hwmon: (adm1025) Convert to use devm_ functions
[linux-2.6/libata-dev.git] / drivers / pci / pci.c
blob447e83472c01558705d0685f7fd6af17a6f8deef
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
29 const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 EXPORT_SYMBOL_GPL(pci_power_names);
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
40 unsigned int pci_pm_d3_delay;
42 static void pci_pme_list_scan(struct work_struct *work);
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48 struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 unsigned int delay = dev->d3_delay;
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
62 msleep(delay);
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
69 #define DEFAULT_CARDBUS_IO_SIZE (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75 #define DEFAULT_HOTPLUG_IO_SIZE (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
89 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
96 unsigned int pcibios_max_latency = 255;
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 struct list_head *tmp;
111 unsigned char max, n;
113 max = bus->subordinate;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
119 return max;
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
127 * Make sure the BAR is actually a memory resource, not an IO resource
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
139 #if 0
141 * pci_max_busnr - returns maximum PCI bus number
143 * Returns the highest PCI bus number present in the system global list of
144 * PCI buses.
146 unsigned char __devinit
147 pci_max_busnr(void)
149 struct pci_bus *bus = NULL;
150 unsigned char max, n;
152 max = 0;
153 while ((bus = pci_find_next_bus(bus)) != NULL) {
154 n = pci_bus_max_busnr(bus);
155 if(n > max)
156 max = n;
158 return max;
161 #endif /* 0 */
163 #define PCI_FIND_CAP_TTL 48
165 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
166 u8 pos, int cap, int *ttl)
168 u8 id;
170 while ((*ttl)--) {
171 pci_bus_read_config_byte(bus, devfn, pos, &pos);
172 if (pos < 0x40)
173 break;
174 pos &= ~3;
175 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
176 &id);
177 if (id == 0xff)
178 break;
179 if (id == cap)
180 return pos;
181 pos += PCI_CAP_LIST_NEXT;
183 return 0;
186 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
187 u8 pos, int cap)
189 int ttl = PCI_FIND_CAP_TTL;
191 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
194 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
196 return __pci_find_next_cap(dev->bus, dev->devfn,
197 pos + PCI_CAP_LIST_NEXT, cap);
199 EXPORT_SYMBOL_GPL(pci_find_next_capability);
201 static int __pci_bus_find_cap_start(struct pci_bus *bus,
202 unsigned int devfn, u8 hdr_type)
204 u16 status;
206 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
207 if (!(status & PCI_STATUS_CAP_LIST))
208 return 0;
210 switch (hdr_type) {
211 case PCI_HEADER_TYPE_NORMAL:
212 case PCI_HEADER_TYPE_BRIDGE:
213 return PCI_CAPABILITY_LIST;
214 case PCI_HEADER_TYPE_CARDBUS:
215 return PCI_CB_CAPABILITY_LIST;
216 default:
217 return 0;
220 return 0;
224 * pci_find_capability - query for devices' capabilities
225 * @dev: PCI device to query
226 * @cap: capability code
228 * Tell if a device supports a given PCI capability.
229 * Returns the address of the requested capability structure within the
230 * device's PCI configuration space or 0 in case the device does not
231 * support it. Possible values for @cap:
233 * %PCI_CAP_ID_PM Power Management
234 * %PCI_CAP_ID_AGP Accelerated Graphics Port
235 * %PCI_CAP_ID_VPD Vital Product Data
236 * %PCI_CAP_ID_SLOTID Slot Identification
237 * %PCI_CAP_ID_MSI Message Signalled Interrupts
238 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
239 * %PCI_CAP_ID_PCIX PCI-X
240 * %PCI_CAP_ID_EXP PCI Express
242 int pci_find_capability(struct pci_dev *dev, int cap)
244 int pos;
246 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
247 if (pos)
248 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
250 return pos;
254 * pci_bus_find_capability - query for devices' capabilities
255 * @bus: the PCI bus to query
256 * @devfn: PCI device to query
257 * @cap: capability code
259 * Like pci_find_capability() but works for pci devices that do not have a
260 * pci_dev structure set up yet.
262 * Returns the address of the requested capability structure within the
263 * device's PCI configuration space or 0 in case the device does not
264 * support it.
266 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
268 int pos;
269 u8 hdr_type;
271 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
273 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
274 if (pos)
275 pos = __pci_find_next_cap(bus, devfn, pos, cap);
277 return pos;
281 * pci_find_ext_capability - Find an extended capability
282 * @dev: PCI device to query
283 * @cap: capability code
285 * Returns the address of the requested extended capability structure
286 * within the device's PCI configuration space or 0 if the device does
287 * not support it. Possible values for @cap:
289 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
290 * %PCI_EXT_CAP_ID_VC Virtual Channel
291 * %PCI_EXT_CAP_ID_DSN Device Serial Number
292 * %PCI_EXT_CAP_ID_PWR Power Budgeting
294 int pci_find_ext_capability(struct pci_dev *dev, int cap)
296 u32 header;
297 int ttl;
298 int pos = PCI_CFG_SPACE_SIZE;
300 /* minimum 8 bytes per capability */
301 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
303 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
304 return 0;
306 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
307 return 0;
310 * If we have no capabilities, this is indicated by cap ID,
311 * cap version and next pointer all being 0.
313 if (header == 0)
314 return 0;
316 while (ttl-- > 0) {
317 if (PCI_EXT_CAP_ID(header) == cap)
318 return pos;
320 pos = PCI_EXT_CAP_NEXT(header);
321 if (pos < PCI_CFG_SPACE_SIZE)
322 break;
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 break;
328 return 0;
330 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
333 * pci_bus_find_ext_capability - find an extended capability
334 * @bus: the PCI bus to query
335 * @devfn: PCI device to query
336 * @cap: capability code
338 * Like pci_find_ext_capability() but works for pci devices that do not have a
339 * pci_dev structure set up yet.
341 * Returns the address of the requested capability structure within the
342 * device's PCI configuration space or 0 in case the device does not
343 * support it.
345 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
346 int cap)
348 u32 header;
349 int ttl;
350 int pos = PCI_CFG_SPACE_SIZE;
352 /* minimum 8 bytes per capability */
353 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
355 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
356 return 0;
357 if (header == 0xffffffff || header == 0)
358 return 0;
360 while (ttl-- > 0) {
361 if (PCI_EXT_CAP_ID(header) == cap)
362 return pos;
364 pos = PCI_EXT_CAP_NEXT(header);
365 if (pos < PCI_CFG_SPACE_SIZE)
366 break;
368 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
369 break;
372 return 0;
375 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
377 int rc, ttl = PCI_FIND_CAP_TTL;
378 u8 cap, mask;
380 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
381 mask = HT_3BIT_CAP_MASK;
382 else
383 mask = HT_5BIT_CAP_MASK;
385 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
386 PCI_CAP_ID_HT, &ttl);
387 while (pos) {
388 rc = pci_read_config_byte(dev, pos + 3, &cap);
389 if (rc != PCIBIOS_SUCCESSFUL)
390 return 0;
392 if ((cap & mask) == ht_cap)
393 return pos;
395 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT,
397 PCI_CAP_ID_HT, &ttl);
400 return 0;
403 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
404 * @dev: PCI device to query
405 * @pos: Position from which to continue searching
406 * @ht_cap: Hypertransport capability code
408 * To be used in conjunction with pci_find_ht_capability() to search for
409 * all capabilities matching @ht_cap. @pos should always be a value returned
410 * from pci_find_ht_capability().
412 * NB. To be 100% safe against broken PCI devices, the caller should take
413 * steps to avoid an infinite loop.
415 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
417 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
419 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
422 * pci_find_ht_capability - query a device's Hypertransport capabilities
423 * @dev: PCI device to query
424 * @ht_cap: Hypertransport capability code
426 * Tell if a device supports a given Hypertransport capability.
427 * Returns an address within the device's PCI configuration space
428 * or 0 in case the device does not support the request capability.
429 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
430 * which has a Hypertransport capability matching @ht_cap.
432 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
434 int pos;
436 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
437 if (pos)
438 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
440 return pos;
442 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
445 * pci_find_parent_resource - return resource region of parent bus of given region
446 * @dev: PCI device structure contains resources to be searched
447 * @res: child resource record for which parent is sought
449 * For given resource region of given device, return the resource
450 * region of parent bus the given region is contained in or where
451 * it should be allocated from.
453 struct resource *
454 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
456 const struct pci_bus *bus = dev->bus;
457 int i;
458 struct resource *best = NULL, *r;
460 pci_bus_for_each_resource(bus, r, i) {
461 if (!r)
462 continue;
463 if (res->start && !(res->start >= r->start && res->end <= r->end))
464 continue; /* Not contained */
465 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
466 continue; /* Wrong type */
467 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
468 return r; /* Exact match */
469 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
470 if (r->flags & IORESOURCE_PREFETCH)
471 continue;
472 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
473 if (!best)
474 best = r;
476 return best;
480 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
481 * @dev: PCI device to have its BARs restored
483 * Restore the BAR values for a given device, so as to make it
484 * accessible by its driver.
486 static void
487 pci_restore_bars(struct pci_dev *dev)
489 int i;
491 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
492 pci_update_resource(dev, i);
495 static struct pci_platform_pm_ops *pci_platform_pm;
497 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
499 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
500 || !ops->sleep_wake || !ops->can_wakeup)
501 return -EINVAL;
502 pci_platform_pm = ops;
503 return 0;
506 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
508 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
511 static inline int platform_pci_set_power_state(struct pci_dev *dev,
512 pci_power_t t)
514 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
517 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
519 return pci_platform_pm ?
520 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
523 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
525 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
528 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
530 return pci_platform_pm ?
531 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
534 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
536 return pci_platform_pm ?
537 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
541 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
542 * given PCI device
543 * @dev: PCI device to handle.
544 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
546 * RETURN VALUE:
547 * -EINVAL if the requested state is invalid.
548 * -EIO if device does not support PCI PM or its PM capabilities register has a
549 * wrong version, or device doesn't support the requested state.
550 * 0 if device already is in the requested state.
551 * 0 if device's power state has been successfully changed.
553 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
555 u16 pmcsr;
556 bool need_restore = false;
558 /* Check if we're already there */
559 if (dev->current_state == state)
560 return 0;
562 if (!dev->pm_cap)
563 return -EIO;
565 if (state < PCI_D0 || state > PCI_D3hot)
566 return -EINVAL;
568 /* Validate current state:
569 * Can enter D0 from any state, but if we can only go deeper
570 * to sleep if we're already in a low power state
572 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
573 && dev->current_state > state) {
574 dev_err(&dev->dev, "invalid power transition "
575 "(from state %d to %d)\n", dev->current_state, state);
576 return -EINVAL;
579 /* check if this device supports the desired state */
580 if ((state == PCI_D1 && !dev->d1_support)
581 || (state == PCI_D2 && !dev->d2_support))
582 return -EIO;
584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
586 /* If we're (effectively) in D3, force entire word to 0.
587 * This doesn't affect PME_Status, disables PME_En, and
588 * sets PowerState to 0.
590 switch (dev->current_state) {
591 case PCI_D0:
592 case PCI_D1:
593 case PCI_D2:
594 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
595 pmcsr |= state;
596 break;
597 case PCI_D3hot:
598 case PCI_D3cold:
599 case PCI_UNKNOWN: /* Boot-up */
600 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
601 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
602 need_restore = true;
603 /* Fall-through: force to D0 */
604 default:
605 pmcsr = 0;
606 break;
609 /* enter specified state */
610 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
612 /* Mandatory power management transition delays */
613 /* see PCI PM 1.1 5.6.1 table 18 */
614 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
615 pci_dev_d3_sleep(dev);
616 else if (state == PCI_D2 || dev->current_state == PCI_D2)
617 udelay(PCI_PM_D2_DELAY);
619 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
620 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
621 if (dev->current_state != state && printk_ratelimit())
622 dev_info(&dev->dev, "Refused to change power state, "
623 "currently in D%d\n", dev->current_state);
625 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
626 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
627 * from D3hot to D0 _may_ perform an internal reset, thereby
628 * going to "D0 Uninitialized" rather than "D0 Initialized".
