2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl
);
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__
void ip_send_check(struct iphdr
*iph
)
90 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
92 EXPORT_SYMBOL(ip_send_check
);
94 int __ip_local_out(struct sk_buff
*skb
)
96 struct iphdr
*iph
= ip_hdr(skb
);
98 iph
->tot_len
= htons(skb
->len
);
100 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
, skb
, NULL
,
101 skb_dst(skb
)->dev
, dst_output
);
104 int ip_local_out(struct sk_buff
*skb
)
108 err
= __ip_local_out(skb
);
109 if (likely(err
== 1))
110 err
= dst_output(skb
);
114 EXPORT_SYMBOL_GPL(ip_local_out
);
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
119 skb_reset_mac_header(newskb
);
120 __skb_pull(newskb
, skb_network_offset(newskb
));
121 newskb
->pkt_type
= PACKET_LOOPBACK
;
122 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
123 WARN_ON(!skb_dst(newskb
));
124 skb_dst_force(newskb
);
129 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
131 int ttl
= inet
->uc_ttl
;
134 ttl
= ip4_dst_hoplimit(dst
);
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
143 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
145 struct inet_sock
*inet
= inet_sk(sk
);
146 struct rtable
*rt
= skb_rtable(skb
);
149 /* Build the IP header. */
150 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
151 skb_reset_network_header(skb
);
155 iph
->tos
= inet
->tos
;
156 if (ip_dont_fragment(sk
, &rt
->dst
))
157 iph
->frag_off
= htons(IP_DF
);
160 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
161 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
163 iph
->protocol
= sk
->sk_protocol
;
164 ip_select_ident(iph
, &rt
->dst
, sk
);
166 if (opt
&& opt
->opt
.optlen
) {
167 iph
->ihl
+= opt
->opt
.optlen
>>2;
168 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
171 skb
->priority
= sk
->sk_priority
;
172 skb
->mark
= sk
->sk_mark
;
175 return ip_local_out(skb
);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
179 static inline int ip_finish_output2(struct sk_buff
*skb
)
181 struct dst_entry
*dst
= skb_dst(skb
);
182 struct rtable
*rt
= (struct rtable
*)dst
;
183 struct net_device
*dev
= dst
->dev
;
184 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
185 struct neighbour
*neigh
;
187 if (rt
->rt_type
== RTN_MULTICAST
) {
188 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
189 } else if (rt
->rt_type
== RTN_BROADCAST
)
190 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
192 /* Be paranoid, rather than too clever. */
193 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
194 struct sk_buff
*skb2
;
196 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
202 skb_set_owner_w(skb2
, skb
->sk
);
208 neigh
= dst_get_neighbour_noref(dst
);
210 int res
= neigh_output(neigh
, skb
);
218 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
223 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
225 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
227 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
228 skb_dst(skb
)->dev
->mtu
: dst_mtu(skb_dst(skb
));
231 static int ip_finish_output(struct sk_buff
*skb
)
233 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
234 /* Policy lookup after SNAT yielded a new policy */
235 if (skb_dst(skb
)->xfrm
!= NULL
) {
236 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
237 return dst_output(skb
);
240 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
241 return ip_fragment(skb
, ip_finish_output2
);
243 return ip_finish_output2(skb
);
246 int ip_mc_output(struct sk_buff
*skb
)
248 struct sock
*sk
= skb
->sk
;
249 struct rtable
*rt
= skb_rtable(skb
);
250 struct net_device
*dev
= rt
->dst
.dev
;
253 * If the indicated interface is up and running, send the packet.
255 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
258 skb
->protocol
= htons(ETH_P_IP
);
261 * Multicasts are looped back for other local users
264 if (rt
->rt_flags
&RTCF_MULTICAST
) {
266 #ifdef CONFIG_IP_MROUTE
267 /* Small optimization: do not loopback not local frames,
268 which returned after forwarding; they will be dropped
269 by ip_mr_input in any case.
