mm/mmap.c: replace find_vma_prepare() with clearer find_vma_links()
[linux-2.6/libata-dev.git] / mm / mmap.c
blob2ba27434e8437be250413f1923e62179280d3099
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
40 #include "internal.h"
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
55 * WARNING: the debugging will use recursive algorithms so never enable this
56 * unless you know what you are doing.
58 #undef DEBUG_MM_RB
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
86 EXPORT_SYMBOL(vm_get_page_prot);
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
98 * Check that a process has enough memory to allocate a new virtual
99 * mapping. 0 means there is enough memory for the allocation to
100 * succeed and -ENOMEM implies there is not.
102 * We currently support three overcommit policies, which are set via the
103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106 * Additional code 2002 Jul 20 by Robert Love.
108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
110 * Note this is a helper function intended to be used by LSMs which
111 * wish to use this logic.
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
115 unsigned long free, allowed;
117 vm_acct_memory(pages);
120 * Sometimes we want to use more memory than we have
122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 return 0;
125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 free = global_page_state(NR_FREE_PAGES);
127 free += global_page_state(NR_FILE_PAGES);
130 * shmem pages shouldn't be counted as free in this
131 * case, they can't be purged, only swapped out, and
132 * that won't affect the overall amount of available
133 * memory in the system.
135 free -= global_page_state(NR_SHMEM);
137 free += nr_swap_pages;
140 * Any slabs which are created with the
141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 * which are reclaimable, under pressure. The dentry
143 * cache and most inode caches should fall into this
145 free += global_page_state(NR_SLAB_RECLAIMABLE);
148 * Leave reserved pages. The pages are not for anonymous pages.
150 if (free <= totalreserve_pages)
151 goto error;
152 else
153 free -= totalreserve_pages;
156 * Leave the last 3% for root
158 if (!cap_sys_admin)
159 free -= free / 32;
161 if (free > pages)
162 return 0;
164 goto error;
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
170 * Leave the last 3% for root
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
186 return -ENOMEM;
190 * Requires inode->i_mapping->i_mmap_mutex
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
212 void unlink_file_vma(struct vm_area_struct *vma)
214 struct file *file = vma->vm_file;
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 mutex_lock(&mapping->i_mmap_mutex);
219 __remove_shared_vm_struct(vma, file, mapping);
220 mutex_unlock(&mapping->i_mmap_mutex);
225 * Close a vm structure and free it, returning the next.
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 struct vm_area_struct *next = vma->vm_next;
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file)
235 fput(vma->vm_file);
236 mpol_put(vma_policy(vma));
237 kmem_cache_free(vm_area_cachep, vma);
238 return next;
241 static unsigned long do_brk(unsigned long addr, unsigned long len);
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
245 unsigned long rlim, retval;
246 unsigned long newbrk, oldbrk;
247 struct mm_struct *mm = current->mm;
248 unsigned long min_brk;
250 down_write(&mm->mmap_sem);
252 #ifdef CONFIG_COMPAT_BRK
254 * CONFIG_COMPAT_BRK can still be overridden by setting
255 * randomize_va_space to 2, which will still cause mm->start_brk
256 * to be arbitrarily shifted
258 if (current->brk_randomized)
259 min_brk = mm->start_brk;
260 else
261 min_brk = mm->end_data;
262 #else
263 min_brk = mm->start_brk;
264 #endif
265 if (brk < min_brk)
266 goto out;
269 * Check against rlimit here. If this check is done later after the test
270 * of oldbrk with newbrk then it can escape the test and let the data
271 * segment grow beyond its set limit the in case where the limit is
272 * not page aligned -Ram Gupta
274 rlim = rlimit(RLIMIT_DATA);
275 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 (mm->end_data - mm->start_data) > rlim)
277 goto out;
279 newbrk = PAGE_ALIGN(brk);
280 oldbrk = PAGE_ALIGN(mm->brk);
281 if (oldbrk == newbrk)
282 goto set_brk;
284 /* Always allow shrinking brk. */
285 if (brk <= mm->brk) {
286 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 goto set_brk;
288 goto out;
291 /* Check against existing mmap mappings. */
292 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 goto out;
295 /* Ok, looks good - let it rip. */
296 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 goto out;
298 set_brk:
299 mm->brk = brk;
300 out:
301 retval = mm->brk;
302 up_write(&mm->mmap_sem);
303 return retval;
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
309 int i = 0, j;
310 struct rb_node *nd, *pn = NULL;
311 unsigned long prev = 0, pend = 0;
313 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 struct vm_area_struct *vma;
315 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 if (vma->vm_start < prev)
317 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 if (vma->vm_start < pend)
319 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 if (vma->vm_start > vma->vm_end)
321 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 i++;
323 pn = nd;
324 prev = vma->vm_start;
325 pend = vma->vm_end;
327 j = 0;
328 for (nd = pn; nd; nd = rb_prev(nd)) {
329 j++;
331 if (i != j)
332 printk("backwards %d, forwards %d\n", j, i), i = 0;
333 return i;
336 void validate_mm(struct mm_struct *mm)
338 int bug = 0;
339 int i = 0;
340 struct vm_area_struct *tmp = mm->mmap;
341 while (tmp) {
342 tmp = tmp->vm_next;
343 i++;
345 if (i != mm->map_count)
346 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 i = browse_rb(&mm->mm_rb);
348 if (i != mm->map_count)
349 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 BUG_ON(bug);
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
356 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
357 unsigned long end, struct vm_area_struct **pprev,
358 struct rb_node ***rb_link, struct rb_node **rb_parent)
360 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
362 __rb_link = &mm->mm_rb.rb_node;
363 rb_prev = __rb_parent = NULL;
365 while (*__rb_link) {
366 struct vm_area_struct *vma_tmp;
368 __rb_parent = *__rb_link;
369 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
371 if (vma_tmp->vm_end > addr) {
372 /* Fail if an existing vma overlaps the area */
373 if (vma_tmp->vm_start < end)
374 return -ENOMEM;
375 __rb_link = &__rb_parent->rb_left;
376 } else {
377 rb_prev = __rb_parent;
378 __rb_link = &__rb_parent->rb_right;
382 *pprev = NULL;
383 if (rb_prev)
384 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
385 *rb_link = __rb_link;
386 *rb_parent = __rb_parent;
387 return 0;
390 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
391 struct rb_node **rb_link, struct rb_node *rb_parent)
393 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
394 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
397 static void __vma_link_file(struct vm_area_struct *vma)
399 struct file *file;
401 file = vma->vm_file;
402 if (file) {
403 struct address_space *mapping = file->f_mapping;
405 if (vma->vm_flags & VM_DENYWRITE)
406 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
407 if (vma->vm_flags & VM_SHARED)
408 mapping->i_mmap_writable++;
410 flush_dcache_mmap_lock(mapping);
411 if (unlikely(vma->vm_flags & VM_NONLINEAR))
412 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
413 else
414 vma_prio_tree_insert(vma, &mapping->i_mmap);
415 flush_dcache_mmap_unlock(mapping);
419 static void
420 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
421 struct vm_area_struct *prev, struct rb_node **rb_link,
422 struct rb_node *rb_parent)
424 __vma_link_list(mm, vma, prev, rb_parent);
425 __vma_link_rb(mm, vma, rb_link, rb_parent);
428 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
429 struct vm_area_struct *prev, struct rb_node **rb_link,
430 struct rb_node *rb_parent)
432 struct address_space *mapping = NULL;
434 if (vma->vm_file)
435 mapping = vma->vm_file->f_mapping;
437 if (mapping)
438 mutex_lock(&mapping->i_mmap_mutex);
440 __vma_link(mm, vma, prev, rb_link, rb_parent);
441 __vma_link_file(vma);
443 if (mapping)
444 mutex_unlock(&mapping->i_mmap_mutex);
446 mm->map_count++;
447 validate_mm(mm);
451 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
452 * mm's list and rbtree. It has already been inserted into the prio_tree.
454 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
456 struct vm_area_struct *prev;
457 struct rb_node **rb_link, *rb_parent;
459 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
460 &prev, &rb_link, &rb_parent))
461 BUG();
462 __vma_link(mm, vma, prev, rb_link, rb_parent);
463 mm->map_count++;
466 static inline void
467 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
468 struct vm_area_struct *prev)
470 struct vm_area_struct *next = vma->vm_next;
472 prev->vm_next = next;
473 if (next)
474 next->vm_prev = prev;
475 rb_erase(&vma->vm_rb, &mm->mm_rb);
476 if (mm->mmap_cache == vma)
477 mm->mmap_cache = prev;
481 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
482 * is already present in an i_mmap tree without adjusting the tree.