629 * For example, at least some versions of the 3c905B and the
630 * 3c556B exhibit this behaviour.
632 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
633 * devices in a D3hot state at boot. Consequently, we need to
634 * restore at least the BARs so that the device will be
635 * accessible to its driver.
637 if (need_restore)
638 pci_restore_bars(dev);
640 if (dev->bus->self)
641 pcie_aspm_pm_state_change(dev->bus->self);
643 return 0;
647 * pci_update_current_state - Read PCI power state of given device from its
648 * PCI PM registers and cache it
649 * @dev: PCI device to handle.
650 * @state: State to cache in case the device doesn't have the PM capability
652 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
654 if (dev->pm_cap) {
655 u16 pmcsr;
657 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
658 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
659 } else {
660 dev->current_state = state;
665 * pci_platform_power_transition - Use platform to change device power state
666 * @dev: PCI device to handle.
667 * @state: State to put the device into.
669 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
671 int error;
673 if (platform_pci_power_manageable(dev)) {
674 error = platform_pci_set_power_state(dev, state);
675 if (!error)
676 pci_update_current_state(dev, state);
677 /* Fall back to PCI_D0 if native PM is not supported */
678 if (!dev->pm_cap)
679 dev->current_state = PCI_D0;
680 } else {
681 error = -ENODEV;
682 /* Fall back to PCI_D0 if native PM is not supported */
683 if (!dev->pm_cap)
684 dev->current_state = PCI_D0;
687 return error;
691 * __pci_start_power_transition - Start power transition of a PCI device
692 * @dev: PCI device to handle.
693 * @state: State to put the device into.
695 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
697 if (state == PCI_D0)
698 pci_platform_power_transition(dev, PCI_D0);
702 * __pci_complete_power_transition - Complete power transition of a PCI device
703 * @dev: PCI device to handle.
704 * @state: State to put the device into.
706 * This function should not be called directly by device drivers.
708 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
710 return state >= PCI_D0 ?
711 pci_platform_power_transition(dev, state) : -EINVAL;
713 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
716 * pci_set_power_state - Set the power state of a PCI device
717 * @dev: PCI device to handle.
718 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
720 * Transition a device to a new power state, using the platform firmware and/or
721 * the device's PCI PM registers.
723 * RETURN VALUE:
724 * -EINVAL if the requested state is invalid.
725 * -EIO if device does not support PCI PM or its PM capabilities register has a
726 * wrong version, or device doesn't support the requested state.
727 * 0 if device already is in the requested state.
728 * 0 if device's power state has been successfully changed.
730 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
732 int error;
734 /* bound the state we're entering */
735 if (state > PCI_D3hot)
736 state = PCI_D3hot;
737 else if (state < PCI_D0)
738 state = PCI_D0;
739 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
741 * If the device or the parent bridge do not support PCI PM,
742 * ignore the request if we're doing anything other than putting
743 * it into D0 (which would only happen on boot).
745 return 0;
747 __pci_start_power_transition(dev, state);
749 /* This device is quirked not to be put into D3, so
750 don't put it in D3 */
751 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
752 return 0;
754 error = pci_raw_set_power_state(dev, state);
756 if (!__pci_complete_power_transition(dev, state))
757 error = 0;
759 * When aspm_policy is "powersave" this call ensures
760 * that ASPM is configured.
762 if (!error && dev->bus->self)
763 pcie_aspm_powersave_config_link(dev->bus->self);
765 return error;
769 * pci_choose_state - Choose the power state of a PCI device
770 * @dev: PCI device to be suspended
771 * @state: target sleep state for the whole system. This is the value
772 * that is passed to suspend() function.
774 * Returns PCI power state suitable for given device and given system
775 * message.
778 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
780 pci_power_t ret;
782 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
783 return PCI_D0;
785 ret = platform_pci_choose_state(dev);
786 if (ret != PCI_POWER_ERROR)
787 return ret;
789 switch (state.event) {
790 case PM_EVENT_ON:
791 return PCI_D0;
792 case PM_EVENT_FREEZE:
793 case PM_EVENT_PRETHAW:
794 /* REVISIT both freeze and pre-thaw "should" use D0 */
795 case PM_EVENT_SUSPEND:
796 case PM_EVENT_HIBERNATE:
797 return PCI_D3hot;
798 default:
799 dev_info(&dev->dev, "unrecognized suspend event %d\n",
800 state.event);
801 BUG();
803 return PCI_D0;
806 EXPORT_SYMBOL(pci_choose_state);
808 #define PCI_EXP_SAVE_REGS 7
810 #define pcie_cap_has_devctl(type, flags) 1
811 #define pcie_cap_has_lnkctl(type, flags) \
812 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
813 (type == PCI_EXP_TYPE_ROOT_PORT || \
814 type == PCI_EXP_TYPE_ENDPOINT || \
815 type == PCI_EXP_TYPE_LEG_END))
816 #define pcie_cap_has_sltctl(type, flags) \
817 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
818 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
819 (type == PCI_EXP_TYPE_DOWNSTREAM && \
820 (flags & PCI_EXP_FLAGS_SLOT))))
821 #define pcie_cap_has_rtctl(type, flags) \
822 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
823 (type == PCI_EXP_TYPE_ROOT_PORT || \
824 type == PCI_EXP_TYPE_RC_EC))
825 #define pcie_cap_has_devctl2(type, flags) \
826 ((flags & PCI_EXP_FLAGS_VERS) > 1)
827 #define pcie_cap_has_lnkctl2(type, flags) \
828 ((flags & PCI_EXP_FLAGS_VERS) > 1)
829 #define pcie_cap_has_sltctl2(type, flags) \
830 ((flags & PCI_EXP_FLAGS_VERS) > 1)
832 static struct pci_cap_saved_state *pci_find_saved_cap(
833 struct pci_dev *pci_dev, char cap)
835 struct pci_cap_saved_state *tmp;
836 struct hlist_node *pos;
838 hlist_for_each_entry(tmp, pos, &pci_dev->saved_cap_space, next) {
839 if (tmp->cap.cap_nr == cap)
840 return tmp;
842 return NULL;
845 static int pci_save_pcie_state(struct pci_dev *dev)
847 int pos, i = 0;
848 struct pci_cap_saved_state *save_state;
849 u16 *cap;
850 u16 flags;
852 pos = pci_pcie_cap(dev);
853 if (!pos)
854 return 0;
856 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
857 if (!save_state) {
858 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
859 return -ENOMEM;
861 cap = (u16 *)&save_state->cap.data[0];
863 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
865 if (pcie_cap_has_devctl(dev->pcie_type, flags))
866 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
867 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
868 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
869 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
870 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
871 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
872 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
873 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
874 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
875 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
876 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
877 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
878 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
880 return 0;
883 static void pci_restore_pcie_state(struct pci_dev *dev)
885 int i = 0, pos;
886 struct pci_cap_saved_state *save_state;
887 u16 *cap;
888 u16 flags;
890 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
891 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
892 if (!save_state || pos <= 0)
893 return;
894 cap = (u16 *)&save_state->cap.data[0];
896 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
898 if (pcie_cap_has_devctl(dev->pcie_type, flags))
899 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
900 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
901 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
902 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
903 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
904 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
905 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
906 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
907 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
908 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
909 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
910 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
911 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
915 static int pci_save_pcix_state(struct pci_dev *dev)
917 int pos;
918 struct pci_cap_saved_state *save_state;
920 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
921 if (pos <= 0)
922 return 0;
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 if (!save_state) {
926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
927 return -ENOMEM;
930 pci_read_config_word(dev, pos + PCI_X_CMD,
931 (u16 *)save_state->cap.data);
933 return 0;
936 static void pci_restore_pcix_state(struct pci_dev *dev)
938 int i = 0, pos;
939 struct pci_cap_saved_state *save_state;
940 u16 *cap;
942 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
943 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
944 if (!save_state || pos <= 0)
945 return;
946 cap = (u16 *)&save_state->cap.data[0];
948 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
953 * pci_save_state - save the PCI configuration space of a device before suspending
954 * @dev: - PCI device that we're dealing with
957 pci_save_state(struct pci_dev *dev)
959 int i;
960 /* XXX: 100% dword access ok here? */
961 for (i = 0; i < 16; i++)
962 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
963 dev->state_saved = true;
964 if ((i = pci_save_pcie_state(dev)) != 0)
965 return i;
966 if ((i = pci_save_pcix_state(dev)) != 0)
967 return i;
968 return 0;
971 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
972 u32 saved_val, int retry)
974 u32 val;
976 pci_read_config_dword(pdev, offset, &val);
977 if (val == saved_val)
978 return;
980 for (;;) {
981 dev_dbg(&pdev->dev, "restoring config space at offset "
982 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
983 pci_write_config_dword(pdev, offset, saved_val);
984 if (retry-- <= 0)
985 return;
987 pci_read_config_dword(pdev, offset, &val);
988 if (val == saved_val)
989 return;
991 mdelay(1);
995 static void pci_restore_config_space_range(struct pci_dev *pdev,
996 int start, int end, int retry)
998 int index;
1000 for (index = end; index >= start; index--)
1001 pci_restore_config_dword(pdev, 4 * index,
1002 pdev->saved_config_space[index],
1003 retry);
1006 static void pci_restore_config_space(struct pci_dev *pdev)
1008 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1009 pci_restore_config_space_range(pdev, 10, 15, 0);
1010 /* Restore BARs before the command register. */
1011 pci_restore_config_space_range(pdev, 4, 9, 10);
1012 pci_restore_config_space_range(pdev, 0, 3, 0);
1013 } else {
1014 pci_restore_config_space_range(pdev, 0, 15, 0);
1018 /**
1019 * pci_restore_state - Restore the saved state of a PCI device
1020 * @dev: - PCI device that we're dealing with
1022 void pci_restore_state(struct pci_dev *dev)
1024 if (!dev->state_saved)
1025 return;
1027 /* PCI Express register must be restored first */
1028 pci_restore_pcie_state(dev);
1029 pci_restore_ats_state(dev);
1031 pci_restore_config_space(dev);
1033 pci_restore_pcix_state(dev);
1034 pci_restore_msi_state(dev);
1035 pci_restore_iov_state(dev);
1037 dev->state_saved = false;
1040 struct pci_saved_state {
1041 u32 config_space[16];
1042 struct pci_cap_saved_data cap[0];
1046 * pci_store_saved_state - Allocate and return an opaque struct containing
1047 * the device saved state.
1048 * @dev: PCI device that we're dealing with
1050 * Rerturn NULL if no state or error.
1052 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1054 struct pci_saved_state *state;
1055 struct pci_cap_saved_state *tmp;
1056 struct pci_cap_saved_data *cap;
1057 struct hlist_node *pos;
1058 size_t size;
1060 if (!dev->state_saved)
1061 return NULL;
1063 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1065 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1066 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1068 state = kzalloc(size, GFP_KERNEL);
1069 if (!state)
1070 return NULL;
1072 memcpy(state->config_space, dev->saved_config_space,
1073 sizeof(state->config_space));
1075 cap = state->cap;
1076 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1077 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1078 memcpy(cap, &tmp->cap, len);
1079 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1081 /* Empty cap_save terminates list */
1083 return state;
1085 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1088 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1089 * @dev: PCI device that we're dealing with
1090 * @state: Saved state returned from pci_store_saved_state()
1092 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1094 struct pci_cap_saved_data *cap;
1096 dev->state_saved = false;
1098 if (!state)
1099 return 0;
1101 memcpy(dev->saved_config_space, state->config_space,
1102 sizeof(state->config_space));
1104 cap = state->cap;
1105 while (cap->size) {
1106 struct pci_cap_saved_state *tmp;
1108 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1109 if (!tmp || tmp->cap.size != cap->size)
1110 return -EINVAL;
1112 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1113 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1114 sizeof(struct pci_cap_saved_data) + cap->size);
1117 dev->state_saved = true;
1118 return 0;
1120 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1123 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1124 * and free the memory allocated for it.