270 Note, that local frames are looped back to be delivered
273 This check is duplicated in ip_mr_input at the moment.
276 ((rt
->rt_flags
& RTCF_LOCAL
) ||
277 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
280 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
282 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
283 newskb
, NULL
, newskb
->dev
,
284 ip_dev_loopback_xmit
);
287 /* Multicasts with ttl 0 must not go beyond the host */
289 if (ip_hdr(skb
)->ttl
== 0) {
295 if (rt
->rt_flags
&RTCF_BROADCAST
) {
296 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
298 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, newskb
,
299 NULL
, newskb
->dev
, ip_dev_loopback_xmit
);
302 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
,
303 skb
->dev
, ip_finish_output
,
304 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
307 int ip_output(struct sk_buff
*skb
)
309 struct net_device
*dev
= skb_dst(skb
)->dev
;
311 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
314 skb
->protocol
= htons(ETH_P_IP
);
316 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
318 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
322 * copy saddr and daddr, possibly using 64bit load/stores
324 * iph->saddr = fl4->saddr;
325 * iph->daddr = fl4->daddr;
327 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
329 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
330 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
331 memcpy(&iph
->saddr
, &fl4
->saddr
,
332 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
335 int ip_queue_xmit(struct sk_buff
*skb
, struct flowi
*fl
)
337 struct sock
*sk
= skb
->sk
;
338 struct inet_sock
*inet
= inet_sk(sk
);
339 struct ip_options_rcu
*inet_opt
;
345 /* Skip all of this if the packet is already routed,
346 * f.e. by something like SCTP.
349 inet_opt
= rcu_dereference(inet
->inet_opt
);
351 rt
= skb_rtable(skb
);
355 /* Make sure we can route this packet. */
356 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
360 /* Use correct destination address if we have options. */
361 daddr
= inet
->inet_daddr
;
362 if (inet_opt
&& inet_opt
->opt
.srr
)
363 daddr
= inet_opt
->opt
.faddr
;
365 /* If this fails, retransmit mechanism of transport layer will
366 * keep trying until route appears or the connection times
369 rt
= ip_route_output_ports(sock_net(sk
), fl4
, sk
,
370 daddr
, inet
->inet_saddr
,
375 sk
->sk_bound_dev_if
);
378 sk_setup_caps(sk
, &rt
->dst
);
380 skb_dst_set_noref(skb
, &rt
->dst
);
383 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& fl4
->daddr
!= rt
->rt_gateway
)
386 /* OK, we know where to send it, allocate and build IP header. */
387 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
388 skb_reset_network_header(skb
);
390 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
391 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->local_df
)
392 iph
->frag_off
= htons(IP_DF
);
395 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
396 iph
->protocol
= sk
->sk_protocol
;
397 ip_copy_addrs(iph
, fl4
);
399 /* Transport layer set skb->h.foo itself. */
401 if (inet_opt
&& inet_opt
->opt
.optlen
) {
402 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
403 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
406 ip_select_ident_more(iph
, &rt
->dst
, sk
,
407 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
409 skb
->priority
= sk
->sk_priority
;
410 skb
->mark
= sk
->sk_mark
;
412 res
= ip_local_out(skb
);
418 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
420 return -EHOSTUNREACH
;
422 EXPORT_SYMBOL(ip_queue_xmit
);
425 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
427 to
->pkt_type
= from
->pkt_type
;
428 to
->priority
= from
->priority
;
429 to
->protocol
= from
->protocol
;
431 skb_dst_copy(to
, from
);
433 to
->mark
= from
->mark
;
435 /* Copy the flags to each fragment. */
436 IPCB(to
)->flags
= IPCB(from
)->flags
;
438 #ifdef CONFIG_NET_SCHED
439 to
->tc_index
= from
->tc_index
;
442 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
443 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
444 to
->nf_trace
= from
->nf_trace
;
446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
447 to
->ipvs_property
= from
->ipvs_property
;
449 skb_copy_secmark(to
, from
);
453 * This IP datagram is too large to be sent in one piece. Break it up into
454 * smaller pieces (each of size equal to IP header plus
455 * a block of the data of the original IP data part) that will yet fit in a
456 * single device frame, and queue such a frame for sending.
459 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
463 struct net_device
*dev
;
464 struct sk_buff
*skb2
;
465 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
467 __be16 not_last_frag
;
468 struct rtable
*rt
= skb_rtable(skb
);
474 * Point into the IP datagram header.
479 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
480 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
481 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
482 htonl(ip_skb_dst_mtu(skb
)));
488 * Setup starting values.
492 mtu
= dst_mtu(&rt
->dst
) - hlen
; /* Size of data space */
493 #ifdef CONFIG_BRIDGE_NETFILTER
495 mtu
-= nf_bridge_mtu_reduction(skb
);
497 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
499 /* When frag_list is given, use it. First, check its validity:
500 * some transformers could create wrong frag_list or break existing
501 * one, it is not prohibited. In this case fall back to copying.