483 * The following helper function should be used when such adjustments
484 * are necessary. The "insert" vma (if any) is to be inserted
485 * before we drop the necessary locks.
487 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
488 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
490 struct mm_struct *mm = vma->vm_mm;
491 struct vm_area_struct *next = vma->vm_next;
492 struct vm_area_struct *importer = NULL;
493 struct address_space *mapping = NULL;
494 struct prio_tree_root *root = NULL;
495 struct anon_vma *anon_vma = NULL;
496 struct file *file = vma->vm_file;
497 long adjust_next = 0;
498 int remove_next = 0;
500 if (next && !insert) {
501 struct vm_area_struct *exporter = NULL;
503 if (end >= next->vm_end) {
505 * vma expands, overlapping all the next, and
506 * perhaps the one after too (mprotect case 6).
508 again: remove_next = 1 + (end > next->vm_end);
509 end = next->vm_end;
510 exporter = next;
511 importer = vma;
512 } else if (end > next->vm_start) {
514 * vma expands, overlapping part of the next:
515 * mprotect case 5 shifting the boundary up.
517 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
518 exporter = next;
519 importer = vma;
520 } else if (end < vma->vm_end) {
522 * vma shrinks, and !insert tells it's not
523 * split_vma inserting another: so it must be
524 * mprotect case 4 shifting the boundary down.
526 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
527 exporter = vma;
528 importer = next;
532 * Easily overlooked: when mprotect shifts the boundary,
533 * make sure the expanding vma has anon_vma set if the
534 * shrinking vma had, to cover any anon pages imported.
536 if (exporter && exporter->anon_vma && !importer->anon_vma) {
537 if (anon_vma_clone(importer, exporter))
538 return -ENOMEM;
539 importer->anon_vma = exporter->anon_vma;
543 if (file) {
544 mapping = file->f_mapping;
545 if (!(vma->vm_flags & VM_NONLINEAR)) {
546 root = &mapping->i_mmap;
547 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
549 if (adjust_next)
550 uprobe_munmap(next, next->vm_start,
551 next->vm_end);
554 mutex_lock(&mapping->i_mmap_mutex);
555 if (insert) {
557 * Put into prio_tree now, so instantiated pages
558 * are visible to arm/parisc __flush_dcache_page
559 * throughout; but we cannot insert into address
560 * space until vma start or end is updated.
562 __vma_link_file(insert);
566 vma_adjust_trans_huge(vma, start, end, adjust_next);
569 * When changing only vma->vm_end, we don't really need anon_vma
570 * lock. This is a fairly rare case by itself, but the anon_vma
571 * lock may be shared between many sibling processes. Skipping
572 * the lock for brk adjustments makes a difference sometimes.
574 if (vma->anon_vma && (importer || start != vma->vm_start)) {
575 anon_vma = vma->anon_vma;
576 anon_vma_lock(anon_vma);
579 if (root) {
580 flush_dcache_mmap_lock(mapping);
581 vma_prio_tree_remove(vma, root);
582 if (adjust_next)
583 vma_prio_tree_remove(next, root);
586 vma->vm_start = start;
587 vma->vm_end = end;
588 vma->vm_pgoff = pgoff;
589 if (adjust_next) {
590 next->vm_start += adjust_next << PAGE_SHIFT;
591 next->vm_pgoff += adjust_next;
594 if (root) {
595 if (adjust_next)
596 vma_prio_tree_insert(next, root);
597 vma_prio_tree_insert(vma, root);
598 flush_dcache_mmap_unlock(mapping);
601 if (remove_next) {
603 * vma_merge has merged next into vma, and needs
604 * us to remove next before dropping the locks.
606 __vma_unlink(mm, next, vma);
607 if (file)
608 __remove_shared_vm_struct(next, file, mapping);
609 } else if (insert) {
611 * split_vma has split insert from vma, and needs
612 * us to insert it before dropping the locks
613 * (it may either follow vma or precede it).
615 __insert_vm_struct(mm, insert);
618 if (anon_vma)
619 anon_vma_unlock(anon_vma);
620 if (mapping)
621 mutex_unlock(&mapping->i_mmap_mutex);
623 if (root) {
624 uprobe_mmap(vma);
626 if (adjust_next)
627 uprobe_mmap(next);
630 if (remove_next) {
631 if (file) {
632 uprobe_munmap(next, next->vm_start, next->vm_end);
633 fput(file);
635 if (next->anon_vma)
636 anon_vma_merge(vma, next);
637 mm->map_count--;
638 mpol_put(vma_policy(next));
639 kmem_cache_free(vm_area_cachep, next);
641 * In mprotect's case 6 (see comments on vma_merge),
642 * we must remove another next too. It would clutter
643 * up the code too much to do both in one go.
645 if (remove_next == 2) {
646 next = vma->vm_next;
647 goto again;
650 if (insert && file)
651 uprobe_mmap(insert);
653 validate_mm(mm);
655 return 0;
659 * If the vma has a ->close operation then the driver probably needs to release
660 * per-vma resources, so we don't attempt to merge those.
662 static inline int is_mergeable_vma(struct vm_area_struct *vma,
663 struct file *file, unsigned long vm_flags)
665 if (vma->vm_flags ^ vm_flags)
666 return 0;
667 if (vma->vm_file != file)
668 return 0;
669 if (vma->vm_ops && vma->vm_ops->close)
670 return 0;
671 return 1;
674 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
675 struct anon_vma *anon_vma2,
676 struct vm_area_struct *vma)
679 * The list_is_singular() test is to avoid merging VMA cloned from
680 * parents. This can improve scalability caused by anon_vma lock.
682 if ((!anon_vma1 || !anon_vma2) && (!vma ||
683 list_is_singular(&vma->anon_vma_chain)))
684 return 1;
685 return anon_vma1 == anon_vma2;
689 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
690 * in front of (at a lower virtual address and file offset than) the vma.
692 * We cannot merge two vmas if they have differently assigned (non-NULL)
693 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
695 * We don't check here for the merged mmap wrapping around the end of pagecache
696 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
697 * wrap, nor mmaps which cover the final page at index -1UL.
699 static int
700 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
701 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
703 if (is_mergeable_vma(vma, file, vm_flags) &&
704 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
705 if (vma->vm_pgoff == vm_pgoff)
706 return 1;
708 return 0;
712 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
713 * beyond (at a higher virtual address and file offset than) the vma.
715 * We cannot merge two vmas if they have differently assigned (non-NULL)
716 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
718 static int
719 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
720 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
722 if (is_mergeable_vma(vma, file, vm_flags) &&
723 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
724 pgoff_t vm_pglen;
725 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
726 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
727 return 1;
729 return 0;
733 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
734 * whether that can be merged with its predecessor or its successor.
735 * Or both (it neatly fills a hole).
737 * In most cases - when called for mmap, brk or mremap - [addr,end) is
738 * certain not to be mapped by the time vma_merge is called; but when
739 * called for mprotect, it is certain to be already mapped (either at
740 * an offset within prev, or at the start of next), and the flags of
741 * this area are about to be changed to vm_flags - and the no-change
742 * case has already been eliminated.
744 * The following mprotect cases have to be considered, where AAAA is
745 * the area passed down from mprotect_fixup, never extending beyond one
746 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
748 * AAAA AAAA AAAA AAAA
749 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
750 * cannot merge might become might become might become
751 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
752 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
753 * mremap move: PPPPNNNNNNNN 8
754 * AAAA
755 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
756 * might become case 1 below case 2 below case 3 below
758 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
759 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
761 struct vm_area_struct *vma_merge(struct mm_struct *mm,
762 struct vm_area_struct *prev, unsigned long addr,
763 unsigned long end, unsigned long vm_flags,
764 struct anon_vma *anon_vma, struct file *file,
765 pgoff_t pgoff, struct mempolicy *policy)
767 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
768 struct vm_area_struct *area, *next;
769 int err;
772 * We later require that vma->vm_flags == vm_flags,
773 * so this tests vma->vm_flags & VM_SPECIAL, too.
775 if (vm_flags & VM_SPECIAL)
776 return NULL;
778 if (prev)
779 next = prev->vm_next;
780 else
781 next = mm->mmap;
782 area = next;
783 if (next && next->vm_end == end) /* cases 6, 7, 8 */
784 next = next->vm_next;
787 * Can it merge with the predecessor?
789 if (prev && prev->vm_end == addr &&
790 mpol_equal(vma_policy(prev), policy) &&
791 can_vma_merge_after(prev, vm_flags,
792 anon_vma, file, pgoff)) {
794 * OK, it can. Can we now merge in the successor as well?
