3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
93 /* One semaphore structure for each semaphore in the system. */
95 int semval
; /* current value */
96 int sempid
; /* pid of last operation */
97 struct list_head sem_pending
; /* pending single-sop operations */
100 /* One queue for each sleeping process in the system. */
102 struct list_head simple_list
; /* queue of pending operations */
103 struct list_head list
; /* queue of pending operations */
104 struct task_struct
*sleeper
; /* this process */
105 struct sem_undo
*undo
; /* undo structure */
106 int pid
; /* process id of requesting process */
107 int status
; /* completion status of operation */
108 struct sembuf
*sops
; /* array of pending operations */
109 int nsops
; /* number of operations */
110 int alter
; /* does *sops alter the array? */
113 /* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
117 struct list_head list_proc
; /* per-process list: *
118 * all undos from one process
120 struct rcu_head rcu
; /* rcu struct for sem_undo */
121 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
122 struct list_head list_id
; /* per semaphore array list:
123 * all undos for one array */
124 int semid
; /* semaphore set identifier */
125 short *semadj
; /* array of adjustments */
126 /* one per semaphore */
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
132 struct sem_undo_list
{
135 struct list_head list_proc
;
139 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
141 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
142 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
144 static int newary(struct ipc_namespace
*, struct ipc_params
*);
145 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
146 #ifdef CONFIG_PROC_FS
147 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
150 #define SEMMSL_FAST 256 /* 512 bytes on stack */
151 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
154 * linked list protection:
156 * sem_array.sem_pending{,last},
157 * sem_array.sem_undo: sem_lock() for read/write
158 * sem_undo.proc_next: only "current" is allowed to read/write that field.
162 #define sc_semmsl sem_ctls[0]
163 #define sc_semmns sem_ctls[1]
164 #define sc_semopm sem_ctls[2]
165 #define sc_semmni sem_ctls[3]
167 void sem_init_ns(struct ipc_namespace
*ns
)
169 ns
->sc_semmsl
= SEMMSL
;
170 ns
->sc_semmns
= SEMMNS
;
171 ns
->sc_semopm
= SEMOPM
;
172 ns
->sc_semmni
= SEMMNI
;
174 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
178 void sem_exit_ns(struct ipc_namespace
*ns
)
180 free_ipcs(ns
, &sem_ids(ns
), freeary
);
181 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
185 void __init
sem_init (void)
187 sem_init_ns(&init_ipc_ns
);
188 ipc_init_proc_interface("sysvipc/sem",
189 " key semid perms nsems uid gid cuid cgid otime ctime\n",
190 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
194 * sem_lock_(check_) routines are called in the paths where the rw_mutex
197 static inline struct sem_array
*sem_lock(struct ipc_namespace
*ns
, int id
)
199 struct kern_ipc_perm
*ipcp
= ipc_lock(&sem_ids(ns
), id
);
202 return (struct sem_array
*)ipcp
;
204 return container_of(ipcp
, struct sem_array
, sem_perm
);
207 static inline struct sem_array
*sem_lock_check(struct ipc_namespace
*ns
,
210 struct kern_ipc_perm
*ipcp
= ipc_lock_check(&sem_ids(ns
), id
);
213 return (struct sem_array
*)ipcp
;
215 return container_of(ipcp
, struct sem_array
, sem_perm
);
218 static inline void sem_lock_and_putref(struct sem_array
*sma
)
220 ipc_lock_by_ptr(&sma
->sem_perm
);
224 static inline void sem_getref_and_unlock(struct sem_array
*sma
)
227 ipc_unlock(&(sma
)->sem_perm
);
230 static inline void sem_putref(struct sem_array
*sma
)
232 ipc_lock_by_ptr(&sma
->sem_perm
);
234 ipc_unlock(&(sma
)->sem_perm
);
237 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
239 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
243 * Lockless wakeup algorithm:
244 * Without the check/retry algorithm a lockless wakeup is possible:
245 * - queue.status is initialized to -EINTR before blocking.
246 * - wakeup is performed by
247 * * unlinking the queue entry from sma->sem_pending
248 * * setting queue.status to IN_WAKEUP
249 * This is the notification for the blocked thread that a
250 * result value is imminent.
251 * * call wake_up_process
252 * * set queue.status to the final value.
253 * - the previously blocked thread checks queue.status:
254 * * if it's IN_WAKEUP, then it must wait until the value changes
255 * * if it's not -EINTR, then the operation was completed by
256 * update_queue. semtimedop can return queue.status without
257 * performing any operation on the sem array.