1125 * @dev: PCI device that we're dealing with
1126 * @state: Pointer to saved state returned from pci_store_saved_state()
1128 int pci_load_and_free_saved_state(struct pci_dev *dev,
1129 struct pci_saved_state **state)
1131 int ret = pci_load_saved_state(dev, *state);
1132 kfree(*state);
1133 *state = NULL;
1134 return ret;
1136 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1138 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1140 int err;
1142 err = pci_set_power_state(dev, PCI_D0);
1143 if (err < 0 && err != -EIO)
1144 return err;
1145 err = pcibios_enable_device(dev, bars);
1146 if (err < 0)
1147 return err;
1148 pci_fixup_device(pci_fixup_enable, dev);
1150 return 0;
1154 * pci_reenable_device - Resume abandoned device
1155 * @dev: PCI device to be resumed
1157 * Note this function is a backend of pci_default_resume and is not supposed
1158 * to be called by normal code, write proper resume handler and use it instead.
1160 int pci_reenable_device(struct pci_dev *dev)
1162 if (pci_is_enabled(dev))
1163 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1164 return 0;
1167 static int __pci_enable_device_flags(struct pci_dev *dev,
1168 resource_size_t flags)
1170 int err;
1171 int i, bars = 0;
1174 * Power state could be unknown at this point, either due to a fresh
1175 * boot or a device removal call. So get the current power state
1176 * so that things like MSI message writing will behave as expected
1177 * (e.g. if the device really is in D0 at enable time).
1179 if (dev->pm_cap) {
1180 u16 pmcsr;
1181 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1182 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1185 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1186 return 0; /* already enabled */
1188 /* only skip sriov related */
1189 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1190 if (dev->resource[i].flags & flags)
1191 bars |= (1 << i);
1192 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1193 if (dev->resource[i].flags & flags)
1194 bars |= (1 << i);
1196 err = do_pci_enable_device(dev, bars);
1197 if (err < 0)
1198 atomic_dec(&dev->enable_cnt);
1199 return err;
1203 * pci_enable_device_io - Initialize a device for use with IO space
1204 * @dev: PCI device to be initialized
1206 * Initialize device before it's used by a driver. Ask low-level code
1207 * to enable I/O resources. Wake up the device if it was suspended.
1208 * Beware, this function can fail.
1210 int pci_enable_device_io(struct pci_dev *dev)
1212 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1216 * pci_enable_device_mem - Initialize a device for use with Memory space
1217 * @dev: PCI device to be initialized
1219 * Initialize device before it's used by a driver. Ask low-level code
1220 * to enable Memory resources. Wake up the device if it was suspended.
1221 * Beware, this function can fail.
1223 int pci_enable_device_mem(struct pci_dev *dev)
1225 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1229 * pci_enable_device - Initialize device before it's used by a driver.
1230 * @dev: PCI device to be initialized
1232 * Initialize device before it's used by a driver. Ask low-level code
1233 * to enable I/O and memory. Wake up the device if it was suspended.
1234 * Beware, this function can fail.
1236 * Note we don't actually enable the device many times if we call
1237 * this function repeatedly (we just increment the count).
1239 int pci_enable_device(struct pci_dev *dev)
1241 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1245 * Managed PCI resources. This manages device on/off, intx/msi/msix
1246 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1247 * there's no need to track it separately. pci_devres is initialized
1248 * when a device is enabled using managed PCI device enable interface.
1250 struct pci_devres {
1251 unsigned int enabled:1;
1252 unsigned int pinned:1;
1253 unsigned int orig_intx:1;
1254 unsigned int restore_intx:1;
1255 u32 region_mask;
1258 static void pcim_release(struct device *gendev, void *res)
1260 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1261 struct pci_devres *this = res;
1262 int i;
1264 if (dev->msi_enabled)
1265 pci_disable_msi(dev);
1266 if (dev->msix_enabled)
1267 pci_disable_msix(dev);
1269 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1270 if (this->region_mask & (1 << i))
1271 pci_release_region(dev, i);
1273 if (this->restore_intx)
1274 pci_intx(dev, this->orig_intx);
1276 if (this->enabled && !this->pinned)
1277 pci_disable_device(dev);
1280 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1282 struct pci_devres *dr, *new_dr;
1284 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1285 if (dr)
1286 return dr;
1288 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1289 if (!new_dr)
1290 return NULL;
1291 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1294 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1296 if (pci_is_managed(pdev))
1297 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1298 return NULL;
1302 * pcim_enable_device - Managed pci_enable_device()
1303 * @pdev: PCI device to be initialized
1305 * Managed pci_enable_device().
1307 int pcim_enable_device(struct pci_dev *pdev)
1309 struct pci_devres *dr;
1310 int rc;
1312 dr = get_pci_dr(pdev);
1313 if (unlikely(!dr))
1314 return -ENOMEM;
1315 if (dr->enabled)
1316 return 0;
1318 rc = pci_enable_device(pdev);
1319 if (!rc) {
1320 pdev->is_managed = 1;
1321 dr->enabled = 1;
1323 return rc;
1327 * pcim_pin_device - Pin managed PCI device
1328 * @pdev: PCI device to pin
1330 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1331 * driver detach. @pdev must have been enabled with
1332 * pcim_enable_device().
1334 void pcim_pin_device(struct pci_dev *pdev)
1336 struct pci_devres *dr;
1338 dr = find_pci_dr(pdev);
1339 WARN_ON(!dr || !dr->enabled);
1340 if (dr)
1341 dr->pinned = 1;
1345 * pcibios_disable_device - disable arch specific PCI resources for device dev
1346 * @dev: the PCI device to disable
1348 * Disables architecture specific PCI resources for the device. This
1349 * is the default implementation. Architecture implementations can
1350 * override this.
1352 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1354 static void do_pci_disable_device(struct pci_dev *dev)
1356 u16 pci_command;
1358 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1359 if (pci_command & PCI_COMMAND_MASTER) {
1360 pci_command &= ~PCI_COMMAND_MASTER;
1361 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1364 pcibios_disable_device(dev);
1368 * pci_disable_enabled_device - Disable device without updating enable_cnt
1369 * @dev: PCI device to disable
1371 * NOTE: This function is a backend of PCI power management routines and is
1372 * not supposed to be called drivers.
1374 void pci_disable_enabled_device(struct pci_dev *dev)
1376 if (pci_is_enabled(dev))
1377 do_pci_disable_device(dev);
1381 * pci_disable_device - Disable PCI device after use
1382 * @dev: PCI device to be disabled
1384 * Signal to the system that the PCI device is not in use by the system
1385 * anymore. This only involves disabling PCI bus-mastering, if active.
1387 * Note we don't actually disable the device until all callers of
1388 * pci_enable_device() have called pci_disable_device().
1390 void
1391 pci_disable_device(struct pci_dev *dev)
1393 struct pci_devres *dr;
1395 dr = find_pci_dr(dev);
1396 if (dr)
1397 dr->enabled = 0;
1399 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1400 return;
1402 do_pci_disable_device(dev);
1404 dev->is_busmaster = 0;
1408 * pcibios_set_pcie_reset_state - set reset state for device dev
1409 * @dev: the PCIe device reset
1410 * @state: Reset state to enter into
1413 * Sets the PCIe reset state for the device. This is the default
1414 * implementation. Architecture implementations can override this.
1416 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1417 enum pcie_reset_state state)
1419 return -EINVAL;
1423 * pci_set_pcie_reset_state - set reset state for device dev
1424 * @dev: the PCIe device reset
1425 * @state: Reset state to enter into
1428 * Sets the PCI reset state for the device.
1430 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1432 return pcibios_set_pcie_reset_state(dev, state);
1436 * pci_check_pme_status - Check if given device has generated PME.
1437 * @dev: Device to check.
1439 * Check the PME status of the device and if set, clear it and clear PME enable
1440 * (if set). Return 'true' if PME status and PME enable were both set or
1441 * 'false' otherwise.
1443 bool pci_check_pme_status(struct pci_dev *dev)
1445 int pmcsr_pos;
1446 u16 pmcsr;
1447 bool ret = false;
1449 if (!dev->pm_cap)
1450 return false;
1452 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1453 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1454 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1455 return false;
1457 /* Clear PME status. */
1458 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1459 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1460 /* Disable PME to avoid interrupt flood. */
1461 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1462 ret = true;
1465 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1467 return ret;
1471 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1472 * @dev: Device to handle.
1473 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1475 * Check if @dev has generated PME and queue a resume request for it in that
1476 * case.
1478 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1480 if (pme_poll_reset && dev->pme_poll)
1481 dev->pme_poll = false;
1483 if (pci_check_pme_status(dev)) {
1484 pci_wakeup_event(dev);
1485 pm_request_resume(&dev->dev);
1487 return 0;
1491 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1492 * @bus: Top bus of the subtree to walk.
1494 void pci_pme_wakeup_bus(struct pci_bus *bus)
1496 if (bus)
1497 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1501 * pci_pme_capable - check the capability of PCI device to generate PME#
1502 * @dev: PCI device to handle.
1503 * @state: PCI state from which device will issue PME#.
1505 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1507 if (!dev->pm_cap)
1508 return false;
1510 return !!(dev->pme_support & (1 << state));
1513 static void pci_pme_list_scan(struct work_struct *work)
1515 struct pci_pme_device *pme_dev, *n;
1517 mutex_lock(&pci_pme_list_mutex);
1518 if (!list_empty(&pci_pme_list)) {
1519 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1520 if (pme_dev->dev->pme_poll) {
1521 pci_pme_wakeup(pme_dev->dev, NULL);
1522 } else {
1523 list_del(&pme_dev->list);
1524 kfree(pme_dev);
1527 if (!list_empty(&pci_pme_list))
1528 schedule_delayed_work(&pci_pme_work,
1529 msecs_to_jiffies(PME_TIMEOUT));
1531 mutex_unlock(&pci_pme_list_mutex);
1535 * pci_pme_active - enable or disable PCI device's PME# function
1536 * @dev: PCI device to handle.
1537 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1539 * The caller must verify that the device is capable of generating PME# before
1540 * calling this function with @enable equal to 'true'.
1542 void pci_pme_active(struct pci_dev *dev, bool enable)
1544 u16 pmcsr;
1546 if (!dev->pm_cap)
1547 return;
1549 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1550 /* Clear PME_Status by writing 1 to it and enable PME# */
1551 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1552 if (!enable)
1553 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1555 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1557 /* PCI (as opposed to PCIe) PME requires that the device have
1558 its PME# line hooked up correctly. Not all hardware vendors
1559 do this, so the PME never gets delivered and the device
1560 remains asleep. The easiest way around this is to
1561 periodically walk the list of suspended devices and check
1562 whether any have their PME flag set. The assumption is that
1563 we'll wake up often enough anyway that this won't be a huge
1564 hit, and the power savings from the devices will still be a
1565 win. */
1567 if (dev->pme_poll) {
1568 struct pci_pme_device *pme_dev;
1569 if (enable) {
1570 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1571 GFP_KERNEL);
1572 if (!pme_dev)
1573 goto out;
1574 pme_dev->dev = dev;
1575 mutex_lock(&pci_pme_list_mutex);
1576 list_add(&pme_dev->list, &pci_pme_list);
1577 if (list_is_singular(&pci_pme_list))
1578 schedule_delayed_work(&pci_pme_work,
1579 msecs_to_jiffies(PME_TIMEOUT));
1580 mutex_unlock(&pci_pme_list_mutex);
1581 } else {
1582 mutex_lock(&pci_pme_list_mutex);
1583 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1584 if (pme_dev->dev == dev) {
1585 list_del(&pme_dev->list);
1586 kfree(pme_dev);
1587 break;
1590 mutex_unlock(&pci_pme_list_mutex);
1594 out:
1595 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1599 * __pci_enable_wake - enable PCI device as wakeup event source
1600 * @dev: PCI device affected
1601 * @state: PCI state from which device will issue wakeup events
1602 * @runtime: True if the events are to be generated at run time
1603 * @enable: True to enable event generation; false to disable
1605 * This enables the device as a wakeup event source, or disables it.
