x86: don't always use EFAULT on __get_user_size.
[linux-2.6/libata-dev.git] / drivers / scsi / megaraid / megaraid_sas.c
blob7d84c8bbcf3fc1a55b8a9c04cbc65e2e05b33902
1 /*
3 * Linux MegaRAID driver for SAS based RAID controllers
5 * Copyright (c) 2003-2005 LSI Corporation.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * FILE : megaraid_sas.c
13 * Version : v00.00.03.20-rc1
15 * Authors:
16 * (email-id : megaraidlinux@lsi.com)
17 * Sreenivas Bagalkote
18 * Sumant Patro
19 * Bo Yang
21 * List of supported controllers
23 * OEM Product Name VID DID SSVID SSID
24 * --- ------------ --- --- ---- ----
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/uio.h>
37 #include <asm/uaccess.h>
38 #include <linux/fs.h>
39 #include <linux/compat.h>
40 #include <linux/blkdev.h>
41 #include <linux/mutex.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47 #include "megaraid_sas.h"
50 * poll_mode_io:1- schedule complete completion from q cmd
52 static unsigned int poll_mode_io;
53 module_param_named(poll_mode_io, poll_mode_io, int, 0);
54 MODULE_PARM_DESC(poll_mode_io,
55 "Complete cmds from IO path, (default=0)");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(MEGASAS_VERSION);
59 MODULE_AUTHOR("megaraidlinux@lsi.com");
60 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
63 * PCI ID table for all supported controllers
65 static struct pci_device_id megasas_pci_table[] = {
67 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
68 /* xscale IOP */
69 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
70 /* ppc IOP */
71 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
72 /* ppc IOP */
73 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
74 /* xscale IOP, vega */
75 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
76 /* xscale IOP */
80 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
82 static int megasas_mgmt_majorno;
83 static struct megasas_mgmt_info megasas_mgmt_info;
84 static struct fasync_struct *megasas_async_queue;
85 static DEFINE_MUTEX(megasas_async_queue_mutex);
87 static u32 megasas_dbg_lvl;
89 static void
90 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
91 u8 alt_status);
93 /**
94 * megasas_get_cmd - Get a command from the free pool
95 * @instance: Adapter soft state
97 * Returns a free command from the pool
99 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
100 *instance)
102 unsigned long flags;
103 struct megasas_cmd *cmd = NULL;
105 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
107 if (!list_empty(&instance->cmd_pool)) {
108 cmd = list_entry((&instance->cmd_pool)->next,
109 struct megasas_cmd, list);
110 list_del_init(&cmd->list);
111 } else {
112 printk(KERN_ERR "megasas: Command pool empty!\n");
115 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
116 return cmd;
120 * megasas_return_cmd - Return a cmd to free command pool
121 * @instance: Adapter soft state
122 * @cmd: Command packet to be returned to free command pool
124 static inline void
125 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
127 unsigned long flags;
129 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
131 cmd->scmd = NULL;
132 list_add_tail(&cmd->list, &instance->cmd_pool);
134 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
139 * The following functions are defined for xscale
140 * (deviceid : 1064R, PERC5) controllers
144 * megasas_enable_intr_xscale - Enables interrupts
145 * @regs: MFI register set
147 static inline void
148 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
150 writel(1, &(regs)->outbound_intr_mask);
152 /* Dummy readl to force pci flush */
153 readl(&regs->outbound_intr_mask);
157 * megasas_disable_intr_xscale -Disables interrupt
158 * @regs: MFI register set
160 static inline void
161 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
163 u32 mask = 0x1f;
164 writel(mask, &regs->outbound_intr_mask);
165 /* Dummy readl to force pci flush */
166 readl(&regs->outbound_intr_mask);
170 * megasas_read_fw_status_reg_xscale - returns the current FW status value
171 * @regs: MFI register set
173 static u32
174 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
176 return readl(&(regs)->outbound_msg_0);
179 * megasas_clear_interrupt_xscale - Check & clear interrupt
180 * @regs: MFI register set
182 static int
183 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
185 u32 status;
187 * Check if it is our interrupt
189 status = readl(&regs->outbound_intr_status);
191 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
192 return 1;
196 * Clear the interrupt by writing back the same value
198 writel(status, &regs->outbound_intr_status);
200 return 0;
204 * megasas_fire_cmd_xscale - Sends command to the FW
205 * @frame_phys_addr : Physical address of cmd
206 * @frame_count : Number of frames for the command
207 * @regs : MFI register set
209 static inline void
210 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
212 writel((frame_phys_addr >> 3)|(frame_count),
213 &(regs)->inbound_queue_port);
216 static struct megasas_instance_template megasas_instance_template_xscale = {
218 .fire_cmd = megasas_fire_cmd_xscale,
219 .enable_intr = megasas_enable_intr_xscale,
220 .disable_intr = megasas_disable_intr_xscale,
221 .clear_intr = megasas_clear_intr_xscale,
222 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
226 * This is the end of set of functions & definitions specific
227 * to xscale (deviceid : 1064R, PERC5) controllers
231 * The following functions are defined for ppc (deviceid : 0x60)
232 * controllers
236 * megasas_enable_intr_ppc - Enables interrupts
237 * @regs: MFI register set
239 static inline void
240 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
242 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
244 writel(~0x80000004, &(regs)->outbound_intr_mask);
246 /* Dummy readl to force pci flush */
247 readl(&regs->outbound_intr_mask);
251 * megasas_disable_intr_ppc - Disable interrupt
252 * @regs: MFI register set
254 static inline void
255 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
257 u32 mask = 0xFFFFFFFF;
258 writel(mask, &regs->outbound_intr_mask);
259 /* Dummy readl to force pci flush */
260 readl(&regs->outbound_intr_mask);
264 * megasas_read_fw_status_reg_ppc - returns the current FW status value
265 * @regs: MFI register set
267 static u32
268 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
270 return readl(&(regs)->outbound_scratch_pad);
274 * megasas_clear_interrupt_ppc - Check & clear interrupt
275 * @regs: MFI register set
277 static int
278 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
280 u32 status;
282 * Check if it is our interrupt
284 status = readl(&regs->outbound_intr_status);
286 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
287 return 1;
291 * Clear the interrupt by writing back the same value
293 writel(status, &regs->outbound_doorbell_clear);
295 return 0;
298 * megasas_fire_cmd_ppc - Sends command to the FW
299 * @frame_phys_addr : Physical address of cmd
300 * @frame_count : Number of frames for the command
301 * @regs : MFI register set
303 static inline void
304 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
306 writel((frame_phys_addr | (frame_count<<1))|1,
307 &(regs)->inbound_queue_port);
310 static struct megasas_instance_template megasas_instance_template_ppc = {
312 .fire_cmd = megasas_fire_cmd_ppc,
313 .enable_intr = megasas_enable_intr_ppc,
314 .disable_intr = megasas_disable_intr_ppc,
315 .clear_intr = megasas_clear_intr_ppc,
316 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
320 * This is the end of set of functions & definitions
321 * specific to ppc (deviceid : 0x60) controllers
325 * megasas_issue_polled - Issues a polling command
326 * @instance: Adapter soft state
327 * @cmd: Command packet to be issued
329 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
331 static int
332 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
334 int i;
335 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
337 struct megasas_header *frame_hdr = &cmd->frame->hdr;
339 frame_hdr->cmd_status = 0xFF;
340 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
343 * Issue the frame using inbound queue port
345 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
348 * Wait for cmd_status to change
350 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
351 rmb();
352 msleep(1);
355 if (frame_hdr->cmd_status == 0xff)
356 return -ETIME;
358 return 0;
362 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
363 * @instance: Adapter soft state
364 * @cmd: Command to be issued
366 * This function waits on an event for the command to be returned from ISR.
367 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
368 * Used to issue ioctl commands.
370 static int
371 megasas_issue_blocked_cmd(struct megasas_instance *instance,
372 struct megasas_cmd *cmd)
374 cmd->cmd_status = ENODATA;
376 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
378 wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
379 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
381 return 0;
385 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
386 * @instance: Adapter soft state
387 * @cmd_to_abort: Previously issued cmd to be aborted
389 * MFI firmware can abort previously issued AEN comamnd (automatic event
390 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
391 * cmd and waits for return status.
392 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
394 static int
395 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
396 struct megasas_cmd *cmd_to_abort)
398 struct megasas_cmd *cmd;
399 struct megasas_abort_frame *abort_fr;
401 cmd = megasas_get_cmd(instance);
403 if (!cmd)
404 return -1;
406 abort_fr = &cmd->frame->abort;
409 * Prepare and issue the abort frame
411 abort_fr->cmd = MFI_CMD_ABORT;
412 abort_fr->cmd_status = 0xFF;
413 abort_fr->flags = 0;
414 abort_fr->abort_context = cmd_to_abort->index;
415 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
416 abort_fr->abort_mfi_phys_addr_hi = 0;
418 cmd->sync_cmd = 1;
419 cmd->cmd_status = 0xFF;
421 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
424 * Wait for this cmd to complete
426 wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
427 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
429 megasas_return_cmd(instance, cmd);
430 return 0;
434 * megasas_make_sgl32 - Prepares 32-bit SGL
435 * @instance: Adapter soft state
436 * @scp: SCSI command from the mid-layer
437 * @mfi_sgl: SGL to be filled in
439 * If successful, this function returns the number of SG elements. Otherwise,
440 * it returnes -1.
442 static int
443 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
444 union megasas_sgl *mfi_sgl)
446 int i;
447 int sge_count;
448 struct scatterlist *os_sgl;
450 sge_count = scsi_dma_map(scp);
451 BUG_ON(sge_count < 0);
453 if (sge_count) {
454 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
455 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
456 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
459 return sge_count;
463 * megasas_make_sgl64 - Prepares 64-bit SGL
464 * @instance: Adapter soft state
465 * @scp: SCSI command from the mid-layer
466 * @mfi_sgl: SGL to be filled in
468 * If successful, this function returns the number of SG elements. Otherwise,
469 * it returnes -1.