503 * LATER: this step can be merged to real generation of fragments,
504 * we can switch to copy when see the first bad fragment.
506 if (skb_has_frag_list(skb
)) {
507 struct sk_buff
*frag
, *frag2
;
508 int first_len
= skb_pagelen(skb
);
510 if (first_len
- hlen
> mtu
||
511 ((first_len
- hlen
) & 7) ||
512 ip_is_fragment(iph
) ||
516 skb_walk_frags(skb
, frag
) {
517 /* Correct geometry. */
518 if (frag
->len
> mtu
||
519 ((frag
->len
& 7) && frag
->next
) ||
520 skb_headroom(frag
) < hlen
)
521 goto slow_path_clean
;
523 /* Partially cloned skb? */
524 if (skb_shared(frag
))
525 goto slow_path_clean
;
530 frag
->destructor
= sock_wfree
;
532 skb
->truesize
-= frag
->truesize
;
535 /* Everything is OK. Generate! */
539 frag
= skb_shinfo(skb
)->frag_list
;
540 skb_frag_list_init(skb
);
541 skb
->data_len
= first_len
- skb_headlen(skb
);
542 skb
->len
= first_len
;
543 iph
->tot_len
= htons(first_len
);
544 iph
->frag_off
= htons(IP_MF
);
548 /* Prepare header of the next frame,
549 * before previous one went down. */
551 frag
->ip_summed
= CHECKSUM_NONE
;
552 skb_reset_transport_header(frag
);
553 __skb_push(frag
, hlen
);
554 skb_reset_network_header(frag
);
555 memcpy(skb_network_header(frag
), iph
, hlen
);
557 iph
->tot_len
= htons(frag
->len
);
558 ip_copy_metadata(frag
, skb
);
560 ip_options_fragment(frag
);
561 offset
+= skb
->len
- hlen
;
562 iph
->frag_off
= htons(offset
>>3);
563 if (frag
->next
!= NULL
)
564 iph
->frag_off
|= htons(IP_MF
);
565 /* Ready, complete checksum */
572 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
582 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
591 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
595 skb_walk_frags(skb
, frag2
) {
599 frag2
->destructor
= NULL
;
600 skb
->truesize
+= frag2
->truesize
;
605 left
= skb
->len
- hlen
; /* Space per frame */
606 ptr
= hlen
; /* Where to start from */
608 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
609 * we need to make room for the encapsulating header
611 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->dst
.dev
, nf_bridge_pad(skb
));
614 * Fragment the datagram.
617 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
618 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
621 * Keep copying data until we run out.
626 /* IF: it doesn't fit, use 'mtu' - the data space left */
629 /* IF: we are not sending up to and including the packet end
630 then align the next start on an eight byte boundary */
638 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
639 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
645 * Set up data on packet
648 ip_copy_metadata(skb2
, skb
);
649 skb_reserve(skb2
, ll_rs
);
650 skb_put(skb2
, len
+ hlen
);
651 skb_reset_network_header(skb2
);
652 skb2
->transport_header
= skb2
->network_header
+ hlen
;
655 * Charge the memory for the fragment to any owner
660 skb_set_owner_w(skb2
, skb
->sk
);
663 * Copy the packet header into the new buffer.
666 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
669 * Copy a block of the IP datagram.
671 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
676 * Fill in the new header fields.
679 iph
->frag_off
= htons((offset
>> 3));
681 /* ANK: dirty, but effective trick. Upgrade options only if
682 * the segment to be fragmented was THE FIRST (otherwise,
683 * options are already fixed) and make it ONCE
684 * on the initial skb, so that all the following fragments
685 * will inherit fixed options.
688 ip_options_fragment(skb
);
691 * Added AC : If we are fragmenting a fragment that's not the
692 * last fragment then keep MF on each bit
694 if (left
> 0 || not_last_frag
)
695 iph
->frag_off
|= htons(IP_MF
);
700 * Put this fragment into the sending queue.
