gma500: introduce a structure describing each pipe
[linux-2.6/libata-dev.git] / drivers / gpu / drm / gma500 / psb_intel_display.c
blob2cda49dc3307de5a61c88dbfdf9f412aa6db7ff3
1 /*
2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
32 struct psb_intel_clock_t {
33 /* given values */
34 int n;
35 int m1, m2;
36 int p1, p2;
37 /* derived values */
38 int dot;
39 int vco;
40 int m;
41 int p;
44 struct psb_intel_range_t {
45 int min, max;
48 struct psb_intel_p2_t {
49 int dot_limit;
50 int p2_slow, p2_fast;
53 #define INTEL_P2_NUM 2
55 struct psb_intel_limit_t {
56 struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
57 struct psb_intel_p2_t p2;
60 #define I8XX_DOT_MIN 25000
61 #define I8XX_DOT_MAX 350000
62 #define I8XX_VCO_MIN 930000
63 #define I8XX_VCO_MAX 1400000
64 #define I8XX_N_MIN 3
65 #define I8XX_N_MAX 16
66 #define I8XX_M_MIN 96
67 #define I8XX_M_MAX 140
68 #define I8XX_M1_MIN 18
69 #define I8XX_M1_MAX 26
70 #define I8XX_M2_MIN 6
71 #define I8XX_M2_MAX 16
72 #define I8XX_P_MIN 4
73 #define I8XX_P_MAX 128
74 #define I8XX_P1_MIN 2
75 #define I8XX_P1_MAX 33
76 #define I8XX_P1_LVDS_MIN 1
77 #define I8XX_P1_LVDS_MAX 6
78 #define I8XX_P2_SLOW 4
79 #define I8XX_P2_FAST 2
80 #define I8XX_P2_LVDS_SLOW 14
81 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
82 #define I8XX_P2_SLOW_LIMIT 165000
84 #define I9XX_DOT_MIN 20000
85 #define I9XX_DOT_MAX 400000
86 #define I9XX_VCO_MIN 1400000
87 #define I9XX_VCO_MAX 2800000
88 #define I9XX_N_MIN 3
89 #define I9XX_N_MAX 8
90 #define I9XX_M_MIN 70
91 #define I9XX_M_MAX 120
92 #define I9XX_M1_MIN 10
93 #define I9XX_M1_MAX 20
94 #define I9XX_M2_MIN 5
95 #define I9XX_M2_MAX 9
96 #define I9XX_P_SDVO_DAC_MIN 5
97 #define I9XX_P_SDVO_DAC_MAX 80
98 #define I9XX_P_LVDS_MIN 7
99 #define I9XX_P_LVDS_MAX 98
100 #define I9XX_P1_MIN 1
101 #define I9XX_P1_MAX 8
102 #define I9XX_P2_SDVO_DAC_SLOW 10
103 #define I9XX_P2_SDVO_DAC_FAST 5
104 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
105 #define I9XX_P2_LVDS_SLOW 14
106 #define I9XX_P2_LVDS_FAST 7
107 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
109 #define INTEL_LIMIT_I8XX_DVO_DAC 0
110 #define INTEL_LIMIT_I8XX_LVDS 1
111 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
112 #define INTEL_LIMIT_I9XX_LVDS 3
114 static const struct psb_intel_limit_t psb_intel_limits[] = {
115 { /* INTEL_LIMIT_I8XX_DVO_DAC */
116 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
117 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
118 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
119 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
120 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
121 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
122 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
123 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
124 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
125 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
127 { /* INTEL_LIMIT_I8XX_LVDS */
128 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
129 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
130 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
131 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
132 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
133 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
134 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
135 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
136 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
137 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
139 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
140 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
141 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
142 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
143 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
144 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
145 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
146 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
147 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
148 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
149 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
150 I9XX_P2_SDVO_DAC_FAST},
152 { /* INTEL_LIMIT_I9XX_LVDS */
153 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
154 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
155 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
156 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
157 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
158 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
159 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
160 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
161 /* The single-channel range is 25-112Mhz, and dual-channel
162 * is 80-224Mhz. Prefer single channel as much as possible.