258 * * otherwise it must acquire the spinlock and check what's up.
260 * The two-stage algorithm is necessary to protect against the following
262 * - if queue.status is set after wake_up_process, then the woken up idle
263 * thread could race forward and try (and fail) to acquire sma->lock
264 * before update_queue had a chance to set queue.status
265 * - if queue.status is written before wake_up_process and if the
266 * blocked process is woken up by a signal between writing
267 * queue.status and the wake_up_process, then the woken up
268 * process could return from semtimedop and die by calling
269 * sys_exit before wake_up_process is called. Then wake_up_process
270 * will oops, because the task structure is already invalid.
271 * (yes, this happened on s390 with sysv msg).
277 * newary - Create a new semaphore set
279 * @params: ptr to the structure that contains key, semflg and nsems
281 * Called with sem_ids.rw_mutex held (as a writer)
284 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
288 struct sem_array
*sma
;
290 key_t key
= params
->key
;
291 int nsems
= params
->u
.nsems
;
292 int semflg
= params
->flg
;
297 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
300 size
= sizeof (*sma
) + nsems
* sizeof (struct sem
);
301 sma
= ipc_rcu_alloc(size
);
305 memset (sma
, 0, size
);
307 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
308 sma
->sem_perm
.key
= key
;
310 sma
->sem_perm
.security
= NULL
;
311 retval
= security_sem_alloc(sma
);
317 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
319 security_sem_free(sma
);
323 ns
->used_sems
+= nsems
;
325 sma
->sem_base
= (struct sem
*) &sma
[1];
327 for (i
= 0; i
< nsems
; i
++)
328 INIT_LIST_HEAD(&sma
->sem_base
[i
].sem_pending
);
330 sma
->complex_count
= 0;
331 INIT_LIST_HEAD(&sma
->sem_pending
);
332 INIT_LIST_HEAD(&sma
->list_id
);
333 sma
->sem_nsems
= nsems
;
334 sma
->sem_ctime
= get_seconds();
337 return sma
->sem_perm
.id
;
342 * Called with sem_ids.rw_mutex and ipcp locked.
344 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
346 struct sem_array
*sma
;
348 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
349 return security_sem_associate(sma
, semflg
);
353 * Called with sem_ids.rw_mutex and ipcp locked.
355 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
356 struct ipc_params
*params
)
358 struct sem_array
*sma
;
360 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
361 if (params
->u
.nsems
> sma
->sem_nsems
)
367 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
369 struct ipc_namespace
*ns
;
370 struct ipc_ops sem_ops
;
371 struct ipc_params sem_params
;
373 ns
= current
->nsproxy
->ipc_ns
;
375 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
378 sem_ops
.getnew
= newary
;
379 sem_ops
.associate
= sem_security
;
380 sem_ops
.more_checks
= sem_more_checks
;
382 sem_params
.key
= key
;
383 sem_params
.flg
= semflg
;
384 sem_params
.u
.nsems
= nsems
;
386 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
390 * Determine whether a sequence of semaphore operations would succeed
391 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
394 static int try_atomic_semop (struct sem_array
* sma
, struct sembuf
* sops
,
395 int nsops
, struct sem_undo
*un
, int pid
)
401 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
402 curr
= sma
->sem_base
+ sop
->sem_num
;
403 sem_op
= sop
->sem_op
;
404 result
= curr
->semval
;
406 if (!sem_op
&& result
)
414 if (sop
->sem_flg
& SEM_UNDO
) {
415 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
417 * Exceeding the undo range is an error.
419 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
422 curr
->semval
= result
;
426 while (sop
>= sops
) {
427 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
428 if (sop
->sem_flg
& SEM_UNDO
)
429 un
->semadj
[sop
->sem_num
] -= sop
->sem_op
;
440 if (sop
->sem_flg
& IPC_NOWAIT
)
447 while (sop
>= sops
) {
448 sma
->sem_base
[sop
->sem_num
].semval
-= sop
->sem_op
;
455 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
456 * @q: queue entry that must be signaled
457 * @error: Error value for the signal
459 * Prepare the wake-up of the queue entry q.
461 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
462 struct sem_queue
*q
, int error
)
464 if (list_empty(pt
)) {
466 * Hold preempt off so that we don't get preempted and have the
467 * wakee busy-wait until we're scheduled back on.
471 q
->status
= IN_WAKEUP
;
474 list_add_tail(&q
->simple_list
, pt
);
478 * wake_up_sem_queue_do(pt) - do the actual wake-up
479 * @pt: list of tasks to be woken up
481 * Do the actual wake-up.