702 iph
->tot_len
= htons(len
+ hlen
);
710 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
713 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
718 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
721 EXPORT_SYMBOL(ip_fragment
);
724 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
726 struct iovec
*iov
= from
;
728 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
729 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
733 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
735 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
739 EXPORT_SYMBOL(ip_generic_getfrag
);
742 csum_page(struct page
*page
, int offset
, int copy
)
747 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
752 static inline int ip_ufo_append_data(struct sock
*sk
,
753 struct sk_buff_head
*queue
,
754 int getfrag(void *from
, char *to
, int offset
, int len
,
755 int odd
, struct sk_buff
*skb
),
756 void *from
, int length
, int hh_len
, int fragheaderlen
,
757 int transhdrlen
, int maxfraglen
, unsigned int flags
)
762 /* There is support for UDP fragmentation offload by network
763 * device, so create one single skb packet containing complete
766 if ((skb
= skb_peek_tail(queue
)) == NULL
) {
767 skb
= sock_alloc_send_skb(sk
,
768 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
769 (flags
& MSG_DONTWAIT
), &err
);
774 /* reserve space for Hardware header */
775 skb_reserve(skb
, hh_len
);
777 /* create space for UDP/IP header */
778 skb_put(skb
, fragheaderlen
+ transhdrlen
);
780 /* initialize network header pointer */
781 skb_reset_network_header(skb
);
783 /* initialize protocol header pointer */
784 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
786 skb
->ip_summed
= CHECKSUM_PARTIAL
;
789 /* specify the length of each IP datagram fragment */
790 skb_shinfo(skb
)->gso_size
= maxfraglen
- fragheaderlen
;
791 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
792 __skb_queue_tail(queue
, skb
);
795 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
796 (length
- transhdrlen
));
799 static int __ip_append_data(struct sock
*sk
,
801 struct sk_buff_head
*queue
,
802 struct inet_cork
*cork
,
803 int getfrag(void *from
, char *to
, int offset
,
804 int len
, int odd
, struct sk_buff
*skb
),
805 void *from
, int length
, int transhdrlen
,
808 struct inet_sock
*inet
= inet_sk(sk
);
811 struct ip_options
*opt
= cork
->opt
;
818 unsigned int maxfraglen
, fragheaderlen
;
819 int csummode
= CHECKSUM_NONE
;
820 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
822 skb
= skb_peek_tail(queue
);
824 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
825 mtu
= cork
->fragsize
;
827 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
829 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
830 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
832 if (cork
->length
+ length
> 0xFFFF - fragheaderlen
) {
833 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
839 * transhdrlen > 0 means that this is the first fragment and we wish
840 * it won't be fragmented in the future.
843 length
+ fragheaderlen
<= mtu
&&
844 rt
->dst
.dev
->features
& NETIF_F_V4_CSUM
&&
846 csummode
= CHECKSUM_PARTIAL
;
848 cork
->length
+= length
;
849 if (((length
> mtu
) || (skb
&& skb_is_gso(skb
))) &&
850 (sk
->sk_protocol
== IPPROTO_UDP
) &&
851 (rt
->dst
.dev
->features
& NETIF_F_UFO
) && !rt
->dst
.header_len
) {
852 err
= ip_ufo_append_data(sk
, queue
, getfrag
, from
, length
,
853 hh_len
, fragheaderlen
, transhdrlen
,
860 /* So, what's going on in the loop below?
862 * We use calculated fragment length to generate chained skb,
863 * each of segments is IP fragment ready for sending to network after
864 * adding appropriate IP header.
871 /* Check if the remaining data fits into current packet. */
872 copy
= mtu
- skb
->len
;
874 copy
= maxfraglen
- skb
->len
;
877 unsigned int datalen
;
878 unsigned int fraglen
;
879 unsigned int fraggap
;
880 unsigned int alloclen
;
881 struct sk_buff
*skb_prev
;
885 fraggap
= skb_prev
->len
- maxfraglen
;
890 * If remaining data exceeds the mtu,
891 * we know we need more fragment(s).
893 datalen
= length
+ fraggap
;
894 if (datalen
> mtu
- fragheaderlen
)
895 datalen
= maxfraglen
- fragheaderlen
;
896 fraglen
= datalen
+ fragheaderlen
;
898 if ((flags
& MSG_MORE
) &&
899 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
904 alloclen
+= exthdrlen
;
906 /* The last fragment gets additional space at tail.