164 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
165 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
169 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
171 const struct psb_intel_limit_t *limit;
173 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
174 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
175 else
176 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
177 return limit;
180 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
182 static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
184 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
185 clock->p = clock->p1 * clock->p2;
186 clock->vco = refclk * clock->m / (clock->n + 2);
187 clock->dot = clock->vco / clock->p;
190 /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
192 static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
194 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
195 clock->p = clock->p1 * clock->p2;
196 clock->vco = refclk * clock->m / (clock->n + 2);
197 clock->dot = clock->vco / clock->p;
200 static void psb_intel_clock(struct drm_device *dev, int refclk,
201 struct psb_intel_clock_t *clock)
203 return i9xx_clock(refclk, clock);
207 * Returns whether any output on the specified pipe is of the specified type
209 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
211 struct drm_device *dev = crtc->dev;
212 struct drm_mode_config *mode_config = &dev->mode_config;
213 struct drm_connector *l_entry;
215 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
216 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
217 struct psb_intel_encoder *psb_intel_encoder =
218 psb_intel_attached_encoder(l_entry);
219 if (psb_intel_encoder->type == type)
220 return true;
223 return false;
226 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
228 * Returns whether the given set of divisors are valid for a given refclk with
229 * the given connectors.
232 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
233 struct psb_intel_clock_t *clock)
235 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
237 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
238 INTELPllInvalid("p1 out of range\n");
239 if (clock->p < limit->p.min || limit->p.max < clock->p)
240 INTELPllInvalid("p out of range\n");
241 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
242 INTELPllInvalid("m2 out of range\n");
243 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
244 INTELPllInvalid("m1 out of range\n");
245 if (clock->m1 <= clock->m2)
246 INTELPllInvalid("m1 <= m2\n");
247 if (clock->m < limit->m.min || limit->m.max < clock->m)
248 INTELPllInvalid("m out of range\n");
249 if (clock->n < limit->n.min || limit->n.max < clock->n)
250 INTELPllInvalid("n out of range\n");
251 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
252 INTELPllInvalid("vco out of range\n");
253 /* XXX: We may need to be checking "Dot clock"
254 * depending on the multiplier, connector, etc.,
255 * rather than just a single range.
257 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
258 INTELPllInvalid("dot out of range\n");
260 return true;
264 * Returns a set of divisors for the desired target clock with the given
265 * refclk, or FALSE. The returned values represent the clock equation:
266 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
268 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
269 int refclk,
270 struct psb_intel_clock_t *best_clock)
272 struct drm_device *dev = crtc->dev;
273 struct psb_intel_clock_t clock;
274 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
275 int err = target;
277 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
278 (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
280 * For LVDS, if the panel is on, just rely on its current
281 * settings for dual-channel. We haven't figured out how to
282 * reliably set up different single/dual channel state, if we
283 * even can.
285 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
286 LVDS_CLKB_POWER_UP)
287 clock.p2 = limit->p2.p2_fast;
288 else
289 clock.p2 = limit->p2.p2_slow;
290 } else {
291 if (target < limit->p2.dot_limit)
292 clock.p2 = limit->p2.p2_slow;
293 else
294 clock.p2 = limit->p2.p2_fast;
297 memset(best_clock, 0, sizeof(*best_clock));
299 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
300 clock.m1++) {
301 for (clock.m2 = limit->m2.min;
302 clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
303 clock.m2++) {
304 for (clock.n = limit->n.min;
305 clock.n <= limit->n.max; clock.n++) {
306 for (clock.p1 = limit->p1.min;
307 clock.p1 <= limit->p1.max;
308 clock.p1++) {
309 int this_err;
311 psb_intel_clock(dev, refclk, &clock);
313 if (!psb_intel_PLL_is_valid
314 (crtc, &clock))
315 continue;
317 this_err = abs(clock.dot - target);
318 if (this_err < err) {
319 *best_clock = clock;
320 err = this_err;
327 return err != target;
330 void psb_intel_wait_for_vblank(struct drm_device *dev)
332 /* Wait for 20ms, i.e. one cycle at 50hz. */
333 mdelay(20);
336 static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
337 int x, int y, struct drm_framebuffer *old_fb)
339 struct drm_device *dev = crtc->dev;
340 /* struct drm_i915_master_private *master_priv; */
341 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
342 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
343 int pipe = psb_intel_crtc->pipe;
344 unsigned long start, offset;
345 int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE);
346 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
347 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
348 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
349 u32 dspcntr;
350 int ret = 0;
352 if (!gma_power_begin(dev, true))
353 return 0;
355 /* no fb bound */
356 if (!crtc->fb) {
357 dev_dbg(dev->dev, "No FB bound\n");
358 goto psb_intel_pipe_cleaner;
361 /* We are displaying this buffer, make sure it is actually loaded
362 into the GTT */
363 ret = psb_gtt_pin(psbfb->gtt);
364 if (ret < 0)
365 goto psb_intel_pipe_set_base_exit;
366 start = psbfb->gtt->offset;
368 offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
370 REG_WRITE(dspstride, crtc->fb->pitches[0]);
372 dspcntr = REG_READ(dspcntr_reg);
373 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
375 switch (crtc->fb->bits_per_pixel) {
376 case 8:
377 dspcntr |= DISPPLANE_8BPP;
378 break;
379 case 16:
380 if (crtc->fb->depth == 15)
381 dspcntr |= DISPPLANE_15_16BPP;
382 else
383 dspcntr |= DISPPLANE_16BPP;
384 break;
385 case 24:
386 case 32:
387 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
388 break;
389 default:
390 dev_err(dev->dev, "Unknown color depth\n");
391 ret = -EINVAL;
392 psb_gtt_unpin(psbfb->gtt);
393 goto psb_intel_pipe_set_base_exit;
395 REG_WRITE(dspcntr_reg, dspcntr);
398 if (0 /* FIXMEAC - check what PSB needs */) {
399 REG_WRITE(dspbase, offset);
400 REG_READ(dspbase);
401 REG_WRITE(dspsurf, start);
402 REG_READ(dspsurf);
403 } else {
404 REG_WRITE(dspbase, start + offset);
405 REG_READ(dspbase);
408 psb_intel_pipe_cleaner:
409 /* If there was a previous display we can now unpin it */
410 if (old_fb)
411 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
413 psb_intel_pipe_set_base_exit:
414 gma_power_end(dev);
415 return ret;
419 * Sets the power management mode of the pipe and plane.