796 if (next && end == next->vm_start &&
797 mpol_equal(policy, vma_policy(next)) &&
798 can_vma_merge_before(next, vm_flags,
799 anon_vma, file, pgoff+pglen) &&
800 is_mergeable_anon_vma(prev->anon_vma,
801 next->anon_vma, NULL)) {
802 /* cases 1, 6 */
803 err = vma_adjust(prev, prev->vm_start,
804 next->vm_end, prev->vm_pgoff, NULL);
805 } else /* cases 2, 5, 7 */
806 err = vma_adjust(prev, prev->vm_start,
807 end, prev->vm_pgoff, NULL);
808 if (err)
809 return NULL;
810 khugepaged_enter_vma_merge(prev);
811 return prev;
815 * Can this new request be merged in front of next?
817 if (next && end == next->vm_start &&
818 mpol_equal(policy, vma_policy(next)) &&
819 can_vma_merge_before(next, vm_flags,
820 anon_vma, file, pgoff+pglen)) {
821 if (prev && addr < prev->vm_end) /* case 4 */
822 err = vma_adjust(prev, prev->vm_start,
823 addr, prev->vm_pgoff, NULL);
824 else /* cases 3, 8 */
825 err = vma_adjust(area, addr, next->vm_end,
826 next->vm_pgoff - pglen, NULL);
827 if (err)
828 return NULL;
829 khugepaged_enter_vma_merge(area);
830 return area;
833 return NULL;
837 * Rough compatbility check to quickly see if it's even worth looking
838 * at sharing an anon_vma.
840 * They need to have the same vm_file, and the flags can only differ
841 * in things that mprotect may change.
843 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
844 * we can merge the two vma's. For example, we refuse to merge a vma if
845 * there is a vm_ops->close() function, because that indicates that the
846 * driver is doing some kind of reference counting. But that doesn't
847 * really matter for the anon_vma sharing case.
849 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
851 return a->vm_end == b->vm_start &&
852 mpol_equal(vma_policy(a), vma_policy(b)) &&
853 a->vm_file == b->vm_file &&
854 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
855 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
859 * Do some basic sanity checking to see if we can re-use the anon_vma
860 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
861 * the same as 'old', the other will be the new one that is trying
862 * to share the anon_vma.
864 * NOTE! This runs with mm_sem held for reading, so it is possible that
865 * the anon_vma of 'old' is concurrently in the process of being set up
866 * by another page fault trying to merge _that_. But that's ok: if it
867 * is being set up, that automatically means that it will be a singleton
868 * acceptable for merging, so we can do all of this optimistically. But
869 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
871 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
872 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
873 * is to return an anon_vma that is "complex" due to having gone through
874 * a fork).
876 * We also make sure that the two vma's are compatible (adjacent,
877 * and with the same memory policies). That's all stable, even with just
878 * a read lock on the mm_sem.
880 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
882 if (anon_vma_compatible(a, b)) {
883 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
885 if (anon_vma && list_is_singular(&old->anon_vma_chain))
886 return anon_vma;
888 return NULL;
892 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
893 * neighbouring vmas for a suitable anon_vma, before it goes off
894 * to allocate a new anon_vma. It checks because a repetitive
895 * sequence of mprotects and faults may otherwise lead to distinct
896 * anon_vmas being allocated, preventing vma merge in subsequent
897 * mprotect.
899 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
901 struct anon_vma *anon_vma;
902 struct vm_area_struct *near;
904 near = vma->vm_next;
905 if (!near)
906 goto try_prev;
908 anon_vma = reusable_anon_vma(near, vma, near);
909 if (anon_vma)
910 return anon_vma;
911 try_prev:
912 near = vma->vm_prev;
913 if (!near)
914 goto none;
916 anon_vma = reusable_anon_vma(near, near, vma);
917 if (anon_vma)
918 return anon_vma;
919 none:
921 * There's no absolute need to look only at touching neighbours:
922 * we could search further afield for "compatible" anon_vmas.
923 * But it would probably just be a waste of time searching,
924 * or lead to too many vmas hanging off the same anon_vma.
925 * We're trying to allow mprotect remerging later on,
926 * not trying to minimize memory used for anon_vmas.
928 return NULL;
931 #ifdef CONFIG_PROC_FS
932 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
933 struct file *file, long pages)
935 const unsigned long stack_flags
936 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
938 mm->total_vm += pages;
940 if (file) {
941 mm->shared_vm += pages;
942 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
943 mm->exec_vm += pages;
944 } else if (flags & stack_flags)
945 mm->stack_vm += pages;
947 #endif /* CONFIG_PROC_FS */
950 * If a hint addr is less than mmap_min_addr change hint to be as
951 * low as possible but still greater than mmap_min_addr
953 static inline unsigned long round_hint_to_min(unsigned long hint)
955 hint &= PAGE_MASK;
956 if (((void *)hint != NULL) &&
957 (hint < mmap_min_addr))
958 return PAGE_ALIGN(mmap_min_addr);
959 return hint;
963 * The caller must hold down_write(&current->mm->mmap_sem).
966 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
967 unsigned long len, unsigned long prot,
968 unsigned long flags, unsigned long pgoff)
970 struct mm_struct * mm = current->mm;
971 struct inode *inode;
972 vm_flags_t vm_flags;
975 * Does the application expect PROT_READ to imply PROT_EXEC?
977 * (the exception is when the underlying filesystem is noexec
978 * mounted, in which case we dont add PROT_EXEC.)
980 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
981 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
982 prot |= PROT_EXEC;
984 if (!len)
985 return -EINVAL;
987 if (!(flags & MAP_FIXED))
988 addr = round_hint_to_min(addr);
990 /* Careful about overflows.. */
991 len = PAGE_ALIGN(len);
992 if (!len)
993 return -ENOMEM;
995 /* offset overflow? */
996 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
997 return -EOVERFLOW;
999 /* Too many mappings? */
1000 if (mm->map_count > sysctl_max_map_count)
1001 return -ENOMEM;
1003 /* Obtain the address to map to. we verify (or select) it and ensure
1004 * that it represents a valid section of the address space.
1006 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1007 if (addr & ~PAGE_MASK)
1008 return addr;
1010 /* Do simple checking here so the lower-level routines won't have
1011 * to. we assume access permissions have been handled by the open
1012 * of the memory object, so we don't do any here.
1014 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1015 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1017 if (flags & MAP_LOCKED)
1018 if (!can_do_mlock())
1019 return -EPERM;
1021 /* mlock MCL_FUTURE? */
1022 if (vm_flags & VM_LOCKED) {
1023 unsigned long locked, lock_limit;
1024 locked = len >> PAGE_SHIFT;
1025 locked += mm->locked_vm;
1026 lock_limit = rlimit(RLIMIT_MEMLOCK);
1027 lock_limit >>= PAGE_SHIFT;
1028 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1029 return -EAGAIN;
1032 inode = file ? file->f_path.dentry->d_inode : NULL;
1034 if (file) {
1035 switch (flags & MAP_TYPE) {
1036 case MAP_SHARED:
1037 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1038 return -EACCES;
1041 * Make sure we don't allow writing to an append-only
1042 * file..
1044 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1045 return -EACCES;
1048 * Make sure there are no mandatory locks on the file.
1050 if (locks_verify_locked(inode))
1051 return -EAGAIN;
1053 vm_flags |= VM_SHARED | VM_MAYSHARE;
1054 if (!(file->f_mode & FMODE_WRITE))
1055 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1057 /* fall through */
1058 case MAP_PRIVATE:
1059 if (!(file->f_mode & FMODE_READ))
1060 return -EACCES;
1061 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1062 if (vm_flags & VM_EXEC)
1063 return -EPERM;
1064 vm_flags &= ~VM_MAYEXEC;
1067 if (!file->f_op || !file->f_op->mmap)
1068 return -ENODEV;
1069 break;
1071 default:
1072 return -EINVAL;
1074 } else {
1075 switch (flags & MAP_TYPE) {
1076 case MAP_SHARED:
1078 * Ignore pgoff.
1080 pgoff = 0;
1081 vm_flags |= VM_SHARED | VM_MAYSHARE;
1082 break;
1083 case MAP_PRIVATE:
1085 * Set pgoff according to addr for anon_vma.