907 * Note, with MSG_MORE we overallocate on fragments,
908 * because we have no idea what fragment will be
911 if (datalen
== length
+ fraggap
)
912 alloclen
+= rt
->dst
.trailer_len
;
915 skb
= sock_alloc_send_skb(sk
,
916 alloclen
+ hh_len
+ 15,
917 (flags
& MSG_DONTWAIT
), &err
);
920 if (atomic_read(&sk
->sk_wmem_alloc
) <=
922 skb
= sock_wmalloc(sk
,
923 alloclen
+ hh_len
+ 15, 1,
925 if (unlikely(skb
== NULL
))
928 /* only the initial fragment is
936 * Fill in the control structures
938 skb
->ip_summed
= csummode
;
940 skb_reserve(skb
, hh_len
);
941 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
944 * Find where to start putting bytes.
946 data
= skb_put(skb
, fraglen
+ exthdrlen
);
947 skb_set_network_header(skb
, exthdrlen
);
948 skb
->transport_header
= (skb
->network_header
+
950 data
+= fragheaderlen
+ exthdrlen
;
953 skb
->csum
= skb_copy_and_csum_bits(
954 skb_prev
, maxfraglen
,
955 data
+ transhdrlen
, fraggap
, 0);
956 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
959 pskb_trim_unique(skb_prev
, maxfraglen
);
962 copy
= datalen
- transhdrlen
- fraggap
;
963 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
970 length
-= datalen
- fraggap
;
973 csummode
= CHECKSUM_NONE
;
976 * Put the packet on the pending queue.
978 __skb_queue_tail(queue
, skb
);
985 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
)) {
989 if (getfrag(from
, skb_put(skb
, copy
),
990 offset
, copy
, off
, skb
) < 0) {
991 __skb_trim(skb
, off
);
996 int i
= skb_shinfo(skb
)->nr_frags
;
997 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
998 struct page
*page
= cork
->page
;
1002 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
1005 if (page
!= skb_frag_page(frag
)) {
1006 if (i
== MAX_SKB_FRAGS
) {
1010 skb_fill_page_desc(skb
, i
, page
, off
, 0);
1011 skb_frag_ref(skb
, i
);
1012 frag
= &skb_shinfo(skb
)->frags
[i
];
1014 } else if (i
< MAX_SKB_FRAGS
) {
1015 if (copy
> PAGE_SIZE
)
1017 page
= alloc_pages(sk
->sk_allocation
, 0);
1025 skb_fill_page_desc(skb
, i
, page
, 0, 0);
1026 frag
= &skb_shinfo(skb
)->frags
[i
];
1031 if (getfrag(from
, skb_frag_address(frag
)+skb_frag_size(frag
),
1032 offset
, copy
, skb
->len
, skb
) < 0) {
1037 skb_frag_size_add(frag
, copy
);
1039 skb
->data_len
+= copy
;
1040 skb
->truesize
+= copy
;
1041 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1050 cork
->length
-= length
;
1051 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1055 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1056 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1058 struct inet_sock
*inet
= inet_sk(sk
);
1059 struct ip_options_rcu
*opt
;
1063 * setup for corking.
1067 if (cork
->opt
== NULL
) {
1068 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1070 if (unlikely(cork
->opt
== NULL
))
1073 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1074 cork
->flags
|= IPCORK_OPT
;
1075 cork
->addr
= ipc
->addr
;
1081 * We steal reference to this route, caller should not release it
1084 cork
->fragsize
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
1085 rt
->dst
.dev
->mtu
: dst_mtu(&rt
->dst
);
1086 cork
->dst
= &rt
->dst
;
1088 cork
->tx_flags
= ipc
->tx_flags
;
1096 * ip_append_data() and ip_append_page() can make one large IP datagram
1097 * from many pieces of data. Each pieces will be holded on the socket
1098 * until ip_push_pending_frames() is called. Each piece can be a page
1101 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1102 * this interface potentially.
1104 * LATER: length must be adjusted by pad at tail, when it is required.