421 * This code should probably grow support for turning the cursor off and back
422 * on appropriately at the same time as we're turning the pipe off/on.
424 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
426 struct drm_device *dev = crtc->dev;
427 /* struct drm_i915_master_private *master_priv; */
428 /* struct drm_i915_private *dev_priv = dev->dev_private; */
429 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
430 int pipe = psb_intel_crtc->pipe;
431 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
432 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
433 int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE;
434 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
435 u32 temp;
437 /* XXX: When our outputs are all unaware of DPMS modes other than off
438 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
440 switch (mode) {
441 case DRM_MODE_DPMS_ON:
442 case DRM_MODE_DPMS_STANDBY:
443 case DRM_MODE_DPMS_SUSPEND:
444 /* Enable the DPLL */
445 temp = REG_READ(dpll_reg);
446 if ((temp & DPLL_VCO_ENABLE) == 0) {
447 REG_WRITE(dpll_reg, temp);
448 REG_READ(dpll_reg);
449 /* Wait for the clocks to stabilize. */
450 udelay(150);
451 REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
452 REG_READ(dpll_reg);
453 /* Wait for the clocks to stabilize. */
454 udelay(150);
455 REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
456 REG_READ(dpll_reg);
457 /* Wait for the clocks to stabilize. */
458 udelay(150);
461 /* Enable the pipe */
462 temp = REG_READ(pipeconf_reg);
463 if ((temp & PIPEACONF_ENABLE) == 0)
464 REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
466 /* Enable the plane */
467 temp = REG_READ(dspcntr_reg);
468 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
469 REG_WRITE(dspcntr_reg,
470 temp | DISPLAY_PLANE_ENABLE);
471 /* Flush the plane changes */
472 REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
475 psb_intel_crtc_load_lut(crtc);
477 /* Give the overlay scaler a chance to enable
478 * if it's on this pipe */
479 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
480 break;
481 case DRM_MODE_DPMS_OFF:
482 /* Give the overlay scaler a chance to disable
483 * if it's on this pipe */
484 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
486 /* Disable the VGA plane that we never use */
487 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
489 /* Disable display plane */
490 temp = REG_READ(dspcntr_reg);
491 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
492 REG_WRITE(dspcntr_reg,
493 temp & ~DISPLAY_PLANE_ENABLE);
494 /* Flush the plane changes */
495 REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
496 REG_READ(dspbase_reg);
499 /* Next, disable display pipes */
500 temp = REG_READ(pipeconf_reg);
501 if ((temp & PIPEACONF_ENABLE) != 0) {
502 REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
503 REG_READ(pipeconf_reg);
506 /* Wait for vblank for the disable to take effect. */
507 psb_intel_wait_for_vblank(dev);
509 temp = REG_READ(dpll_reg);
510 if ((temp & DPLL_VCO_ENABLE) != 0) {
511 REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
512 REG_READ(dpll_reg);
515 /* Wait for the clocks to turn off. */
516 udelay(150);
517 break;
520 /*Set FIFO Watermarks*/
521 REG_WRITE(DSPARB, 0x3F3E);
524 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
526 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
527 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
530 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
532 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
533 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
536 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
538 struct drm_encoder_helper_funcs *encoder_funcs =
539 encoder->helper_private;
540 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
541 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
544 void psb_intel_encoder_commit(struct drm_encoder *encoder)
546 struct drm_encoder_helper_funcs *encoder_funcs =
547 encoder->helper_private;
548 /* lvds has its own version of commit see psb_intel_lvds_commit */
549 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
552 void psb_intel_encoder_destroy(struct drm_encoder *encoder)
554 struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
556 drm_encoder_cleanup(encoder);
557 kfree(intel_encoder);
560 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
561 struct drm_display_mode *mode,
562 struct drm_display_mode *adjusted_mode)
564 return true;
569 * Return the pipe currently connected to the panel fitter,
570 * or -1 if the panel fitter is not present or not in use