1087 pgoff = addr >> PAGE_SHIFT;
1088 break;
1089 default:
1090 return -EINVAL;
1094 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1097 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1098 unsigned long, prot, unsigned long, flags,
1099 unsigned long, fd, unsigned long, pgoff)
1101 struct file *file = NULL;
1102 unsigned long retval = -EBADF;
1104 if (!(flags & MAP_ANONYMOUS)) {
1105 audit_mmap_fd(fd, flags);
1106 if (unlikely(flags & MAP_HUGETLB))
1107 return -EINVAL;
1108 file = fget(fd);
1109 if (!file)
1110 goto out;
1111 } else if (flags & MAP_HUGETLB) {
1112 struct user_struct *user = NULL;
1114 * VM_NORESERVE is used because the reservations will be
1115 * taken when vm_ops->mmap() is called
1116 * A dummy user value is used because we are not locking
1117 * memory so no accounting is necessary
1119 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1120 VM_NORESERVE, &user,
1121 HUGETLB_ANONHUGE_INODE);
1122 if (IS_ERR(file))
1123 return PTR_ERR(file);
1126 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1128 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1129 if (file)
1130 fput(file);
1131 out:
1132 return retval;
1135 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1136 struct mmap_arg_struct {
1137 unsigned long addr;
1138 unsigned long len;
1139 unsigned long prot;
1140 unsigned long flags;
1141 unsigned long fd;
1142 unsigned long offset;
1145 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1147 struct mmap_arg_struct a;
1149 if (copy_from_user(&a, arg, sizeof(a)))
1150 return -EFAULT;
1151 if (a.offset & ~PAGE_MASK)
1152 return -EINVAL;
1154 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1155 a.offset >> PAGE_SHIFT);
1157 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1160 * Some shared mappigns will want the pages marked read-only
1161 * to track write events. If so, we'll downgrade vm_page_prot
1162 * to the private version (using protection_map[] without the
1163 * VM_SHARED bit).
1165 int vma_wants_writenotify(struct vm_area_struct *vma)
1167 vm_flags_t vm_flags = vma->vm_flags;
1169 /* If it was private or non-writable, the write bit is already clear */
1170 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1171 return 0;
1173 /* The backer wishes to know when pages are first written to? */
1174 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1175 return 1;
1177 /* The open routine did something to the protections already? */
1178 if (pgprot_val(vma->vm_page_prot) !=
1179 pgprot_val(vm_get_page_prot(vm_flags)))
1180 return 0;
1182 /* Specialty mapping? */
1183 if (vm_flags & VM_PFNMAP)
1184 return 0;
1186 /* Can the mapping track the dirty pages? */
1187 return vma->vm_file && vma->vm_file->f_mapping &&
1188 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1192 * We account for memory if it's a private writeable mapping,
1193 * not hugepages and VM_NORESERVE wasn't set.
1195 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1198 * hugetlb has its own accounting separate from the core VM
1199 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1201 if (file && is_file_hugepages(file))
1202 return 0;
1204 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1207 unsigned long mmap_region(struct file *file, unsigned long addr,
1208 unsigned long len, unsigned long flags,
1209 vm_flags_t vm_flags, unsigned long pgoff)
1211 struct mm_struct *mm = current->mm;
1212 struct vm_area_struct *vma, *prev;
1213 int correct_wcount = 0;
1214 int error;
1215 struct rb_node **rb_link, *rb_parent;
1216 unsigned long charged = 0;
1217 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1219 /* Clear old maps */
1220 error = -ENOMEM;
1221 munmap_back:
1222 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1223 if (do_munmap(mm, addr, len))
1224 return -ENOMEM;
1225 goto munmap_back;
1228 /* Check against address space limit. */
1229 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1230 return -ENOMEM;
1233 * Set 'VM_NORESERVE' if we should not account for the
1234 * memory use of this mapping.
1236 if ((flags & MAP_NORESERVE)) {
1237 /* We honor MAP_NORESERVE if allowed to overcommit */
1238 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1239 vm_flags |= VM_NORESERVE;
1241 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1242 if (file && is_file_hugepages(file))
1243 vm_flags |= VM_NORESERVE;
1247 * Private writable mapping: check memory availability
1249 if (accountable_mapping(file, vm_flags)) {
1250 charged = len >> PAGE_SHIFT;
1251 if (security_vm_enough_memory_mm(mm, charged))
1252 return -ENOMEM;
1253 vm_flags |= VM_ACCOUNT;
1257 * Can we just expand an old mapping?
1259 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1260 if (vma)
1261 goto out;
1264 * Determine the object being mapped and call the appropriate
1265 * specific mapper. the address has already been validated, but
1266 * not unmapped, but the maps are removed from the list.
1268 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1269 if (!vma) {
1270 error = -ENOMEM;
1271 goto unacct_error;
1274 vma->vm_mm = mm;
1275 vma->vm_start = addr;
1276 vma->vm_end = addr + len;
1277 vma->vm_flags = vm_flags;
1278 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1279 vma->vm_pgoff = pgoff;
1280 INIT_LIST_HEAD(&vma->anon_vma_chain);
1282 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1284 if (file) {
1285 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1286 goto free_vma;
1287 if (vm_flags & VM_DENYWRITE) {
1288 error = deny_write_access(file);
1289 if (error)
1290 goto free_vma;
1291 correct_wcount = 1;
1293 vma->vm_file = get_file(file);
1294 error = file->f_op->mmap(file, vma);
1295 if (error)
1296 goto unmap_and_free_vma;
1298 /* Can addr have changed??
1300 * Answer: Yes, several device drivers can do it in their
1301 * f_op->mmap method. -DaveM
1303 addr = vma->vm_start;
1304 pgoff = vma->vm_pgoff;
1305 vm_flags = vma->vm_flags;
1306 } else if (vm_flags & VM_SHARED) {
1307 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1308 goto free_vma;
1309 error = shmem_zero_setup(vma);
1310 if (error)
1311 goto free_vma;
1314 if (vma_wants_writenotify(vma)) {
1315 pgprot_t pprot = vma->vm_page_prot;
1317 /* Can vma->vm_page_prot have changed??
1319 * Answer: Yes, drivers may have changed it in their
1320 * f_op->mmap method.
1322 * Ensures that vmas marked as uncached stay that way.
1324 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1325 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1326 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1329 vma_link(mm, vma, prev, rb_link, rb_parent);
1330 file = vma->vm_file;
1332 /* Once vma denies write, undo our temporary denial count */
1333 if (correct_wcount)
1334 atomic_inc(&inode->i_writecount);
1335 out:
1336 perf_event_mmap(vma);
1338 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1339 if (vm_flags & VM_LOCKED) {
1340 if (!mlock_vma_pages_range(vma, addr, addr + len))
1341 mm->locked_vm += (len >> PAGE_SHIFT);
1342 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1343 make_pages_present(addr, addr + len);
1345 if (file)
1346 uprobe_mmap(vma);
1348 return addr;
1350 unmap_and_free_vma:
1351 if (correct_wcount)
1352 atomic_inc(&inode->i_writecount);
1353 vma->vm_file = NULL;
1354 fput(file);
1356 /* Undo any partial mapping done by a device driver. */
1357 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1358 charged = 0;
1359 free_vma:
1360 kmem_cache_free(vm_area_cachep, vma);
1361 unacct_error:
1362 if (charged)
1363 vm_unacct_memory(charged);
1364 return error;
1367 /* Get an address range which is currently unmapped.
1368 * For shmat() with addr=0.
1370 * Ugly calling convention alert:
1371 * Return value with the low bits set means error value,
1372 * ie
1373 * if (ret & ~PAGE_MASK)
1374 * error = ret;
1376 * This function "knows" that -ENOMEM has the bits set.
1378 #ifndef HAVE_ARCH_UNMAPPED_AREA
1379 unsigned long
1380 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1381 unsigned long len, unsigned long pgoff, unsigned long flags)
1383 struct mm_struct *mm = current->mm;
1384 struct vm_area_struct *vma;
1385 unsigned long start_addr;
1387 if (len > TASK_SIZE)
1388 return -ENOMEM;
1390 if (flags & MAP_FIXED)
1391 return addr;
1393 if (addr) {
1394 addr = PAGE_ALIGN(addr);
1395 vma = find_vma(mm, addr);
1396 if (TASK_SIZE - len >= addr &&
1397 (!vma || addr + len <= vma->vm_start))
1398 return addr;
1400 if (len > mm->cached_hole_size) {
1401 start_addr = addr = mm->free_area_cache;
1402 } else {
1403 start_addr = addr = TASK_UNMAPPED_BASE;
1404 mm->cached_hole_size = 0;
1407 full_search:
1408 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1409 /* At this point: (!vma || addr < vma->vm_end). */
1410 if (TASK_SIZE - len < addr) {
1412 * Start a new search - just in case we missed
1413 * some holes.
1415 if (start_addr != TASK_UNMAPPED_BASE) {
1416 addr = TASK_UNMAPPED_BASE;
1417 start_addr = addr;
1418 mm->cached_hole_size = 0;
1419 goto full_search;
1421 return -ENOMEM;
1423 if (!vma || addr + len <= vma->vm_start) {
1425 * Remember the place where we stopped the search:
1427 mm->free_area_cache = addr + len;
1428 return addr;
1430 if (addr + mm->cached_hole_size < vma->vm_start)
1431 mm->cached_hole_size = vma->vm_start - addr;
1432 addr = vma->vm_end;
1435 #endif
1437 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1440 * Is this a new hole at the lowest possible address?