1106 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1107 int getfrag(void *from
, char *to
, int offset
, int len
,
1108 int odd
, struct sk_buff
*skb
),
1109 void *from
, int length
, int transhdrlen
,
1110 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1113 struct inet_sock
*inet
= inet_sk(sk
);
1116 if (flags
&MSG_PROBE
)
1119 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1120 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1127 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
, getfrag
,
1128 from
, length
, transhdrlen
, flags
);
1131 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1132 int offset
, size_t size
, int flags
)
1134 struct inet_sock
*inet
= inet_sk(sk
);
1135 struct sk_buff
*skb
;
1137 struct ip_options
*opt
= NULL
;
1138 struct inet_cork
*cork
;
1143 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1148 if (flags
&MSG_PROBE
)
1151 if (skb_queue_empty(&sk
->sk_write_queue
))
1154 cork
= &inet
->cork
.base
;
1155 rt
= (struct rtable
*)cork
->dst
;
1156 if (cork
->flags
& IPCORK_OPT
)
1159 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1162 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1163 mtu
= cork
->fragsize
;
1165 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1166 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1168 if (cork
->length
+ size
> 0xFFFF - fragheaderlen
) {
1169 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
, mtu
);
1173 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1176 cork
->length
+= size
;
1177 if ((size
+ skb
->len
> mtu
) &&
1178 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1179 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
1180 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1181 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1188 if (skb_is_gso(skb
))
1192 /* Check if the remaining data fits into current packet. */
1193 len
= mtu
- skb
->len
;
1195 len
= maxfraglen
- skb
->len
;
1198 struct sk_buff
*skb_prev
;
1202 fraggap
= skb_prev
->len
- maxfraglen
;
1204 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1205 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1206 if (unlikely(!skb
)) {
1212 * Fill in the control structures
1214 skb
->ip_summed
= CHECKSUM_NONE
;
1216 skb_reserve(skb
, hh_len
);
1219 * Find where to start putting bytes.
1221 skb_put(skb
, fragheaderlen
+ fraggap
);
1222 skb_reset_network_header(skb
);
1223 skb
->transport_header
= (skb
->network_header
+
1226 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1228 skb_transport_header(skb
),
1230 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1232 pskb_trim_unique(skb_prev
, maxfraglen
);
1236 * Put the packet on the pending queue.
1238 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1242 i
= skb_shinfo(skb
)->nr_frags
;
1245 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1246 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
-1], len
);
1247 } else if (i
< MAX_SKB_FRAGS
) {
1249 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1255 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1257 csum
= csum_page(page
, offset
, len
);
1258 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1262 skb
->data_len
+= len
;
1263 skb
->truesize
+= len
;
1264 atomic_add(len
, &sk
->sk_wmem_alloc
);
1271 cork
->length
-= size
;
1272 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1276 static void ip_cork_release(struct inet_cork
*cork
)
1278 cork
->flags
&= ~IPCORK_OPT
;
1281 dst_release(cork
->dst
);
1286 * Combined all pending IP fragments on the socket as one IP datagram
1287 * and push them out.
1289 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1291 struct sk_buff_head
*queue
,
1292 struct inet_cork
*cork
)
1294 struct sk_buff
*skb
, *tmp_skb
;
1295 struct sk_buff
**tail_skb
;
1296 struct inet_sock
*inet
= inet_sk(sk
);
1297 struct net
*net
= sock_net(sk
);
1298 struct ip_options
*opt
= NULL
;
1299 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1304 if ((skb
= __skb_dequeue(queue
)) == NULL
)
1306 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1308 /* move skb->data to ip header from ext header */
1309 if (skb
->data
< skb_network_header(skb
))
1310 __skb_pull(skb
, skb_network_offset(skb
));
1311 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1312 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1313 *tail_skb
= tmp_skb
;
1314 tail_skb
= &(tmp_skb
->next
);
1315 skb
->len
+= tmp_skb
->len
;
1316 skb
->data_len
+= tmp_skb
->len
;
1317 skb
->truesize
+= tmp_skb
->truesize
;
1318 tmp_skb
->destructor
= NULL
;
1322 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1323 * to fragment the frame generated here. No matter, what transforms
1324 * how transforms change size of the packet, it will come out.
1326 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1329 /* DF bit is set when we want to see DF on outgoing frames.