572 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
574 u32 pfit_control;
576 pfit_control = REG_READ(PFIT_CONTROL);
578 /* See if the panel fitter is in use */
579 if ((pfit_control & PFIT_ENABLE) == 0)
580 return -1;
581 /* Must be on PIPE 1 for PSB */
582 return 1;
585 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
586 struct drm_display_mode *mode,
587 struct drm_display_mode *adjusted_mode,
588 int x, int y,
589 struct drm_framebuffer *old_fb)
591 struct drm_device *dev = crtc->dev;
592 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
593 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
594 int pipe = psb_intel_crtc->pipe;
595 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
596 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
597 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
598 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
599 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
600 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
601 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
602 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
603 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
604 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
605 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
606 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
607 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
608 int refclk;
609 struct psb_intel_clock_t clock;
610 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
611 bool ok, is_sdvo = false;
612 bool is_lvds = false, is_tv = false;
613 struct drm_mode_config *mode_config = &dev->mode_config;
614 struct drm_connector *connector;
616 /* No scan out no play */
617 if (crtc->fb == NULL) {
618 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
619 return 0;
622 list_for_each_entry(connector, &mode_config->connector_list, head) {
623 struct psb_intel_encoder *psb_intel_encoder =
624 psb_intel_attached_encoder(connector);
626 if (!connector->encoder
627 || connector->encoder->crtc != crtc)
628 continue;
630 switch (psb_intel_encoder->type) {
631 case INTEL_OUTPUT_LVDS:
632 is_lvds = true;
633 break;
634 case INTEL_OUTPUT_SDVO:
635 is_sdvo = true;
636 break;
637 case INTEL_OUTPUT_TVOUT:
638 is_tv = true;
639 break;
643 refclk = 96000;
645 ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
646 &clock);
647 if (!ok) {
648 dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
649 return 0;
652 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
654 dpll = DPLL_VGA_MODE_DIS;
655 if (is_lvds) {
656 dpll |= DPLLB_MODE_LVDS;
657 dpll |= DPLL_DVO_HIGH_SPEED;
658 } else
659 dpll |= DPLLB_MODE_DAC_SERIAL;
660 if (is_sdvo) {
661 int sdvo_pixel_multiply =
662 adjusted_mode->clock / mode->clock;
663 dpll |= DPLL_DVO_HIGH_SPEED;
664 dpll |=
665 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
668 /* compute bitmask from p1 value */
669 dpll |= (1 << (clock.p1 - 1)) << 16;
670 switch (clock.p2) {
671 case 5:
672 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
673 break;
674 case 7:
675 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
676 break;
677 case 10:
678 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
679 break;
680 case 14:
681 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
682 break;
685 if (is_tv) {
686 /* XXX: just matching BIOS for now */
687 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
688 dpll |= 3;
690 dpll |= PLL_REF_INPUT_DREFCLK;
692 /* setup pipeconf */
693 pipeconf = REG_READ(pipeconf_reg);
695 /* Set up the display plane register */
696 dspcntr = DISPPLANE_GAMMA_ENABLE;
698 if (pipe == 0)
699 dspcntr |= DISPPLANE_SEL_PIPE_A;
700 else
701 dspcntr |= DISPPLANE_SEL_PIPE_B;
703 dspcntr |= DISPLAY_PLANE_ENABLE;
704 pipeconf |= PIPEACONF_ENABLE;
705 dpll |= DPLL_VCO_ENABLE;
708 /* Disable the panel fitter if it was on our pipe */
709 if (psb_intel_panel_fitter_pipe(dev) == pipe)
710 REG_WRITE(PFIT_CONTROL, 0);
712 drm_mode_debug_printmodeline(mode);
714 if (dpll & DPLL_VCO_ENABLE) {
715 REG_WRITE(fp_reg, fp);
716 REG_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
717 REG_READ(dpll_reg);
718 udelay(150);
721 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
722 * This is an exception to the general rule that mode_set doesn't turn
723 * things on.
725 if (is_lvds) {
726 u32 lvds = REG_READ(LVDS);
728 lvds &= ~LVDS_PIPEB_SELECT;
729 if (pipe == 1)
730 lvds |= LVDS_PIPEB_SELECT;
732 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
733 /* Set the B0-B3 data pairs corresponding to
734 * whether we're going to
735 * set the DPLLs for dual-channel mode or not.