482 * The function is called without any locks held, thus the semaphore array
483 * could be destroyed already and the tasks can disappear as soon as the
484 * status is set to the actual return code.
486 static void wake_up_sem_queue_do(struct list_head
*pt
)
488 struct sem_queue
*q
, *t
;
491 did_something
= !list_empty(pt
);
492 list_for_each_entry_safe(q
, t
, pt
, simple_list
) {
493 wake_up_process(q
->sleeper
);
494 /* q can disappear immediately after writing q->status. */
502 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
506 list_del(&q
->simple_list
);
508 sma
->complex_count
--;
511 /** check_restart(sma, q)
512 * @sma: semaphore array
513 * @q: the operation that just completed
515 * update_queue is O(N^2) when it restarts scanning the whole queue of
516 * waiting operations. Therefore this function checks if the restart is
517 * really necessary. It is called after a previously waiting operation
520 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
525 /* if the operation didn't modify the array, then no restart */
529 /* pending complex operations are too difficult to analyse */
530 if (sma
->complex_count
)
533 /* we were a sleeping complex operation. Too difficult */
537 curr
= sma
->sem_base
+ q
->sops
[0].sem_num
;
539 /* No-one waits on this queue */
540 if (list_empty(&curr
->sem_pending
))
543 /* the new semaphore value */
545 /* It is impossible that someone waits for the new value:
546 * - q is a previously sleeping simple operation that
547 * altered the array. It must be a decrement, because
548 * simple increments never sleep.
549 * - The value is not 0, thus wait-for-zero won't proceed.
550 * - If there are older (higher priority) decrements
551 * in the queue, then they have observed the original
552 * semval value and couldn't proceed. The operation
553 * decremented to value - thus they won't proceed either.
555 BUG_ON(q
->sops
[0].sem_op
>= 0);
559 * semval is 0. Check if there are wait-for-zero semops.
560 * They must be the first entries in the per-semaphore simple queue
562 h
= list_first_entry(&curr
->sem_pending
, struct sem_queue
, simple_list
);
563 BUG_ON(h
->nsops
!= 1);
564 BUG_ON(h
->sops
[0].sem_num
!= q
->sops
[0].sem_num
);
566 /* Yes, there is a wait-for-zero semop. Restart */
567 if (h
->sops
[0].sem_op
== 0)
570 /* Again - no-one is waiting for the new value. */
576 * update_queue(sma, semnum): Look for tasks that can be completed.
577 * @sma: semaphore array.
578 * @semnum: semaphore that was modified.
579 * @pt: list head for the tasks that must be woken up.
581 * update_queue must be called after a semaphore in a semaphore array
582 * was modified. If multiple semaphore were modified, then @semnum
584 * The tasks that must be woken up are added to @pt. The return code
585 * is stored in q->pid.
586 * The function return 1 if at least one semop was completed successfully.
588 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
591 struct list_head
*walk
;
592 struct list_head
*pending_list
;
594 int semop_completed
= 0;
596 /* if there are complex operations around, then knowing the semaphore
597 * that was modified doesn't help us. Assume that multiple semaphores
600 if (sma
->complex_count
)
604 pending_list
= &sma
->sem_pending
;
605 offset
= offsetof(struct sem_queue
, list
);
607 pending_list
= &sma
->sem_base
[semnum
].sem_pending
;
608 offset
= offsetof(struct sem_queue
, simple_list
);
612 walk
= pending_list
->next
;
613 while (walk
!= pending_list
) {
616 q
= (struct sem_queue
*)((char *)walk
- offset
);
619 /* If we are scanning the single sop, per-semaphore list of
620 * one semaphore and that semaphore is 0, then it is not
621 * necessary to scan the "alter" entries: simple increments
622 * that affect only one entry succeed immediately and cannot
623 * be in the per semaphore pending queue, and decrements
624 * cannot be successful if the value is already 0.
626 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0 &&
630 error
= try_atomic_semop(sma
, q
->sops
, q
->nsops
,
633 /* Does q->sleeper still need to sleep? */
637 unlink_queue(sma
, q
);
643 restart
= check_restart(sma
, q
);
646 wake_up_sem_queue_prepare(pt
, q
, error
);
650 return semop_completed
;
654 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
655 * @sma: semaphore array
656 * @sops: operations that were performed
657 * @nsops: number of operations
658 * @otime: force setting otime
659 * @pt: list head of the tasks that must be woken up.