1442 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1443 mm->free_area_cache = addr;
1447 * This mmap-allocator allocates new areas top-down from below the
1448 * stack's low limit (the base):
1450 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1451 unsigned long
1452 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1453 const unsigned long len, const unsigned long pgoff,
1454 const unsigned long flags)
1456 struct vm_area_struct *vma;
1457 struct mm_struct *mm = current->mm;
1458 unsigned long addr = addr0, start_addr;
1460 /* requested length too big for entire address space */
1461 if (len > TASK_SIZE)
1462 return -ENOMEM;
1464 if (flags & MAP_FIXED)
1465 return addr;
1467 /* requesting a specific address */
1468 if (addr) {
1469 addr = PAGE_ALIGN(addr);
1470 vma = find_vma(mm, addr);
1471 if (TASK_SIZE - len >= addr &&
1472 (!vma || addr + len <= vma->vm_start))
1473 return addr;
1476 /* check if free_area_cache is useful for us */
1477 if (len <= mm->cached_hole_size) {
1478 mm->cached_hole_size = 0;
1479 mm->free_area_cache = mm->mmap_base;
1482 try_again:
1483 /* either no address requested or can't fit in requested address hole */
1484 start_addr = addr = mm->free_area_cache;
1486 if (addr < len)
1487 goto fail;
1489 addr -= len;
1490 do {
1492 * Lookup failure means no vma is above this address,
1493 * else if new region fits below vma->vm_start,
1494 * return with success:
1496 vma = find_vma(mm, addr);
1497 if (!vma || addr+len <= vma->vm_start)
1498 /* remember the address as a hint for next time */
1499 return (mm->free_area_cache = addr);
1501 /* remember the largest hole we saw so far */
1502 if (addr + mm->cached_hole_size < vma->vm_start)
1503 mm->cached_hole_size = vma->vm_start - addr;
1505 /* try just below the current vma->vm_start */
1506 addr = vma->vm_start-len;
1507 } while (len < vma->vm_start);
1509 fail:
1511 * if hint left us with no space for the requested
1512 * mapping then try again:
1514 * Note: this is different with the case of bottomup
1515 * which does the fully line-search, but we use find_vma
1516 * here that causes some holes skipped.
1518 if (start_addr != mm->mmap_base) {
1519 mm->free_area_cache = mm->mmap_base;
1520 mm->cached_hole_size = 0;
1521 goto try_again;
1525 * A failed mmap() very likely causes application failure,
1526 * so fall back to the bottom-up function here. This scenario
1527 * can happen with large stack limits and large mmap()
1528 * allocations.
1530 mm->cached_hole_size = ~0UL;
1531 mm->free_area_cache = TASK_UNMAPPED_BASE;
1532 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1534 * Restore the topdown base:
1536 mm->free_area_cache = mm->mmap_base;
1537 mm->cached_hole_size = ~0UL;
1539 return addr;
1541 #endif
1543 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1546 * Is this a new hole at the highest possible address?
1548 if (addr > mm->free_area_cache)
1549 mm->free_area_cache = addr;
1551 /* dont allow allocations above current base */
1552 if (mm->free_area_cache > mm->mmap_base)
1553 mm->free_area_cache = mm->mmap_base;
1556 unsigned long
1557 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1558 unsigned long pgoff, unsigned long flags)
1560 unsigned long (*get_area)(struct file *, unsigned long,
1561 unsigned long, unsigned long, unsigned long);
1563 unsigned long error = arch_mmap_check(addr, len, flags);
1564 if (error)
1565 return error;
1567 /* Careful about overflows.. */
1568 if (len > TASK_SIZE)
1569 return -ENOMEM;
1571 get_area = current->mm->get_unmapped_area;
1572 if (file && file->f_op && file->f_op->get_unmapped_area)
1573 get_area = file->f_op->get_unmapped_area;
1574 addr = get_area(file, addr, len, pgoff, flags);
1575 if (IS_ERR_VALUE(addr))
1576 return addr;
1578 if (addr > TASK_SIZE - len)
1579 return -ENOMEM;
1580 if (addr & ~PAGE_MASK)
1581 return -EINVAL;
1583 addr = arch_rebalance_pgtables(addr, len);
1584 error = security_mmap_addr(addr);
1585 return error ? error : addr;
1588 EXPORT_SYMBOL(get_unmapped_area);
1590 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1591 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1593 struct vm_area_struct *vma = NULL;
1595 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1596 return NULL;
1598 /* Check the cache first. */
1599 /* (Cache hit rate is typically around 35%.) */
1600 vma = mm->mmap_cache;
1601 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1602 struct rb_node *rb_node;
1604 rb_node = mm->mm_rb.rb_node;
1605 vma = NULL;
1607 while (rb_node) {
1608 struct vm_area_struct *vma_tmp;
1610 vma_tmp = rb_entry(rb_node,
1611 struct vm_area_struct, vm_rb);
1613 if (vma_tmp->vm_end > addr) {
1614 vma = vma_tmp;
1615 if (vma_tmp->vm_start <= addr)
1616 break;
1617 rb_node = rb_node->rb_left;
1618 } else
1619 rb_node = rb_node->rb_right;
1621 if (vma)
1622 mm->mmap_cache = vma;
1624 return vma;
1627 EXPORT_SYMBOL(find_vma);
1630 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1632 struct vm_area_struct *
1633 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1634 struct vm_area_struct **pprev)
1636 struct vm_area_struct *vma;
1638 vma = find_vma(mm, addr);
1639 if (vma) {
1640 *pprev = vma->vm_prev;
1641 } else {
1642 struct rb_node *rb_node = mm->mm_rb.rb_node;
1643 *pprev = NULL;
1644 while (rb_node) {
1645 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1646 rb_node = rb_node->rb_right;
1649 return vma;
1653 * Verify that the stack growth is acceptable and
1654 * update accounting. This is shared with both the
1655 * grow-up and grow-down cases.
1657 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1659 struct mm_struct *mm = vma->vm_mm;
1660 struct rlimit *rlim = current->signal->rlim;
1661 unsigned long new_start;
1663 /* address space limit tests */
1664 if (!may_expand_vm(mm, grow))
1665 return -ENOMEM;
1667 /* Stack limit test */
1668 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1669 return -ENOMEM;
1671 /* mlock limit tests */
1672 if (vma->vm_flags & VM_LOCKED) {
1673 unsigned long locked;
1674 unsigned long limit;
1675 locked = mm->locked_vm + grow;
1676 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1677 limit >>= PAGE_SHIFT;
1678 if (locked > limit && !capable(CAP_IPC_LOCK))
1679 return -ENOMEM;
1682 /* Check to ensure the stack will not grow into a hugetlb-only region */
1683 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1684 vma->vm_end - size;
1685 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1686 return -EFAULT;
1689 * Overcommit.. This must be the final test, as it will
1690 * update security statistics.
1692 if (security_vm_enough_memory_mm(mm, grow))
1693 return -ENOMEM;
1695 /* Ok, everything looks good - let it rip */
1696 if (vma->vm_flags & VM_LOCKED)
1697 mm->locked_vm += grow;
1698 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1699 return 0;
1702 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1704 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1705 * vma is the last one with address > vma->vm_end. Have to extend vma.
1707 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1709 int error;
1711 if (!(vma->vm_flags & VM_GROWSUP))
1712 return -EFAULT;
1715 * We must make sure the anon_vma is allocated
1716 * so that the anon_vma locking is not a noop.
1718 if (unlikely(anon_vma_prepare(vma)))
1719 return -ENOMEM;
1720 vma_lock_anon_vma(vma);
1723 * vma->vm_start/vm_end cannot change under us because the caller
1724 * is required to hold the mmap_sem in read mode. We need the
1725 * anon_vma lock to serialize against concurrent expand_stacks.
1726 * Also guard against wrapping around to address 0.
1728 if (address < PAGE_ALIGN(address+4))
1729 address = PAGE_ALIGN(address+4);
1730 else {
1731 vma_unlock_anon_vma(vma);
1732 return -ENOMEM;
1734 error = 0;
1736 /* Somebody else might have raced and expanded it already */
1737 if (address > vma->vm_end) {
1738 unsigned long size, grow;
1740 size = address - vma->vm_start;
1741 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1743 error = -ENOMEM;
1744 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1745 error = acct_stack_growth(vma, size, grow);
1746 if (!error) {
1747 vma->vm_end = address;
1748 perf_event_mmap(vma);
1752 vma_unlock_anon_vma(vma);
1753 khugepaged_enter_vma_merge(vma);
1754 return error;
1756 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1759 * vma is the first one with address < vma->vm_start. Have to extend vma.
