1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly
;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata
= 1;
72 static int really_do_swap_account __initdata
= 0;
76 #define do_swap_account (0)
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index
{
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS
,
96 enum mem_cgroup_events_index
{
97 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS
,
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
110 enum mem_cgroup_events_target
{
111 MEM_CGROUP_TARGET_THRESH
,
112 MEM_CGROUP_TARGET_SOFTLIMIT
,
113 MEM_CGROUP_TARGET_NUMAINFO
,
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
120 struct mem_cgroup_stat_cpu
{
121 long count
[MEM_CGROUP_STAT_NSTATS
];
122 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
123 unsigned long targets
[MEM_CGROUP_NTARGETS
];
127 * per-zone information in memory controller.
129 struct mem_cgroup_per_zone
{
131 * spin_lock to protect the per cgroup LRU
133 struct list_head lists
[NR_LRU_LISTS
];
134 unsigned long count
[NR_LRU_LISTS
];
136 struct zone_reclaim_stat reclaim_stat
;
137 struct rb_node tree_node
; /* RB tree node */
138 unsigned long long usage_in_excess
;/* Set to the value by which */
139 /* the soft limit is exceeded*/
141 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
142 /* use container_of */
144 /* Macro for accessing counter */
145 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
147 struct mem_cgroup_per_node
{
148 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
151 struct mem_cgroup_lru_info
{
152 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
156 * Cgroups above their limits are maintained in a RB-Tree, independent of
157 * their hierarchy representation
160 struct mem_cgroup_tree_per_zone
{
161 struct rb_root rb_root
;
165 struct mem_cgroup_tree_per_node
{
166 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
169 struct mem_cgroup_tree
{
170 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
173 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
175 struct mem_cgroup_threshold
{
176 struct eventfd_ctx
*eventfd
;
181 struct mem_cgroup_threshold_ary
{
182 /* An array index points to threshold just below usage. */
183 int current_threshold
;
184 /* Size of entries[] */
186 /* Array of thresholds */
187 struct mem_cgroup_threshold entries
[0];
190 struct mem_cgroup_thresholds
{
191 /* Primary thresholds array */
192 struct mem_cgroup_threshold_ary
*primary
;
194 * Spare threshold array.
195 * This is needed to make mem_cgroup_unregister_event() "never fail".
196 * It must be able to store at least primary->size - 1 entries.
198 struct mem_cgroup_threshold_ary
*spare
;
202 struct mem_cgroup_eventfd_list
{
203 struct list_head list
;
204 struct eventfd_ctx
*eventfd
;
207 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
208 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
211 * The memory controller data structure. The memory controller controls both
212 * page cache and RSS per cgroup. We would eventually like to provide
213 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
214 * to help the administrator determine what knobs to tune.
216 * TODO: Add a water mark for the memory controller. Reclaim will begin when
217 * we hit the water mark. May be even add a low water mark, such that
218 * no reclaim occurs from a cgroup at it's low water mark, this is
219 * a feature that will be implemented much later in the future.
222 struct cgroup_subsys_state css
;
224 * the counter to account for memory usage
226 struct res_counter res
;
228 * the counter to account for mem+swap usage.
230 struct res_counter memsw
;
232 * Per cgroup active and inactive list, similar to the
233 * per zone LRU lists.
235 struct mem_cgroup_lru_info info
;
237 * While reclaiming in a hierarchy, we cache the last child we
240 int last_scanned_child
;
241 int last_scanned_node
;
243 nodemask_t scan_nodes
;
244 atomic_t numainfo_events
;
245 atomic_t numainfo_updating
;
248 * Should the accounting and control be hierarchical, per subtree?
258 /* OOM-Killer disable */
259 int oom_kill_disable
;
261 /* set when res.limit == memsw.limit */
262 bool memsw_is_minimum
;
264 /* protect arrays of thresholds */
265 struct mutex thresholds_lock
;
267 /* thresholds for memory usage. RCU-protected */
268 struct mem_cgroup_thresholds thresholds
;
270 /* thresholds for mem+swap usage. RCU-protected */
271 struct mem_cgroup_thresholds memsw_thresholds
;
273 /* For oom notifier event fd */
274 struct list_head oom_notify
;
277 * Should we move charges of a task when a task is moved into this
278 * mem_cgroup ? And what type of charges should we move ?