737 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
738 if (clock.p2 == 7)
739 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
741 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
742 * appropriately here, but we need to look more
743 * thoroughly into how panels behave in the two modes.
746 REG_WRITE(LVDS, lvds);
747 REG_READ(LVDS);
750 REG_WRITE(fp_reg, fp);
751 REG_WRITE(dpll_reg, dpll);
752 REG_READ(dpll_reg);
753 /* Wait for the clocks to stabilize. */
754 udelay(150);
756 /* write it again -- the BIOS does, after all */
757 REG_WRITE(dpll_reg, dpll);
759 REG_READ(dpll_reg);
760 /* Wait for the clocks to stabilize. */
761 udelay(150);
763 REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
764 ((adjusted_mode->crtc_htotal - 1) << 16));
765 REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
766 ((adjusted_mode->crtc_hblank_end - 1) << 16));
767 REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
768 ((adjusted_mode->crtc_hsync_end - 1) << 16));
769 REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
770 ((adjusted_mode->crtc_vtotal - 1) << 16));
771 REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
772 ((adjusted_mode->crtc_vblank_end - 1) << 16));
773 REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
774 ((adjusted_mode->crtc_vsync_end - 1) << 16));
775 /* pipesrc and dspsize control the size that is scaled from,
776 * which should always be the user's requested size.
778 REG_WRITE(dspsize_reg,
779 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
780 REG_WRITE(dsppos_reg, 0);
781 REG_WRITE(pipesrc_reg,
782 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
783 REG_WRITE(pipeconf_reg, pipeconf);
784 REG_READ(pipeconf_reg);
786 psb_intel_wait_for_vblank(dev);
788 REG_WRITE(dspcntr_reg, dspcntr);
790 /* Flush the plane changes */
791 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
793 psb_intel_wait_for_vblank(dev);
795 return 0;
798 /** Loads the palette/gamma unit for the CRTC with the prepared values */
799 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
801 struct drm_device *dev = crtc->dev;
802 struct drm_psb_private *dev_priv = dev->dev_private;
803 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
804 int palreg = PALETTE_A;
805 int i;
807 /* The clocks have to be on to load the palette. */
808 if (!crtc->enabled)
809 return;
811 switch (psb_intel_crtc->pipe) {
812 case 0:
813 break;
814 case 1:
815 palreg = PALETTE_B;
816 break;
817 case 2:
818 palreg = PALETTE_C;
819 break;
820 default:
821 dev_err(dev->dev, "Illegal Pipe Number.\n");
822 return;
825 if (gma_power_begin(dev, false)) {
826 for (i = 0; i < 256; i++) {
827 REG_WRITE(palreg + 4 * i,
828 ((psb_intel_crtc->lut_r[i] +
829 psb_intel_crtc->lut_adj[i]) << 16) |
830 ((psb_intel_crtc->lut_g[i] +
831 psb_intel_crtc->lut_adj[i]) << 8) |
832 (psb_intel_crtc->lut_b[i] +
833 psb_intel_crtc->lut_adj[i]));
835 gma_power_end(dev);
836 } else {
837 for (i = 0; i < 256; i++) {
838 dev_priv->regs.pipe[0].palette[i] =
839 ((psb_intel_crtc->lut_r[i] +
840 psb_intel_crtc->lut_adj[i]) << 16) |
841 ((psb_intel_crtc->lut_g[i] +
842 psb_intel_crtc->lut_adj[i]) << 8) |
843 (psb_intel_crtc->lut_b[i] +
844 psb_intel_crtc->lut_adj[i]);
851 * Save HW states of giving crtc
853 static void psb_intel_crtc_save(struct drm_crtc *crtc)
855 struct drm_device *dev = crtc->dev;
856 /* struct drm_psb_private *dev_priv =
857 (struct drm_psb_private *)dev->dev_private; */
858 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
859 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
860 int pipeA = (psb_intel_crtc->pipe == 0);
861 uint32_t paletteReg;
862 int i;
864 if (!crtc_state) {
865 dev_err(dev->dev, "No CRTC state found\n");
866 return;
869 crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR);
870 crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF);
871 crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC);
872 crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0);
873 crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1);
874 crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B);
875 crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B);
876 crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B);
877 crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B);
878 crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B);
879 crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B);
880 crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B);
881 crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE);
883 /*NOTE: DSPSIZE DSPPOS only for psb*/
884 crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE);
885 crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS);
887 crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE);
889 paletteReg = pipeA ? PALETTE_A : PALETTE_B;
890 for (i = 0; i < 256; ++i)
891 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
895 * Restore HW states of giving crtc
897 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
899 struct drm_device *dev = crtc->dev;
900 /* struct drm_psb_private * dev_priv =