1761 int expand_downwards(struct vm_area_struct *vma,
1762 unsigned long address)
1764 int error;
1767 * We must make sure the anon_vma is allocated
1768 * so that the anon_vma locking is not a noop.
1770 if (unlikely(anon_vma_prepare(vma)))
1771 return -ENOMEM;
1773 address &= PAGE_MASK;
1774 error = security_mmap_addr(address);
1775 if (error)
1776 return error;
1778 vma_lock_anon_vma(vma);
1781 * vma->vm_start/vm_end cannot change under us because the caller
1782 * is required to hold the mmap_sem in read mode. We need the
1783 * anon_vma lock to serialize against concurrent expand_stacks.
1786 /* Somebody else might have raced and expanded it already */
1787 if (address < vma->vm_start) {
1788 unsigned long size, grow;
1790 size = vma->vm_end - address;
1791 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1793 error = -ENOMEM;
1794 if (grow <= vma->vm_pgoff) {
1795 error = acct_stack_growth(vma, size, grow);
1796 if (!error) {
1797 vma->vm_start = address;
1798 vma->vm_pgoff -= grow;
1799 perf_event_mmap(vma);
1803 vma_unlock_anon_vma(vma);
1804 khugepaged_enter_vma_merge(vma);
1805 return error;
1808 #ifdef CONFIG_STACK_GROWSUP
1809 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1811 return expand_upwards(vma, address);
1814 struct vm_area_struct *
1815 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1817 struct vm_area_struct *vma, *prev;
1819 addr &= PAGE_MASK;
1820 vma = find_vma_prev(mm, addr, &prev);
1821 if (vma && (vma->vm_start <= addr))
1822 return vma;
1823 if (!prev || expand_stack(prev, addr))
1824 return NULL;
1825 if (prev->vm_flags & VM_LOCKED) {
1826 mlock_vma_pages_range(prev, addr, prev->vm_end);
1828 return prev;
1830 #else
1831 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1833 return expand_downwards(vma, address);
1836 struct vm_area_struct *
1837 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1839 struct vm_area_struct * vma;
1840 unsigned long start;
1842 addr &= PAGE_MASK;
1843 vma = find_vma(mm,addr);
1844 if (!vma)
1845 return NULL;
1846 if (vma->vm_start <= addr)
1847 return vma;
1848 if (!(vma->vm_flags & VM_GROWSDOWN))
1849 return NULL;
1850 start = vma->vm_start;
1851 if (expand_stack(vma, addr))
1852 return NULL;
1853 if (vma->vm_flags & VM_LOCKED) {
1854 mlock_vma_pages_range(vma, addr, start);
1856 return vma;
1858 #endif
1861 * Ok - we have the memory areas we should free on the vma list,
1862 * so release them, and do the vma updates.
1864 * Called with the mm semaphore held.
1866 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1868 unsigned long nr_accounted = 0;
1870 /* Update high watermark before we lower total_vm */
1871 update_hiwater_vm(mm);
1872 do {
1873 long nrpages = vma_pages(vma);
1875 if (vma->vm_flags & VM_ACCOUNT)
1876 nr_accounted += nrpages;
1877 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1878 vma = remove_vma(vma);
1879 } while (vma);
1880 vm_unacct_memory(nr_accounted);
1881 validate_mm(mm);
1885 * Get rid of page table information in the indicated region.
1887 * Called with the mm semaphore held.
1889 static void unmap_region(struct mm_struct *mm,
1890 struct vm_area_struct *vma, struct vm_area_struct *prev,
1891 unsigned long start, unsigned long end)
1893 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1894 struct mmu_gather tlb;
1896 lru_add_drain();
1897 tlb_gather_mmu(&tlb, mm, 0);
1898 update_hiwater_rss(mm);
1899 unmap_vmas(&tlb, vma, start, end);
1900 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1901 next ? next->vm_start : 0);
1902 tlb_finish_mmu(&tlb, start, end);
1906 * Create a list of vma's touched by the unmap, removing them from the mm's
1907 * vma list as we go..
1909 static void
1910 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1911 struct vm_area_struct *prev, unsigned long end)
1913 struct vm_area_struct **insertion_point;
1914 struct vm_area_struct *tail_vma = NULL;
1915 unsigned long addr;
1917 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1918 vma->vm_prev = NULL;
1919 do {
1920 rb_erase(&vma->vm_rb, &mm->mm_rb);
1921 mm->map_count--;
1922 tail_vma = vma;
1923 vma = vma->vm_next;
1924 } while (vma && vma->vm_start < end);
1925 *insertion_point = vma;
1926 if (vma)
1927 vma->vm_prev = prev;
1928 tail_vma->vm_next = NULL;
1929 if (mm->unmap_area == arch_unmap_area)
1930 addr = prev ? prev->vm_end : mm->mmap_base;
1931 else
1932 addr = vma ? vma->vm_start : mm->mmap_base;
1933 mm->unmap_area(mm, addr);
1934 mm->mmap_cache = NULL; /* Kill the cache. */
1938 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1939 * munmap path where it doesn't make sense to fail.
1941 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1942 unsigned long addr, int new_below)
1944 struct mempolicy *pol;
1945 struct vm_area_struct *new;
1946 int err = -ENOMEM;
1948 if (is_vm_hugetlb_page(vma) && (addr &
1949 ~(huge_page_mask(hstate_vma(vma)))))
1950 return -EINVAL;
1952 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1953 if (!new)
1954 goto out_err;
1956 /* most fields are the same, copy all, and then fixup */
1957 *new = *vma;
1959 INIT_LIST_HEAD(&new->anon_vma_chain);
1961 if (new_below)
1962 new->vm_end = addr;
1963 else {
1964 new->vm_start = addr;
1965 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1968 pol = mpol_dup(vma_policy(vma));
1969 if (IS_ERR(pol)) {
1970 err = PTR_ERR(pol);
1971 goto out_free_vma;
1973 vma_set_policy(new, pol);
1975 if (anon_vma_clone(new, vma))
1976 goto out_free_mpol;
1978 if (new->vm_file)
1979 get_file(new->vm_file);
1981 if (new->vm_ops && new->vm_ops->open)
1982 new->vm_ops->open(new);
1984 if (new_below)
1985 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1986 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1987 else
1988 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1990 /* Success. */
1991 if (!err)
1992 return 0;
1994 /* Clean everything up if vma_adjust failed. */
1995 if (new->vm_ops && new->vm_ops->close)
1996 new->vm_ops->close(new);
1997 if (new->vm_file)
1998 fput(new->vm_file);
1999 unlink_anon_vmas(new);
2000 out_free_mpol:
2001 mpol_put(pol);
2002 out_free_vma:
2003 kmem_cache_free(vm_area_cachep, new);
2004 out_err:
2005 return err;
2009 * Split a vma into two pieces at address 'addr', a new vma is allocated
2010 * either for the first part or the tail.
2012 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2013 unsigned long addr, int new_below)
2015 if (mm->map_count >= sysctl_max_map_count)
2016 return -ENOMEM;
2018 return __split_vma(mm, vma, addr, new_below);
2021 /* Munmap is split into 2 main parts -- this part which finds
2022 * what needs doing, and the areas themselves, which do the
2023 * work. This now handles partial unmappings.
2024 * Jeremy Fitzhardinge <jeremy@goop.org>
2026 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2028 unsigned long end;
2029 struct vm_area_struct *vma, *prev, *last;
2031 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2032 return -EINVAL;
2034 if ((len = PAGE_ALIGN(len)) == 0)
2035 return -EINVAL;
2037 /* Find the first overlapping VMA */
2038 vma = find_vma(mm, start);
2039 if (!vma)
2040 return 0;
2041 prev = vma->vm_prev;
2042 /* we have start < vma->vm_end */
2044 /* if it doesn't overlap, we have nothing.. */
2045 end = start + len;
2046 if (vma->vm_start >= end)
2047 return 0;
2050 * If we need to split any vma, do it now to save pain later.
2052 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2053 * unmapped vm_area_struct will remain in use: so lower split_vma
2054 * places tmp vma above, and higher split_vma places tmp vma below.
2056 if (start > vma->vm_start) {
2057 int error;
2060 * Make sure that map_count on return from munmap() will
2061 * not exceed its limit; but let map_count go just above
2062 * its limit temporarily, to help free resources as expected.