1330 * If local_df is set too, we still allow to fragment this frame
1332 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1333 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1334 ip_dont_fragment(sk
, &rt
->dst
)))
1337 if (cork
->flags
& IPCORK_OPT
)
1340 if (rt
->rt_type
== RTN_MULTICAST
)
1343 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1345 iph
= (struct iphdr
*)skb
->data
;
1348 iph
->tos
= inet
->tos
;
1350 ip_select_ident(iph
, &rt
->dst
, sk
);
1352 iph
->protocol
= sk
->sk_protocol
;
1353 ip_copy_addrs(iph
, fl4
);
1356 iph
->ihl
+= opt
->optlen
>>2;
1357 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1360 skb
->priority
= sk
->sk_priority
;
1361 skb
->mark
= sk
->sk_mark
;
1363 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1367 skb_dst_set(skb
, &rt
->dst
);
1369 if (iph
->protocol
== IPPROTO_ICMP
)
1370 icmp_out_count(net
, ((struct icmphdr
*)
1371 skb_transport_header(skb
))->type
);
1373 ip_cork_release(cork
);
1378 int ip_send_skb(struct sk_buff
*skb
)
1380 struct net
*net
= sock_net(skb
->sk
);
1383 err
= ip_local_out(skb
);
1386 err
= net_xmit_errno(err
);
1388 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1394 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1396 struct sk_buff
*skb
;
1398 skb
= ip_finish_skb(sk
, fl4
);
1402 /* Netfilter gets whole the not fragmented skb. */
1403 return ip_send_skb(skb
);
1407 * Throw away all pending data on the socket.
1409 static void __ip_flush_pending_frames(struct sock
*sk
,
1410 struct sk_buff_head
*queue
,
1411 struct inet_cork
*cork
)
1413 struct sk_buff
*skb
;
1415 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1418 ip_cork_release(cork
);
1421 void ip_flush_pending_frames(struct sock
*sk
)
1423 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1426 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1428 int getfrag(void *from
, char *to
, int offset
,
1429 int len
, int odd
, struct sk_buff
*skb
),
1430 void *from
, int length
, int transhdrlen
,
1431 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1434 struct inet_cork cork
;
1435 struct sk_buff_head queue
;
1438 if (flags
& MSG_PROBE
)
1441 __skb_queue_head_init(&queue
);
1446 err
= ip_setup_cork(sk
, &cork
, ipc
, rtp
);
1448 return ERR_PTR(err
);
1450 err
= __ip_append_data(sk
, fl4
, &queue
, &cork
, getfrag
,
1451 from
, length
, transhdrlen
, flags
);
1453 __ip_flush_pending_frames(sk
, &queue
, &cork
);
1454 return ERR_PTR(err
);
1457 return __ip_make_skb(sk
, fl4
, &queue
, &cork
);
1461 * Fetch data from kernel space and fill in checksum if needed.
1463 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1464 int len
, int odd
, struct sk_buff
*skb
)
1468 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1469 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1474 * Generic function to send a packet as reply to another packet.
1475 * Used to send TCP resets so far. ICMP should use this function too.
1477 * Should run single threaded per socket because it uses the sock
1478 * structure to pass arguments.
1480 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, __be32 daddr
,
1481 const struct ip_reply_arg
*arg
, unsigned int len
)
1483 struct inet_sock
*inet
= inet_sk(sk
);
1484 struct ip_options_data replyopts
;
1485 struct ipcm_cookie ipc
;
1487 struct rtable
*rt
= skb_rtable(skb
);
1489 if (ip_options_echo(&replyopts
.opt
.opt
, skb
))
1496 if (replyopts
.opt
.opt
.optlen
) {
1497 ipc
.opt
= &replyopts
.opt
;
1499 if (replyopts
.opt
.opt
.srr
)
1500 daddr
= replyopts
.opt
.opt
.faddr
;
1503 flowi4_init_output(&fl4
, arg
->bound_dev_if
, 0,
1505 RT_SCOPE_UNIVERSE
, sk
->sk_protocol
,
1506 ip_reply_arg_flowi_flags(arg
),
1507 daddr
, rt
->rt_spec_dst
,
1508 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
);
1509 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1510 rt
= ip_route_output_key(sock_net(sk
), &fl4
);
1514 /* And let IP do all the hard work.
1516 This chunk is not reenterable, hence spinlock.
1517 Note that it uses the fact, that this function is called
1518 with locally disabled BH and that sk cannot be already spinlocked.
1521 inet
->tos
= arg
->tos
;
1522 sk
->sk_priority
= skb
->priority
;
1523 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1524 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1525 ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1526 &ipc
, &rt
, MSG_DONTWAIT
);
1527 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1528 if (arg
->csumoffset
>= 0)
1529 *((__sum16
*)skb_transport_header(skb
) +
1530 arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
,
1532 skb
->ip_summed
= CHECKSUM_NONE
;
1533 ip_push_pending_frames(sk
, &fl4
);
1541 void __init
ip_init(void)
1546 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1547 igmp_mc_proc_init();