661 * do_smart_update() does the required called to update_queue, based on the
662 * actual changes that were performed on the semaphore array.
663 * Note that the function does not do the actual wake-up: the caller is
664 * responsible for calling wake_up_sem_queue_do(@pt).
665 * It is safe to perform this call after dropping all locks.
667 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
668 int otime
, struct list_head
*pt
)
672 if (sma
->complex_count
|| sops
== NULL
) {
673 if (update_queue(sma
, -1, pt
))
678 for (i
= 0; i
< nsops
; i
++) {
679 if (sops
[i
].sem_op
> 0 ||
680 (sops
[i
].sem_op
< 0 &&
681 sma
->sem_base
[sops
[i
].sem_num
].semval
== 0))
682 if (update_queue(sma
, sops
[i
].sem_num
, pt
))
687 sma
->sem_otime
= get_seconds();
691 /* The following counts are associated to each semaphore:
692 * semncnt number of tasks waiting on semval being nonzero
693 * semzcnt number of tasks waiting on semval being zero
694 * This model assumes that a task waits on exactly one semaphore.
695 * Since semaphore operations are to be performed atomically, tasks actually
696 * wait on a whole sequence of semaphores simultaneously.
697 * The counts we return here are a rough approximation, but still
698 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
700 static int count_semncnt (struct sem_array
* sma
, ushort semnum
)
703 struct sem_queue
* q
;
706 list_for_each_entry(q
, &sma
->sem_pending
, list
) {
707 struct sembuf
* sops
= q
->sops
;
708 int nsops
= q
->nsops
;
710 for (i
= 0; i
< nsops
; i
++)
711 if (sops
[i
].sem_num
== semnum
712 && (sops
[i
].sem_op
< 0)
713 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
719 static int count_semzcnt (struct sem_array
* sma
, ushort semnum
)
722 struct sem_queue
* q
;
725 list_for_each_entry(q
, &sma
->sem_pending
, list
) {
726 struct sembuf
* sops
= q
->sops
;
727 int nsops
= q
->nsops
;
729 for (i
= 0; i
< nsops
; i
++)
730 if (sops
[i
].sem_num
== semnum
731 && (sops
[i
].sem_op
== 0)
732 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
738 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
739 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
740 * remains locked on exit.
742 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
744 struct sem_undo
*un
, *tu
;
745 struct sem_queue
*q
, *tq
;
746 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
747 struct list_head tasks
;
749 /* Free the existing undo structures for this semaphore set. */
750 assert_spin_locked(&sma
->sem_perm
.lock
);
751 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
752 list_del(&un
->list_id
);
753 spin_lock(&un
->ulp
->lock
);
755 list_del_rcu(&un
->list_proc
);
756 spin_unlock(&un
->ulp
->lock
);
760 /* Wake up all pending processes and let them fail with EIDRM. */
761 INIT_LIST_HEAD(&tasks
);
762 list_for_each_entry_safe(q
, tq
, &sma
->sem_pending
, list
) {
763 unlink_queue(sma
, q
);
764 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
767 /* Remove the semaphore set from the IDR */
771 wake_up_sem_queue_do(&tasks
);
772 ns
->used_sems
-= sma
->sem_nsems
;
773 security_sem_free(sma
);
777 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
781 return copy_to_user(buf
, in
, sizeof(*in
));
786 memset(&out
, 0, sizeof(out
));
788 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
790 out
.sem_otime
= in
->sem_otime
;
791 out
.sem_ctime
= in
->sem_ctime
;
792 out
.sem_nsems
= in
->sem_nsems
;
794 return copy_to_user(buf
, &out
, sizeof(out
));
801 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
802 int cmd
, int version
, union semun arg
)
805 struct sem_array
*sma
;
811 struct seminfo seminfo
;
814 err
= security_sem_semctl(NULL
, cmd
);
818 memset(&seminfo
,0,sizeof(seminfo
));
819 seminfo
.semmni
= ns
->sc_semmni
;
820 seminfo
.semmns
= ns
->sc_semmns
;
821 seminfo
.semmsl
= ns
->sc_semmsl
;
822 seminfo
.semopm
= ns
->sc_semopm
;
823 seminfo