471 static int
472 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
473 union megasas_sgl *mfi_sgl)
475 int i;
476 int sge_count;
477 struct scatterlist *os_sgl;
479 sge_count = scsi_dma_map(scp);
480 BUG_ON(sge_count < 0);
482 if (sge_count) {
483 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
484 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
485 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
488 return sge_count;
492 * megasas_get_frame_count - Computes the number of frames
493 * @frame_type : type of frame- io or pthru frame
494 * @sge_count : number of sg elements
496 * Returns the number of frames required for numnber of sge's (sge_count)
499 static u32 megasas_get_frame_count(u8 sge_count, u8 frame_type)
501 int num_cnt;
502 int sge_bytes;
503 u32 sge_sz;
504 u32 frame_count=0;
506 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
507 sizeof(struct megasas_sge32);
510 * Main frame can contain 2 SGEs for 64-bit SGLs and
511 * 3 SGEs for 32-bit SGLs for ldio &
512 * 1 SGEs for 64-bit SGLs and
513 * 2 SGEs for 32-bit SGLs for pthru frame
515 if (unlikely(frame_type == PTHRU_FRAME)) {
516 if (IS_DMA64)
517 num_cnt = sge_count - 1;
518 else
519 num_cnt = sge_count - 2;
520 } else {
521 if (IS_DMA64)
522 num_cnt = sge_count - 2;
523 else
524 num_cnt = sge_count - 3;
527 if(num_cnt>0){
528 sge_bytes = sge_sz * num_cnt;
530 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
531 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
533 /* Main frame */
534 frame_count +=1;
536 if (frame_count > 7)
537 frame_count = 8;
538 return frame_count;
542 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
543 * @instance: Adapter soft state
544 * @scp: SCSI command
545 * @cmd: Command to be prepared in
547 * This function prepares CDB commands. These are typcially pass-through
548 * commands to the devices.
550 static int
551 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
552 struct megasas_cmd *cmd)
554 u32 is_logical;
555 u32 device_id;
556 u16 flags = 0;
557 struct megasas_pthru_frame *pthru;
559 is_logical = MEGASAS_IS_LOGICAL(scp);
560 device_id = MEGASAS_DEV_INDEX(instance, scp);
561 pthru = (struct megasas_pthru_frame *)cmd->frame;
563 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
564 flags = MFI_FRAME_DIR_WRITE;
565 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
566 flags = MFI_FRAME_DIR_READ;
567 else if (scp->sc_data_direction == PCI_DMA_NONE)
568 flags = MFI_FRAME_DIR_NONE;
571 * Prepare the DCDB frame
573 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
574 pthru->cmd_status = 0x0;
575 pthru->scsi_status = 0x0;
576 pthru->target_id = device_id;
577 pthru->lun = scp->device->lun;
578 pthru->cdb_len = scp->cmd_len;
579 pthru->timeout = 0;
580 pthru->flags = flags;
581 pthru->data_xfer_len = scsi_bufflen(scp);
583 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
586 * Construct SGL
588 if (IS_DMA64) {
589 pthru->flags |= MFI_FRAME_SGL64;
590 pthru->sge_count = megasas_make_sgl64(instance, scp,
591 &pthru->sgl);
592 } else
593 pthru->sge_count = megasas_make_sgl32(instance, scp,
594 &pthru->sgl);
597 * Sense info specific
599 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
600 pthru->sense_buf_phys_addr_hi = 0;
601 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
604 * Compute the total number of frames this command consumes. FW uses
605 * this number to pull sufficient number of frames from host memory.
607 cmd->frame_count = megasas_get_frame_count(pthru->sge_count,
608 PTHRU_FRAME);
610 return cmd->frame_count;
614 * megasas_build_ldio - Prepares IOs to logical devices
615 * @instance: Adapter soft state
616 * @scp: SCSI command
617 * @cmd: Command to to be prepared
619 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
621 static int
622 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
623 struct megasas_cmd *cmd)
625 u32 device_id;
626 u8 sc = scp->cmnd[0];
627 u16 flags = 0;
628 struct megasas_io_frame *ldio;
630 device_id = MEGASAS_DEV_INDEX(instance, scp);
631 ldio = (struct megasas_io_frame *)cmd->frame;
633 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
634 flags = MFI_FRAME_DIR_WRITE;
635 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
636 flags = MFI_FRAME_DIR_READ;
639 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
641 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
642 ldio->cmd_status = 0x0;
643 ldio->scsi_status = 0x0;
644 ldio->target_id = device_id;
645 ldio->timeout = 0;
646 ldio->reserved_0 = 0;
647 ldio->pad_0 = 0;
648 ldio->flags = flags;
649 ldio->start_lba_hi = 0;
650 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
653 * 6-byte READ(0x08) or WRITE(0x0A) cdb
655 if (scp->cmd_len == 6) {
656 ldio->lba_count = (u32) scp->cmnd[4];
657 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
658 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
660 ldio->start_lba_lo &= 0x1FFFFF;
664 * 10-byte READ(0x28) or WRITE(0x2A) cdb
666 else if (scp->cmd_len == 10) {
667 ldio->lba_count = (u32) scp->cmnd[8] |
668 ((u32) scp->cmnd[7] << 8);
669 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
670 ((u32) scp->cmnd[3] << 16) |
671 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
675 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
677 else if (scp->cmd_len == 12) {
678 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
679 ((u32) scp->cmnd[7] << 16) |
680 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
682 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
683 ((u32) scp->cmnd[3] << 16) |
684 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
688 * 16-byte READ(0x88) or WRITE(0x8A) cdb
690 else if (scp->cmd_len == 16) {
691 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
692 ((u32) scp->cmnd[11] << 16) |
693 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
695 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
696 ((u32) scp->cmnd[7] << 16) |
697 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
699 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
700 ((u32) scp->cmnd[3] << 16) |
701 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
706 * Construct SGL
708 if (IS_DMA64) {
709 ldio->flags |= MFI_FRAME_SGL64;
710 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
711 } else
712 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
715 * Sense info specific
717 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
718 ldio->sense_buf_phys_addr_hi = 0;
719 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
722 * Compute the total number of frames this command consumes. FW uses
723 * this number to pull sufficient number of frames from host memory.
725 cmd->frame_count = megasas_get_frame_count(ldio->sge_count, IO_FRAME);
727 return cmd->frame_count;
731 * megasas_is_ldio - Checks if the cmd is for logical drive
732 * @scmd: SCSI command
734 * Called by megasas_queue_command to find out if the command to be queued
735 * is a logical drive command
737 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
739 if (!MEGASAS_IS_LOGICAL(cmd))
740 return 0;
741 switch (cmd->cmnd[0]) {
742 case READ_10:
743 case WRITE_10:
744 case READ_12:
745 case WRITE_12:
746 case READ_6:
747 case WRITE_6:
748 case READ_16:
749 case WRITE_16:
750 return 1;
751 default:
752 return 0;
757 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
758 * in FW
759 * @instance: Adapter soft state
761 static inline void
762 megasas_dump_pending_frames(struct megasas_instance *instance)
764 struct megasas_cmd *cmd;
765 int i,n;
766 union megasas_sgl *mfi_sgl;
767 struct megasas_io_frame *ldio;
768 struct megasas_pthru_frame *pthru;
769 u32 sgcount;
770 u32 max_cmd = instance->max_fw_cmds;
772 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
773 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
774 if (IS_DMA64)
775 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
776 else
777 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
779 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
780 for (i = 0; i < max_cmd; i++) {
781 cmd = instance->cmd_list[i];
782 if(!cmd->scmd)
783 continue;
784 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
785 if (megasas_is_ldio(cmd->scmd)){
786 ldio = (struct megasas_io_frame *)cmd->frame;
787 mfi_sgl = &ldio->sgl;
788 sgcount = ldio->sge_count;
789 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
791 else {
792 pthru = (struct megasas_pthru_frame *) cmd->frame;
793 mfi_sgl = &pthru->sgl;
794 sgcount = pthru->sge_count;
795 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
797 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
798 for (n = 0; n < sgcount; n++){
799 if (IS_DMA64)
800 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
801 else
802 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
805 printk(KERN_ERR "\n");
806 } /*for max_cmd*/
807 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
808 for (i = 0; i < max_cmd; i++) {
810 cmd = instance->cmd_list[i];
812 if(cmd->sync_cmd == 1){
813 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
816 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
820 * megasas_queue_command - Queue entry point
821 * @scmd: SCSI command to be queued
822 * @done: Callback entry point
824 static int
825 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
827 u32 frame_count;
828 struct megasas_cmd *cmd;
829 struct megasas_instance *instance;
831 instance = (struct megasas_instance *)
832 scmd->device->host->hostdata;
834 /* Don't process if we have already declared adapter dead */
835 if (instance->hw_crit_error)
836 return SCSI_MLQUEUE_HOST_BUSY;
838 scmd->scsi_done = done;
839 scmd->result = 0;
841 if (MEGASAS_IS_LOGICAL(scmd) &&
842 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
843 scmd->result = DID_BAD_TARGET << 16;
844 goto out_done;
847 switch (scmd->cmnd[0]) {
848 case SYNCHRONIZE_CACHE:
850 * FW takes care of flush cache on its own
851 * No need to send it down
853 scmd->result = DID_OK << 16;
854 goto out_done;
855 default:
856 break;
859 cmd = megasas_get_cmd(instance);
860 if (!cmd)
861 return SCSI_MLQUEUE_HOST_BUSY;
864 * Logical drive command
866 if (megasas_is_ldio(scmd))
867 frame_count = megasas_build_ldio(instance, scmd, cmd);
868 else
869 frame_count = megasas_build_dcdb(instance, scmd, cmd);
871 if (!frame_count)
872 goto out_return_cmd;
874 cmd->scmd = scmd;
875 scmd->SCp.ptr = (char *)cmd;
878 * Issue the command to the FW
880 atomic_inc(&instance->fw_outstanding);
882 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
884 * Check if we have pend cmds to be completed
886 if (poll_mode_io && atomic_read(&instance->fw_outstanding))
887 tasklet_schedule(&instance->isr_tasklet);
890 return 0;
892 out_return_cmd:
893 megasas_return_cmd(instance, cmd);
894 out_done:
895 done(scmd);
896 return 0;
899 static int megasas_slave_configure(struct scsi_device *sdev)
902 * Don't export physical disk devices to the disk driver.
904 * FIXME: Currently we don't export them to the midlayer at all.
905 * That will be fixed once LSI engineers have audited the
906 * firmware for possible issues.
908 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
909 return -ENXIO;
912 * The RAID firmware may require extended timeouts.