280 unsigned long move_charge_at_immigrate
;
284 struct mem_cgroup_stat_cpu
*stat
;
286 * used when a cpu is offlined or other synchronizations
287 * See mem_cgroup_read_stat().
289 struct mem_cgroup_stat_cpu nocpu_base
;
290 spinlock_t pcp_counter_lock
;
293 struct tcp_memcontrol tcp_mem
;
297 /* Stuffs for move charges at task migration. */
299 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
300 * left-shifted bitmap of these types.
303 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
304 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
308 /* "mc" and its members are protected by cgroup_mutex */
309 static struct move_charge_struct
{
310 spinlock_t lock
; /* for from, to */
311 struct mem_cgroup
*from
;
312 struct mem_cgroup
*to
;
313 unsigned long precharge
;
314 unsigned long moved_charge
;
315 unsigned long moved_swap
;
316 struct task_struct
*moving_task
; /* a task moving charges */
317 wait_queue_head_t waitq
; /* a waitq for other context */
319 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
320 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
323 static bool move_anon(void)
325 return test_bit(MOVE_CHARGE_TYPE_ANON
,
326 &mc
.to
->move_charge_at_immigrate
);
329 static bool move_file(void)
331 return test_bit(MOVE_CHARGE_TYPE_FILE
,
332 &mc
.to
->move_charge_at_immigrate
);
336 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
337 * limit reclaim to prevent infinite loops, if they ever occur.
339 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
340 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
343 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
344 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
345 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
346 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
347 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
348 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
352 /* for encoding cft->private value on file */
355 #define _OOM_TYPE (2)
356 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
357 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
358 #define MEMFILE_ATTR(val) ((val) & 0xffff)
359 /* Used for OOM nofiier */
360 #define OOM_CONTROL (0)
363 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
366 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
367 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
368 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
369 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
370 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
372 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
373 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
375 /* Writing them here to avoid exposing memcg's inner layout */
376 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
378 #include <net/sock.h>
381 static bool mem_cgroup_is_root(struct mem_cgroup
*memcg
);
382 void sock_update_memcg(struct sock
*sk
)
384 if (static_branch(&memcg_socket_limit_enabled
)) {
385 struct mem_cgroup
*memcg
;
387 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
389 /* Socket cloning can throw us here with sk_cgrp already
390 * filled. It won't however, necessarily happen from
391 * process context. So the test for root memcg given
392 * the current task's memcg won't help us in this case.
394 * Respecting the original socket's memcg is a better
395 * decision in this case.
398 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
399 mem_cgroup_get(sk
->sk_cgrp
->memcg
);
404 memcg
= mem_cgroup_from_task(current
);
405 if (!mem_cgroup_is_root(memcg
)) {
406 mem_cgroup_get(memcg
);
407 sk
->sk_cgrp
= sk
->sk_prot
->proto_cgroup(memcg
);
412 EXPORT_SYMBOL(sock_update_memcg
);
414 void sock_release_memcg(struct sock
*sk
)
416 if (static_branch(&memcg_socket_limit_enabled
) && sk
->sk_cgrp
) {
417 struct mem_cgroup
*memcg
;
418 WARN_ON(!sk
->sk_cgrp
->memcg
);
419 memcg
= sk
->sk_cgrp
->memcg
;
420 mem_cgroup_put(memcg
);
424 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
426 if (!memcg
|| mem_cgroup_is_root(memcg
))
429 return &memcg
->tcp_mem
.cg_proto
;
431 EXPORT_SYMBOL(tcp_proto_cgroup
);
432 #endif /* CONFIG_INET */
433 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
435 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
437 static struct mem_cgroup_per_zone
*
438 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
440 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
443 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
