do_posix_clock_monotonic_gettime(&p->start_time);
1137 p->real_start_time = p->start_time;
1138 monotonic_to_bootbased(&p->real_start_time);
1139 p->io_context = NULL;
1140 p->audit_context = NULL;
1141 cgroup_fork(p);
1142 #ifdef CONFIG_NUMA
1143 p->mempolicy = mpol_dup(p->mempolicy);
1144 if (IS_ERR(p->mempolicy)) {
1145 retval = PTR_ERR(p->mempolicy);
1146 p->mempolicy = NULL;
1147 goto bad_fork_cleanup_cgroup;
1149 mpol_fix_fork_child_flag(p);
1150 #endif
1151 #ifdef CONFIG_TRACE_IRQFLAGS
1152 p->irq_events = 0;
1153 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1154 p->hardirqs_enabled = 1;
1155 #else
1156 p->hardirqs_enabled = 0;
1157 #endif
1158 p->hardirq_enable_ip = 0;
1159 p->hardirq_enable_event = 0;
1160 p->hardirq_disable_ip = _THIS_IP_;
1161 p->hardirq_disable_event = 0;
1162 p->softirqs_enabled = 1;
1163 p->softirq_enable_ip = _THIS_IP_;
1164 p->softirq_enable_event = 0;
1165 p->softirq_disable_ip = 0;
1166 p->softirq_disable_event = 0;
1167 p->hardirq_context = 0;
1168 p->softirq_context = 0;
1169 #endif
1170 #ifdef CONFIG_LOCKDEP
1171 p->lockdep_depth = 0; /* no locks held yet */
1172 p->curr_chain_key = 0;
1173 p->lockdep_recursion = 0;
1174 #endif
1176 #ifdef CONFIG_DEBUG_MUTEXES
1177 p->blocked_on = NULL; /* not blocked yet */
1178 #endif
1179 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1180 p->memcg_batch.do_batch = 0;
1181 p->memcg_batch.memcg = NULL;
1182 #endif
1184 /* Perform scheduler related setup. Assign this task to a CPU. */
1185 sched_fork(p);
1187 retval = perf_event_init_task(p);
1188 if (retval)
1189 goto bad_fork_cleanup_policy;
1191 if ((retval = audit_alloc(p)))
1192 goto bad_fork_cleanup_policy;
1193 /* copy all the process information */
1194 if ((retval = copy_semundo(clone_flags, p)))
1195 goto bad_fork_cleanup_audit;
1196 if ((retval = copy_files(clone_flags, p)))
1197 goto bad_fork_cleanup_semundo;
1198 if ((retval = copy_fs(clone_flags, p)))
1199 goto bad_fork_cleanup_files;
1200 if ((retval = copy_sighand(clone_flags, p)))
1201 goto bad_fork_cleanup_fs;
1202 if ((retval = copy_signal(clone_flags, p)))
1203 goto bad_fork_cleanup_sighand;
1204 if ((retval = copy_mm(clone_flags, p)))
1205 goto bad_fork_cleanup_signal;
1206 if ((retval = copy_namespaces(clone_flags, p)))
1207 goto bad_fork_cleanup_mm;
1208 if ((retval = copy_io(clone_flags, p)))
1209 goto bad_fork_cleanup_namespaces;
1210 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1211 if (retval)
1212 goto bad_fork_cleanup_io;
1214 if (pid != &init_struct_pid) {
1215 retval = -ENOMEM;
1216 pid = alloc_pid(p->nsproxy->pid_ns);
1217 if (!pid)
1218 goto bad_fork_cleanup_io;
1221 p->pid = pid_nr(pid);
1222 p->tgid = p->pid;
1223 if (clone_flags & CLONE_THREAD)
1224 p->tgid = current->tgid;
1226 if (current->nsproxy != p->nsproxy) {
1227 retval = ns_cgroup_clone(p, pid);
1228 if (retval)
1229 goto bad_fork_free_pid;
1232 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1234 * Clear TID on mm_release()?
1236 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1237 #ifdef CONFIG_BLOCK
1238 p->plug = NULL;
1239 #endif
1240 #ifdef CONFIG_FUTEX
1241 p->robust_list = NULL;
1242 #ifdef CONFIG_COMPAT
1243 p->compat_robust_list = NULL;
1244 #endif
1245 INIT_LIST_HEAD(&p->pi_state_list);
1246 p->pi_state_cache = NULL;
1247 #endif
1249 * sigaltstack should be cleared when sharing the same VM
1251 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1252 p->sas_ss_sp = p->sas_ss_size = 0;
1255 * Syscall tracing and stepping should be turned off in the
1256 * child regardless of CLONE_PTRACE.