914 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
915 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
916 return 0;
920 * megasas_complete_cmd_dpc - Returns FW's controller structure
921 * @instance_addr: Address of adapter soft state
923 * Tasklet to complete cmds
925 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
927 u32 producer;
928 u32 consumer;
929 u32 context;
930 struct megasas_cmd *cmd;
931 struct megasas_instance *instance =
932 (struct megasas_instance *)instance_addr;
933 unsigned long flags;
935 /* If we have already declared adapter dead, donot complete cmds */
936 if (instance->hw_crit_error)
937 return;
939 spin_lock_irqsave(&instance->completion_lock, flags);
941 producer = *instance->producer;
942 consumer = *instance->consumer;
944 while (consumer != producer) {
945 context = instance->reply_queue[consumer];
947 cmd = instance->cmd_list[context];
949 megasas_complete_cmd(instance, cmd, DID_OK);
951 consumer++;
952 if (consumer == (instance->max_fw_cmds + 1)) {
953 consumer = 0;
957 *instance->consumer = producer;
959 spin_unlock_irqrestore(&instance->completion_lock, flags);
962 * Check if we can restore can_queue
964 if (instance->flag & MEGASAS_FW_BUSY
965 && time_after(jiffies, instance->last_time + 5 * HZ)
966 && atomic_read(&instance->fw_outstanding) < 17) {
968 spin_lock_irqsave(instance->host->host_lock, flags);
969 instance->flag &= ~MEGASAS_FW_BUSY;
970 instance->host->can_queue =
971 instance->max_fw_cmds - MEGASAS_INT_CMDS;
973 spin_unlock_irqrestore(instance->host->host_lock, flags);
978 * megasas_wait_for_outstanding - Wait for all outstanding cmds
979 * @instance: Adapter soft state
981 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
982 * complete all its outstanding commands. Returns error if one or more IOs
983 * are pending after this time period. It also marks the controller dead.
985 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
987 int i;
988 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
990 for (i = 0; i < wait_time; i++) {
992 int outstanding = atomic_read(&instance->fw_outstanding);
994 if (!outstanding)
995 break;
997 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
998 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
999 "commands to complete\n",i,outstanding);
1001 * Call cmd completion routine. Cmd to be
1002 * be completed directly without depending on isr.
1004 megasas_complete_cmd_dpc((unsigned long)instance);
1007 msleep(1000);
1010 if (atomic_read(&instance->fw_outstanding)) {
1012 * Send signal to FW to stop processing any pending cmds.
1013 * The controller will be taken offline by the OS now.
1015 writel(MFI_STOP_ADP,
1016 &instance->reg_set->inbound_doorbell);
1017 megasas_dump_pending_frames(instance);
1018 instance->hw_crit_error = 1;
1019 return FAILED;
1022 return SUCCESS;
1026 * megasas_generic_reset - Generic reset routine
1027 * @scmd: Mid-layer SCSI command
1029 * This routine implements a generic reset handler for device, bus and host
1030 * reset requests. Device, bus and host specific reset handlers can use this
1031 * function after they do their specific tasks.
1033 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1035 int ret_val;
1036 struct megasas_instance *instance;
1038 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1040 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1041 scmd->serial_number, scmd->cmnd[0], scmd->retries);
1043 if (instance->hw_crit_error) {
1044 printk(KERN_ERR "megasas: cannot recover from previous reset "
1045 "failures\n");
1046 return FAILED;
1049 ret_val = megasas_wait_for_outstanding(instance);
1050 if (ret_val == SUCCESS)
1051 printk(KERN_NOTICE "megasas: reset successful \n");
1052 else
1053 printk(KERN_ERR "megasas: failed to do reset\n");
1055 return ret_val;
1059 * megasas_reset_timer - quiesce the adapter if required
1060 * @scmd: scsi cmnd
1062 * Sets the FW busy flag and reduces the host->can_queue if the
1063 * cmd has not been completed within the timeout period.
1065 static enum
1066 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1068 struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1069 struct megasas_instance *instance;
1070 unsigned long flags;
1072 if (time_after(jiffies, scmd->jiffies_at_alloc +
1073 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1074 return EH_NOT_HANDLED;
1077 instance = cmd->instance;
1078 if (!(instance->flag & MEGASAS_FW_BUSY)) {
1079 /* FW is busy, throttle IO */
1080 spin_lock_irqsave(instance->host->host_lock, flags);
1082 instance->host->can_queue = 16;
1083 instance->last_time = jiffies;
1084 instance->flag |= MEGASAS_FW_BUSY;
1086 spin_unlock_irqrestore(instance->host->host_lock, flags);
1088 return EH_RESET_TIMER;
1092 * megasas_reset_device - Device reset handler entry point
1094 static int megasas_reset_device(struct scsi_cmnd *scmd)
1096 int ret;
1099 * First wait for all commands to complete
1101 ret = megasas_generic_reset(scmd);
1103 return ret;
1107 * megasas_reset_bus_host - Bus & host reset handler entry point
1109 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1111 int ret;
1114 * First wait for all commands to complete
1116 ret = megasas_generic_reset(scmd);
1118 return ret;
1122 * megasas_bios_param - Returns disk geometry for a disk
1123 * @sdev: device handle
1124 * @bdev: block device
1125 * @capacity: drive capacity
1126 * @geom: geometry parameters
1128 static int
1129 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1130 sector_t capacity, int geom[])
1132 int heads;
1133 int sectors;
1134 sector_t cylinders;
1135 unsigned long tmp;
1136 /* Default heads (64) & sectors (32) */
1137 heads = 64;
1138 sectors = 32;
1140 tmp = heads * sectors;
1141 cylinders = capacity;
1143 sector_div(cylinders, tmp);
1146 * Handle extended translation size for logical drives > 1Gb
1149 if (capacity >= 0x200000) {
1150 heads = 255;
1151 sectors = 63;
1152 tmp = heads*sectors;
1153 cylinders = capacity;
1154 sector_div(cylinders, tmp);
1157 geom[0] = heads;
1158 geom[1] = sectors;
1159 geom[2] = cylinders;
1161 return 0;
1165 * megasas_service_aen - Processes an event notification
1166 * @instance: Adapter soft state
1167 * @cmd: AEN command completed by the ISR
1169 * For AEN, driver sends a command down to FW that is held by the FW till an
1170 * event occurs. When an event of interest occurs, FW completes the command
1171 * that it was previously holding.
1173 * This routines sends SIGIO signal to processes that have registered with the
1174 * driver for AEN.
1176 static void
1177 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1180 * Don't signal app if it is just an aborted previously registered aen
1182 if (!cmd->abort_aen)
1183 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1184 else
1185 cmd->abort_aen = 0;
1187 instance->aen_cmd = NULL;
1188 megasas_return_cmd(instance, cmd);
1192 * Scsi host template for megaraid_sas driver
1194 static struct scsi_host_template megasas_template = {
1196 .module = THIS_MODULE,
1197 .name = "LSI SAS based MegaRAID driver",
1198 .proc_name = "megaraid_sas",
1199 .slave_configure = megasas_slave_configure,
1200 .queuecommand = megasas_queue_command,
1201 .eh_device_reset_handler = megasas_reset_device,
1202 .eh_bus_reset_handler = megasas_reset_bus_host,
1203 .eh_host_reset_handler = megasas_reset_bus_host,
1204 .eh_timed_out = megasas_reset_timer,
1205 .bios_param = megasas_bios_param,
1206 .use_clustering = ENABLE_CLUSTERING,
1210 * megasas_complete_int_cmd - Completes an internal command
1211 * @instance: Adapter soft state
1212 * @cmd: Command to be completed
1214 * The megasas_issue_blocked_cmd() function waits for a command to complete
1215 * after it issues a command. This function wakes up that waiting routine by
1216 * calling wake_up() on the wait queue.
1218 static void
1219 megasas_complete_int_cmd(struct megasas_instance *instance,
1220 struct megasas_cmd *cmd)
1222 cmd->cmd_status = cmd->frame->io.cmd_status;
1224 if (cmd->cmd_status == ENODATA) {
1225 cmd->cmd_status = 0;
1227 wake_up(&instance->int_cmd_wait_q);
1231 * megasas_complete_abort - Completes aborting a command
1232 * @instance: Adapter soft state
1233 * @cmd: Cmd that was issued to abort another cmd
1235 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1236 * after it issues an abort on a previously issued command. This function
1237 * wakes up all functions waiting on the same wait queue.
1239 static void
1240 megasas_complete_abort(struct megasas_instance *instance,
1241 struct megasas_cmd *cmd)
1243 if (cmd->sync_cmd) {
1244 cmd->sync_cmd = 0;
1245 cmd->cmd_status = 0;
1246 wake_up(&instance->abort_cmd_wait_q);
1249 return;
1253 * megasas_complete_cmd - Completes a command
1254 * @instance: Adapter soft state
1255 * @cmd: Command to be completed
1256 * @alt_status: If non-zero, use this value as status to
1257 * SCSI mid-layer instead of the value returned
1258 * by the FW. This should be used if caller wants
1259 * an alternate status (as in the case of aborted
1260 * commands)
1262 static void
1263 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1264 u8 alt_status)
1266 int exception = 0;
1267 struct megasas_header *hdr = &cmd->frame->hdr;
1269 if (cmd->scmd)
1270 cmd->scmd->SCp.ptr = NULL;
1272 switch (hdr->cmd) {
1274 case MFI_CMD_PD_SCSI_IO:
1275 case MFI_CMD_LD_SCSI_IO:
1278 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1279 * issued either through an IO path or an IOCTL path. If it
1280 * was via IOCTL, we will send it to internal completion.