448 static struct mem_cgroup_per_zone
*
449 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
451 int nid
= page_to_nid(page
);
452 int zid
= page_zonenum(page
);
454 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
457 static struct mem_cgroup_tree_per_zone
*
458 soft_limit_tree_node_zone(int nid
, int zid
)
460 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
463 static struct mem_cgroup_tree_per_zone
*
464 soft_limit_tree_from_page(struct page
*page
)
466 int nid
= page_to_nid(page
);
467 int zid
= page_zonenum(page
);
469 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
473 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
474 struct mem_cgroup_per_zone
*mz
,
475 struct mem_cgroup_tree_per_zone
*mctz
,
476 unsigned long long new_usage_in_excess
)
478 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
479 struct rb_node
*parent
= NULL
;
480 struct mem_cgroup_per_zone
*mz_node
;
485 mz
->usage_in_excess
= new_usage_in_excess
;
486 if (!mz
->usage_in_excess
)
490 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
492 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
495 * We can't avoid mem cgroups that are over their soft
496 * limit by the same amount
498 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
501 rb_link_node(&mz
->tree_node
, parent
, p
);
502 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
507 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
508 struct mem_cgroup_per_zone
*mz
,
509 struct mem_cgroup_tree_per_zone
*mctz
)
513 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
518 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
519 struct mem_cgroup_per_zone
*mz
,
520 struct mem_cgroup_tree_per_zone
*mctz
)
522 spin_lock(&mctz
->lock
);
523 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
524 spin_unlock(&mctz
->lock
);
528 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
530 unsigned long long excess
;
531 struct mem_cgroup_per_zone
*mz
;
532 struct mem_cgroup_tree_per_zone
*mctz
;
533 int nid
= page_to_nid(page
);
534 int zid
= page_zonenum(page
);
535 mctz
= soft_limit_tree_from_page(page
);
538 * Necessary to update all ancestors when hierarchy is used.
539 * because their event counter is not touched.
541 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
542 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
543 excess
= res_counter_soft_limit_excess(&memcg
->res
);
545 * We have to update the tree if mz is on RB-tree or
546 * mem is over its softlimit.
548 if (excess
|| mz
->on_tree
) {
549 spin_lock(&mctz
->lock
);
550 /* if on-tree, remove it */
552 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
554 * Insert again. mz->usage_in_excess will be updated.
555 * If excess is 0, no tree ops.
557 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
558 spin_unlock(&mctz
->lock
);
563 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
566 struct mem_cgroup_per_zone
*mz
;
567 struct mem_cgroup_tree_per_zone
*mctz
;
569 for_each_node_state(node
, N_POSSIBLE
) {
570 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
571 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
572 mctz
= soft_limit_tree_node_zone(node
, zone
);
573 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
578 static struct mem_cgroup_per_zone
*
579 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
581 struct rb_node
*rightmost
= NULL
;
582 struct mem_cgroup_per_zone
*mz
;
586 rightmost
= rb_last(&mctz
->rb_root
);
588 goto done
; /* Nothing to reclaim from */
590 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
592 * Remove the node now but someone else can add it back,
593 * we will to add it back at the end of reclaim to its correct
594 * position in the tree.
596 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
597 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
598 !css_tryget(&mz
->mem
->css
))
604 static struct mem_cgroup_per_zone
*
605 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
607 struct mem_cgroup_per_zone
*mz
;
609 spin_lock(&mctz
->lock
);
610 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
611 spin_unlock(&mctz
->lock
);
616 * Implementation Note: reading percpu statistics for memcg.
618 * Both of vmstat[] and percpu_counter has threshold and do periodic
619 * synchronization to implement "quick" read. There are trade-off between
620 * reading cost and precision of value. Then, we may have a chance to implement
621 * a periodic synchronizion of counter in memcg's counter.