2064 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2065 return -ENOMEM;
2067 error = __split_vma(mm, vma, start, 0);
2068 if (error)
2069 return error;
2070 prev = vma;
2073 /* Does it split the last one? */
2074 last = find_vma(mm, end);
2075 if (last && end > last->vm_start) {
2076 int error = __split_vma(mm, last, end, 1);
2077 if (error)
2078 return error;
2080 vma = prev? prev->vm_next: mm->mmap;
2083 * unlock any mlock()ed ranges before detaching vmas
2085 if (mm->locked_vm) {
2086 struct vm_area_struct *tmp = vma;
2087 while (tmp && tmp->vm_start < end) {
2088 if (tmp->vm_flags & VM_LOCKED) {
2089 mm->locked_vm -= vma_pages(tmp);
2090 munlock_vma_pages_all(tmp);
2092 tmp = tmp->vm_next;
2097 * Remove the vma's, and unmap the actual pages
2099 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2100 unmap_region(mm, vma, prev, start, end);
2102 /* Fix up all other VM information */
2103 remove_vma_list(mm, vma);
2105 return 0;
2108 int vm_munmap(unsigned long start, size_t len)
2110 int ret;
2111 struct mm_struct *mm = current->mm;
2113 down_write(&mm->mmap_sem);
2114 ret = do_munmap(mm, start, len);
2115 up_write(&mm->mmap_sem);
2116 return ret;
2118 EXPORT_SYMBOL(vm_munmap);
2120 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2122 profile_munmap(addr);
2123 return vm_munmap(addr, len);
2126 static inline void verify_mm_writelocked(struct mm_struct *mm)
2128 #ifdef CONFIG_DEBUG_VM
2129 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2130 WARN_ON(1);
2131 up_read(&mm->mmap_sem);
2133 #endif
2137 * this is really a simplified "do_mmap". it only handles
2138 * anonymous maps. eventually we may be able to do some
2139 * brk-specific accounting here.
2141 static unsigned long do_brk(unsigned long addr, unsigned long len)
2143 struct mm_struct * mm = current->mm;
2144 struct vm_area_struct * vma, * prev;
2145 unsigned long flags;
2146 struct rb_node ** rb_link, * rb_parent;
2147 pgoff_t pgoff = addr >> PAGE_SHIFT;
2148 int error;
2150 len = PAGE_ALIGN(len);
2151 if (!len)
2152 return addr;
2154 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2156 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2157 if (error & ~PAGE_MASK)
2158 return error;
2161 * mlock MCL_FUTURE?
2163 if (mm->def_flags & VM_LOCKED) {
2164 unsigned long locked, lock_limit;
2165 locked = len >> PAGE_SHIFT;
2166 locked += mm->locked_vm;
2167 lock_limit = rlimit(RLIMIT_MEMLOCK);
2168 lock_limit >>= PAGE_SHIFT;
2169 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2170 return -EAGAIN;
2174 * mm->mmap_sem is required to protect against another thread
2175 * changing the mappings in case we sleep.
2177 verify_mm_writelocked(mm);
2180 * Clear old maps. this also does some error checking for us
2182 munmap_back:
2183 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2184 if (do_munmap(mm, addr, len))
2185 return -ENOMEM;
2186 goto munmap_back;
2189 /* Check against address space limits *after* clearing old maps... */
2190 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2191 return -ENOMEM;
2193 if (mm->map_count > sysctl_max_map_count)
2194 return -ENOMEM;
2196 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2197 return -ENOMEM;
2199 /* Can we just expand an old private anonymous mapping? */
2200 vma = vma_merge(mm, prev, addr, addr + len, flags,
2201 NULL, NULL, pgoff, NULL);
2202 if (vma)
2203 goto out;
2206 * create a vma struct for an anonymous mapping
2208 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2209 if (!vma) {
2210 vm_unacct_memory(len >> PAGE_SHIFT);
2211 return -ENOMEM;
2214 INIT_LIST_HEAD(&vma->anon_vma_chain);
2215 vma->vm_mm = mm;
2216 vma->vm_start = addr;
2217 vma->vm_end = addr + len;
2218 vma->vm_pgoff = pgoff;
2219 vma->vm_flags = flags;
2220 vma->vm_page_prot = vm_get_page_prot(flags);
2221 vma_link(mm, vma, prev, rb_link, rb_parent);
2222 out:
2223 perf_event_mmap(vma);
2224 mm->total_vm += len >> PAGE_SHIFT;
2225 if (flags & VM_LOCKED) {
2226 if (!mlock_vma_pages_range(vma, addr, addr + len))
2227 mm->locked_vm += (len >> PAGE_SHIFT);
2229 return addr;
2232 unsigned long vm_brk(unsigned long addr, unsigned long len)
2234 struct mm_struct *mm = current->mm;
2235 unsigned long ret;
2237 down_write(&mm->mmap_sem);
2238 ret = do_brk(addr, len);
2239 up_write(&mm->mmap_sem);
2240 return ret;
2242 EXPORT_SYMBOL(vm_brk);
2244 /* Release all mmaps. */
2245 void exit_mmap(struct mm_struct *mm)
2247 struct mmu_gather tlb;
2248 struct vm_area_struct *vma;
2249 unsigned long nr_accounted = 0;
2251 /* mm's last user has gone, and its about to be pulled down */
2252 mmu_notifier_release(mm);
2254 if (mm->locked_vm) {
2255 vma = mm->mmap;
2256 while (vma) {
2257 if (vma->vm_flags & VM_LOCKED)
2258 munlock_vma_pages_all(vma);
2259 vma = vma->vm_next;
2263 arch_exit_mmap(mm);
2265 vma = mm->mmap;
2266 if (!vma) /* Can happen if dup_mmap() received an OOM */
2267 return;
2269 lru_add_drain();
2270 flush_cache_mm(mm);
2271 tlb_gather_mmu(&tlb, mm, 1);
2272 /* update_hiwater_rss(mm) here? but nobody should be looking */
2273 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2274 unmap_vmas(&tlb, vma, 0, -1);
2276 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2277 tlb_finish_mmu(&tlb, 0, -1);
2280 * Walk the list again, actually closing and freeing it,
2281 * with preemption enabled, without holding any MM locks.
2283 while (vma) {
2284 if (vma->vm_flags & VM_ACCOUNT)
2285 nr_accounted += vma_pages(vma);
2286 vma = remove_vma(vma);
2288 vm_unacct_memory(nr_accounted);
2290 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2293 /* Insert vm structure into process list sorted by address
2294 * and into the inode's i_mmap tree. If vm_file is non-NULL
2295 * then i_mmap_mutex is taken here.
2297 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2299 struct vm_area_struct *prev;
2300 struct rb_node **rb_link, *rb_parent;
2303 * The vm_pgoff of a purely anonymous vma should be irrelevant
2304 * until its first write fault, when page's anon_vma and index
2305 * are set. But now set the vm_pgoff it will almost certainly
2306 * end up with (unless mremap moves it elsewhere before that
2307 * first wfault), so /proc/pid/maps tells a consistent story.
2309 * By setting it to reflect the virtual start address of the
2310 * vma, merges and splits can happen in a seamless way, just
2311 * using the existing file pgoff checks and manipulations.
2312 * Similarly in do_mmap_pgoff and in do_brk.
2314 if (!vma->vm_file) {
2315 BUG_ON(vma->anon_vma);
2316 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2318 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2319 &prev, &rb_link, &rb_parent))
2320 return -ENOMEM;
2321 if ((vma->vm_flags & VM_ACCOUNT) &&
2322 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2323 return -ENOMEM;
2325 vma_link(mm, vma, prev, rb_link, rb_parent);
2326 return 0;
2330 * Copy the vma structure to a new location in the same mm,
2331 * prior to moving page table entries, to effect an mremap move.
2333 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2334 unsigned long addr, unsigned long len, pgoff_t pgoff)
2336 struct vm_area_struct *vma = *vmap;
2337 unsigned long vma_start = vma->vm_start;
2338 struct mm_struct *mm = vma->vm_mm;
2339 struct vm_area_struct *new_vma, *prev;
2340 struct rb_node **rb_link, *rb_parent;
2341 struct mempolicy *pol;
2342 bool faulted_in_anon_vma = true;
2345 * If anonymous vma has not yet been faulted, update new pgoff
2346 * to match new location, to increase its chance of merging.
2348 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2349 pgoff = addr >> PAGE_SHIFT;
2350 faulted_in_anon_vma = false;
2353 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2354 return NULL; /* should never get here */
2355 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2356 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2357 if (new_vma) {
2359 * Source vma may have been merged into new_vma
2361 if (unlikely(vma_start >= new_vma->vm_start &&
2362 vma_start < new_vma->vm_end)) {
2364 * The only way we can get a vma_merge with
2365 * self during an mremap is if the vma hasn't
2366 * been faulted in yet and we were allowed to
2367 * reset the dst vma->vm_pgoff to the
2368 * destination address of the mremap to allow
2369 * the merge to happen. mremap must change the
2370 * vm_pgoff linearity between src and dst vmas
2371 * (in turn preventing a vma_merge) to be
2372 * safe. It is only safe to keep the vm_pgoff
2373 * linear if there are no pages mapped yet.