.semvmx
= SEMVMX
;
824 seminfo
.semmnu
= SEMMNU
;
825 seminfo
.semmap
= SEMMAP
;
826 seminfo
.semume
= SEMUME
;
827 down_read(&sem_ids(ns
).rw_mutex
);
828 if (cmd
== SEM_INFO
) {
829 seminfo
.semusz
= sem_ids(ns
).in_use
;
830 seminfo
.semaem
= ns
->used_sems
;
832 seminfo
.semusz
= SEMUSZ
;
833 seminfo
.semaem
= SEMAEM
;
835 max_id
= ipc_get_maxid(&sem_ids(ns
));
836 up_read(&sem_ids(ns
).rw_mutex
);
837 if (copy_to_user (arg
.__buf
, &seminfo
, sizeof(struct seminfo
)))
839 return (max_id
< 0) ? 0: max_id
;
844 struct semid64_ds tbuf
;
847 if (cmd
== SEM_STAT
) {
848 sma
= sem_lock(ns
, semid
);
851 id
= sma
->sem_perm
.id
;
853 sma
= sem_lock_check(ns
, semid
);
860 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
863 err
= security_sem_semctl(sma
, cmd
);
867 memset(&tbuf
, 0, sizeof(tbuf
));
869 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
870 tbuf
.sem_otime
= sma
->sem_otime
;
871 tbuf
.sem_ctime
= sma
->sem_ctime
;
872 tbuf
.sem_nsems
= sma
->sem_nsems
;
874 if (copy_semid_to_user (arg
.buf
, &tbuf
, version
))
886 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
887 int cmd
, int version
, union semun arg
)
889 struct sem_array
*sma
;
892 ushort fast_sem_io
[SEMMSL_FAST
];
893 ushort
* sem_io
= fast_sem_io
;
895 struct list_head tasks
;
897 sma
= sem_lock_check(ns
, semid
);
901 INIT_LIST_HEAD(&tasks
);
902 nsems
= sma
->sem_nsems
;
905 if (ipcperms(ns
, &sma
->sem_perm
,
906 (cmd
== SETVAL
|| cmd
== SETALL
) ? S_IWUGO
: S_IRUGO
))
909 err
= security_sem_semctl(sma
, cmd
);
917 ushort __user
*array
= arg
.array
;
920 if(nsems
> SEMMSL_FAST
) {
921 sem_getref_and_unlock(sma
);
923 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
929 sem_lock_and_putref(sma
);
930 if (sma
->sem_perm
.deleted
) {
937 for (i
= 0; i
< sma
->sem_nsems
; i
++)
938 sem_io
[i
] = sma
->sem_base
[i
].semval
;
941 if(copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
950 sem_getref_and_unlock(sma
);
952 if(nsems
> SEMMSL_FAST
) {
953 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
960 if (copy_from_user (sem_io
, arg
.array
, nsems
*sizeof(ushort
))) {
966 for (i
= 0; i
< nsems
; i
++) {
967 if (sem_io
[i
] > SEMVMX
) {
973 sem_lock_and_putref(sma
);
974 if (sma
->sem_perm
.deleted
) {
980 for (i
= 0; i
< nsems
; i
++)
981 sma
->sem_base
[i
].semval
= sem_io
[i
];
983 assert_spin_locked(&sma
->sem_perm
.lock
);
984 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
985 for (i
= 0; i
< nsems
; i
++)
988 sma
->sem_ctime
= get_seconds();
989 /* maybe some queued-up processes were waiting for this */
990 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
994 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
997 if(semnum
< 0 || semnum
>= nsems
)
1000 curr
= &sma
->sem_base
[semnum
];
1010 err
= count_semncnt(sma
,semnum
);
1013 err
= count_semzcnt(sma
,semnum
);
1018 struct sem_undo
*un
;
1021 if (val
> SEMVMX
|| val
< 0)
1024 assert_spin_locked(&sma
->sem_perm
.lock
);
1025 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1026 un
->semadj
[semnum
] = 0;
1029 curr
->sempid
= task_tgid_vnr(current
);
1030 sma
->sem_ctime
= get_seconds();
1031 /* maybe some queued-up processes were waiting for this */
1032 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1039 wake_up_sem_queue_do(&tasks
);
1042 if(sem_io
!= fast_sem_io
)
1043 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
1047 static inline unsigned long
1048 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1052 if (copy_from_user(out
, buf
, sizeof(*out
)))
1057 struct semid_ds tbuf_old
;
1059 if(copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1062 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1063 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1064 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1074 * This function handles some semctl commands which require the rw_mutex
1075 * to be held in write mode.