1606 * When such events involves platform-specific hooks, those hooks are
1607 * called automatically by this routine.
1609 * Devices with legacy power management (no standard PCI PM capabilities)
1610 * always require such platform hooks.
1612 * RETURN VALUE:
1613 * 0 is returned on success
1614 * -EINVAL is returned if device is not supposed to wake up the system
1615 * Error code depending on the platform is returned if both the platform and
1616 * the native mechanism fail to enable the generation of wake-up events
1618 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1619 bool runtime, bool enable)
1621 int ret = 0;
1623 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1624 return -EINVAL;
1626 /* Don't do the same thing twice in a row for one device. */
1627 if (!!enable == !!dev->wakeup_prepared)
1628 return 0;
1631 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1632 * Anderson we should be doing PME# wake enable followed by ACPI wake
1633 * enable. To disable wake-up we call the platform first, for symmetry.
1636 if (enable) {
1637 int error;
1639 if (pci_pme_capable(dev, state))
1640 pci_pme_active(dev, true);
1641 else
1642 ret = 1;
1643 error = runtime ? platform_pci_run_wake(dev, true) :
1644 platform_pci_sleep_wake(dev, true);
1645 if (ret)
1646 ret = error;
1647 if (!ret)
1648 dev->wakeup_prepared = true;
1649 } else {
1650 if (runtime)
1651 platform_pci_run_wake(dev, false);
1652 else
1653 platform_pci_sleep_wake(dev, false);
1654 pci_pme_active(dev, false);
1655 dev->wakeup_prepared = false;
1658 return ret;
1660 EXPORT_SYMBOL(__pci_enable_wake);
1663 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1664 * @dev: PCI device to prepare
1665 * @enable: True to enable wake-up event generation; false to disable
1667 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1668 * and this function allows them to set that up cleanly - pci_enable_wake()
1669 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1670 * ordering constraints.
1672 * This function only returns error code if the device is not capable of
1673 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1674 * enable wake-up power for it.
1676 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1678 return pci_pme_capable(dev, PCI_D3cold) ?
1679 pci_enable_wake(dev, PCI_D3cold, enable) :
1680 pci_enable_wake(dev, PCI_D3hot, enable);
1684 * pci_target_state - find an appropriate low power state for a given PCI dev
1685 * @dev: PCI device
1687 * Use underlying platform code to find a supported low power state for @dev.
1688 * If the platform can't manage @dev, return the deepest state from which it
1689 * can generate wake events, based on any available PME info.
1691 pci_power_t pci_target_state(struct pci_dev *dev)
1693 pci_power_t target_state = PCI_D3hot;
1695 if (platform_pci_power_manageable(dev)) {
1697 * Call the platform to choose the target state of the device
1698 * and enable wake-up from this state if supported.
1700 pci_power_t state = platform_pci_choose_state(dev);
1702 switch (state) {
1703 case PCI_POWER_ERROR:
1704 case PCI_UNKNOWN:
1705 break;
1706 case PCI_D1:
1707 case PCI_D2:
1708 if (pci_no_d1d2(dev))
1709 break;
1710 default:
1711 target_state = state;
1713 } else if (!dev->pm_cap) {
1714 target_state = PCI_D0;
1715 } else if (device_may_wakeup(&dev->dev)) {
1717 * Find the deepest state from which the device can generate
1718 * wake-up events, make it the target state and enable device
1719 * to generate PME#.
1721 if (dev->pme_support) {
1722 while (target_state
1723 && !(dev->pme_support & (1 << target_state)))
1724 target_state--;
1728 return target_state;
1732 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1733 * @dev: Device to handle.
1735 * Choose the power state appropriate for the device depending on whether
1736 * it can wake up the system and/or is power manageable by the platform
1737 * (PCI_D3hot is the default) and put the device into that state.
1739 int pci_prepare_to_sleep(struct pci_dev *dev)
1741 pci_power_t target_state = pci_target_state(dev);
1742 int error;
1744 if (target_state == PCI_POWER_ERROR)
1745 return -EIO;
1747 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1749 error = pci_set_power_state(dev, target_state);
1751 if (error)
1752 pci_enable_wake(dev, target_state, false);
1754 return error;
1758 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1759 * @dev: Device to handle.
1761 * Disable device's system wake-up capability and put it into D0.
1763 int pci_back_from_sleep(struct pci_dev *dev)
1765 pci_enable_wake(dev, PCI_D0, false);
1766 return pci_set_power_state(dev, PCI_D0);
1770 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1771 * @dev: PCI device being suspended.
1773 * Prepare @dev to generate wake-up events at run time and put it into a low
1774 * power state.
1776 int pci_finish_runtime_suspend(struct pci_dev *dev)
1778 pci_power_t target_state = pci_target_state(dev);
1779 int error;
1781 if (target_state == PCI_POWER_ERROR)
1782 return -EIO;
1784 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1786 error = pci_set_power_state(dev, target_state);
1788 if (error)
1789 __pci_enable_wake(dev, target_state, true, false);
1791 return error;
1795 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1796 * @dev: Device to check.
1798 * Return true if the device itself is cabable of generating wake-up events
1799 * (through the platform or using the native PCIe PME) or if the device supports
1800 * PME and one of its upstream bridges can generate wake-up events.
1802 bool pci_dev_run_wake(struct pci_dev *dev)
1804 struct pci_bus *bus = dev->bus;
1806 if (device_run_wake(&dev->dev))
1807 return true;
1809 if (!dev->pme_support)
1810 return false;
1812 while (bus->parent) {
1813 struct pci_dev *bridge = bus->self;
1815 if (device_run_wake(&bridge->dev))
1816 return true;
1818 bus = bus->parent;
1821 /* We have reached the root bus. */
1822 if (bus->bridge)
1823 return device_run_wake(bus->bridge);
1825 return false;
1827 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1830 * pci_pm_init - Initialize PM functions of given PCI device
1831 * @dev: PCI device to handle.
1833 void pci_pm_init(struct pci_dev *dev)
1835 int pm;
1836 u16 pmc;
1838 pm_runtime_forbid(&dev->dev);
1839 device_enable_async_suspend(&dev->dev);
1840 dev->wakeup_prepared = false;
1842 dev->pm_cap = 0;
1844 /* find PCI PM capability in list */
1845 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1846 if (!pm)
1847 return;
1848 /* Check device's ability to generate PME# */
1849 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1851 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1852 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1853 pmc & PCI_PM_CAP_VER_MASK);
1854 return;
1857 dev->pm_cap = pm;
1858 dev->d3_delay = PCI_PM_D3_WAIT;
1860 dev->d1_support = false;
1861 dev->d2_support = false;
1862 if (!pci_no_d1d2(dev)) {
1863 if (pmc & PCI_PM_CAP_D1)
1864 dev->d1_support = true;
1865 if (pmc & PCI_PM_CAP_D2)
1866 dev->d2_support = true;
1868 if (dev->d1_support || dev->d2_support)
1869 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1870 dev->d1_support ? " D1" : "",
1871 dev->d2_support ? " D2" : "");
1874 pmc &= PCI_PM_CAP_PME_MASK;
1875 if (pmc) {
1876 dev_printk(KERN_DEBUG, &dev->dev,
1877 "PME# supported from%s%s%s%s%s\n",
1878 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1879 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1880 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1881 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1882 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1883 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1884 dev->pme_poll = true;
1886 * Make device's PM flags reflect the wake-up capability, but
1887 * let the user space enable it to wake up the system as needed.
1889 device_set_wakeup_capable(&dev->dev, true);
1890 /* Disable the PME# generation functionality */
1891 pci_pme_active(dev, false);
1892 } else {
1893 dev->pme_support = 0;
1898 * platform_pci_wakeup_init - init platform wakeup if present
1899 * @dev: PCI device
1901 * Some devices don't have PCI PM caps but can still generate wakeup
1902 * events through platform methods (like ACPI events). If @dev supports
1903 * platform wakeup events, set the device flag to indicate as much. This
1904 * may be redundant if the device also supports PCI PM caps, but double
1905 * initialization should be safe in that case.
1907 void platform_pci_wakeup_init(struct pci_dev *dev)
1909 if (!platform_pci_can_wakeup(dev))
1910 return;
1912 device_set_wakeup_capable(&dev->dev, true);
1913 platform_pci_sleep_wake(dev, false);
1916 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1917 struct pci_cap_saved_state *new_cap)
1919 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1923 * pci_add_save_buffer - allocate buffer for saving given capability registers
1924 * @dev: the PCI device
1925 * @cap: the capability to allocate the buffer for
1926 * @size: requested size of the buffer
1928 static int pci_add_cap_save_buffer(
1929 struct pci_dev *dev, char cap, unsigned int size)
1931 int pos;
1932 struct pci_cap_saved_state *save_state;
1934 pos = pci_find_capability(dev, cap);
1935 if (pos <= 0)
1936 return 0;
1938 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1939 if (!save_state)
1940 return -ENOMEM;
1942 save_state->cap.cap_nr = cap;
1943 save_state->cap.size = size;
1944 pci_add_saved_cap(dev, save_state);
1946 return 0;
1950 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1951 * @dev: the PCI device
1953 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1955 int error;
1957 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1958 PCI_EXP_SAVE_REGS * sizeof(u16));
1959 if (error)
1960 dev_err(&dev->dev,
1961 "unable to preallocate PCI Express save buffer\n");
1963 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1964 if (error)
1965 dev_err(&dev->dev,
1966 "unable to preallocate PCI-X save buffer\n");
1969 void pci_free_cap_save_buffers(struct pci_dev *dev)
1971 struct pci_cap_saved_state *tmp;
1972 struct hlist_node *pos, *n;
1974 hlist_for_each_entry_safe(tmp, pos, n, &dev->saved_cap_space, next)
1975 kfree(tmp);
1979 * pci_enable_ari - enable ARI forwarding if hardware support it
1980 * @dev: the PCI device
1982 void pci_enable_ari(struct pci_dev *dev)
1984 int pos;
1985 u32 cap;
1986 u16 flags, ctrl;
1987 struct pci_dev *bridge;
1989 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
1990 return;
1992 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1993 if (!pos)
1994 return;
1996 bridge = dev->bus->self;
1997 if (!bridge || !pci_is_pcie(bridge))
1998 return;
2000 pos = pci_pcie_cap(bridge);
2001 if (!pos)
2002 return;
2004 /* ARI is a PCIe v2 feature */
2005 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
2006 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
2007 return;
2009 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
2010 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2011 return;
2013 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
2014 ctrl |= PCI_EXP_DEVCTL2_ARI;
2015 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
2017 bridge->ari_enabled = 1;
2021 * pci_enable_ido - enable ID-based ordering on a device
2022 * @dev: the PCI device
2023 * @type: which types of IDO to enable
2025 * Enable ID-based ordering on @dev. @type can contain the bits
2026 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2027 * which types of transactions are allowed to be re-ordered.