901 (struct drm_psb_private *)dev->dev_private; */
902 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
903 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
904 /* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */
905 int pipeA = (psb_intel_crtc->pipe == 0);
906 uint32_t paletteReg;
907 int i;
909 if (!crtc_state) {
910 dev_err(dev->dev, "No crtc state\n");
911 return;
914 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
915 REG_WRITE(pipeA ? DPLL_A : DPLL_B,
916 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
917 REG_READ(pipeA ? DPLL_A : DPLL_B);
918 udelay(150);
921 REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0);
922 REG_READ(pipeA ? FPA0 : FPB0);
924 REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1);
925 REG_READ(pipeA ? FPA1 : FPB1);
927 REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL);
928 REG_READ(pipeA ? DPLL_A : DPLL_B);
929 udelay(150);
931 REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL);
932 REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK);
933 REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC);
934 REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL);
935 REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK);
936 REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC);
937 REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE);
939 REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE);
940 REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS);
942 REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC);
943 REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
944 REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF);
946 psb_intel_wait_for_vblank(dev);
948 REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR);
949 REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
951 psb_intel_wait_for_vblank(dev);
953 paletteReg = pipeA ? PALETTE_A : PALETTE_B;
954 for (i = 0; i < 256; ++i)
955 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
958 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
959 struct drm_file *file_priv,
960 uint32_t handle,
961 uint32_t width, uint32_t height)
963 struct drm_device *dev = crtc->dev;
964 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
965 int pipe = psb_intel_crtc->pipe;
966 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
967 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
968 uint32_t temp;
969 size_t addr = 0;
970 struct gtt_range *gt;
971 struct drm_gem_object *obj;
972 int ret;
974 /* if we want to turn of the cursor ignore width and height */
975 if (!handle) {
976 /* turn off the cursor */
977 temp = CURSOR_MODE_DISABLE;
979 if (gma_power_begin(dev, false)) {
980 REG_WRITE(control, temp);
981 REG_WRITE(base, 0);
982 gma_power_end(dev);
985 /* Unpin the old GEM object */
986 if (psb_intel_crtc->cursor_obj) {
987 gt = container_of(psb_intel_crtc->cursor_obj,
988 struct gtt_range, gem);
989 psb_gtt_unpin(gt);
990 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
991 psb_intel_crtc->cursor_obj = NULL;
994 return 0;
997 /* Currently we only support 64x64 cursors */
998 if (width != 64 || height != 64) {
999 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1000 return -EINVAL;
1003 obj = drm_gem_object_lookup(dev, file_priv, handle);
1004 if (!obj)
1005 return -ENOENT;
1007 if (obj->size < width * height * 4) {
1008 dev_dbg(dev->dev, "buffer is to small\n");
1009 return -ENOMEM;
1012 gt = container_of(obj, struct gtt_range, gem);
1014 /* Pin the memory into the GTT */
1015 ret = psb_gtt_pin(gt);
1016 if (ret) {
1017 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1018 return ret;
1022 addr = gt->offset; /* Or resource.start ??? */
1024 psb_intel_crtc->cursor_addr = addr;
1026 temp = 0;
1027 /* set the pipe for the cursor */
1028 temp |= (pipe << 28);
1029 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1031 if (gma_power_begin(dev, false)) {
1032 REG_WRITE(control, temp);
1033 REG_WRITE(base, addr);
1034 gma_power_end(dev);
1037 /* unpin the old bo */
1038 if (psb_intel_crtc->cursor_obj) {
1039 gt = container_of(psb_intel_crtc->cursor_obj,
1040 struct gtt_range, gem);
1041 psb_gtt_unpin(gt);
1042 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1043 psb_intel_crtc->cursor_obj = obj;
1045 return 0;
1048 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1050 struct drm_device *dev = crtc->dev;
1051 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1052 int pipe = psb_intel_crtc->pipe;
1053 uint32_t temp = 0;
1054 uint32_t addr;
1057 if (x < 0) {
1058 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1059 x = -x;
1061 if (y < 0) {
1062 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1063 y = -y;
1066 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1067 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1069 addr = psb_intel_crtc->cursor_addr;
1071 if (gma_power_begin(dev, false)) {
1072 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1073 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
1074 gma_power_end(dev);
1076 return 0;
