ARM: 6380/1: Introduce __sync_icache_dcache() for VIPT caches
[linux-2.6/libata-dev.git] / arch / arm / mm / fault-armv.c
blob8440d952ba6dd1266628678f016bdf5f41a3002a
1 /*
2 * linux/arch/arm/mm/fault-armv.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/gfp.h>
21 #include <asm/bugs.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cachetype.h>
24 #include <asm/pgtable.h>
25 #include <asm/tlbflush.h>
27 #include "mm.h"
29 static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE;
31 #if __LINUX_ARM_ARCH__ < 6
33 * We take the easy way out of this problem - we make the
34 * PTE uncacheable. However, we leave the write buffer on.
36 * Note that the pte lock held when calling update_mmu_cache must also
37 * guard the pte (somewhere else in the same mm) that we modify here.
38 * Therefore those configurations which might call adjust_pte (those
39 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
41 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
42 unsigned long pfn, pte_t *ptep)
44 pte_t entry = *ptep;
45 int ret;
48 * If this page is present, it's actually being shared.
50 ret = pte_present(entry);
53 * If this page isn't present, or is already setup to
54 * fault (ie, is old), we can safely ignore any issues.
56 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
57 flush_cache_page(vma, address, pfn);
58 outer_flush_range((pfn << PAGE_SHIFT),
59 (pfn << PAGE_SHIFT) + PAGE_SIZE);
60 pte_val(entry) &= ~L_PTE_MT_MASK;
61 pte_val(entry) |= shared_pte_mask;
62 set_pte_at(vma->vm_mm, address, ptep, entry);
63 flush_tlb_page(vma, address);
66 return ret;
69 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
70 unsigned long pfn)
72 spinlock_t *ptl;
73 pgd_t *pgd;
74 pmd_t *pmd;
75 pte_t *pte;
76 int ret;
78 pgd = pgd_offset(vma->vm_mm, address);
79 if (pgd_none_or_clear_bad(pgd))
80 return 0;
82 pmd = pmd_offset(pgd, address);
83 if (pmd_none_or_clear_bad(pmd))
84 return 0;
87 * This is called while another page table is mapped, so we
88 * must use the nested version. This also means we need to
89 * open-code the spin-locking.
91 ptl = pte_lockptr(vma->vm_mm, pmd);
92 pte = pte_offset_map_nested(pmd, address);
93 spin_lock(ptl);
95 ret = do_adjust_pte(vma, address, pfn, pte);
97 spin_unlock(ptl);
98 pte_unmap_nested(pte);
100 return ret;
103 static void
104 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
105 unsigned long addr, pte_t *ptep, unsigned long pfn)
107 struct mm_struct *mm = vma->vm_mm;
108 struct vm_area_struct *mpnt;
109 struct prio_tree_iter iter;
110 unsigned long offset;
111 pgoff_t pgoff;
112 int aliases = 0;
114 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
117 * If we have any shared mappings that are in the same mm
118 * space, then we need to handle them specially to maintain
119 * cache coherency.
121 flush_dcache_mmap_lock(mapping);
122 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
124 * If this VMA is not in our MM, we can ignore it.
125 * Note that we intentionally mask out the VMA
126 * that we are fixing up.
128 if (mpnt->vm_mm != mm || mpnt == vma)
129 continue;
130 if (!(mpnt->vm_flags & VM_MAYSHARE))
131 continue;
132 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
133 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
135 flush_dcache_mmap_unlock(mapping);
136 if (aliases)
137 do_adjust_pte(vma, addr, pfn, ptep);
141 * Take care of architecture specific things when placing a new PTE into
142 * a page table, or changing an existing PTE. Basically, there are two
143 * things that we need to take care of:
145 * 1. If PG_dcache_clean is not set for the page, we need to ensure
146 * that any cache entries for the kernels virtual memory
147 * range are written back to the page.
148 * 2. If we have multiple shared mappings of the same space in
149 * an object, we need to deal with the cache aliasing issues.
151 * Note that the pte lock will be held.
153 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
154 pte_t *ptep)
156 unsigned long pfn = pte_pfn(*ptep);
157 struct address_space *mapping;
158 struct page *page;
160 if (!pfn_valid(pfn))
161 return;
164 * The zero page is never written to, so never has any dirty
165 * cache lines, and therefore never needs to be flushed.
167 page = pfn_to_page(pfn);
168 if (page == ZERO_PAGE(0))
169 return;
171 mapping = page_mapping(page);
172 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
173 __flush_dcache_page(mapping, page);
174 if (mapping) {
175 if (cache_is_vivt())
176 make_coherent(mapping, vma, addr, ptep, pfn);
177 else if (vma->vm_flags & VM_EXEC)
178 __flush_icache_all();
181 #endif /* __LINUX_ARM_ARCH__ < 6 */
184 * Check whether the write buffer has physical address aliasing
185 * issues. If it has, we need to avoid them for the case where
186 * we have several shared mappings of the same object in user
187 * space.
189 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
191 register unsigned long zero = 0, one = 1, val;
193 local_irq_disable();
194 mb();
195 *p1 = one;
196 mb();
197 *p2 = zero;
198 mb();
199 val = *p1;
200 mb();
201 local_irq_enable();
202 return val != zero;
205 void __init check_writebuffer_bugs(void)
207 struct page *page;
208 const char *reason;
209 unsigned long v = 1;
211 printk(KERN_INFO "CPU: Testing write buffer coherency: ");
213 page = alloc_page(GFP_KERNEL);
214 if (page) {
215 unsigned long *p1, *p2;
216 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
217 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
219 p1 = vmap(&page, 1, VM_IOREMAP, prot);
220 p2 = vmap(&page, 1, VM_IOREMAP, prot);
222 if (p1 && p2) {
223 v = check_writebuffer(p1, p2);
224 reason = "enabling work-around";
225 } else {
226 reason = "unable to map memory\n";
229 vunmap(p1);
230 vunmap(p2);
231 put_page(page);
232 } else {
233 reason = "unable to grab page\n";
236 if (v) {
237 printk("failed, %s\n", reason);
238 shared_pte_mask = L_PTE_MT_UNCACHED;
239 } else {
240 printk("ok\n");