1282 if (cmd->sync_cmd) {
1283 cmd->sync_cmd = 0;
1284 megasas_complete_int_cmd(instance, cmd);
1285 break;
1288 case MFI_CMD_LD_READ:
1289 case MFI_CMD_LD_WRITE:
1291 if (alt_status) {
1292 cmd->scmd->result = alt_status << 16;
1293 exception = 1;
1296 if (exception) {
1298 atomic_dec(&instance->fw_outstanding);
1300 scsi_dma_unmap(cmd->scmd);
1301 cmd->scmd->scsi_done(cmd->scmd);
1302 megasas_return_cmd(instance, cmd);
1304 break;
1307 switch (hdr->cmd_status) {
1309 case MFI_STAT_OK:
1310 cmd->scmd->result = DID_OK << 16;
1311 break;
1313 case MFI_STAT_SCSI_IO_FAILED:
1314 case MFI_STAT_LD_INIT_IN_PROGRESS:
1315 cmd->scmd->result =
1316 (DID_ERROR << 16) | hdr->scsi_status;
1317 break;
1319 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1321 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1323 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1324 memset(cmd->scmd->sense_buffer, 0,
1325 SCSI_SENSE_BUFFERSIZE);
1326 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1327 hdr->sense_len);
1329 cmd->scmd->result |= DRIVER_SENSE << 24;
1332 break;
1334 case MFI_STAT_LD_OFFLINE:
1335 case MFI_STAT_DEVICE_NOT_FOUND:
1336 cmd->scmd->result = DID_BAD_TARGET << 16;
1337 break;
1339 default:
1340 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1341 hdr->cmd_status);
1342 cmd->scmd->result = DID_ERROR << 16;
1343 break;
1346 atomic_dec(&instance->fw_outstanding);
1348 scsi_dma_unmap(cmd->scmd);
1349 cmd->scmd->scsi_done(cmd->scmd);
1350 megasas_return_cmd(instance, cmd);
1352 break;
1354 case MFI_CMD_SMP:
1355 case MFI_CMD_STP:
1356 case MFI_CMD_DCMD:
1359 * See if got an event notification
1361 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1362 megasas_service_aen(instance, cmd);
1363 else
1364 megasas_complete_int_cmd(instance, cmd);
1366 break;
1368 case MFI_CMD_ABORT:
1370 * Cmd issued to abort another cmd returned
1372 megasas_complete_abort(instance, cmd);
1373 break;
1375 default:
1376 printk("megasas: Unknown command completed! [0x%X]\n",
1377 hdr->cmd);
1378 break;
1383 * megasas_deplete_reply_queue - Processes all completed commands
1384 * @instance: Adapter soft state
1385 * @alt_status: Alternate status to be returned to
1386 * SCSI mid-layer instead of the status
1387 * returned by the FW
1389 static int
1390 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1393 * Check if it is our interrupt
1394 * Clear the interrupt
1396 if(instance->instancet->clear_intr(instance->reg_set))
1397 return IRQ_NONE;
1399 if (instance->hw_crit_error)
1400 goto out_done;
1402 * Schedule the tasklet for cmd completion
1404 tasklet_schedule(&instance->isr_tasklet);
1405 out_done:
1406 return IRQ_HANDLED;
1410 * megasas_isr - isr entry point
1412 static irqreturn_t megasas_isr(int irq, void *devp)
1414 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1415 DID_OK);
1419 * megasas_transition_to_ready - Move the FW to READY state
1420 * @instance: Adapter soft state
1422 * During the initialization, FW passes can potentially be in any one of
1423 * several possible states. If the FW in operational, waiting-for-handshake
1424 * states, driver must take steps to bring it to ready state. Otherwise, it
1425 * has to wait for the ready state.
1427 static int
1428 megasas_transition_to_ready(struct megasas_instance* instance)
1430 int i;
1431 u8 max_wait;
1432 u32 fw_state;
1433 u32 cur_state;
1435 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1437 if (fw_state != MFI_STATE_READY)
1438 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1439 " state\n");
1441 while (fw_state != MFI_STATE_READY) {
1443 switch (fw_state) {
1445 case MFI_STATE_FAULT:
1447 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1448 return -ENODEV;
1450 case MFI_STATE_WAIT_HANDSHAKE:
1452 * Set the CLR bit in inbound doorbell
1454 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1455 &instance->reg_set->inbound_doorbell);
1457 max_wait = 2;
1458 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1459 break;
1461 case MFI_STATE_BOOT_MESSAGE_PENDING:
1462 writel(MFI_INIT_HOTPLUG,
1463 &instance->reg_set->inbound_doorbell);
1465 max_wait = 10;
1466 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1467 break;
1469 case MFI_STATE_OPERATIONAL:
1471 * Bring it to READY state; assuming max wait 10 secs
1473 instance->instancet->disable_intr(instance->reg_set);
1474 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1476 max_wait = 60;
1477 cur_state = MFI_STATE_OPERATIONAL;
1478 break;
1480 case MFI_STATE_UNDEFINED:
1482 * This state should not last for more than 2 seconds
1484 max_wait = 2;
1485 cur_state = MFI_STATE_UNDEFINED;
1486 break;
1488 case MFI_STATE_BB_INIT:
1489 max_wait = 2;
1490 cur_state = MFI_STATE_BB_INIT;
1491 break;
1493 case MFI_STATE_FW_INIT:
1494 max_wait = 20;
1495 cur_state = MFI_STATE_FW_INIT;
1496 break;
1498 case MFI_STATE_FW_INIT_2:
1499 max_wait = 20;
1500 cur_state = MFI_STATE_FW_INIT_2;
1501 break;
1503 case MFI_STATE_DEVICE_SCAN:
1504 max_wait = 20;
1505 cur_state = MFI_STATE_DEVICE_SCAN;
1506 break;
1508 case MFI_STATE_FLUSH_CACHE:
1509 max_wait = 20;
1510 cur_state = MFI_STATE_FLUSH_CACHE;
1511 break;
1513 default:
1514 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1515 fw_state);
1516 return -ENODEV;
1520 * The cur_state should not last for more than max_wait secs
1522 for (i = 0; i < (max_wait * 1000); i++) {
1523 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1524 MFI_STATE_MASK ;
1526 if (fw_state == cur_state) {
1527 msleep(1);
1528 } else
1529 break;
1533 * Return error if fw_state hasn't changed after max_wait
1535 if (fw_state == cur_state) {
1536 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1537 "in %d secs\n", fw_state, max_wait);
1538 return -ENODEV;
1541 printk(KERN_INFO "megasas: FW now in Ready state\n");
1543 return 0;
1547 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1548 * @instance: Adapter soft state
1550 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1552 int i;
1553 u32 max_cmd = instance->max_fw_cmds;
1554 struct megasas_cmd *cmd;
1556 if (!instance->frame_dma_pool)
1557 return;
1560 * Return all frames to pool
1562 for (i = 0; i < max_cmd; i++) {
1564 cmd = instance->cmd_list[i];
1566 if (cmd->frame)
1567 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1568 cmd->frame_phys_addr);
1570 if (cmd->sense)
1571 pci_pool_free(instance->sense_dma_pool, cmd->sense,
1572 cmd->sense_phys_addr);
1576 * Now destroy the pool itself
1578 pci_pool_destroy(instance->frame_dma_pool);
1579 pci_pool_destroy(instance->sense_dma_pool);
1581 instance->frame_dma_pool = NULL;
1582 instance->sense_dma_pool = NULL;
1586 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1587 * @instance: Adapter soft state
1589 * Each command packet has an embedded DMA memory buffer that is used for
1590 * filling MFI frame and the SG list that immediately follows the frame. This
1591 * function creates those DMA memory buffers for each command packet by using
1592 * PCI pool facility.
1594 static int megasas_create_frame_pool(struct megasas_instance *instance)
1596 int i;
1597 u32 max_cmd;
1598 u32 sge_sz;
1599 u32 sgl_sz;
1600 u32 total_sz;
1601 u32 frame_count;
1602 struct megasas_cmd *cmd;
1604 max_cmd = instance->max_fw_cmds;
1607 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1608 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1610 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1611 sizeof(struct megasas_sge32);
1614 * Calculated the number of 64byte frames required for SGL
1616 sgl_sz = sge_sz * instance->max_num_sge;
1617 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1620 * We need one extra frame for the MFI command
1622 frame_count++;
1624 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1626 * Use DMA pool facility provided by PCI layer
1628 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1629 instance->pdev, total_sz, 64,
1632 if (!instance->frame_dma_pool) {
1633 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1634 return -ENOMEM;
1637 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1638 instance->pdev, 128, 4, 0);
1640 if (!instance->sense_dma_pool) {
1641 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1643 pci_pool_destroy(instance->frame_dma_pool);
1644 instance->frame_dma_pool = NULL;
1646 return -ENOMEM;
1650 * Allocate and attach a frame to each of the commands in cmd_list.
1651 * By making cmd->index as the context instead of the &cmd, we can
1652 * always use 32bit context regardless of the architecture
1654 for (i = 0; i < max_cmd; i++) {
1656 cmd = instance->cmd_list[i];
1658 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1659 GFP_KERNEL, &cmd->frame_phys_addr);
1661 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1662 GFP_KERNEL, &cmd->sense_phys_addr);
1665 * megasas_teardown_frame_pool() takes care of freeing
1666 * whatever has been allocated
1668 if (!cmd->frame || !cmd->sense) {
1669 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1670 megasas_teardown_frame_pool(instance);
1671 return -ENOMEM;
1674 cmd->frame->io.context = cmd->index;
1677 return 0;
1681 * megasas_free_cmds - Free all the cmds in the free cmd pool
1682 * @instance: Adapter soft state
1684 static void megasas_free_cmds(struct megasas_instance *instance)
1686 int i;
1687 /* First free the MFI frame pool */
1688 megasas_teardown_frame_pool(instance);
1690 /* Free all the commands in the cmd_list */
1691 for (i = 0; i < instance->max_fw_cmds; i++)
1692 kfree(instance->cmd_list[i]);
1694 /* Free the cmd_list buffer itself */
1695 kfree(instance->cmd_list);
1696 instance->cmd_list = NULL;
1698 INIT_LIST_HEAD(&instance->cmd_pool);
1702 * megasas_alloc_cmds - Allocates the command packets
1703 * @instance: Adapter soft state
1705 * Each command that is issued to the FW, whether IO commands from the OS or
1706 * internal commands like IOCTLs, are wrapped in local data structure called
1707 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1708 * the FW.
1710 * Each frame has a 32-bit field called context (tag). This context is used
1711 * to get back the megasas_cmd from the frame when a frame gets completed in
1712 * the ISR. Typically the address of the megasas_cmd itself would be used as
1713 * the context. But we wanted to keep the differences between 32 and 64 bit
1714 * systems to the mininum. We always use 32 bit integers for the context. In
1715 * this driver, the 32 bit values are the indices into an array cmd_list.
1716 * This array is used only to look up the megasas_cmd given the context. The
1717 * free commands themselves are maintained in a linked list called cmd_pool.
1719 static int megasas_alloc_cmds(struct megasas_instance *instance)
1721 int i;
1722 int j;
1723 u32 max_cmd;
1724 struct megasas_cmd *cmd;
1726 max_cmd = instance->max_fw_cmds;
1729 * instance->cmd_list is an array of struct megasas_cmd pointers.
1730 * Allocate the dynamic array first and then allocate individual
1731 * commands.