1258 user_disable_single_step(p);
1259 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1260 #ifdef TIF_SYSCALL_EMU
1261 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1262 #endif
1263 clear_all_latency_tracing(p);
1265 /* ok, now we should be set up.. */
1266 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1267 p->pdeath_signal = 0;
1268 p->exit_state = 0;
1271 * Ok, make it visible to the rest of the system.
1272 * We dont wake it up yet.
1274 p->group_leader = p;
1275 INIT_LIST_HEAD(&p->thread_group);
1277 /* Now that the task is set up, run cgroup callbacks if
1278 * necessary. We need to run them before the task is visible
1279 * on the tasklist. */
1280 cgroup_fork_callbacks(p);
1281 cgroup_callbacks_done = 1;
1283 /* Need tasklist lock for parent etc handling! */
1284 write_lock_irq(&tasklist_lock);
1286 /* CLONE_PARENT re-uses the old parent */
1287 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1288 p->real_parent = current->real_parent;
1289 p->parent_exec_id = current->parent_exec_id;
1290 } else {
1291 p->real_parent = current;
1292 p->parent_exec_id = current->self_exec_id;
1295 spin_lock(&current->sighand->siglock);
1298 * Process group and session signals need to be delivered to just the
1299 * parent before the fork or both the parent and the child after the
1300 * fork. Restart if a signal comes in before we add the new process to
1301 * it's process group.
1302 * A fatal signal pending means that current will exit, so the new
1303 * thread can't slip out of an OOM kill (or normal SIGKILL).
1305 recalc_sigpending();
1306 if (signal_pending(current)) {
1307 spin_unlock(&current->sighand->siglock);
1308 write_unlock_irq(&tasklist_lock);
1309 retval = -ERESTARTNOINTR;
1310 goto bad_fork_free_pid;
1313 if (clone_flags & CLONE_THREAD) {
1314 current->signal->nr_threads++;
1315 atomic_inc(&current->signal->live);
1316 atomic_inc(&current->signal->sigcnt);
1317 p->group_leader = current->group_leader;
1318 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1321 if (likely(p->pid)) {
1322 tracehook_finish_clone(p, clone_flags, trace);
1324 if (thread_group_leader(p)) {
1325 if (is_child_reaper(pid))
1326 p->nsproxy->pid_ns->child_reaper = p;
1328 p->signal->leader_pid = pid;
1329 p->signal->tty = tty_kref_get(current->signal->tty);
1330 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1331 attach_pid(p, PIDTYPE_SID, task_session(current));
1332 list_add_tail(&p->sibling, &p->real_parent->children);
1333 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1334 __this_cpu_inc(process_counts);
1336 attach_pid(p, PIDTYPE_PID, pid);
1337 nr_threads++;
1340 total_forks++;
1341 spin_unlock(&current->sighand->siglock);
1342 write_unlock_irq(&tasklist_lock);
1343 proc_fork_connector(p);
1344 cgroup_post_fork(p);
1345 perf_event_fork(p);
1346 return p;
1348 bad_fork_free_pid:
1349 if (pid != &init_struct_pid)
1350 free_pid(pid);
1351 bad_fork_cleanup_io:
1352 if (p->io_context)
1353 exit_io_context(p);
1354 bad_fork_cleanup_namespaces:
1355 exit_task_namespaces(p);
1356 bad_fork_cleanup_mm:
1357 if (p->mm) {
1358 task_lock(p);
1359 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1360 atomic_dec(&p->mm->oom_disable_count);
1361 task_unlock(p);
1362 mmput(p->mm);
1364 bad_fork_cleanup_signal:
1365 if (!(clone_flags & CLONE_THREAD))
1366 free_signal_struct(p->signal);
1367 bad_fork_cleanup_sighand:
1368 __cleanup_sighand(p->sighand);
1369 bad_fork_cleanup_fs:
1370 exit_fs(p); /* blocking */
1371 bad_fork_cleanup_files:
1372 exit_files(p); /* blocking */
1373 bad_fork_cleanup_semundo:
1374 exit_sem(p);
1375 bad_fork_cleanup_audit:
1376 audit_free(p);
1377 bad_fork_cleanup_policy:
1378 perf_event_free_task(p);
1379 #ifdef CONFIG_NUMA
1380 mpol_put(p->mempolicy);
1381 bad_fork_cleanup_cgroup:
1382 #endif
1383 cgroup_exit(p, cgroup_callbacks_done);
1384 delayacct_tsk_free(p);
1385 module_put(task_thread_info(p)->exec_domain->module);
1386 bad_fork_cleanup_count:
1387 atomic_dec(&p->cred->user->processes);
1388 exit_creds(p);
1389 bad_fork_free:
1390 free_task(p);
1391 fork_out:
1392 return ERR_PTR(retval);
1395 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1397 memset(regs, 0, sizeof(struct pt_regs));
1398 return regs;
1401 static inline void init_idle_pids(struct pid_link *links)
1403 enum pid_type type;
1405 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1406 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1407 links[type].pid = &init_struct_pid;
1411 struct task_struct * __cpuinit fork_idle(int cpu)
1413 struct task_struct *task;
1414 struct pt_regs regs;
1416 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1417 &init_struct_pid, 0);
1418 if (!IS_ERR(task)) {
1419 init_idle_pids(task->pids);
1420 init_idle(task, cpu);
1423 return task;
1427 * Ok, this is the main fork-routine.