623 * But this _read() function is used for user interface now. The user accounts
624 * memory usage by memory cgroup and he _always_ requires exact value because
625 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
626 * have to visit all online cpus and make sum. So, for now, unnecessary
627 * synchronization is not implemented. (just implemented for cpu hotplug)
629 * If there are kernel internal actions which can make use of some not-exact
630 * value, and reading all cpu value can be performance bottleneck in some
631 * common workload, threashold and synchonization as vmstat[] should be
634 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
635 enum mem_cgroup_stat_index idx
)
641 for_each_online_cpu(cpu
)
642 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
643 #ifdef CONFIG_HOTPLUG_CPU
644 spin_lock(&memcg
->pcp_counter_lock
);
645 val
+= memcg
->nocpu_base
.count
[idx
];
646 spin_unlock(&memcg
->pcp_counter_lock
);
652 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
655 int val
= (charge
) ? 1 : -1;
656 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
659 void mem_cgroup_pgfault(struct mem_cgroup
*memcg
, int val
)
661 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
664 void mem_cgroup_pgmajfault(struct mem_cgroup
*memcg
, int val
)
666 this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
669 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
670 enum mem_cgroup_events_index idx
)
672 unsigned long val
= 0;
675 for_each_online_cpu(cpu
)
676 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
677 #ifdef CONFIG_HOTPLUG_CPU
678 spin_lock(&memcg
->pcp_counter_lock
);
679 val
+= memcg
->nocpu_base
.events
[idx
];
680 spin_unlock(&memcg
->pcp_counter_lock
);
685 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
686 bool file
, int nr_pages
)
691 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
694 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
697 /* pagein of a big page is an event. So, ignore page size */
699 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
701 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
702 nr_pages
= -nr_pages
; /* for event */
705 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
711 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
712 unsigned int lru_mask
)
714 struct mem_cgroup_per_zone
*mz
;
716 unsigned long ret
= 0;
718 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
721 if (BIT(l
) & lru_mask
)
722 ret
+= MEM_CGROUP_ZSTAT(mz
, l
);
728 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
729 int nid
, unsigned int lru_mask
)
734 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
735 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
741 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
742 unsigned int lru_mask
)
747 for_each_node_state(nid
, N_HIGH_MEMORY
)
748 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
752 static bool __memcg_event_check(struct mem_cgroup
*memcg
, int target
)
754 unsigned long val
, next
;
756 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
757 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
758 /* from time_after() in jiffies.h */
759 return ((long)next
- (long)val
< 0);
762 static void __mem_cgroup_target_update(struct mem_cgroup
*memcg
, int target
)
764 unsigned long val
, next
;
766 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
769 case MEM_CGROUP_TARGET_THRESH
:
770 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
772 case MEM_CGROUP_TARGET_SOFTLIMIT
:
773 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
775 case MEM_CGROUP_TARGET_NUMAINFO
:
776 next
= val
+ NUMAINFO_EVENTS_TARGET
;
782 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
786 * Check events in order.
789 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
792 /* threshold event is triggered in finer grain than soft limit */
793 if (unlikely(__memcg_event_check(memcg
, MEM_CGROUP_TARGET_THRESH
))) {
794 mem_cgroup_threshold(memcg
);
795 __mem_cgroup_target_update(memcg
, MEM_CGROUP_TARGET_THRESH
);
796 if (unlikely(__memcg_event_check(memcg
,
797 MEM_CGROUP_TARGET_SOFTLIMIT
))) {
798 mem_cgroup_update_tree(memcg
, page
);
799 __mem_cgroup_target_update(memcg
,
800 MEM_CGROUP_TARGET_SOFTLIMIT
);
803 if (unlikely(__memcg_event_check(memcg
,
804 MEM_CGROUP_TARGET_NUMAINFO
))) {
805 atomic_inc(&memcg
->numainfo_events
);
806 __mem_cgroup_target_update(memcg
,
807 MEM_CGROUP_TARGET_NUMAINFO
);
814 struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
816 return container_of(cgroup_subsys_state(cont
,
817 mem_cgroup_subsys_id
), struct mem_cgroup
,
821 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
824 * mm_update_next_owner() may clear mm->owner to NULL
825 * if it races with swapoff, page migration, etc.
826 * So this can be called with p == NULL.
831 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
832 struct mem_cgroup
, css
);
835 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
837 struct mem_cgroup
*memcg
= NULL
;
842 * Because we have no locks, mm->owner's may be being moved to other
843 * cgroup. We use css_tryget() here even if this looks
844 * pessimistic (rather than adding locks here).