1733 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1735 if (!instance->cmd_list) {
1736 printk(KERN_DEBUG "megasas: out of memory\n");
1737 return -ENOMEM;
1741 for (i = 0; i < max_cmd; i++) {
1742 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1743 GFP_KERNEL);
1745 if (!instance->cmd_list[i]) {
1747 for (j = 0; j < i; j++)
1748 kfree(instance->cmd_list[j]);
1750 kfree(instance->cmd_list);
1751 instance->cmd_list = NULL;
1753 return -ENOMEM;
1758 * Add all the commands to command pool (instance->cmd_pool)
1760 for (i = 0; i < max_cmd; i++) {
1761 cmd = instance->cmd_list[i];
1762 memset(cmd, 0, sizeof(struct megasas_cmd));
1763 cmd->index = i;
1764 cmd->instance = instance;
1766 list_add_tail(&cmd->list, &instance->cmd_pool);
1770 * Create a frame pool and assign one frame to each cmd
1772 if (megasas_create_frame_pool(instance)) {
1773 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1774 megasas_free_cmds(instance);
1777 return 0;
1781 * megasas_get_controller_info - Returns FW's controller structure
1782 * @instance: Adapter soft state
1783 * @ctrl_info: Controller information structure
1785 * Issues an internal command (DCMD) to get the FW's controller structure.
1786 * This information is mainly used to find out the maximum IO transfer per
1787 * command supported by the FW.
1789 static int
1790 megasas_get_ctrl_info(struct megasas_instance *instance,
1791 struct megasas_ctrl_info *ctrl_info)
1793 int ret = 0;
1794 struct megasas_cmd *cmd;
1795 struct megasas_dcmd_frame *dcmd;
1796 struct megasas_ctrl_info *ci;
1797 dma_addr_t ci_h = 0;
1799 cmd = megasas_get_cmd(instance);
1801 if (!cmd) {
1802 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1803 return -ENOMEM;
1806 dcmd = &cmd->frame->dcmd;
1808 ci = pci_alloc_consistent(instance->pdev,
1809 sizeof(struct megasas_ctrl_info), &ci_h);
1811 if (!ci) {
1812 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1813 megasas_return_cmd(instance, cmd);
1814 return -ENOMEM;
1817 memset(ci, 0, sizeof(*ci));
1818 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1820 dcmd->cmd = MFI_CMD_DCMD;
1821 dcmd->cmd_status = 0xFF;
1822 dcmd->sge_count = 1;
1823 dcmd->flags = MFI_FRAME_DIR_READ;
1824 dcmd->timeout = 0;
1825 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1826 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1827 dcmd->sgl.sge32[0].phys_addr = ci_h;
1828 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1830 if (!megasas_issue_polled(instance, cmd)) {
1831 ret = 0;
1832 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1833 } else {
1834 ret = -1;
1837 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1838 ci, ci_h);
1840 megasas_return_cmd(instance, cmd);
1841 return ret;
1845 * megasas_issue_init_mfi - Initializes the FW
1846 * @instance: Adapter soft state
1848 * Issues the INIT MFI cmd
1850 static int
1851 megasas_issue_init_mfi(struct megasas_instance *instance)
1853 u32 context;
1855 struct megasas_cmd *cmd;
1857 struct megasas_init_frame *init_frame;
1858 struct megasas_init_queue_info *initq_info;
1859 dma_addr_t init_frame_h;
1860 dma_addr_t initq_info_h;
1863 * Prepare a init frame. Note the init frame points to queue info
1864 * structure. Each frame has SGL allocated after first 64 bytes. For
1865 * this frame - since we don't need any SGL - we use SGL's space as
1866 * queue info structure
1868 * We will not get a NULL command below. We just created the pool.
1870 cmd = megasas_get_cmd(instance);
1872 init_frame = (struct megasas_init_frame *)cmd->frame;
1873 initq_info = (struct megasas_init_queue_info *)
1874 ((unsigned long)init_frame + 64);
1876 init_frame_h = cmd->frame_phys_addr;
1877 initq_info_h = init_frame_h + 64;
1879 context = init_frame->context;
1880 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1881 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1882 init_frame->context = context;
1884 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1885 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1887 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1888 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1890 init_frame->cmd = MFI_CMD_INIT;
1891 init_frame->cmd_status = 0xFF;
1892 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1894 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1897 * disable the intr before firing the init frame to FW
1899 instance->instancet->disable_intr(instance->reg_set);
1902 * Issue the init frame in polled mode
1905 if (megasas_issue_polled(instance, cmd)) {
1906 printk(KERN_ERR "megasas: Failed to init firmware\n");
1907 megasas_return_cmd(instance, cmd);
1908 goto fail_fw_init;
1911 megasas_return_cmd(instance, cmd);
1913 return 0;
1915 fail_fw_init:
1916 return -EINVAL;
1920 * megasas_start_timer - Initializes a timer object
1921 * @instance: Adapter soft state
1922 * @timer: timer object to be initialized
1923 * @fn: timer function
1924 * @interval: time interval between timer function call
1926 static inline void
1927 megasas_start_timer(struct megasas_instance *instance,
1928 struct timer_list *timer,
1929 void *fn, unsigned long interval)
1931 init_timer(timer);
1932 timer->expires = jiffies + interval;
1933 timer->data = (unsigned long)instance;
1934 timer->function = fn;
1935 add_timer(timer);
1939 * megasas_io_completion_timer - Timer fn
1940 * @instance_addr: Address of adapter soft state
1942 * Schedules tasklet for cmd completion
1943 * if poll_mode_io is set
1945 static void
1946 megasas_io_completion_timer(unsigned long instance_addr)
1948 struct megasas_instance *instance =
1949 (struct megasas_instance *)instance_addr;
1951 if (atomic_read(&instance->fw_outstanding))
1952 tasklet_schedule(&instance->isr_tasklet);
1954 /* Restart timer */
1955 if (poll_mode_io)
1956 mod_timer(&instance->io_completion_timer,
1957 jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
1961 * megasas_init_mfi - Initializes the FW
1962 * @instance: Adapter soft state
1964 * This is the main function for initializing MFI firmware.
1966 static int megasas_init_mfi(struct megasas_instance *instance)
1968 u32 context_sz;
1969 u32 reply_q_sz;
1970 u32 max_sectors_1;
1971 u32 max_sectors_2;
1972 u32 tmp_sectors;
1973 struct megasas_register_set __iomem *reg_set;
1974 struct megasas_ctrl_info *ctrl_info;
1976 * Map the message registers
1978 instance->base_addr = pci_resource_start(instance->pdev, 0);
1980 if (pci_request_regions(instance->pdev, "megasas: LSI")) {
1981 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1982 return -EBUSY;
1985 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1987 if (!instance->reg_set) {
1988 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1989 goto fail_ioremap;
1992 reg_set = instance->reg_set;
1994 switch(instance->pdev->device)
1996 case PCI_DEVICE_ID_LSI_SAS1078R:
1997 case PCI_DEVICE_ID_LSI_SAS1078DE:
1998 instance->instancet = &megasas_instance_template_ppc;
1999 break;
2000 case PCI_DEVICE_ID_LSI_SAS1064R:
2001 case PCI_DEVICE_ID_DELL_PERC5:
2002 default:
2003 instance->instancet = &megasas_instance_template_xscale;
2004 break;
2008 * We expect the FW state to be READY
2010 if (megasas_transition_to_ready(instance))
2011 goto fail_ready_state;
2014 * Get various operational parameters from status register
2016 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
2018 * Reduce the max supported cmds by 1. This is to ensure that the
2019 * reply_q_sz (1 more than the max cmd that driver may send)
2020 * does not exceed max cmds that the FW can support
2022 instance->max_fw_cmds = instance->max_fw_cmds-1;
2023 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
2024 0x10;
2026 * Create a pool of commands
2028 if (megasas_alloc_cmds(instance))
2029 goto fail_alloc_cmds;
2032 * Allocate memory for reply queue. Length of reply queue should
2033 * be _one_ more than the maximum commands handled by the firmware.
2035 * Note: When FW completes commands, it places corresponding contex
2036 * values in this circular reply queue. This circular queue is a fairly
2037 * typical producer-consumer queue. FW is the producer (of completed
2038 * commands) and the driver is the consumer.
2040 context_sz = sizeof(u32);
2041 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
2043 instance->reply_queue = pci_alloc_consistent(instance->pdev,
2044 reply_q_sz,
2045 &instance->reply_queue_h);
2047 if (!instance->reply_queue) {
2048 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
2049 goto fail_reply_queue;
2052 if (megasas_issue_init_mfi(instance))
2053 goto fail_fw_init;
2055 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2058 * Compute the max allowed sectors per IO: The controller info has two
2059 * limits on max sectors. Driver should use the minimum of these two.
2061 * 1 << stripe_sz_ops.min = max sectors per strip
2063 * Note that older firmwares ( < FW ver 30) didn't report information
2064 * to calculate max_sectors_1. So the number ended up as zero always.
2066 tmp_sectors = 0;
2067 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2069 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2070 ctrl_info->max_strips_per_io;
2071 max_sectors_2 = ctrl_info->max_request_size;
2073 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2076 instance->max_sectors_per_req = instance->max_num_sge *
2077 PAGE_SIZE / 512;
2078 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2079 instance->max_sectors_per_req = tmp_sectors;
2081 kfree(ctrl_info);
2084 * Setup tasklet for cmd completion
2087 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2088 (unsigned long)instance);
2090 /* Initialize the cmd completion timer */
2091 if (poll_mode_io)
2092 megasas_start_timer(instance, &instance->io_completion_timer,
2093 megasas_io_completion_timer,
2094 MEGASAS_COMPLETION_TIMER_INTERVAL);
2095 return 0;
2097 fail_fw_init:
2099 pci_free_consistent(instance->pdev, reply_q_sz,
2100 instance->reply_queue, instance->reply_queue_h);
2101 fail_reply_queue:
2102 megasas_free_cmds(instance);
2104 fail_alloc_cmds:
2105 fail_ready_state:
2106 iounmap(instance->reg_set);
2108 fail_ioremap:
2109 pci_release_regions(instance->pdev);
2111 return -EINVAL;
2115 * megasas_release_mfi - Reverses the FW initialization
2116 * @intance: Adapter soft state
2118 static void megasas_release_mfi(struct megasas_instance *instance)
2120 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2122 pci_free_consistent(instance->pdev, reply_q_sz,
2123 instance->reply_queue, instance->reply_queue_h);
2125 megasas_free_cmds(instance);
2127 iounmap(instance->reg_set);
2129 pci_release_regions(instance->pdev);
2133 * megasas_get_seq_num - Gets latest event sequence numbers
2134 * @instance: Adapter soft state
2135 * @eli: FW event log sequence numbers information
2137 * FW maintains a log of all events in a non-volatile area. Upper layers would
2138 * usually find out the latest sequence number of the events, the seq number at
2139 * the boot etc. They would "read" all the events below the latest seq number
2140 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2141 * number), they would subsribe to AEN (asynchronous event notification) and
2142 * wait for the events to happen.