2029 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2031 int pos;
2032 u16 ctrl;
2034 pos = pci_pcie_cap(dev);
2035 if (!pos)
2036 return;
2038 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2039 if (type & PCI_EXP_IDO_REQUEST)
2040 ctrl |= PCI_EXP_IDO_REQ_EN;
2041 if (type & PCI_EXP_IDO_COMPLETION)
2042 ctrl |= PCI_EXP_IDO_CMP_EN;
2043 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2045 EXPORT_SYMBOL(pci_enable_ido);
2048 * pci_disable_ido - disable ID-based ordering on a device
2049 * @dev: the PCI device
2050 * @type: which types of IDO to disable
2052 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2054 int pos;
2055 u16 ctrl;
2057 if (!pci_is_pcie(dev))
2058 return;
2060 pos = pci_pcie_cap(dev);
2061 if (!pos)
2062 return;
2064 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2065 if (type & PCI_EXP_IDO_REQUEST)
2066 ctrl &= ~PCI_EXP_IDO_REQ_EN;
2067 if (type & PCI_EXP_IDO_COMPLETION)
2068 ctrl &= ~PCI_EXP_IDO_CMP_EN;
2069 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2071 EXPORT_SYMBOL(pci_disable_ido);
2074 * pci_enable_obff - enable optimized buffer flush/fill
2075 * @dev: PCI device
2076 * @type: type of signaling to use
2078 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2079 * signaling if possible, falling back to message signaling only if
2080 * WAKE# isn't supported. @type should indicate whether the PCIe link
2081 * be brought out of L0s or L1 to send the message. It should be either
2082 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2084 * If your device can benefit from receiving all messages, even at the
2085 * power cost of bringing the link back up from a low power state, use
2086 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2087 * preferred type).
2089 * RETURNS:
2090 * Zero on success, appropriate error number on failure.
2092 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2094 int pos;
2095 u32 cap;
2096 u16 ctrl;
2097 int ret;
2099 if (!pci_is_pcie(dev))
2100 return -ENOTSUPP;
2102 pos = pci_pcie_cap(dev);
2103 if (!pos)
2104 return -ENOTSUPP;
2106 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2107 if (!(cap & PCI_EXP_OBFF_MASK))
2108 return -ENOTSUPP; /* no OBFF support at all */
2110 /* Make sure the topology supports OBFF as well */
2111 if (dev->bus) {
2112 ret = pci_enable_obff(dev->bus->self, type);
2113 if (ret)
2114 return ret;
2117 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2118 if (cap & PCI_EXP_OBFF_WAKE)
2119 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2120 else {
2121 switch (type) {
2122 case PCI_EXP_OBFF_SIGNAL_L0:
2123 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2124 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2125 break;
2126 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2127 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2128 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2129 break;
2130 default:
2131 WARN(1, "bad OBFF signal type\n");
2132 return -ENOTSUPP;
2135 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2137 return 0;
2139 EXPORT_SYMBOL(pci_enable_obff);
2142 * pci_disable_obff - disable optimized buffer flush/fill
2143 * @dev: PCI device
2145 * Disable OBFF on @dev.
2147 void pci_disable_obff(struct pci_dev *dev)
2149 int pos;
2150 u16 ctrl;
2152 if (!pci_is_pcie(dev))
2153 return;
2155 pos = pci_pcie_cap(dev);
2156 if (!pos)
2157 return;
2159 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2160 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2161 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2163 EXPORT_SYMBOL(pci_disable_obff);
2166 * pci_ltr_supported - check whether a device supports LTR
2167 * @dev: PCI device
2169 * RETURNS:
2170 * True if @dev supports latency tolerance reporting, false otherwise.
2172 bool pci_ltr_supported(struct pci_dev *dev)
2174 int pos;
2175 u32 cap;
2177 if (!pci_is_pcie(dev))
2178 return false;
2180 pos = pci_pcie_cap(dev);
2181 if (!pos)
2182 return false;
2184 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2186 return cap & PCI_EXP_DEVCAP2_LTR;
2188 EXPORT_SYMBOL(pci_ltr_supported);
2191 * pci_enable_ltr - enable latency tolerance reporting
2192 * @dev: PCI device
2194 * Enable LTR on @dev if possible, which means enabling it first on
2195 * upstream ports.
2197 * RETURNS:
2198 * Zero on success, errno on failure.
2200 int pci_enable_ltr(struct pci_dev *dev)
2202 int pos;
2203 u16 ctrl;
2204 int ret;
2206 if (!pci_ltr_supported(dev))
2207 return -ENOTSUPP;
2209 pos = pci_pcie_cap(dev);
2210 if (!pos)
2211 return -ENOTSUPP;
2213 /* Only primary function can enable/disable LTR */
2214 if (PCI_FUNC(dev->devfn) != 0)
2215 return -EINVAL;
2217 /* Enable upstream ports first */
2218 if (dev->bus) {
2219 ret = pci_enable_ltr(dev->bus->self);
2220 if (ret)
2221 return ret;
2224 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2225 ctrl |= PCI_EXP_LTR_EN;
2226 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2228 return 0;
2230 EXPORT_SYMBOL(pci_enable_ltr);
2233 * pci_disable_ltr - disable latency tolerance reporting
2234 * @dev: PCI device
2236 void pci_disable_ltr(struct pci_dev *dev)
2238 int pos;
2239 u16 ctrl;
2241 if (!pci_ltr_supported(dev))
2242 return;
2244 pos = pci_pcie_cap(dev);
2245 if (!pos)
2246 return;
2248 /* Only primary function can enable/disable LTR */
2249 if (PCI_FUNC(dev->devfn) != 0)
2250 return;
2252 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2253 ctrl &= ~PCI_EXP_LTR_EN;
2254 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2256 EXPORT_SYMBOL(pci_disable_ltr);
2258 static int __pci_ltr_scale(int *val)
2260 int scale = 0;
2262 while (*val > 1023) {
2263 *val = (*val + 31) / 32;
2264 scale++;
2266 return scale;
2270 * pci_set_ltr - set LTR latency values
2271 * @dev: PCI device
2272 * @snoop_lat_ns: snoop latency in nanoseconds
2273 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2275 * Figure out the scale and set the LTR values accordingly.
2277 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2279 int pos, ret, snoop_scale, nosnoop_scale;
2280 u16 val;
2282 if (!pci_ltr_supported(dev))
2283 return -ENOTSUPP;
2285 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2286 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2288 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2289 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2290 return -EINVAL;
2292 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2293 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2294 return -EINVAL;
2296 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2297 if (!pos)
2298 return -ENOTSUPP;
2300 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2301 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2302 if (ret != 4)
2303 return -EIO;
2305 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2306 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2307 if (ret != 4)
2308 return -EIO;
2310 return 0;
2312 EXPORT_SYMBOL(pci_set_ltr);
2314 static int pci_acs_enable;
2317 * pci_request_acs - ask for ACS to be enabled if supported
2319 void pci_request_acs(void)
2321 pci_acs_enable = 1;
2325 * pci_enable_acs - enable ACS if hardware support it
2326 * @dev: the PCI device
2328 void pci_enable_acs(struct pci_dev *dev)
2330 int pos;
2331 u16 cap;
2332 u16 ctrl;
2334 if (!pci_acs_enable)
2335 return;
2337 if (!pci_is_pcie(dev))
2338 return;
2340 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2341 if (!pos)
2342 return;
2344 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2345 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2347 /* Source Validation */
2348 ctrl |= (cap & PCI_ACS_SV);
2350 /* P2P Request Redirect */
2351 ctrl |= (cap & PCI_ACS_RR);
2353 /* P2P Completion Redirect */
2354 ctrl |= (cap & PCI_ACS_CR);
2356 /* Upstream Forwarding */
2357 ctrl |= (cap & PCI_ACS_UF);
2359 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2363 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2364 * @dev: the PCI device
2365 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2367 * Perform INTx swizzling for a device behind one level of bridge. This is
2368 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2369 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2370 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2371 * the PCI Express Base Specification, Revision 2.1)
2373 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2375 int slot;
2377 if (pci_ari_enabled(dev->bus))
2378 slot = 0;
2379 else
2380 slot = PCI_SLOT(dev->devfn);
2382 return (((pin - 1) + slot) % 4) + 1;
2386 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2388 u8 pin;
2390 pin = dev->pin;
2391 if (!pin)
2392 return -1;
2394 while (!pci_is_root_bus(dev->bus)) {
2395 pin = pci_swizzle_interrupt_pin(dev, pin);
2396 dev = dev->bus->self;
2398 *bridge = dev;
2399 return pin;
2403 * pci_common_swizzle - swizzle INTx all the way to root bridge
2404 * @dev: the PCI device
2405 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2407 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2408 * bridges all the way up to a PCI root bus.
2410 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2412 u8 pin = *pinp;
2414 while (!pci_is_root_bus(dev->bus)) {
2415 pin = pci_swizzle_interrupt_pin(dev, pin);
2416 dev = dev->bus->self;
2418 *pinp = pin;
2419 return PCI_SLOT(dev->devfn);
2423 * pci_release_region - Release a PCI bar
2424 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2425 * @bar: BAR to release
2427 * Releases the PCI I/O and memory resources previously reserved by a
2428 * successful call to pci_request_region. Call this function only
2429 * after all use of the PCI regions has ceased.
2431 void pci_release_region(struct pci_dev *pdev, int bar)
2433 struct pci_devres *dr;
2435 if (pci_resource_len(pdev, bar) == 0)
2436 return;
2437 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2438 release_region(pci_resource_start(pdev, bar),
2439 pci_resource_len(pdev, bar));
2440 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2441 release_mem_region(pci_resource_start(pdev, bar),
2442 pci_resource_len(pdev, bar));
2444 dr = find_pci_dr(pdev);
2445 if (dr)
2446 dr->region_mask &= ~(1 << bar);
2450 * __pci_request_region - Reserved PCI I/O and memory resource
2451 * @pdev: PCI device whose resources are to be reserved
2452 * @bar: BAR to be reserved
2453 * @res_name: Name to be associated with resource.
2454 * @exclusive: whether the region access is exclusive or not
2456 * Mark the PCI region associated with PCI device @pdev BR @bar as
2457 * being reserved by owner @res_name. Do not access any
2458 * address inside the PCI regions unless this call returns
2459 * successfully.
2461 * If @exclusive is set, then the region is marked so that userspace
2462 * is explicitly not allowed to map the resource via /dev/mem or
2463 * sysfs MMIO access.
2465 * Returns 0 on success, or %EBUSY on error. A warning
2466 * message is also printed on failure.
2468 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2469 int exclusive)
2471 struct pci_devres *dr;
2473 if (pci_resource_len(pdev, bar) == 0)
2474 return 0;
2476 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2477 if (!request_region(pci_resource_start(pdev, bar),
2478 pci_resource_len(pdev, bar), res_name))
2479 goto err_out;
2481 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2482 if (!__request_mem_region(pci_resource_start(pdev, bar),
2483 pci_resource_len(pdev, bar), res_name,
2484 exclusive))
2485 goto err_out;
2488 dr = find_pci_dr(pdev);
2489 if (dr)
2490 dr->region_mask |= 1 << bar;
2492 return 0;
2494 err_out:
2495 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2496 &pdev->resource[bar]);
2497 return -EBUSY;
2501 * pci_request_region - Reserve PCI I/O and memory resource
2502 * @pdev: PCI device whose resources are to be reserved
2503 * @bar: BAR to be reserved
2504 * @res_name: Name to be associated with resource
2506 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2507 * being reserved by owner @res_name. Do not access any
2508 * address inside the PCI regions unless this call returns
2509 * successfully.
2511 * Returns 0 on success, or %EBUSY on error. A warning
2512 * message is also printed on failure.
2514 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2516 return __pci_request_region(pdev, bar, res_name, 0);
2520 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2521 * @pdev: PCI device whose resources are to be reserved
2522 * @bar: BAR to be reserved
2523 * @res_name: Name to be associated with resource.
2525 * Mark the PCI region associated with PCI device @pdev BR @bar as
2526 * being reserved by owner @res_name. Do not access any
2527 * address inside the PCI regions unless this call returns
2528 * successfully.
2530 * Returns 0 on success, or %EBUSY on error. A warning
2531 * message is also printed on failure.
2533 * The key difference that _exclusive makes it that userspace is
2534 * explicitly not allowed to map the resource via /dev/mem or
2535 * sysfs.