848 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
849 if (unlikely(!memcg
))
851 } while (!css_tryget(&memcg
->css
));
856 /* The caller has to guarantee "mem" exists before calling this */
857 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*memcg
)
859 struct cgroup_subsys_state
*css
;
862 if (!memcg
) /* ROOT cgroup has the smallest ID */
863 return root_mem_cgroup
; /*css_put/get against root is ignored*/
864 if (!memcg
->use_hierarchy
) {
865 if (css_tryget(&memcg
->css
))
871 * searching a memory cgroup which has the smallest ID under given
872 * ROOT cgroup. (ID >= 1)
874 css
= css_get_next(&mem_cgroup_subsys
, 1, &memcg
->css
, &found
);
875 if (css
&& css_tryget(css
))
876 memcg
= container_of(css
, struct mem_cgroup
, css
);
883 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
884 struct mem_cgroup
*root
,
887 int nextid
= css_id(&iter
->css
) + 1;
890 struct cgroup_subsys_state
*css
;
892 hierarchy_used
= iter
->use_hierarchy
;
895 /* If no ROOT, walk all, ignore hierarchy */
896 if (!cond
|| (root
&& !hierarchy_used
))
900 root
= root_mem_cgroup
;
906 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
908 if (css
&& css_tryget(css
))
909 iter
= container_of(css
, struct mem_cgroup
, css
);
911 /* If css is NULL, no more cgroups will be found */
913 } while (css
&& !iter
);
918 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
919 * be careful that "break" loop is not allowed. We have reference count.
920 * Instead of that modify "cond" to be false and "continue" to exit the loop.
922 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
923 for (iter = mem_cgroup_start_loop(root);\
925 iter = mem_cgroup_get_next(iter, root, cond))
927 #define for_each_mem_cgroup_tree(iter, root) \
928 for_each_mem_cgroup_tree_cond(iter, root, true)
930 #define for_each_mem_cgroup_all(iter) \
931 for_each_mem_cgroup_tree_cond(iter, NULL, true)
934 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
936 return (memcg
== root_mem_cgroup
);
939 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
941 struct mem_cgroup
*memcg
;
947 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
948 if (unlikely(!memcg
))
953 mem_cgroup_pgmajfault(memcg
, 1);
956 mem_cgroup_pgfault(memcg
, 1);
964 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
967 * Following LRU functions are allowed to be used without PCG_LOCK.
968 * Operations are called by routine of global LRU independently from memcg.
969 * What we have to take care of here is validness of pc->mem_cgroup.
971 * Changes to pc->mem_cgroup happens when
974 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
975 * It is added to LRU before charge.
976 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
977 * When moving account, the page is not on LRU. It's isolated.
980 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
982 struct page_cgroup
*pc
;
983 struct mem_cgroup_per_zone
*mz
;
985 if (mem_cgroup_disabled())
987 pc
= lookup_page_cgroup(page
);
988 /* can happen while we handle swapcache. */
989 if (!TestClearPageCgroupAcctLRU(pc
))
991 VM_BUG_ON(!pc
->mem_cgroup
);
993 * We don't check PCG_USED bit. It's cleared when the "page" is finally
994 * removed from global LRU.
996 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
997 /* huge page split is done under lru_lock. so, we have no races. */
998 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
999 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1001 VM_BUG_ON(list_empty(&pc
->lru
));
1002 list_del_init(&pc
->lru
);
1005 void mem_cgroup_del_lru(struct page
*page
)
1007 mem_cgroup_del_lru_list(page
, page_lru(page
));
1011 * Writeback is about to end against a page which has been marked for immediate
1012 * reclaim. If it still appears to be reclaimable, move it to the tail of the
1015 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
1017 struct mem_cgroup_per_zone
*mz
;
1018 struct page_cgroup
*pc
;
1019 enum lru_list lru
= page_lru(page
);
1021 if (mem_cgroup_disabled())
1024 pc
= lookup_page_cgroup(page
);
1025 /* unused or root page is not rotated. */
1026 if (!PageCgroupUsed(pc
))
1028 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1030 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1032 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1033 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
1036 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
1038 struct mem_cgroup_per_zone
*mz
;
1039 struct page_cgroup
*pc
;
1041 if (mem_cgroup_disabled())
1044 pc
= lookup_page_cgroup(page
);
1045 /* unused or root page is not rotated. */
1046 if (!PageCgroupUsed(pc
))
1048 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1050 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1052 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1053 list_move(&pc
->lru
, &mz
->lists
[lru
]);
1056 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
1058 struct page_cgroup
*pc
;
1059 struct mem_cgroup_per_zone
*mz
;
1061 if (mem_cgroup_disabled())
1063 pc
= lookup_page_cgroup(page
);
1064 VM_BUG_ON(PageCgroupAcctLRU(pc
));
1067 * SetPageLRU SetPageCgroupUsed
1069 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1071 * Ensure that one of the two sides adds the page to the memcg
1072 * LRU during a race.