2144 static int
2145 megasas_get_seq_num(struct megasas_instance *instance,
2146 struct megasas_evt_log_info *eli)
2148 struct megasas_cmd *cmd;
2149 struct megasas_dcmd_frame *dcmd;
2150 struct megasas_evt_log_info *el_info;
2151 dma_addr_t el_info_h = 0;
2153 cmd = megasas_get_cmd(instance);
2155 if (!cmd) {
2156 return -ENOMEM;
2159 dcmd = &cmd->frame->dcmd;
2160 el_info = pci_alloc_consistent(instance->pdev,
2161 sizeof(struct megasas_evt_log_info),
2162 &el_info_h);
2164 if (!el_info) {
2165 megasas_return_cmd(instance, cmd);
2166 return -ENOMEM;
2169 memset(el_info, 0, sizeof(*el_info));
2170 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2172 dcmd->cmd = MFI_CMD_DCMD;
2173 dcmd->cmd_status = 0x0;
2174 dcmd->sge_count = 1;
2175 dcmd->flags = MFI_FRAME_DIR_READ;
2176 dcmd->timeout = 0;
2177 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2178 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2179 dcmd->sgl.sge32[0].phys_addr = el_info_h;
2180 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2182 megasas_issue_blocked_cmd(instance, cmd);
2185 * Copy the data back into callers buffer
2187 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2189 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2190 el_info, el_info_h);
2192 megasas_return_cmd(instance, cmd);
2194 return 0;
2198 * megasas_register_aen - Registers for asynchronous event notification
2199 * @instance: Adapter soft state
2200 * @seq_num: The starting sequence number
2201 * @class_locale: Class of the event
2203 * This function subscribes for AEN for events beyond the @seq_num. It requests
2204 * to be notified if and only if the event is of type @class_locale
2206 static int
2207 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2208 u32 class_locale_word)
2210 int ret_val;
2211 struct megasas_cmd *cmd;
2212 struct megasas_dcmd_frame *dcmd;
2213 union megasas_evt_class_locale curr_aen;
2214 union megasas_evt_class_locale prev_aen;
2217 * If there an AEN pending already (aen_cmd), check if the
2218 * class_locale of that pending AEN is inclusive of the new
2219 * AEN request we currently have. If it is, then we don't have
2220 * to do anything. In other words, whichever events the current
2221 * AEN request is subscribing to, have already been subscribed
2222 * to.
2224 * If the old_cmd is _not_ inclusive, then we have to abort
2225 * that command, form a class_locale that is superset of both
2226 * old and current and re-issue to the FW
2229 curr_aen.word = class_locale_word;
2231 if (instance->aen_cmd) {
2233 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2236 * A class whose enum value is smaller is inclusive of all
2237 * higher values. If a PROGRESS (= -1) was previously
2238 * registered, then a new registration requests for higher
2239 * classes need not be sent to FW. They are automatically
2240 * included.
2242 * Locale numbers don't have such hierarchy. They are bitmap
2243 * values
2245 if ((prev_aen.members.class <= curr_aen.members.class) &&
2246 !((prev_aen.members.locale & curr_aen.members.locale) ^
2247 curr_aen.members.locale)) {
2249 * Previously issued event registration includes
2250 * current request. Nothing to do.
2252 return 0;
2253 } else {
2254 curr_aen.members.locale |= prev_aen.members.locale;
2256 if (prev_aen.members.class < curr_aen.members.class)
2257 curr_aen.members.class = prev_aen.members.class;
2259 instance->aen_cmd->abort_aen = 1;
2260 ret_val = megasas_issue_blocked_abort_cmd(instance,
2261 instance->
2262 aen_cmd);
2264 if (ret_val) {
2265 printk(KERN_DEBUG "megasas: Failed to abort "
2266 "previous AEN command\n");
2267 return ret_val;
2272 cmd = megasas_get_cmd(instance);
2274 if (!cmd)
2275 return -ENOMEM;
2277 dcmd = &cmd->frame->dcmd;
2279 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2282 * Prepare DCMD for aen registration
2284 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2286 dcmd->cmd = MFI_CMD_DCMD;
2287 dcmd->cmd_status = 0x0;
2288 dcmd->sge_count = 1;
2289 dcmd->flags = MFI_FRAME_DIR_READ;
2290 dcmd->timeout = 0;
2291 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2292 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2293 dcmd->mbox.w[0] = seq_num;
2294 dcmd->mbox.w[1] = curr_aen.word;
2295 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2296 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2299 * Store reference to the cmd used to register for AEN. When an
2300 * application wants us to register for AEN, we have to abort this
2301 * cmd and re-register with a new EVENT LOCALE supplied by that app
2303 instance->aen_cmd = cmd;
2306 * Issue the aen registration frame
2308 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2310 return 0;
2314 * megasas_start_aen - Subscribes to AEN during driver load time
2315 * @instance: Adapter soft state
2317 static int megasas_start_aen(struct megasas_instance *instance)
2319 struct megasas_evt_log_info eli;
2320 union megasas_evt_class_locale class_locale;
2323 * Get the latest sequence number from FW
2325 memset(&eli, 0, sizeof(eli));
2327 if (megasas_get_seq_num(instance, &eli))
2328 return -1;
2331 * Register AEN with FW for latest sequence number plus 1
2333 class_locale.members.reserved = 0;
2334 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2335 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2337 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2338 class_locale.word);
2342 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2343 * @instance: Adapter soft state
2345 static int megasas_io_attach(struct megasas_instance *instance)
2347 struct Scsi_Host *host = instance->host;
2350 * Export parameters required by SCSI mid-layer
2352 host->irq = instance->pdev->irq;
2353 host->unique_id = instance->unique_id;
2354 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2355 host->this_id = instance->init_id;
2356 host->sg_tablesize = instance->max_num_sge;
2357 host->max_sectors = instance->max_sectors_per_req;
2358 host->cmd_per_lun = 128;
2359 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2360 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2361 host->max_lun = MEGASAS_MAX_LUN;
2362 host->max_cmd_len = 16;
2365 * Notify the mid-layer about the new controller
2367 if (scsi_add_host(host, &instance->pdev->dev)) {
2368 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2369 return -ENODEV;
2373 * Trigger SCSI to scan our drives
2375 scsi_scan_host(host);
2376 return 0;
2379 static int
2380 megasas_set_dma_mask(struct pci_dev *pdev)
2383 * All our contollers are capable of performing 64-bit DMA
2385 if (IS_DMA64) {
2386 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2388 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2389 goto fail_set_dma_mask;
2391 } else {
2392 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2393 goto fail_set_dma_mask;
2395 return 0;
2397 fail_set_dma_mask:
2398 return 1;
2402 * megasas_probe_one - PCI hotplug entry point
2403 * @pdev: PCI device structure
2404 * @id: PCI ids of supported hotplugged adapter
2406 static int __devinit
2407 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2409 int rval;
2410 struct Scsi_Host *host;
2411 struct megasas_instance *instance;
2414 * Announce PCI information
2416 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2417 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2418 pdev->subsystem_device);
2420 printk("bus %d:slot %d:func %d\n",
2421 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2424 * PCI prepping: enable device set bus mastering and dma mask
2426 rval = pci_enable_device(pdev);
2428 if (rval) {
2429 return rval;
2432 pci_set_master(pdev);
2434 if (megasas_set_dma_mask(pdev))
2435 goto fail_set_dma_mask;
2437 host = scsi_host_alloc(&megasas_template,
2438 sizeof(struct megasas_instance));
2440 if (!host) {
2441 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2442 goto fail_alloc_instance;
2445 instance = (struct megasas_instance *)host->hostdata;
2446 memset(instance, 0, sizeof(*instance));
2448 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2449 &instance->producer_h);
2450 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2451 &instance->consumer_h);
2453 if (!instance->producer || !instance->consumer) {
2454 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2455 "producer, consumer\n");
2456 goto fail_alloc_dma_buf;
2459 *instance->producer = 0;
2460 *instance->consumer = 0;
2462 instance->evt_detail = pci_alloc_consistent(pdev,
2463 sizeof(struct
2464 megasas_evt_detail),
2465 &instance->evt_detail_h);
2467 if (!instance->evt_detail) {
2468 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2469 "event detail structure\n");
2470 goto fail_alloc_dma_buf;
2474 * Initialize locks and queues
2476 INIT_LIST_HEAD(&instance->cmd_pool);
2478 atomic_set(&instance->fw_outstanding,0);
2480 init_waitqueue_head(&instance->int_cmd_wait_q);
2481 init_waitqueue_head(&instance->abort_cmd_wait_q);
2483 spin_lock_init(&instance->cmd_pool_lock);
2484 spin_lock_init(&instance->completion_lock);
2486 mutex_init(&instance->aen_mutex);
2487 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2490 * Initialize PCI related and misc parameters
2492 instance->pdev = pdev;
2493 instance->host = host;
2494 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2495 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2497 megasas_dbg_lvl = 0;
2498 instance->flag = 0;
2499 instance->last_time = 0;
2502 * Initialize MFI Firmware
2504 if (megasas_init_mfi(instance))
2505 goto fail_init_mfi;
2508 * Register IRQ
2510 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2511 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2512 goto fail_irq;
2515 instance->instancet->enable_intr(instance->reg_set);
2518 * Store instance in PCI softstate
2520 pci_set_drvdata(pdev, instance);
2523 * Add this controller to megasas_mgmt_info structure so that it
2524 * can be exported to management applications
2526 megasas_mgmt_info.count++;
2527 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2528 megasas_mgmt_info.max_index++;
2531 * Initiate AEN (Asynchronous Event Notification)
2533 if (megasas_start_aen(instance)) {
2534 printk(KERN_DEBUG "megasas: start aen failed\n");
2535 goto fail_start_aen;