2537 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2539 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2542 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2543 * @pdev: PCI device whose resources were previously reserved
2544 * @bars: Bitmask of BARs to be released
2546 * Release selected PCI I/O and memory resources previously reserved.
2547 * Call this function only after all use of the PCI regions has ceased.
2549 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2551 int i;
2553 for (i = 0; i < 6; i++)
2554 if (bars & (1 << i))
2555 pci_release_region(pdev, i);
2558 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2559 const char *res_name, int excl)
2561 int i;
2563 for (i = 0; i < 6; i++)
2564 if (bars & (1 << i))
2565 if (__pci_request_region(pdev, i, res_name, excl))
2566 goto err_out;
2567 return 0;
2569 err_out:
2570 while(--i >= 0)
2571 if (bars & (1 << i))
2572 pci_release_region(pdev, i);
2574 return -EBUSY;
2579 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2580 * @pdev: PCI device whose resources are to be reserved
2581 * @bars: Bitmask of BARs to be requested
2582 * @res_name: Name to be associated with resource
2584 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2585 const char *res_name)
2587 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2590 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2591 int bars, const char *res_name)
2593 return __pci_request_selected_regions(pdev, bars, res_name,
2594 IORESOURCE_EXCLUSIVE);
2598 * pci_release_regions - Release reserved PCI I/O and memory resources
2599 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2601 * Releases all PCI I/O and memory resources previously reserved by a
2602 * successful call to pci_request_regions. Call this function only
2603 * after all use of the PCI regions has ceased.
2606 void pci_release_regions(struct pci_dev *pdev)
2608 pci_release_selected_regions(pdev, (1 << 6) - 1);
2612 * pci_request_regions - Reserved PCI I/O and memory resources
2613 * @pdev: PCI device whose resources are to be reserved
2614 * @res_name: Name to be associated with resource.
2616 * Mark all PCI regions associated with PCI device @pdev as
2617 * being reserved by owner @res_name. Do not access any
2618 * address inside the PCI regions unless this call returns
2619 * successfully.
2621 * Returns 0 on success, or %EBUSY on error. A warning
2622 * message is also printed on failure.
2624 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2626 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2630 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2631 * @pdev: PCI device whose resources are to be reserved
2632 * @res_name: Name to be associated with resource.
2634 * Mark all PCI regions associated with PCI device @pdev as
2635 * being reserved by owner @res_name. Do not access any
2636 * address inside the PCI regions unless this call returns
2637 * successfully.
2639 * pci_request_regions_exclusive() will mark the region so that
2640 * /dev/mem and the sysfs MMIO access will not be allowed.
2642 * Returns 0 on success, or %EBUSY on error. A warning
2643 * message is also printed on failure.
2645 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2647 return pci_request_selected_regions_exclusive(pdev,
2648 ((1 << 6) - 1), res_name);
2651 static void __pci_set_master(struct pci_dev *dev, bool enable)
2653 u16 old_cmd, cmd;
2655 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2656 if (enable)
2657 cmd = old_cmd | PCI_COMMAND_MASTER;
2658 else
2659 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2660 if (cmd != old_cmd) {
2661 dev_dbg(&dev->dev, "%s bus mastering\n",
2662 enable ? "enabling" : "disabling");
2663 pci_write_config_word(dev, PCI_COMMAND, cmd);
2665 dev->is_busmaster = enable;
2669 * pcibios_set_master - enable PCI bus-mastering for device dev
2670 * @dev: the PCI device to enable
2672 * Enables PCI bus-mastering for the device. This is the default
2673 * implementation. Architecture specific implementations can override
2674 * this if necessary.
2676 void __weak pcibios_set_master(struct pci_dev *dev)
2678 u8 lat;
2680 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2681 if (pci_is_pcie(dev))
2682 return;
2684 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2685 if (lat < 16)
2686 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2687 else if (lat > pcibios_max_latency)
2688 lat = pcibios_max_latency;
2689 else
2690 return;
2691 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2692 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2696 * pci_set_master - enables bus-mastering for device dev
2697 * @dev: the PCI device to enable
2699 * Enables bus-mastering on the device and calls pcibios_set_master()
2700 * to do the needed arch specific settings.
2702 void pci_set_master(struct pci_dev *dev)
2704 __pci_set_master(dev, true);
2705 pcibios_set_master(dev);
2709 * pci_clear_master - disables bus-mastering for device dev
2710 * @dev: the PCI device to disable
2712 void pci_clear_master(struct pci_dev *dev)
2714 __pci_set_master(dev, false);
2718 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2719 * @dev: the PCI device for which MWI is to be enabled
2721 * Helper function for pci_set_mwi.
2722 * Originally copied from drivers/net/acenic.c.
2723 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2725 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2727 int pci_set_cacheline_size(struct pci_dev *dev)
2729 u8 cacheline_size;
2731 if (!pci_cache_line_size)
2732 return -EINVAL;
2734 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2735 equal to or multiple of the right value. */
2736 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2737 if (cacheline_size >= pci_cache_line_size &&
2738 (cacheline_size % pci_cache_line_size) == 0)
2739 return 0;
2741 /* Write the correct value. */
2742 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2743 /* Read it back. */
2744 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2745 if (cacheline_size == pci_cache_line_size)
2746 return 0;
2748 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2749 "supported\n", pci_cache_line_size << 2);
2751 return -EINVAL;
2753 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2755 #ifdef PCI_DISABLE_MWI
2756 int pci_set_mwi(struct pci_dev *dev)
2758 return 0;
2761 int pci_try_set_mwi(struct pci_dev *dev)
2763 return 0;
2766 void pci_clear_mwi(struct pci_dev *dev)
2770 #else
2773 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2774 * @dev: the PCI device for which MWI is enabled
2776 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2778 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2781 pci_set_mwi(struct pci_dev *dev)
2783 int rc;
2784 u16 cmd;
2786 rc = pci_set_cacheline_size(dev);
2787 if (rc)
2788 return rc;
2790 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2791 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2792 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2793 cmd |= PCI_COMMAND_INVALIDATE;
2794 pci_write_config_word(dev, PCI_COMMAND, cmd);
2797 return 0;
2801 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2802 * @dev: the PCI device for which MWI is enabled
2804 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2805 * Callers are not required to check the return value.
2807 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2809 int pci_try_set_mwi(struct pci_dev *dev)
2811 int rc = pci_set_mwi(dev);
2812 return rc;
2816 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2817 * @dev: the PCI device to disable
2819 * Disables PCI Memory-Write-Invalidate transaction on the device
2821 void
2822 pci_clear_mwi(struct pci_dev *dev)
2824 u16 cmd;
2826 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2827 if (cmd & PCI_COMMAND_INVALIDATE) {
2828 cmd &= ~PCI_COMMAND_INVALIDATE;
2829 pci_write_config_word(dev, PCI_COMMAND, cmd);
2832 #endif /* ! PCI_DISABLE_MWI */
2835 * pci_intx - enables/disables PCI INTx for device dev
2836 * @pdev: the PCI device to operate on
2837 * @enable: boolean: whether to enable or disable PCI INTx
2839 * Enables/disables PCI INTx for device dev
2841 void
2842 pci_intx(struct pci_dev *pdev, int enable)
2844 u16 pci_command, new;
2846 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2848 if (enable) {
2849 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2850 } else {
2851 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2854 if (new != pci_command) {
2855 struct pci_devres *dr;
2857 pci_write_config_word(pdev, PCI_COMMAND, new);
2859 dr = find_pci_dr(pdev);
2860 if (dr && !dr->restore_intx) {
2861 dr->restore_intx = 1;
2862 dr->orig_intx = !enable;
2868 * pci_intx_mask_supported - probe for INTx masking support
2869 * @dev: the PCI device to operate on
2871 * Check if the device dev support INTx masking via the config space
2872 * command word.
2874 bool pci_intx_mask_supported(struct pci_dev *dev)
2876 bool mask_supported = false;
2877 u16 orig, new;
2879 pci_cfg_access_lock(dev);
2881 pci_read_config_word(dev, PCI_COMMAND, &orig);
2882 pci_write_config_word(dev, PCI_COMMAND,
2883 orig ^ PCI_COMMAND_INTX_DISABLE);
2884 pci_read_config_word(dev, PCI_COMMAND, &new);
2887 * There's no way to protect against hardware bugs or detect them
2888 * reliably, but as long as we know what the value should be, let's
2889 * go ahead and check it.
2891 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2892 dev_err(&dev->dev, "Command register changed from "
2893 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2894 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2895 mask_supported = true;
2896 pci_write_config_word(dev, PCI_COMMAND, orig);
2899 pci_cfg_access_unlock(dev);
2900 return mask_supported;
2902 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2904 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2906 struct pci_bus *bus = dev->bus;
2907 bool mask_updated = true;
2908 u32 cmd_status_dword;
2909 u16 origcmd, newcmd;
2910 unsigned long flags;
2911 bool irq_pending;
2914 * We do a single dword read to retrieve both command and status.
2915 * Document assumptions that make this possible.
2917 BUILD_BUG_ON(PCI_COMMAND % 4);
2918 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2920 raw_spin_lock_irqsave(&pci_lock, flags);
2922 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2924 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2927 * Check interrupt status register to see whether our device
2928 * triggered the interrupt (when masking) or the next IRQ is
2929 * already pending (when unmasking).
2931 if (mask != irq_pending) {
2932 mask_updated = false;
2933 goto done;
2936 origcmd = cmd_status_dword;
2937 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2938 if (mask)
2939 newcmd |= PCI_COMMAND_INTX_DISABLE;
2940 if (newcmd != origcmd)
2941 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2943 done:
2944 raw_spin_unlock_irqrestore(&pci_lock, flags);
2946 return mask_updated;
2950 * pci_check_and_mask_intx - mask INTx on pending interrupt
2951 * @dev: the PCI device to operate on
2953 * Check if the device dev has its INTx line asserted, mask it and
2954 * return true in that case. False is returned if not interrupt was
2955 * pending.
2957 bool pci_check_and_mask_intx(struct pci_dev *dev)
2959 return pci_check_and_set_intx_mask(dev, true);
2961 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2964 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2965 * @dev: the PCI device to operate on
2967 * Check if the device dev has its INTx line asserted, unmask it if not
2968 * and return true. False is returned and the mask remains active if
2969 * there was still an interrupt pending.
2971 bool pci_check_and_unmask_intx(struct pci_dev *dev)
2973 return pci_check_and_set_intx_mask(dev, false);
2975 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2978 * pci_msi_off - disables any msi or msix capabilities
2979 * @dev: the PCI device to operate on
2981 * If you want to use msi see pci_enable_msi and friends.
2982 * This is a lower level primitive that allows us to disable
2983 * msi operation at the device level.