1076 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1078 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1079 int cmd
, int version
, union semun arg
)
1081 struct sem_array
*sma
;
1083 struct semid64_ds semid64
;
1084 struct kern_ipc_perm
*ipcp
;
1086 if(cmd
== IPC_SET
) {
1087 if (copy_semid_from_user(&semid64
, arg
.buf
, version
))
1091 ipcp
= ipcctl_pre_down(ns
, &sem_ids(ns
), semid
, cmd
,
1092 &semid64
.sem_perm
, 0);
1094 return PTR_ERR(ipcp
);
1096 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1098 err
= security_sem_semctl(sma
, cmd
);
1107 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1110 sma
->sem_ctime
= get_seconds();
1119 up_write(&sem_ids(ns
).rw_mutex
);
1123 SYSCALL_DEFINE(semctl
)(int semid
, int semnum
, int cmd
, union semun arg
)
1127 struct ipc_namespace
*ns
;
1132 version
= ipc_parse_version(&cmd
);
1133 ns
= current
->nsproxy
->ipc_ns
;
1140 err
= semctl_nolock(ns
, semid
, cmd
, version
, arg
);
1149 err
= semctl_main(ns
,semid
,semnum
,cmd
,version
,arg
);
1153 err
= semctl_down(ns
, semid
, cmd
, version
, arg
);
1159 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1160 asmlinkage
long SyS_semctl(int semid
, int semnum
, int cmd
, union semun arg
)
1162 return SYSC_semctl((int) semid
, (int) semnum
, (int) cmd
, arg
);
1164 SYSCALL_ALIAS(sys_semctl
, SyS_semctl
);
1167 /* If the task doesn't already have a undo_list, then allocate one
1168 * here. We guarantee there is only one thread using this undo list,
1169 * and current is THE ONE
1171 * If this allocation and assignment succeeds, but later
1172 * portions of this code fail, there is no need to free the sem_undo_list.
1173 * Just let it stay associated with the task, and it'll be freed later
1176 * This can block, so callers must hold no locks.
1178 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1180 struct sem_undo_list
*undo_list
;
1182 undo_list
= current
->sysvsem
.undo_list
;
1184 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1185 if (undo_list
== NULL
)
1187 spin_lock_init(&undo_list
->lock
);
1188 atomic_set(&undo_list
->refcnt
, 1);
1189 INIT_LIST_HEAD(&undo_list
->list_proc
);
1191 current
->sysvsem
.undo_list
= undo_list
;
1193 *undo_listp
= undo_list
;
1197 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1199 struct sem_undo
*un
;
1201 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1202 if (un
->semid
== semid
)
1208 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1210 struct sem_undo
*un
;
1212 assert_spin_locked(&ulp
->lock
);
1214 un
= __lookup_undo(ulp
, semid
);
1216 list_del_rcu(&un
->list_proc
);
1217 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1223 * find_alloc_undo - Lookup (and if not present create) undo array
1225 * @semid: semaphore array id
1227 * The function looks up (and if not present creates) the undo structure.
1228 * The size of the undo structure depends on the size of the semaphore
1229 * array, thus the alloc path is not that straightforward.
1230 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1231 * performs a rcu_read_lock().
1233 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1235 struct sem_array
*sma
;
1236 struct sem_undo_list
*ulp
;
1237 struct sem_undo
*un
, *new;
1241 error
= get_undo_list(&ulp
);
1243 return ERR_PTR(error
);
1246 spin_lock(&ulp
->lock
);
1247 un
= lookup_undo(ulp
, semid
);
1248 spin_unlock(&ulp
->lock
);
1249 if (likely(un
!=NULL
))
1253 /* no undo structure around - allocate one. */
1254 /* step 1: figure out the size of the semaphore array */
1255 sma
= sem_lock_check(ns
, semid
);
1257 return ERR_CAST(sma
);
1259 nsems
= sma
->sem_nsems
;
1260 sem_getref_and_unlock(sma
);
1262 /* step 2: allocate new undo structure */
1263 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1266 return ERR_PTR(-ENOMEM
);
1269 /* step 3: Acquire the lock on semaphore array */
1270 sem_lock_and_putref(sma
);
1271 if (sma
->sem_perm
.deleted
) {
1274 un
= ERR_PTR(-EIDRM
);
1277 spin_lock(&ulp
->lock
);
1280 * step 4: check for races: did someone else allocate the undo struct?
1282 un
= lookup_undo(ulp
, semid
);
1287 /* step 5: initialize & link new undo structure */
1288 new->semadj
= (short *) &new[1];
1291 assert_spin_locked(&ulp
->lock
);
1292 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1293 assert_spin_locked(&sma
->sem_perm
.lock
);
1294 list_add(&new->list_id
, &sma
->list_id
);
1298 spin_unlock(&ulp
->lock
);
1307 * get_queue_result - Retrieve the result code from sem_queue
1308 * @q: Pointer to queue structure
1310 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1311 * q->status, then we must loop until the value is replaced with the final
1312 * value: This may happen if a task is woken up by an unrelated event (e.g.