1079 void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1080 u16 *green, u16 *blue, uint32_t type, uint32_t size)
1082 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1083 int i;
1085 if (size != 256)
1086 return;
1088 for (i = 0; i < 256; i++) {
1089 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1090 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1091 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1094 psb_intel_crtc_load_lut(crtc);
1097 static int psb_crtc_set_config(struct drm_mode_set *set)
1099 int ret;
1100 struct drm_device *dev = set->crtc->dev;
1101 struct drm_psb_private *dev_priv = dev->dev_private;
1103 if (!dev_priv->rpm_enabled)
1104 return drm_crtc_helper_set_config(set);
1106 pm_runtime_forbid(&dev->pdev->dev);
1107 ret = drm_crtc_helper_set_config(set);
1108 pm_runtime_allow(&dev->pdev->dev);
1109 return ret;
1112 /* Returns the clock of the currently programmed mode of the given pipe. */
1113 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1114 struct drm_crtc *crtc)
1116 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1117 int pipe = psb_intel_crtc->pipe;
1118 u32 dpll;
1119 u32 fp;
1120 struct psb_intel_clock_t clock;
1121 bool is_lvds;
1122 struct drm_psb_private *dev_priv = dev->dev_private;
1123 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1125 if (gma_power_begin(dev, false)) {
1126 dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B);
1127 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1128 fp = REG_READ((pipe == 0) ? FPA0 : FPB0);
1129 else
1130 fp = REG_READ((pipe == 0) ? FPA1 : FPB1);
1131 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1132 gma_power_end(dev);
1133 } else {
1134 dpll = p->dpll;
1136 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1137 fp = p->fp0;
1138 else
1139 fp = p->fp1;
1141 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
1142 LVDS_PORT_EN);
1145 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1146 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1147 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1149 if (is_lvds) {
1150 clock.p1 =
1151 ffs((dpll &
1152 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1153 DPLL_FPA01_P1_POST_DIV_SHIFT);
1154 clock.p2 = 14;
1156 if ((dpll & PLL_REF_INPUT_MASK) ==
1157 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1158 /* XXX: might not be 66MHz */
1159 i8xx_clock(66000, &clock);
1160 } else
1161 i8xx_clock(48000, &clock);
1162 } else {
1163 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1164 clock.p1 = 2;
1165 else {
1166 clock.p1 =
1167 ((dpll &
1168 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1169 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1171 if (dpll & PLL_P2_DIVIDE_BY_4)
1172 clock.p2 = 4;
1173 else
1174 clock.p2 = 2;
1176 i8xx_clock(48000, &clock);
1179 /* XXX: It would be nice to validate the clocks, but we can't reuse
1180 * i830PllIsValid() because it relies on the xf86_config connector
1181 * configuration being accurate, which it isn't necessarily.
1184 return clock.dot;
1187 /** Returns the currently programmed mode of the given pipe. */
1188 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1189 struct drm_crtc *crtc)
1191 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1192 int pipe = psb_intel_crtc->pipe;
1193 struct drm_display_mode *mode;
1194 int htot;
1195 int hsync;
1196 int vtot;
1197 int vsync;
1198 struct drm_psb_private *dev_priv = dev->dev_private;
1199 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1201 if (gma_power_begin(dev, false)) {
1202 htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1203 hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1204 vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1205 vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1206 gma_power_end(dev);
1207 } else {
1208 htot = p->htotal;
1209 hsync = p->hsync;
1210 vtot = p->vtotal;
1211 vsync = p->vsync;
1214 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1215 if (!mode)
1216 return NULL;
1218 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1219 mode->hdisplay = (htot & 0xffff) + 1;
1220 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1221 mode->hsync_start = (hsync & 0xffff) + 1;
1222 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1223 mode->vdisplay = (vtot & 0xffff) + 1;
1224 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1225 mode->vsync_start = (vsync & 0xffff) + 1;
1226 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1228 drm_mode_set_name(mode);
1229 drm_mode_set_crtcinfo(mode, 0);
1231 return mode;
1234 void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1236 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1237 struct gtt_range *gt;
1239 /* Unpin the old GEM object */
1240 if (psb_intel_crtc->cursor_obj) {
1241 gt = container_of(psb_intel_crtc->cursor_obj,
1242 struct gtt_range, gem);
1243 psb_gtt_unpin(gt);
1244 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1245 psb_intel_crtc->cursor_obj = NULL;
1247 kfree(psb_intel_crtc->crtc_state);
1248 drm_crtc_cleanup(crtc);
1249 kfree(psb_intel_crtc);