2539 * Register with SCSI mid-layer
2541 if (megasas_io_attach(instance))
2542 goto fail_io_attach;
2544 return 0;
2546 fail_start_aen:
2547 fail_io_attach:
2548 megasas_mgmt_info.count--;
2549 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2550 megasas_mgmt_info.max_index--;
2552 pci_set_drvdata(pdev, NULL);
2553 instance->instancet->disable_intr(instance->reg_set);
2554 free_irq(instance->pdev->irq, instance);
2556 megasas_release_mfi(instance);
2558 fail_irq:
2559 fail_init_mfi:
2560 fail_alloc_dma_buf:
2561 if (instance->evt_detail)
2562 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2563 instance->evt_detail,
2564 instance->evt_detail_h);
2566 if (instance->producer)
2567 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2568 instance->producer_h);
2569 if (instance->consumer)
2570 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2571 instance->consumer_h);
2572 scsi_host_put(host);
2574 fail_alloc_instance:
2575 fail_set_dma_mask:
2576 pci_disable_device(pdev);
2578 return -ENODEV;
2582 * megasas_flush_cache - Requests FW to flush all its caches
2583 * @instance: Adapter soft state
2585 static void megasas_flush_cache(struct megasas_instance *instance)
2587 struct megasas_cmd *cmd;
2588 struct megasas_dcmd_frame *dcmd;
2590 cmd = megasas_get_cmd(instance);
2592 if (!cmd)
2593 return;
2595 dcmd = &cmd->frame->dcmd;
2597 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2599 dcmd->cmd = MFI_CMD_DCMD;
2600 dcmd->cmd_status = 0x0;
2601 dcmd->sge_count = 0;
2602 dcmd->flags = MFI_FRAME_DIR_NONE;
2603 dcmd->timeout = 0;
2604 dcmd->data_xfer_len = 0;
2605 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2606 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2608 megasas_issue_blocked_cmd(instance, cmd);
2610 megasas_return_cmd(instance, cmd);
2612 return;
2616 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2617 * @instance: Adapter soft state
2618 * @opcode: Shutdown/Hibernate
2620 static void megasas_shutdown_controller(struct megasas_instance *instance,
2621 u32 opcode)
2623 struct megasas_cmd *cmd;
2624 struct megasas_dcmd_frame *dcmd;
2626 cmd = megasas_get_cmd(instance);
2628 if (!cmd)
2629 return;
2631 if (instance->aen_cmd)
2632 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2634 dcmd = &cmd->frame->dcmd;
2636 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2638 dcmd->cmd = MFI_CMD_DCMD;
2639 dcmd->cmd_status = 0x0;
2640 dcmd->sge_count = 0;
2641 dcmd->flags = MFI_FRAME_DIR_NONE;
2642 dcmd->timeout = 0;
2643 dcmd->data_xfer_len = 0;
2644 dcmd->opcode = opcode;
2646 megasas_issue_blocked_cmd(instance, cmd);
2648 megasas_return_cmd(instance, cmd);
2650 return;
2653 #ifdef CONFIG_PM
2655 * megasas_suspend - driver suspend entry point
2656 * @pdev: PCI device structure
2657 * @state: PCI power state to suspend routine
2659 static int
2660 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2662 struct Scsi_Host *host;
2663 struct megasas_instance *instance;
2665 instance = pci_get_drvdata(pdev);
2666 host = instance->host;
2668 if (poll_mode_io)
2669 del_timer_sync(&instance->io_completion_timer);
2671 megasas_flush_cache(instance);
2672 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2673 tasklet_kill(&instance->isr_tasklet);
2675 pci_set_drvdata(instance->pdev, instance);
2676 instance->instancet->disable_intr(instance->reg_set);
2677 free_irq(instance->pdev->irq, instance);
2679 pci_save_state(pdev);
2680 pci_disable_device(pdev);
2682 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2684 return 0;
2688 * megasas_resume- driver resume entry point
2689 * @pdev: PCI device structure
2691 static int
2692 megasas_resume(struct pci_dev *pdev)
2694 int rval;
2695 struct Scsi_Host *host;
2696 struct megasas_instance *instance;
2698 instance = pci_get_drvdata(pdev);
2699 host = instance->host;
2700 pci_set_power_state(pdev, PCI_D0);
2701 pci_enable_wake(pdev, PCI_D0, 0);
2702 pci_restore_state(pdev);
2705 * PCI prepping: enable device set bus mastering and dma mask
2707 rval = pci_enable_device(pdev);
2709 if (rval) {
2710 printk(KERN_ERR "megasas: Enable device failed\n");
2711 return rval;
2714 pci_set_master(pdev);
2716 if (megasas_set_dma_mask(pdev))
2717 goto fail_set_dma_mask;
2720 * Initialize MFI Firmware
2723 *instance->producer = 0;
2724 *instance->consumer = 0;
2726 atomic_set(&instance->fw_outstanding, 0);
2729 * We expect the FW state to be READY
2731 if (megasas_transition_to_ready(instance))
2732 goto fail_ready_state;
2734 if (megasas_issue_init_mfi(instance))
2735 goto fail_init_mfi;
2737 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2738 (unsigned long)instance);
2741 * Register IRQ
2743 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2744 "megasas", instance)) {
2745 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2746 goto fail_irq;
2749 instance->instancet->enable_intr(instance->reg_set);
2752 * Initiate AEN (Asynchronous Event Notification)
2754 if (megasas_start_aen(instance))
2755 printk(KERN_ERR "megasas: Start AEN failed\n");
2757 /* Initialize the cmd completion timer */
2758 if (poll_mode_io)
2759 megasas_start_timer(instance, &instance->io_completion_timer,
2760 megasas_io_completion_timer,
2761 MEGASAS_COMPLETION_TIMER_INTERVAL);
2762 return 0;
2764 fail_irq:
2765 fail_init_mfi:
2766 if (instance->evt_detail)
2767 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2768 instance->evt_detail,
2769 instance->evt_detail_h);
2771 if (instance->producer)
2772 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2773 instance->producer_h);
2774 if (instance->consumer)
2775 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2776 instance->consumer_h);
2777 scsi_host_put(host);
2779 fail_set_dma_mask:
2780 fail_ready_state:
2782 pci_disable_device(pdev);
2784 return -ENODEV;
2786 #else
2787 #define megasas_suspend NULL
2788 #define megasas_resume NULL
2789 #endif
2792 * megasas_detach_one - PCI hot"un"plug entry point
2793 * @pdev: PCI device structure
2795 static void __devexit megasas_detach_one(struct pci_dev *pdev)
2797 int i;
2798 struct Scsi_Host *host;
2799 struct megasas_instance *instance;
2801 instance = pci_get_drvdata(pdev);
2802 host = instance->host;
2804 if (poll_mode_io)
2805 del_timer_sync(&instance->io_completion_timer);
2807 scsi_remove_host(instance->host);
2808 megasas_flush_cache(instance);
2809 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2810 tasklet_kill(&instance->isr_tasklet);
2813 * Take the instance off the instance array. Note that we will not
2814 * decrement the max_index. We let this array be sparse array
2816 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2817 if (megasas_mgmt_info.instance[i] == instance) {
2818 megasas_mgmt_info.count--;
2819 megasas_mgmt_info.instance[i] = NULL;
2821 break;
2825 pci_set_drvdata(instance->pdev, NULL);
2827 instance->instancet->disable_intr(instance->reg_set);
2829 free_irq(instance->pdev->irq, instance);
2831 megasas_release_mfi(instance);
2833 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2834 instance->evt_detail, instance->evt_detail_h);
2836 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2837 instance->producer_h);
2839 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2840 instance->consumer_h);
2842 scsi_host_put(host);
2844 pci_set_drvdata(pdev, NULL);
2846 pci_disable_device(pdev);
2848 return;
2852 * megasas_shutdown - Shutdown entry point
2853 * @device: Generic device structure
2855 static void megasas_shutdown(struct pci_dev *pdev)
2857 struct megasas_instance *instance = pci_get_drvdata(pdev);
2858 megasas_flush_cache(instance);
2862 * megasas_mgmt_open - char node "open" entry point
2864 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2867 * Allow only those users with admin rights
2869 if (!capable(CAP_SYS_ADMIN))
2870 return -EACCES;
2872 return 0;
2876 * megasas_mgmt_release - char node "release" entry point
2878 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2880 filep->private_data = NULL;
2881 fasync_helper(-1, filep, 0, &megasas_async_queue);
2883 return 0;
2887 * megasas_mgmt_fasync - Async notifier registration from applications
2889 * This function adds the calling process to a driver global queue. When an
2890 * event occurs, SIGIO will be sent to all processes in this queue.
2892 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2894 int rc;
2896 mutex_lock(&megasas_async_queue_mutex);
2898 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2900 mutex_unlock(&megasas_async_queue_mutex);
2902 if (rc >= 0) {
2903 /* For sanity check when we get ioctl */
2904 filep->private_data = filep;
2905 return 0;
2908 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2910 return rc;
2914 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2915 * @instance: Adapter soft state
2916 * @argp: User's ioctl packet
2918 static int
2919 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2920 struct megasas_iocpacket __user * user_ioc,
2921 struct megasas_iocpacket *ioc)
2923 struct megasas_sge32 *kern_sge32;
2924 struct megasas_cmd *cmd;
2925 void *kbuff_arr[MAX_IOCTL_SGE];
2926 dma_addr_t buf_handle = 0;
2927 int error = 0, i;
2928 void *sense = NULL;
2929 dma_addr_t sense_handle;
2930 u32 *sense_ptr;
2932 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2934 if (ioc->sge_count > MAX_IOCTL_SGE) {
2935 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2936 ioc->sge_count, MAX_IOCTL_SGE);
2937 return -EINVAL;
2940 cmd = megasas_get_cmd(instance);
2941 if (!cmd) {
2942 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2943 return -ENOMEM;
2947 * User's IOCTL packet has 2 frames (maximum). Copy those two
2948 * frames into our cmd's frames. cmd->frame's context will get
2949 * overwritten when we copy from user's frames. So set that value
2950 * alone separately
2952 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2953 cmd->frame->hdr.context = cmd->index;
2956 * The management interface between applications and the fw uses
2957 * MFI frames. E.g, RAID configuration changes, LD property changes
2958 * etc are accomplishes through different kinds of MFI frames. The
2959 * driver needs to care only about substituting user buffers with
2960 * kernel buffers in SGLs. The location of SGL is embedded in the
2961 * struct iocpacket itself.