1429 * It copies the process, and if successful kick-starts
1430 * it and waits for it to finish using the VM if required.
1432 long do_fork(unsigned long clone_flags,
1433 unsigned long stack_start,
1434 struct pt_regs *regs,
1435 unsigned long stack_size,
1436 int __user *parent_tidptr,
1437 int __user *child_tidptr)
1439 struct task_struct *p;
1440 int trace = 0;
1441 long nr;
1444 * Do some preliminary argument and permissions checking before we
1445 * actually start allocating stuff
1447 if (clone_flags & CLONE_NEWUSER) {
1448 if (clone_flags & CLONE_THREAD)
1449 return -EINVAL;
1450 /* hopefully this check will go away when userns support is
1451 * complete
1453 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1454 !capable(CAP_SETGID))
1455 return -EPERM;
1459 * When called from kernel_thread, don't do user tracing stuff.
1461 if (likely(user_mode(regs)))
1462 trace = tracehook_prepare_clone(clone_flags);
1464 p = copy_process(clone_flags, stack_start, regs, stack_size,
1465 child_tidptr, NULL, trace);
1467 * Do this prior waking up the new thread - the thread pointer
1468 * might get invalid after that point, if the thread exits quickly.
1470 if (!IS_ERR(p)) {
1471 struct completion vfork;
1473 trace_sched_process_fork(current, p);
1475 nr = task_pid_vnr(p);
1477 if (clone_flags & CLONE_PARENT_SETTID)
1478 put_user(nr, parent_tidptr);
1480 if (clone_flags & CLONE_VFORK) {
1481 p->vfork_done = &vfork;
1482 init_completion(&vfork);
1485 audit_finish_fork(p);
1486 tracehook_report_clone(regs, clone_flags, nr, p);
1489 * We set PF_STARTING at creation in case tracing wants to
1490 * use this to distinguish a fully live task from one that
1491 * hasn't gotten to tracehook_report_clone() yet. Now we
1492 * clear it and set the child going.
1494 p->flags &= ~PF_STARTING;
1496 wake_up_new_task(p);
1498 tracehook_report_clone_complete(trace, regs,
1499 clone_flags, nr, p);
1501 if (clone_flags & CLONE_VFORK) {
1502 freezer_do_not_count();
1503 wait_for_completion(&vfork);
1504 freezer_count();
1505 tracehook_report_vfork_done(p, nr);
1507 } else {
1508 nr = PTR_ERR(p);
1510 return nr;
1513 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1514 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1515 #endif
1517 static void sighand_ctor(void *data)
1519 struct sighand_struct *sighand = data;
1521 spin_lock_init(&sighand->siglock);
1522 init_waitqueue_head(&sighand->signalfd_wqh);
1525 void __init proc_caches_init(void)
1527 sighand_cachep = kmem_cache_create("sighand_cache",
1528 sizeof(struct sighand_struct), 0,
1529 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1530 SLAB_NOTRACK, sighand_ctor);
1531 signal_cachep = kmem_cache_create("signal_cache",
1532 sizeof(struct signal_struct), 0,
1533 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1534 files_cachep = kmem_cache_create("files_cache",
1535 sizeof(struct files_struct), 0,
1536 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1537 fs_cachep = kmem_cache_create("fs_cache",
1538 sizeof(struct fs_struct), 0,
1539 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1540 mm_cachep = kmem_cache_create("mm_struct",
1541 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1542 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1543 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1544 mmap_init();
1548 * Check constraints on flags passed to the unshare system call.