2985 void pci_msi_off(struct pci_dev *dev)
2987 int pos;
2988 u16 control;
2990 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2991 if (pos) {
2992 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2993 control &= ~PCI_MSI_FLAGS_ENABLE;
2994 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2996 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2997 if (pos) {
2998 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2999 control &= ~PCI_MSIX_FLAGS_ENABLE;
3000 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3003 EXPORT_SYMBOL_GPL(pci_msi_off);
3005 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3007 return dma_set_max_seg_size(&dev->dev, size);
3009 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3011 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3013 return dma_set_seg_boundary(&dev->dev, mask);
3015 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3017 static int pcie_flr(struct pci_dev *dev, int probe)
3019 int i;
3020 int pos;
3021 u32 cap;
3022 u16 status, control;
3024 pos = pci_pcie_cap(dev);
3025 if (!pos)
3026 return -ENOTTY;
3028 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
3029 if (!(cap & PCI_EXP_DEVCAP_FLR))
3030 return -ENOTTY;
3032 if (probe)
3033 return 0;
3035 /* Wait for Transaction Pending bit clean */
3036 for (i = 0; i < 4; i++) {
3037 if (i)
3038 msleep((1 << (i - 1)) * 100);
3040 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
3041 if (!(status & PCI_EXP_DEVSTA_TRPND))
3042 goto clear;
3045 dev_err(&dev->dev, "transaction is not cleared; "
3046 "proceeding with reset anyway\n");
3048 clear:
3049 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
3050 control |= PCI_EXP_DEVCTL_BCR_FLR;
3051 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
3053 msleep(100);
3055 return 0;
3058 static int pci_af_flr(struct pci_dev *dev, int probe)
3060 int i;
3061 int pos;
3062 u8 cap;
3063 u8 status;
3065 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3066 if (!pos)
3067 return -ENOTTY;
3069 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3070 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3071 return -ENOTTY;
3073 if (probe)
3074 return 0;
3076 /* Wait for Transaction Pending bit clean */
3077 for (i = 0; i < 4; i++) {
3078 if (i)
3079 msleep((1 << (i - 1)) * 100);
3081 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3082 if (!(status & PCI_AF_STATUS_TP))
3083 goto clear;
3086 dev_err(&dev->dev, "transaction is not cleared; "
3087 "proceeding with reset anyway\n");
3089 clear:
3090 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3091 msleep(100);
3093 return 0;
3097 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3098 * @dev: Device to reset.
3099 * @probe: If set, only check if the device can be reset this way.
3101 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3102 * unset, it will be reinitialized internally when going from PCI_D3hot to
3103 * PCI_D0. If that's the case and the device is not in a low-power state
3104 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3106 * NOTE: This causes the caller to sleep for twice the device power transition
3107 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3108 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3109 * Moreover, only devices in D0 can be reset by this function.
3111 static int pci_pm_reset(struct pci_dev *dev, int probe)
3113 u16 csr;
3115 if (!dev->pm_cap)
3116 return -ENOTTY;
3118 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3119 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3120 return -ENOTTY;
3122 if (probe)
3123 return 0;
3125 if (dev->current_state != PCI_D0)
3126 return -EINVAL;
3128 csr &= ~PCI_PM_CTRL_STATE_MASK;
3129 csr |= PCI_D3hot;
3130 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3131 pci_dev_d3_sleep(dev);
3133 csr &= ~PCI_PM_CTRL_STATE_MASK;
3134 csr |= PCI_D0;
3135 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3136 pci_dev_d3_sleep(dev);
3138 return 0;
3141 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3143 u16 ctrl;
3144 struct pci_dev *pdev;
3146 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3147 return -ENOTTY;
3149 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3150 if (pdev != dev)
3151 return -ENOTTY;
3153 if (probe)
3154 return 0;
3156 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3157 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3158 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3159 msleep(100);
3161 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3162 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3163 msleep(100);
3165 return 0;
3168 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3170 int rc;
3172 might_sleep();
3174 rc = pci_dev_specific_reset(dev, probe);
3175 if (rc != -ENOTTY)
3176 goto done;
3178 rc = pcie_flr(dev, probe);
3179 if (rc != -ENOTTY)
3180 goto done;
3182 rc = pci_af_flr(dev, probe);
3183 if (rc != -ENOTTY)
3184 goto done;
3186 rc = pci_pm_reset(dev, probe);
3187 if (rc != -ENOTTY)
3188 goto done;
3190 rc = pci_parent_bus_reset(dev, probe);
3191 done:
3192 return rc;
3195 static int pci_dev_reset(struct pci_dev *dev, int probe)
3197 int rc;
3199 if (!probe) {
3200 pci_cfg_access_lock(dev);
3201 /* block PM suspend, driver probe, etc. */
3202 device_lock(&dev->dev);
3205 rc = __pci_dev_reset(dev, probe);
3207 if (!probe) {
3208 device_unlock(&dev->dev);
3209 pci_cfg_access_unlock(dev);
3211 return rc;
3214 * __pci_reset_function - reset a PCI device function
3215 * @dev: PCI device to reset
3217 * Some devices allow an individual function to be reset without affecting
3218 * other functions in the same device. The PCI device must be responsive
3219 * to PCI config space in order to use this function.
3221 * The device function is presumed to be unused when this function is called.
3222 * Resetting the device will make the contents of PCI configuration space
3223 * random, so any caller of this must be prepared to reinitialise the
3224 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3225 * etc.
3227 * Returns 0 if the device function was successfully reset or negative if the
3228 * device doesn't support resetting a single function.
3230 int __pci_reset_function(struct pci_dev *dev)
3232 return pci_dev_reset(dev, 0);
3234 EXPORT_SYMBOL_GPL(__pci_reset_function);
3237 * __pci_reset_function_locked - reset a PCI device function while holding
3238 * the @dev mutex lock.
3239 * @dev: PCI device to reset
3241 * Some devices allow an individual function to be reset without affecting
3242 * other functions in the same device. The PCI device must be responsive
3243 * to PCI config space in order to use this function.
3245 * The device function is presumed to be unused and the caller is holding
3246 * the device mutex lock when this function is called.
3247 * Resetting the device will make the contents of PCI configuration space
3248 * random, so any caller of this must be prepared to reinitialise the
3249 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3250 * etc.
3252 * Returns 0 if the device function was successfully reset or negative if the
3253 * device doesn't support resetting a single function.
3255 int __pci_reset_function_locked(struct pci_dev *dev)
3257 return __pci_dev_reset(dev, 0);
3259 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3262 * pci_probe_reset_function - check whether the device can be safely reset
3263 * @dev: PCI device to reset
3265 * Some devices allow an individual function to be reset without affecting
3266 * other functions in the same device. The PCI device must be responsive
3267 * to PCI config space in order to use this function.
3269 * Returns 0 if the device function can be reset or negative if the
3270 * device doesn't support resetting a single function.
3272 int pci_probe_reset_function(struct pci_dev *dev)
3274 return pci_dev_reset(dev, 1);
3278 * pci_reset_function - quiesce and reset a PCI device function
3279 * @dev: PCI device to reset
3281 * Some devices allow an individual function to be reset without affecting
3282 * other functions in the same device. The PCI device must be responsive
3283 * to PCI config space in order to use this function.
3285 * This function does not just reset the PCI portion of a device, but
3286 * clears all the state associated with the device. This function differs
3287 * from __pci_reset_function in that it saves and restores device state
3288 * over the reset.
3290 * Returns 0 if the device function was successfully reset or negative if the
3291 * device doesn't support resetting a single function.
3293 int pci_reset_function(struct pci_dev *dev)
3295 int rc;
3297 rc = pci_dev_reset(dev, 1);
3298 if (rc)
3299 return rc;
3301 pci_save_state(dev);
3304 * both INTx and MSI are disabled after the Interrupt Disable bit
3305 * is set and the Bus Master bit is cleared.
3307 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3309 rc = pci_dev_reset(dev, 0);
3311 pci_restore_state(dev);
3313 return rc;
3315 EXPORT_SYMBOL_GPL(pci_reset_function);
3318 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3319 * @dev: PCI device to query
3321 * Returns mmrbc: maximum designed memory read count in bytes
3322 * or appropriate error value.
3324 int pcix_get_max_mmrbc(struct pci_dev *dev)
3326 int cap;
3327 u32 stat;
3329 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3330 if (!cap)
3331 return -EINVAL;
3333 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3334 return -EINVAL;
3336 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3338 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3341 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3342 * @dev: PCI device to query
3344 * Returns mmrbc: maximum memory read count in bytes
3345 * or appropriate error value.
3347 int pcix_get_mmrbc(struct pci_dev *dev)
3349 int cap;
3350 u16 cmd;
3352 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3353 if (!cap)
3354 return -EINVAL;
3356 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3357 return -EINVAL;
3359 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3361 EXPORT_SYMBOL(pcix_get_mmrbc);
3364 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3365 * @dev: PCI device to query
3366 * @mmrbc: maximum memory read count in bytes
3367 * valid values are 512, 1024, 2048, 4096
3369 * If possible sets maximum memory read byte count, some bridges have erratas
3370 * that prevent this.
3372 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3374 int cap;
3375 u32 stat, v, o;
3376 u16 cmd;
3378 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3379 return -EINVAL;
3381 v = ffs(mmrbc) - 10;
3383 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3384 if (!cap)
3385 return -EINVAL;
3387 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3388 return -EINVAL;
3390 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3391 return -E2BIG;
3393 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3394 return -EINVAL;
3396 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3397 if (o != v) {
3398 if (v > o && dev->bus &&
3399 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3400 return -EIO;
3402 cmd &= ~PCI_X_CMD_MAX_READ;
3403 cmd |= v << 2;
3404 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3405 return -EIO;
3407 return 0;
3409 EXPORT_SYMBOL(pcix_set_mmrbc);
3412 * pcie_get_readrq - get PCI Express read request size
3413 * @dev: PCI device to query
3415 * Returns maximum memory read request in bytes
3416 * or appropriate error value.
3418 int pcie_get_readrq(struct pci_dev *dev)
3420 int ret, cap;
3421 u16 ctl;
3423 cap = pci_pcie_cap(dev);
3424 if (!cap)
3425 return -EINVAL;
3427 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3428 if (!ret)
3429 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3431 return ret;
3433 EXPORT_SYMBOL(pcie_get_readrq);
3436 * pcie_set_readrq - set PCI Express maximum memory read request
3437 * @dev: PCI device to query
3438 * @rq: maximum memory read count in bytes
3439 * valid values are 128, 256, 512, 1024, 2048, 4096
3441 * If possible sets maximum memory read request in bytes
3443 int pcie_set_readrq(struct pci_dev *dev, int rq)
3445 int cap, err = -EINVAL;
3446 u16 ctl, v;
3448 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3449 goto out;
3451 cap = pci_pcie_cap(dev);
3452 if (!cap)
3453 goto out;
3455 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3456 if (err)
3457 goto out;
3459 * If using the "performance" PCIe config, we clamp the
3460 * read rq size to the max packet size to prevent the
3461 * host bridge generating requests larger than we can
3462 * cope with
3464 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3465 int mps = pcie_get_mps(dev);
3467 if (mps < 0)
3468 return mps;
3469 if (mps < rq)
3470 rq = mps;
3473 v = (ffs(rq) - 8) << 12;
3475 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3476 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3477 ctl |= v;
3478 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3481 out:
3482 return err;
3484 EXPORT_SYMBOL(pcie_set_readrq);
3487 * pcie_get_mps - get PCI Express maximum payload size
3488 * @dev: PCI device to query
3490 * Returns maximum payload size in bytes
3491 * or appropriate error value.
3493 int pcie_get_mps(struct pci_dev *dev)
3495 int ret, cap;
3496 u16 ctl;
3498 cap = pci_pcie_cap(dev);
3499 if (!cap)
3500 return -EINVAL;
3502 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3503 if (!ret)
3504 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3506 return ret;
3510 * pcie_set_mps - set PCI Express maximum payload size
3511 * @dev: PCI device to query
3512 * @mps: maximum payload size in bytes
3513 * valid values are 128, 256, 512, 1024, 2048, 4096
3515 * If possible sets maximum payload size
3517 int pcie_set_mps(struct pci_dev *dev, int mps)
3519 int cap, err = -EINVAL;
3520 u16 ctl, v;
3522 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3523 goto out;
3525 v = ffs(mps) - 8;
3526 if (v > dev->pcie_mpss)
3527 goto out;
3528 v <<= 5;
3530 cap = pci_pcie_cap(dev);
3531 if (!cap)
3532 goto out;
3534 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3535 if (err)
3536 goto out;
3538 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3539 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3540 ctl |= v;
3541 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3543 out:
3544 return err;
3548 * pci_select_bars - Make BAR mask from the type of resource
3549 * @dev: the PCI device for which BAR mask is made
3550 * @flags: resource type mask to be selected
3552 * This helper routine makes bar mask from the type of resource.