2375 VM_BUG_ON(faulted_in_anon_vma);
2376 *vmap = new_vma;
2377 } else
2378 anon_vma_moveto_tail(new_vma);
2379 } else {
2380 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2381 if (new_vma) {
2382 *new_vma = *vma;
2383 pol = mpol_dup(vma_policy(vma));
2384 if (IS_ERR(pol))
2385 goto out_free_vma;
2386 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2387 if (anon_vma_clone(new_vma, vma))
2388 goto out_free_mempol;
2389 vma_set_policy(new_vma, pol);
2390 new_vma->vm_start = addr;
2391 new_vma->vm_end = addr + len;
2392 new_vma->vm_pgoff = pgoff;
2393 if (new_vma->vm_file)
2394 get_file(new_vma->vm_file);
2395 if (new_vma->vm_ops && new_vma->vm_ops->open)
2396 new_vma->vm_ops->open(new_vma);
2397 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2400 return new_vma;
2402 out_free_mempol:
2403 mpol_put(pol);
2404 out_free_vma:
2405 kmem_cache_free(vm_area_cachep, new_vma);
2406 return NULL;
2410 * Return true if the calling process may expand its vm space by the passed
2411 * number of pages
2413 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2415 unsigned long cur = mm->total_vm; /* pages */
2416 unsigned long lim;
2418 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2420 if (cur + npages > lim)
2421 return 0;
2422 return 1;
2426 static int special_mapping_fault(struct vm_area_struct *vma,
2427 struct vm_fault *vmf)
2429 pgoff_t pgoff;
2430 struct page **pages;
2433 * special mappings have no vm_file, and in that case, the mm
2434 * uses vm_pgoff internally. So we have to subtract it from here.
2435 * We are allowed to do this because we are the mm; do not copy
2436 * this code into drivers!
2438 pgoff = vmf->pgoff - vma->vm_pgoff;
2440 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2441 pgoff--;
2443 if (*pages) {
2444 struct page *page = *pages;
2445 get_page(page);
2446 vmf->page = page;
2447 return 0;
2450 return VM_FAULT_SIGBUS;
2454 * Having a close hook prevents vma merging regardless of flags.
2456 static void special_mapping_close(struct vm_area_struct *vma)
2460 static const struct vm_operations_struct special_mapping_vmops = {
2461 .close = special_mapping_close,
2462 .fault = special_mapping_fault,
2466 * Called with mm->mmap_sem held for writing.
2467 * Insert a new vma covering the given region, with the given flags.
2468 * Its pages are supplied by the given array of struct page *.
2469 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2470 * The region past the last page supplied will always produce SIGBUS.
2471 * The array pointer and the pages it points to are assumed to stay alive
2472 * for as long as this mapping might exist.
2474 int install_special_mapping(struct mm_struct *mm,
2475 unsigned long addr, unsigned long len,
2476 unsigned long vm_flags, struct page **pages)
2478 int ret;
2479 struct vm_area_struct *vma;
2481 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2482 if (unlikely(vma == NULL))
2483 return -ENOMEM;
2485 INIT_LIST_HEAD(&vma->anon_vma_chain);
2486 vma->vm_mm = mm;
2487 vma->vm_start = addr;
2488 vma->vm_end = addr + len;
2490 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2491 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2493 vma->vm_ops = &special_mapping_vmops;
2494 vma->vm_private_data = pages;
2496 ret = insert_vm_struct(mm, vma);
2497 if (ret)
2498 goto out;
2500 mm->total_vm += len >> PAGE_SHIFT;
2502 perf_event_mmap(vma);
2504 return 0;
2506 out:
2507 kmem_cache_free(vm_area_cachep, vma);
2508 return ret;
2511 static DEFINE_MUTEX(mm_all_locks_mutex);
2513 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2515 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2517 * The LSB of head.next can't change from under us
2518 * because we hold the mm_all_locks_mutex.
2520 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2522 * We can safely modify head.next after taking the
2523 * anon_vma->root->mutex. If some other vma in this mm shares
2524 * the same anon_vma we won't take it again.
2526 * No need of atomic instructions here, head.next
2527 * can't change from under us thanks to the
2528 * anon_vma->root->mutex.
2530 if (__test_and_set_bit(0, (unsigned long *)
2531 &anon_vma->root->head.next))
2532 BUG();
2536 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2538 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2540 * AS_MM_ALL_LOCKS can't change from under us because
2541 * we hold the mm_all_locks_mutex.
2543 * Operations on ->flags have to be atomic because
2544 * even if AS_MM_ALL_LOCKS is stable thanks to the
2545 * mm_all_locks_mutex, there may be other cpus
2546 * changing other bitflags in parallel to us.
2548 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2549 BUG();
2550 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2555 * This operation locks against the VM for all pte/vma/mm related
2556 * operations that could ever happen on a certain mm. This includes
2557 * vmtruncate, try_to_unmap, and all page faults.
2559 * The caller must take the mmap_sem in write mode before calling
2560 * mm_take_all_locks(). The caller isn't allowed to release the
2561 * mmap_sem until mm_drop_all_locks() returns.
2563 * mmap_sem in write mode is required in order to block all operations
2564 * that could modify pagetables and free pages without need of
2565 * altering the vma layout (for example populate_range() with
2566 * nonlinear vmas). It's also needed in write mode to avoid new
2567 * anon_vmas to be associated with existing vmas.
2569 * A single task can't take more than one mm_take_all_locks() in a row
2570 * or it would deadlock.
2572 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2573 * mapping->flags avoid to take the same lock twice, if more than one
2574 * vma in this mm is backed by the same anon_vma or address_space.
2576 * We can take all the locks in random order because the VM code
2577 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2578 * takes more than one of them in a row. Secondly we're protected
2579 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2581 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2582 * that may have to take thousand of locks.
2584 * mm_take_all_locks() can fail if it's interrupted by signals.
2586 int mm_take_all_locks(struct mm_struct *mm)
2588 struct vm_area_struct *vma;
2589 struct anon_vma_chain *avc;
2591 BUG_ON(down_read_trylock(&mm->mmap_sem));
2593 mutex_lock(&mm_all_locks_mutex);
2595 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2596 if (signal_pending(current))
2597 goto out_unlock;
2598 if (vma->vm_file && vma->vm_file->f_mapping)
2599 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2602 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2603 if (signal_pending(current))
2604 goto out_unlock;
2605 if (vma->anon_vma)
2606 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2607 vm_lock_anon_vma(mm, avc->anon_vma);
2610 return 0;
2612 out_unlock:
2613 mm_drop_all_locks(mm);
2614 return -EINTR;
2617 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2619 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2621 * The LSB of head.next can't change to 0 from under
2622 * us because we hold the mm_all_locks_mutex.
2624 * We must however clear the bitflag before unlocking
2625 * the vma so the users using the anon_vma->head will
2626 * never see our bitflag.
2628 * No need of atomic instructions here, head.next
2629 * can't change from under us until we release the
2630 * anon_vma->root->mutex.
2632 if (!__test_and_clear_bit(0, (unsigned long *)
2633 &anon_vma->root->head.next))
2634 BUG();
2635 anon_vma_unlock(anon_vma);
2639 static void vm_unlock_mapping(struct address_space *mapping)
2641 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2643 * AS_MM_ALL_LOCKS can't change to 0 from under us
2644 * because we hold the mm_all_locks_mutex.
2646 mutex_unlock(&mapping->i_mmap_mutex);
2647 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2648 &mapping->flags))
2649 BUG();
2654 * The mmap_sem cannot be released by the caller until
2655 * mm_drop_all_locks() returns.
2657 void mm_drop_all_locks(struct mm_struct *mm)
2659 struct vm_area_struct *vma;
2660 struct anon_vma_chain *avc;
2662 BUG_ON(down_read_trylock(&mm->mmap_sem));
2663 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2665 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2666 if (vma->anon_vma)
2667 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2668 vm_unlock_anon_vma(avc->anon_vma);
2669 if (vma->vm_file && vma->vm_file->f_mapping)
2670 vm_unlock_mapping(vma->vm_file->f_mapping);
2673 mutex_unlock(&mm_all_locks_mutex);
2677 * initialise the VMA slab
2679 void __init mmap_init(void)
2681 int ret;
2683 ret = percpu_counter_init(&vm_committed_as, 0);
2684 VM_BUG_ON(ret);