1313 * signal) and in parallel the task is woken up by another task because it got
1314 * the requested semaphores.
1316 * The function can be called with or without holding the semaphore spinlock.
1318 static int get_queue_result(struct sem_queue
*q
)
1323 while (unlikely(error
== IN_WAKEUP
)) {
1332 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1333 unsigned, nsops
, const struct timespec __user
*, timeout
)
1335 int error
= -EINVAL
;
1336 struct sem_array
*sma
;
1337 struct sembuf fast_sops
[SEMOPM_FAST
];
1338 struct sembuf
* sops
= fast_sops
, *sop
;
1339 struct sem_undo
*un
;
1340 int undos
= 0, alter
= 0, max
;
1341 struct sem_queue queue
;
1342 unsigned long jiffies_left
= 0;
1343 struct ipc_namespace
*ns
;
1344 struct list_head tasks
;
1346 ns
= current
->nsproxy
->ipc_ns
;
1348 if (nsops
< 1 || semid
< 0)
1350 if (nsops
> ns
->sc_semopm
)
1352 if(nsops
> SEMOPM_FAST
) {
1353 sops
= kmalloc(sizeof(*sops
)*nsops
,GFP_KERNEL
);
1357 if (copy_from_user (sops
, tsops
, nsops
* sizeof(*tsops
))) {
1362 struct timespec _timeout
;
1363 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1367 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1368 _timeout
.tv_nsec
>= 1000000000L) {
1372 jiffies_left
= timespec_to_jiffies(&_timeout
);
1375 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1376 if (sop
->sem_num
>= max
)
1378 if (sop
->sem_flg
& SEM_UNDO
)
1380 if (sop
->sem_op
!= 0)
1385 un
= find_alloc_undo(ns
, semid
);
1387 error
= PTR_ERR(un
);
1393 INIT_LIST_HEAD(&tasks
);
1395 sma
= sem_lock_check(ns
, semid
);
1399 error
= PTR_ERR(sma
);
1404 * semid identifiers are not unique - find_alloc_undo may have
1405 * allocated an undo structure, it was invalidated by an RMID
1406 * and now a new array with received the same id. Check and fail.
1407 * This case can be detected checking un->semid. The existence of
1408 * "un" itself is guaranteed by rcu.
1412 if (un
->semid
== -1) {
1414 goto out_unlock_free
;
1417 * rcu lock can be released, "un" cannot disappear:
1418 * - sem_lock is acquired, thus IPC_RMID is
1420 * - exit_sem is impossible, it always operates on
1421 * current (or a dead task).
1429 if (max
>= sma
->sem_nsems
)
1430 goto out_unlock_free
;
1433 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1434 goto out_unlock_free
;
1436 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1438 goto out_unlock_free
;
1440 error
= try_atomic_semop (sma
, sops
, nsops
, un
, task_tgid_vnr(current
));
1442 if (alter
&& error
== 0)
1443 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1445 goto out_unlock_free
;
1448 /* We need to sleep on this operation, so we put the current
1449 * task into the pending queue and go to sleep.
1453 queue
.nsops
= nsops
;
1455 queue
.pid
= task_tgid_vnr(current
);
1456 queue
.alter
= alter
;
1458 list_add_tail(&queue
.list
, &sma
->sem_pending
);
1460 list_add(&queue
.list
, &sma
->sem_pending
);
1464 curr
= &sma
->sem_base
[sops
->sem_num
];
1467 list_add_tail(&queue
.simple_list
, &curr
->sem_pending
);
1469 list_add(&queue
.simple_list
, &curr
->sem_pending
);
1471 INIT_LIST_HEAD(&queue
.simple_list
);
1472 sma
->complex_count
++;
1475 queue
.status
= -EINTR
;
1476 queue
.sleeper
= current
;
1479 current
->state
= TASK_INTERRUPTIBLE
;
1483 jiffies_left
= schedule_timeout(jiffies_left
);
1487 error
= get_queue_result(&queue
);
1489 if (error
!= -EINTR
) {
1490 /* fast path: update_queue already obtained all requested
1492 * Perform a smp_mb(): User space could assume that semop()
1493 * is a memory barrier: Without the mb(), the cpu could
1494 * speculatively read in user space stale data that was
1495 * overwritten by the previous owner of the semaphore.