3554 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3556 int i, bars = 0;
3557 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3558 if (pci_resource_flags(dev, i) & flags)
3559 bars |= (1 << i);
3560 return bars;
3564 * pci_resource_bar - get position of the BAR associated with a resource
3565 * @dev: the PCI device
3566 * @resno: the resource number
3567 * @type: the BAR type to be filled in
3569 * Returns BAR position in config space, or 0 if the BAR is invalid.
3571 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3573 int reg;
3575 if (resno < PCI_ROM_RESOURCE) {
3576 *type = pci_bar_unknown;
3577 return PCI_BASE_ADDRESS_0 + 4 * resno;
3578 } else if (resno == PCI_ROM_RESOURCE) {
3579 *type = pci_bar_mem32;
3580 return dev->rom_base_reg;
3581 } else if (resno < PCI_BRIDGE_RESOURCES) {
3582 /* device specific resource */
3583 reg = pci_iov_resource_bar(dev, resno, type);
3584 if (reg)
3585 return reg;
3588 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3589 return 0;
3592 /* Some architectures require additional programming to enable VGA */
3593 static arch_set_vga_state_t arch_set_vga_state;
3595 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3597 arch_set_vga_state = func; /* NULL disables */
3600 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3601 unsigned int command_bits, u32 flags)
3603 if (arch_set_vga_state)
3604 return arch_set_vga_state(dev, decode, command_bits,
3605 flags);
3606 return 0;
3610 * pci_set_vga_state - set VGA decode state on device and parents if requested
3611 * @dev: the PCI device
3612 * @decode: true = enable decoding, false = disable decoding
3613 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3614 * @flags: traverse ancestors and change bridges
3615 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3617 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3618 unsigned int command_bits, u32 flags)
3620 struct pci_bus *bus;
3621 struct pci_dev *bridge;
3622 u16 cmd;
3623 int rc;
3625 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3627 /* ARCH specific VGA enables */
3628 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3629 if (rc)
3630 return rc;
3632 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3633 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3634 if (decode == true)
3635 cmd |= command_bits;
3636 else
3637 cmd &= ~command_bits;
3638 pci_write_config_word(dev, PCI_COMMAND, cmd);
3641 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3642 return 0;
3644 bus = dev->bus;
3645 while (bus) {
3646 bridge = bus->self;
3647 if (bridge) {
3648 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3649 &cmd);
3650 if (decode == true)
3651 cmd |= PCI_BRIDGE_CTL_VGA;
3652 else
3653 cmd &= ~PCI_BRIDGE_CTL_VGA;
3654 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3655 cmd);
3657 bus = bus->parent;
3659 return 0;
3662 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3663 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3664 static DEFINE_SPINLOCK(resource_alignment_lock);
3667 * pci_specified_resource_alignment - get resource alignment specified by user.
3668 * @dev: the PCI device to get
3670 * RETURNS: Resource alignment if it is specified.
3671 * Zero if it is not specified.
3673 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3675 int seg, bus, slot, func, align_order, count;
3676 resource_size_t align = 0;
3677 char *p;
3679 spin_lock(&resource_alignment_lock);
3680 p = resource_alignment_param;
3681 while (*p) {
3682 count = 0;
3683 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3684 p[count] == '@') {
3685 p += count + 1;
3686 } else {
3687 align_order = -1;
3689 if (sscanf(p, "%x:%x:%x.%x%n",
3690 &seg, &bus, &slot, &func, &count) != 4) {
3691 seg = 0;
3692 if (sscanf(p, "%x:%x.%x%n",
3693 &bus, &slot, &func, &count) != 3) {
3694 /* Invalid format */
3695 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3697 break;
3700 p += count;
3701 if (seg == pci_domain_nr(dev->bus) &&
3702 bus == dev->bus->number &&
3703 slot == PCI_SLOT(dev->devfn) &&
3704 func == PCI_FUNC(dev->devfn)) {
3705 if (align_order == -1) {
3706 align = PAGE_SIZE;
3707 } else {
3708 align = 1 << align_order;
3710 /* Found */
3711 break;
3713 if (*p != ';' && *p != ',') {
3714 /* End of param or invalid format */
3715 break;
3717 p++;
3719 spin_unlock(&resource_alignment_lock);
3720 return align;
3724 * pci_is_reassigndev - check if specified PCI is target device to reassign
3725 * @dev: the PCI device to check
3727 * RETURNS: non-zero for PCI device is a target device to reassign,
3728 * or zero is not.
3730 int pci_is_reassigndev(struct pci_dev *dev)
3732 return (pci_specified_resource_alignment(dev) != 0);
3736 * This function disables memory decoding and releases memory resources
3737 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3738 * It also rounds up size to specified alignment.
3739 * Later on, the kernel will assign page-aligned memory resource back
3740 * to the device.
3742 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3744 int i;
3745 struct resource *r;
3746 resource_size_t align, size;
3747 u16 command;
3749 if (!pci_is_reassigndev(dev))
3750 return;
3752 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3753 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3754 dev_warn(&dev->dev,
3755 "Can't reassign resources to host bridge.\n");
3756 return;
3759 dev_info(&dev->dev,
3760 "Disabling memory decoding and releasing memory resources.\n");
3761 pci_read_config_word(dev, PCI_COMMAND, &command);
3762 command &= ~PCI_COMMAND_MEMORY;
3763 pci_write_config_word(dev, PCI_COMMAND, command);
3765 align = pci_specified_resource_alignment(dev);
3766 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3767 r = &dev->resource[i];
3768 if (!(r->flags & IORESOURCE_MEM))
3769 continue;
3770 size = resource_size(r);
3771 if (size < align) {
3772 size = align;
3773 dev_info(&dev->dev,
3774 "Rounding up size of resource #%d to %#llx.\n",
3775 i, (unsigned long long)size);
3777 r->end = size - 1;
3778 r->start = 0;
3780 /* Need to disable bridge's resource window,
3781 * to enable the kernel to reassign new resource
3782 * window later on.
3784 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3785 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3786 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3787 r = &dev->resource[i];
3788 if (!(r->flags & IORESOURCE_MEM))
3789 continue;
3790 r->end = resource_size(r) - 1;
3791 r->start = 0;
3793 pci_disable_bridge_window(dev);
3797 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3799 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3800 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3801 spin_lock(&resource_alignment_lock);
3802 strncpy(resource_alignment_param, buf, count);
3803 resource_alignment_param[count] = '\0';
3804 spin_unlock(&resource_alignment_lock);
3805 return count;
3808 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3810 size_t count;
3811 spin_lock(&resource_alignment_lock);
3812 count = snprintf(buf, size, "%s", resource_alignment_param);
3813 spin_unlock(&resource_alignment_lock);
3814 return count;
3817 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3819 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3822 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3823 const char *buf, size_t count)
3825 return pci_set_resource_alignment_param(buf, count);
3828 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3829 pci_resource_alignment_store);
3831 static int __init pci_resource_alignment_sysfs_init(void)
3833 return bus_create_file(&pci_bus_type,
3834 &bus_attr_resource_alignment);
3837 late_initcall(pci_resource_alignment_sysfs_init);
3839 static void __devinit pci_no_domains(void)
3841 #ifdef CONFIG_PCI_DOMAINS
3842 pci_domains_supported = 0;
3843 #endif
3847 * pci_ext_cfg_enabled - can we access extended PCI config space?
3848 * @dev: The PCI device of the root bridge.
3850 * Returns 1 if we can access PCI extended config space (offsets
3851 * greater than 0xff). This is the default implementation. Architecture
3852 * implementations can override this.
3854 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3856 return 1;
3859 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3862 EXPORT_SYMBOL(pci_fixup_cardbus);
3864 static int __init pci_setup(char *str)
3866 while (str) {
3867 char *k = strchr(str, ',');
3868 if (k)
3869 *k++ = 0;
3870 if (*str && (str = pcibios_setup(str)) && *str) {
3871 if (!strcmp(str, "nomsi")) {
3872 pci_no_msi();
3873 } else if (!strcmp(str, "noaer")) {
3874 pci_no_aer();
3875 } else if (!strncmp(str, "realloc=", 8)) {
3876 pci_realloc_get_opt(str + 8);
3877 } else if (!strncmp(str, "realloc", 7)) {
3878 pci_realloc_get_opt("on");
3879 } else if (!strcmp(str, "nodomains")) {
3880 pci_no_domains();
3881 } else if (!strncmp(str, "noari", 5)) {
3882 pcie_ari_disabled = true;
3883 } else if (!strncmp(str, "cbiosize=", 9)) {
3884 pci_cardbus_io_size = memparse(str + 9, &str);
3885 } else if (!strncmp(str, "cbmemsize=", 10)) {
3886 pci_cardbus_mem_size = memparse(str + 10, &str);
3887 } else if (!strncmp(str, "resource_alignment=", 19)) {
3888 pci_set_resource_alignment_param(str + 19,
3889 strlen(str + 19));
3890 } else if (!strncmp(str, "ecrc=", 5)) {
3891 pcie_ecrc_get_policy(str + 5);
3892 } else if (!strncmp(str, "hpiosize=", 9)) {
3893 pci_hotplug_io_size = memparse(str + 9, &str);
3894 } else if (!strncmp(str, "hpmemsize=", 10)) {
3895 pci_hotplug_mem_size = memparse(str + 10, &str);
3896 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3897 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3898 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3899 pcie_bus_config = PCIE_BUS_SAFE;
3900 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3901 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3902 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3903 pcie_bus_config = PCIE_BUS_PEER2PEER;
3904 } else if (!strncmp(str, "pcie_scan_all", 13)) {
3905 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3906 } else {
3907 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3908 str);
3911 str = k;
3913 return 0;
3915 early_param("pci", pci_setup);
3917 EXPORT_SYMBOL(pci_reenable_device);
3918 EXPORT_SYMBOL(pci_enable_device_io);
3919 EXPORT_SYMBOL(pci_enable_device_mem);
3920 EXPORT_SYMBOL(pci_enable_device);
3921 EXPORT_SYMBOL(pcim_enable_device);
3922 EXPORT_SYMBOL(pcim_pin_device);
3923 EXPORT_SYMBOL(pci_disable_device);
3924 EXPORT_SYMBOL(pci_find_capability);
3925 EXPORT_SYMBOL(pci_bus_find_capability);
3926 EXPORT_SYMBOL(pci_release_regions);
3927 EXPORT_SYMBOL(pci_request_regions);
3928 EXPORT_SYMBOL(pci_request_regions_exclusive);
3929 EXPORT_SYMBOL(pci_release_region);
3930 EXPORT_SYMBOL(pci_request_region);
3931 EXPORT_SYMBOL(pci_request_region_exclusive);
3932 EXPORT_SYMBOL(pci_release_selected_regions);
3933 EXPORT_SYMBOL(pci_request_selected_regions);
3934 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3935 EXPORT_SYMBOL(pci_set_master);
3936 EXPORT_SYMBOL(pci_clear_master);
3937 EXPORT_SYMBOL(pci_set_mwi);
3938 EXPORT_SYMBOL(pci_try_set_mwi);
3939 EXPORT_SYMBOL(pci_clear_mwi);
3940 EXPORT_SYMBOL_GPL(pci_intx);
3941 EXPORT_SYMBOL(pci_assign_resource);
3942 EXPORT_SYMBOL(pci_find_parent_resource);
3943 EXPORT_SYMBOL(pci_select_bars);
3945 EXPORT_SYMBOL(pci_set_power_state);
3946 EXPORT_SYMBOL(pci_save_state);
3947 EXPORT_SYMBOL(pci_restore_state);
3948 EXPORT_SYMBOL(pci_pme_capable);
3949 EXPORT_SYMBOL(pci_pme_active);
3950 EXPORT_SYMBOL(pci_wake_from_d3);
3951 EXPORT_SYMBOL(pci_target_state);
3952 EXPORT_SYMBOL(pci_prepare_to_sleep);
3953 EXPORT_SYMBOL(pci_back_from_sleep);
3954 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);