2963 kern_sge32 = (struct megasas_sge32 *)
2964 ((unsigned long)cmd->frame + ioc->sgl_off);
2967 * For each user buffer, create a mirror buffer and copy in
2969 for (i = 0; i < ioc->sge_count; i++) {
2970 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2971 ioc->sgl[i].iov_len,
2972 &buf_handle, GFP_KERNEL);
2973 if (!kbuff_arr[i]) {
2974 printk(KERN_DEBUG "megasas: Failed to alloc "
2975 "kernel SGL buffer for IOCTL \n");
2976 error = -ENOMEM;
2977 goto out;
2981 * We don't change the dma_coherent_mask, so
2982 * pci_alloc_consistent only returns 32bit addresses
2984 kern_sge32[i].phys_addr = (u32) buf_handle;
2985 kern_sge32[i].length = ioc->sgl[i].iov_len;
2988 * We created a kernel buffer corresponding to the
2989 * user buffer. Now copy in from the user buffer
2991 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2992 (u32) (ioc->sgl[i].iov_len))) {
2993 error = -EFAULT;
2994 goto out;
2998 if (ioc->sense_len) {
2999 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
3000 &sense_handle, GFP_KERNEL);
3001 if (!sense) {
3002 error = -ENOMEM;
3003 goto out;
3006 sense_ptr =
3007 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
3008 *sense_ptr = sense_handle;
3012 * Set the sync_cmd flag so that the ISR knows not to complete this
3013 * cmd to the SCSI mid-layer
3015 cmd->sync_cmd = 1;
3016 megasas_issue_blocked_cmd(instance, cmd);
3017 cmd->sync_cmd = 0;
3020 * copy out the kernel buffers to user buffers
3022 for (i = 0; i < ioc->sge_count; i++) {
3023 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
3024 ioc->sgl[i].iov_len)) {
3025 error = -EFAULT;
3026 goto out;
3031 * copy out the sense
3033 if (ioc->sense_len) {
3035 * sense_ptr points to the location that has the user
3036 * sense buffer address
3038 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
3039 ioc->sense_off);
3041 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
3042 sense, ioc->sense_len)) {
3043 printk(KERN_ERR "megasas: Failed to copy out to user "
3044 "sense data\n");
3045 error = -EFAULT;
3046 goto out;
3051 * copy the status codes returned by the fw
3053 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
3054 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
3055 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
3056 error = -EFAULT;
3059 out:
3060 if (sense) {
3061 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
3062 sense, sense_handle);
3065 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
3066 dma_free_coherent(&instance->pdev->dev,
3067 kern_sge32[i].length,
3068 kbuff_arr[i], kern_sge32[i].phys_addr);
3071 megasas_return_cmd(instance, cmd);
3072 return error;
3075 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
3077 int i;
3079 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3081 if ((megasas_mgmt_info.instance[i]) &&
3082 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
3083 return megasas_mgmt_info.instance[i];
3086 return NULL;
3089 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3091 struct megasas_iocpacket __user *user_ioc =
3092 (struct megasas_iocpacket __user *)arg;
3093 struct megasas_iocpacket *ioc;
3094 struct megasas_instance *instance;
3095 int error;
3097 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3098 if (!ioc)
3099 return -ENOMEM;
3101 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3102 error = -EFAULT;
3103 goto out_kfree_ioc;
3106 instance = megasas_lookup_instance(ioc->host_no);
3107 if (!instance) {
3108 error = -ENODEV;
3109 goto out_kfree_ioc;
3113 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3115 if (down_interruptible(&instance->ioctl_sem)) {
3116 error = -ERESTARTSYS;
3117 goto out_kfree_ioc;
3119 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3120 up(&instance->ioctl_sem);
3122 out_kfree_ioc:
3123 kfree(ioc);
3124 return error;
3127 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3129 struct megasas_instance *instance;
3130 struct megasas_aen aen;
3131 int error;
3133 if (file->private_data != file) {
3134 printk(KERN_DEBUG "megasas: fasync_helper was not "
3135 "called first\n");
3136 return -EINVAL;
3139 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3140 return -EFAULT;
3142 instance = megasas_lookup_instance(aen.host_no);
3144 if (!instance)
3145 return -ENODEV;
3147 mutex_lock(&instance->aen_mutex);
3148 error = megasas_register_aen(instance, aen.seq_num,
3149 aen.class_locale_word);
3150 mutex_unlock(&instance->aen_mutex);
3151 return error;
3155 * megasas_mgmt_ioctl - char node ioctl entry point
3157 static long
3158 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3160 switch (cmd) {
3161 case MEGASAS_IOC_FIRMWARE:
3162 return megasas_mgmt_ioctl_fw(file, arg);
3164 case MEGASAS_IOC_GET_AEN:
3165 return megasas_mgmt_ioctl_aen(file, arg);
3168 return -ENOTTY;
3171 #ifdef CONFIG_COMPAT
3172 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3174 struct compat_megasas_iocpacket __user *cioc =
3175 (struct compat_megasas_iocpacket __user *)arg;
3176 struct megasas_iocpacket __user *ioc =
3177 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3178 int i;
3179 int error = 0;
3181 if (clear_user(ioc, sizeof(*ioc)))
3182 return -EFAULT;
3184 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3185 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3186 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3187 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3188 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3189 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3190 return -EFAULT;
3192 for (i = 0; i < MAX_IOCTL_SGE; i++) {
3193 compat_uptr_t ptr;
3195 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3196 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3197 copy_in_user(&ioc->sgl[i].iov_len,
3198 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3199 return -EFAULT;
3202 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3204 if (copy_in_user(&cioc->frame.hdr.cmd_status,
3205 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3206 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3207 return -EFAULT;
3209 return error;
3212 static long
3213 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3214 unsigned long arg)
3216 switch (cmd) {
3217 case MEGASAS_IOC_FIRMWARE32:
3218 return megasas_mgmt_compat_ioctl_fw(file, arg);
3219 case MEGASAS_IOC_GET_AEN:
3220 return megasas_mgmt_ioctl_aen(file, arg);
3223 return -ENOTTY;
3225 #endif
3228 * File operations structure for management interface
3230 static const struct file_operations megasas_mgmt_fops = {
3231 .owner = THIS_MODULE,
3232 .open = megasas_mgmt_open,
3233 .release = megasas_mgmt_release,
3234 .fasync = megasas_mgmt_fasync,
3235 .unlocked_ioctl = megasas_mgmt_ioctl,
3236 #ifdef CONFIG_COMPAT
3237 .compat_ioctl = megasas_mgmt_compat_ioctl,
3238 #endif
3242 * PCI hotplug support registration structure
3244 static struct pci_driver megasas_pci_driver = {
3246 .name = "megaraid_sas",
3247 .id_table = megasas_pci_table,
3248 .probe = megasas_probe_one,
3249 .remove = __devexit_p(megasas_detach_one),
3250 .suspend = megasas_suspend,
3251 .resume = megasas_resume,
3252 .shutdown = megasas_shutdown,
3256 * Sysfs driver attributes
3258 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3260 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3261 MEGASAS_VERSION);
3264 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3266 static ssize_t
3267 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3269 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3270 MEGASAS_RELDATE);
3273 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3274 NULL);
3276 static ssize_t
3277 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3279 return sprintf(buf, "%u\n", megasas_dbg_lvl);
3282 static ssize_t
3283 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3285 int retval = count;
3286 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3287 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3288 retval = -EINVAL;
3290 return retval;
3293 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3294 megasas_sysfs_set_dbg_lvl);
3296 static ssize_t
3297 megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
3299 return sprintf(buf, "%u\n", poll_mode_io);
3302 static ssize_t
3303 megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
3304 const char *buf, size_t count)
3306 int retval = count;
3307 int tmp = poll_mode_io;
3308 int i;
3309 struct megasas_instance *instance;
3311 if (sscanf(buf, "%u", &poll_mode_io) < 1) {
3312 printk(KERN_ERR "megasas: could not set poll_mode_io\n");
3313 retval = -EINVAL;
3317 * Check if poll_mode_io is already set or is same as previous value
3319 if ((tmp && poll_mode_io) || (tmp == poll_mode_io))
3320 goto out;
3322 if (poll_mode_io) {
3324 * Start timers for all adapters
3326 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3327 instance = megasas_mgmt_info.instance[i];
3328 if (instance) {
3329 megasas_start_timer(instance,
3330 &instance->io_completion_timer,
3331 megasas_io_completion_timer,
3332 MEGASAS_COMPLETION_TIMER_INTERVAL);
3335 } else {
3337 * Delete timers for all adapters
3339 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3340 instance = megasas_mgmt_info.instance[i];
3341 if (instance)
3342 del_timer_sync(&instance->io_completion_timer);
3346 out:
3347 return retval;
3350 static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUGO,
3351 megasas_sysfs_show_poll_mode_io,
3352 megasas_sysfs_set_poll_mode_io);
3355 * megasas_init - Driver load entry point
3357 static int __init megasas_init(void)
3359 int rval;
3362 * Announce driver version and other information
3364 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3365 MEGASAS_EXT_VERSION);
3367 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3370 * Register character device node
3372 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3374 if (rval < 0) {
3375 printk(KERN_DEBUG "megasas: failed to open device node\n");
3376 return rval;
3379 megasas_mgmt_majorno = rval;
3382 * Register ourselves as PCI hotplug module
3384 rval = pci_register_driver(&megasas_pci_driver);
3386 if (rval) {
3387 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3388 goto err_pcidrv;
3391 rval = driver_create_file(&megasas_pci_driver.driver,
3392 &driver_attr_version);
3393 if (rval)
3394 goto err_dcf_attr_ver;
3395 rval = driver_create_file(&megasas_pci_driver.driver,
3396 &driver_attr_release_date);
3397 if (rval)
3398 goto err_dcf_rel_date;
3399 rval = driver_create_file(&megasas_pci_driver.driver,
3400 &driver_attr_dbg_lvl);
3401 if (rval)
3402 goto err_dcf_dbg_lvl;
3403 rval = driver_create_file(&megasas_pci_driver.driver,
3404 &driver_attr_poll_mode_io);
3405 if (rval)
3406 goto err_dcf_poll_mode_io;
3408 return rval;
3410 err_dcf_poll_mode_io:
3411 driver_remove_file(&megasas_pci_driver.driver,
3412 &driver_attr_dbg_lvl);
3413 err_dcf_dbg_lvl:
3414 driver_remove_file(&megasas_pci_driver.driver,
3415 &driver_attr_release_date);
3416 err_dcf_rel_date:
3417 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3418 err_dcf_attr_ver:
3419 pci_unregister_driver(&megasas_pci_driver);
3420 err_pcidrv:
3421 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3422 return rval;
3426 * megasas_exit - Driver unload entry point
3428 static void __exit megasas_exit(void)
3430 driver_remove_file(&megasas_pci_driver.driver,
3431 &driver_attr_poll_mode_io);
3432 driver_remove_file(&megasas_pci_driver.driver,
3433 &driver_attr_dbg_lvl);
3434 driver_remove_file(&megasas_pci_driver.driver,
3435 &driver_attr_release_date);
3436 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3438 pci_unregister_driver(&megasas_pci_driver);
3439 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3442 module_init(megasas_init);
3443 module_exit(megasas_exit);