1550 static int check_unshare_flags(unsigned long unshare_flags)
1552 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1553 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1554 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1555 return -EINVAL;
1557 * Not implemented, but pretend it works if there is nothing to
1558 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1559 * needs to unshare vm.
1561 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1562 /* FIXME: get_task_mm() increments ->mm_users */
1563 if (atomic_read(&current->mm->mm_users) > 1)
1564 return -EINVAL;
1567 return 0;
1571 * Unshare the filesystem structure if it is being shared
1573 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1575 struct fs_struct *fs = current->fs;
1577 if (!(unshare_flags & CLONE_FS) || !fs)
1578 return 0;
1580 /* don't need lock here; in the worst case we'll do useless copy */
1581 if (fs->users == 1)
1582 return 0;
1584 *new_fsp = copy_fs_struct(fs);
1585 if (!*new_fsp)
1586 return -ENOMEM;
1588 return 0;
1592 * Unshare file descriptor table if it is being shared
1594 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1596 struct files_struct *fd = current->files;
1597 int error = 0;
1599 if ((unshare_flags & CLONE_FILES) &&
1600 (fd && atomic_read(&fd->count) > 1)) {
1601 *new_fdp = dup_fd(fd, &error);
1602 if (!*new_fdp)
1603 return error;
1606 return 0;
1610 * unshare allows a process to 'unshare' part of the process
1611 * context which was originally shared using clone. copy_*
1612 * functions used by do_fork() cannot be used here directly
1613 * because they modify an inactive task_struct that is being
1614 * constructed. Here we are modifying the current, active,
1615 * task_struct.
1617 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1619 struct fs_struct *fs, *new_fs = NULL;
1620 struct files_struct *fd, *new_fd = NULL;
1621 struct nsproxy *new_nsproxy = NULL;
1622 int do_sysvsem = 0;
1623 int err;
1625 err = check_unshare_flags(unshare_flags);
1626 if (err)
1627 goto bad_unshare_out;
1630 * If unsharing namespace, must also unshare filesystem information.
1632 if (unshare_flags & CLONE_NEWNS)
1633 unshare_flags |= CLONE_FS;
1635 * CLONE_NEWIPC must also detach from the undolist: after switching
1636 * to a new ipc namespace, the semaphore arrays from the old
1637 * namespace are unreachable.
1639 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1640 do_sysvsem = 1;
1641 if ((err = unshare_fs(unshare_flags, &new_fs)))
1642 goto bad_unshare_out;
1643 if ((err = unshare_fd(unshare_flags, &new_fd)))
1644 goto bad_unshare_cleanup_fs;
1645 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1646 new_fs)))
1647 goto bad_unshare_cleanup_fd;
1649 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1650 if (do_sysvsem) {
1652 * CLONE_SYSVSEM is equivalent to sys_exit().
1654 exit_sem(current);
1657 if (new_nsproxy) {
1658 switch_task_namespaces(current, new_nsproxy);
1659 new_nsproxy = NULL;
1662 task_lock(current);
1664 if (new_fs) {
1665 fs = current->fs;
1666 spin_lock(&fs->lock);
1667 current->fs = new_fs;
1668 if (--fs->users)
1669 new_fs = NULL;
1670 else
1671 new_fs = fs;
1672 spin_unlock(&fs->lock);
1675 if (new_fd) {
1676 fd = current->files;
1677 current->files = new_fd;
1678 new_fd = fd;
1681 task_unlock(current);
1684 if (new_nsproxy)
1685 put_nsproxy(new_nsproxy);
1687 bad_unshare_cleanup_fd:
1688 if (new_fd)
1689 put_files_struct(new_fd);
1691 bad_unshare_cleanup_fs:
1692 if (new_fs)
1693 free_fs_struct(new_fs);
1695 bad_unshare_out:
1696 return err;
1700 * Helper to unshare the files of the current task.
1701 * We don't want to expose copy_files internals to
1702 * the exec layer of the kernel.
1705 int unshare_files(struct files_struct **displaced)
1707 struct task_struct *task = current;
1708 struct files_struct *copy = NULL;
1709 int error;
1711 error = unshare_fd(CLONE_FILES, &copy);
1712 if (error || !copy) {
1713 *displaced = NULL;
1714 return error;
1716 *displaced = task->files;
1717 task_lock(task);
1718 task->files = copy;
1719 task_unlock(task);
1720 return 0;