1252 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1253 .dpms = psb_intel_crtc_dpms,
1254 .mode_fixup = psb_intel_crtc_mode_fixup,
1255 .mode_set = psb_intel_crtc_mode_set,
1256 .mode_set_base = psb_intel_pipe_set_base,
1257 .prepare = psb_intel_crtc_prepare,
1258 .commit = psb_intel_crtc_commit,
1261 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1262 .save = psb_intel_crtc_save,
1263 .restore = psb_intel_crtc_restore,
1264 .cursor_set = psb_intel_crtc_cursor_set,
1265 .cursor_move = psb_intel_crtc_cursor_move,
1266 .gamma_set = psb_intel_crtc_gamma_set,
1267 .set_config = psb_crtc_set_config,
1268 .destroy = psb_intel_crtc_destroy,
1272 * Set the default value of cursor control and base register
1273 * to zero. This is a workaround for h/w defect on Oaktrail
1275 static void psb_intel_cursor_init(struct drm_device *dev, int pipe)
1277 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1278 u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1280 REG_WRITE(control[pipe], 0);
1281 REG_WRITE(base[pipe], 0);
1284 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1285 struct psb_intel_mode_device *mode_dev)
1287 struct drm_psb_private *dev_priv = dev->dev_private;
1288 struct psb_intel_crtc *psb_intel_crtc;
1289 int i;
1290 uint16_t *r_base, *g_base, *b_base;
1292 /* We allocate a extra array of drm_connector pointers
1293 * for fbdev after the crtc */
1294 psb_intel_crtc =
1295 kzalloc(sizeof(struct psb_intel_crtc) +
1296 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1297 GFP_KERNEL);
1298 if (psb_intel_crtc == NULL)
1299 return;
1301 psb_intel_crtc->crtc_state =
1302 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1303 if (!psb_intel_crtc->crtc_state) {
1304 dev_err(dev->dev, "Crtc state error: No memory\n");
1305 kfree(psb_intel_crtc);
1306 return;
1309 /* Set the CRTC operations from the chip specific data */
1310 drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1312 drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1313 psb_intel_crtc->pipe = pipe;
1314 psb_intel_crtc->plane = pipe;
1316 r_base = psb_intel_crtc->base.gamma_store;
1317 g_base = r_base + 256;
1318 b_base = g_base + 256;
1319 for (i = 0; i < 256; i++) {
1320 psb_intel_crtc->lut_r[i] = i;
1321 psb_intel_crtc->lut_g[i] = i;
1322 psb_intel_crtc->lut_b[i] = i;
1323 r_base[i] = i << 8;
1324 g_base[i] = i << 8;
1325 b_base[i] = i << 8;
1327 psb_intel_crtc->lut_adj[i] = 0;
1330 psb_intel_crtc->mode_dev = mode_dev;
1331 psb_intel_crtc->cursor_addr = 0;
1333 drm_crtc_helper_add(&psb_intel_crtc->base,
1334 dev_priv->ops->crtc_helper);
1336 /* Setup the array of drm_connector pointer array */
1337 psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1338 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1339 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1340 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1341 &psb_intel_crtc->base;
1342 dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1343 &psb_intel_crtc->base;
1344 psb_intel_crtc->mode_set.connectors =
1345 (struct drm_connector **) (psb_intel_crtc + 1);
1346 psb_intel_crtc->mode_set.num_connectors = 0;
1347 psb_intel_cursor_init(dev, pipe);
1350 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1351 struct drm_file *file_priv)
1353 struct drm_psb_private *dev_priv = dev->dev_private;
1354 struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1355 struct drm_mode_object *drmmode_obj;
1356 struct psb_intel_crtc *crtc;
1358 if (!dev_priv) {
1359 dev_err(dev->dev, "called with no initialization\n");
1360 return -EINVAL;
1363 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1364 DRM_MODE_OBJECT_CRTC);
1366 if (!drmmode_obj) {
1367 dev_err(dev->dev, "no such CRTC id\n");
1368 return -EINVAL;
1371 crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1372 pipe_from_crtc_id->pipe = crtc->pipe;
1374 return 0;
1377 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1379 struct drm_crtc *crtc = NULL;
1381 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1382 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1383 if (psb_intel_crtc->pipe == pipe)
1384 break;
1386 return crtc;
1389 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1391 int index_mask = 0;
1392 struct drm_connector *connector;
1393 int entry = 0;
1395 list_for_each_entry(connector, &dev->mode_config.connector_list,
1396 head) {
1397 struct psb_intel_encoder *psb_intel_encoder =
1398 psb_intel_attached_encoder(connector);
1399 if (type_mask & (1 << psb_intel_encoder->type))
1400 index_mask |= (1 << entry);
1401 entry++;
1403 return index_mask;
1406 /* current intel driver doesn't take advantage of encoders
1407 always give back the encoder for the connector
1409 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1411 struct psb_intel_encoder *psb_intel_encoder =
1412 psb_intel_attached_encoder(connector);
1414 return &psb_intel_encoder->base;
1417 void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1418 struct psb_intel_encoder *encoder)
1420 connector->encoder = encoder;
1421 drm_mode_connector_attach_encoder(&connector->base,
1422 &encoder->base);