1502 sma
= sem_lock(ns
, semid
);
1505 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1507 error
= get_queue_result(&queue
);
1510 * Array removed? If yes, leave without sem_unlock().
1518 * If queue.status != -EINTR we are woken up by another process.
1519 * Leave without unlink_queue(), but with sem_unlock().
1522 if (error
!= -EINTR
) {
1523 goto out_unlock_free
;
1527 * If an interrupt occurred we have to clean up the queue
1529 if (timeout
&& jiffies_left
== 0)
1533 * If the wakeup was spurious, just retry
1535 if (error
== -EINTR
&& !signal_pending(current
))
1538 unlink_queue(sma
, &queue
);
1543 wake_up_sem_queue_do(&tasks
);
1545 if(sops
!= fast_sops
)
1550 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
1553 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
1556 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1557 * parent and child tasks.
1560 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
1562 struct sem_undo_list
*undo_list
;
1565 if (clone_flags
& CLONE_SYSVSEM
) {
1566 error
= get_undo_list(&undo_list
);
1569 atomic_inc(&undo_list
->refcnt
);
1570 tsk
->sysvsem
.undo_list
= undo_list
;
1572 tsk
->sysvsem
.undo_list
= NULL
;
1578 * add semadj values to semaphores, free undo structures.
1579 * undo structures are not freed when semaphore arrays are destroyed
1580 * so some of them may be out of date.
1581 * IMPLEMENTATION NOTE: There is some confusion over whether the
1582 * set of adjustments that needs to be done should be done in an atomic
1583 * manner or not. That is, if we are attempting to decrement the semval
1584 * should we queue up and wait until we can do so legally?
1585 * The original implementation attempted to do this (queue and wait).
1586 * The current implementation does not do so. The POSIX standard
1587 * and SVID should be consulted to determine what behavior is mandated.
1589 void exit_sem(struct task_struct
*tsk
)
1591 struct sem_undo_list
*ulp
;
1593 ulp
= tsk
->sysvsem
.undo_list
;
1596 tsk
->sysvsem
.undo_list
= NULL
;
1598 if (!atomic_dec_and_test(&ulp
->refcnt
))
1602 struct sem_array
*sma
;
1603 struct sem_undo
*un
;
1604 struct list_head tasks
;
1609 un
= list_entry_rcu(ulp
->list_proc
.next
,
1610 struct sem_undo
, list_proc
);
1611 if (&un
->list_proc
== &ulp
->list_proc
)
1620 sma
= sem_lock_check(tsk
->nsproxy
->ipc_ns
, un
->semid
);
1622 /* exit_sem raced with IPC_RMID, nothing to do */
1626 un
= __lookup_undo(ulp
, semid
);
1628 /* exit_sem raced with IPC_RMID+semget() that created
1629 * exactly the same semid. Nothing to do.
1635 /* remove un from the linked lists */
1636 assert_spin_locked(&sma
->sem_perm
.lock
);
1637 list_del(&un
->list_id
);
1639 spin_lock(&ulp
->lock
);
1640 list_del_rcu(&un
->list_proc
);
1641 spin_unlock(&ulp
->lock
);
1643 /* perform adjustments registered in un */
1644 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1645 struct sem
* semaphore
= &sma
->sem_base
[i
];
1646 if (un
->semadj
[i
]) {
1647 semaphore
->semval
+= un
->semadj
[i
];
1649 * Range checks of the new semaphore value,
1650 * not defined by sus:
1651 * - Some unices ignore the undo entirely
1652 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1653 * - some cap the value (e.g. FreeBSD caps
1654 * at 0, but doesn't enforce SEMVMX)
1656 * Linux caps the semaphore value, both at 0
1659 * Manfred <manfred@colorfullife.com>
1661 if (semaphore
->semval
< 0)
1662 semaphore
->semval
= 0;
1663 if (semaphore
->semval
> SEMVMX
)
1664 semaphore
->semval
= SEMVMX
;
1665 semaphore
->sempid
= task_tgid_vnr(current
);
1668 /* maybe some queued-up processes were waiting for this */
1669 INIT_LIST_HEAD(&tasks
);
1670 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
1672 wake_up_sem_queue_do(&tasks
);
1679 #ifdef CONFIG_PROC_FS
1680 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
1682 struct user_namespace
*user_ns
= seq_user_ns(s
);
1683 struct sem_array
*sma
= it
;
1685 return seq_printf(s
,
1686 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1691 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
1692 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
1693 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
1694 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),