1075 if (!PageCgroupUsed(pc
))
1077 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1079 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1080 /* huge page split is done under lru_lock. so, we have no races. */
1081 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
1082 SetPageCgroupAcctLRU(pc
);
1083 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1085 list_add(&pc
->lru
, &mz
->lists
[lru
]);
1089 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1090 * while it's linked to lru because the page may be reused after it's fully
1091 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1092 * It's done under lock_page and expected that zone->lru_lock isnever held.
1094 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
1096 unsigned long flags
;
1097 struct zone
*zone
= page_zone(page
);
1098 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1101 * Doing this check without taking ->lru_lock seems wrong but this
1102 * is safe. Because if page_cgroup's USED bit is unset, the page
1103 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1104 * set, the commit after this will fail, anyway.
1105 * This all charge/uncharge is done under some mutual execustion.
1106 * So, we don't need to taking care of changes in USED bit.
1108 if (likely(!PageLRU(page
)))
1111 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1113 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1114 * is guarded by lock_page() because the page is SwapCache.
1116 if (!PageCgroupUsed(pc
))
1117 mem_cgroup_del_lru_list(page
, page_lru(page
));
1118 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1121 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1123 unsigned long flags
;
1124 struct zone
*zone
= page_zone(page
);
1125 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1128 * SetPageLRU SetPageCgroupUsed
1130 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1132 * Ensure that one of the two sides adds the page to the memcg
1133 * LRU during a race.
1136 /* taking care of that the page is added to LRU while we commit it */
1137 if (likely(!PageLRU(page
)))
1139 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1140 /* link when the page is linked to LRU but page_cgroup isn't */
1141 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1142 mem_cgroup_add_lru_list(page
, page_lru(page
));
1143 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1147 void mem_cgroup_move_lists(struct page
*page
,
1148 enum lru_list from
, enum lru_list to
)
1150 if (mem_cgroup_disabled())
1152 mem_cgroup_del_lru_list(page
, from
);
1153 mem_cgroup_add_lru_list(page
, to
);
1157 * Checks whether given mem is same or in the root_mem_cgroup's
1160 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1161 struct mem_cgroup
*memcg
)
1163 if (root_memcg
!= memcg
) {
1164 return (root_memcg
->use_hierarchy
&&
1165 css_is_ancestor(&memcg
->css
, &root_memcg
->css
));
1171 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1174 struct mem_cgroup
*curr
= NULL
;
1175 struct task_struct
*p
;
1177 p
= find_lock_task_mm(task
);
1180 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1185 * We should check use_hierarchy of "memcg" not "curr". Because checking
1186 * use_hierarchy of "curr" here make this function true if hierarchy is
1187 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1188 * hierarchy(even if use_hierarchy is disabled in "memcg").
1190 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1191 css_put(&curr
->css
);
1195 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1197 unsigned long inactive_ratio
;
1198 int nid
= zone_to_nid(zone
);
1199 int zid
= zone_idx(zone
);
1200 unsigned long inactive
;
1201 unsigned long active
;
1204 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1205 BIT(LRU_INACTIVE_ANON
));
1206 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1207 BIT(LRU_ACTIVE_ANON
));
1209 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1211 inactive_ratio
= int_sqrt(10 * gb
);
1215 return inactive
* inactive_ratio
< active
;
1218 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1220 unsigned long active
;
1221 unsigned long inactive
;
1222 int zid
= zone_idx(zone
);
1223 int nid
= zone_to_nid(zone
);
1225 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1226 BIT(LRU_INACTIVE_FILE
));
1227 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1228 BIT(LRU_ACTIVE_FILE
));
1230 return (active
> inactive
);
1233 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1236 int nid
= zone_to_nid(zone
);
1237 int zid
= zone_idx(zone
);
1238 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1240 return &mz
->reclaim_stat
;
1243 struct zone_reclaim_stat
*
1244 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1246 struct page_cgroup
*pc
;
1247 struct mem_cgroup_per_zone
*mz
;
1249 if (mem_cgroup_disabled())
1252 pc
= lookup_page_cgroup(page
);
1253 if (!PageCgroupUsed(pc
))
1255 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1257 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1258 return &mz
->reclaim_stat
;
1261 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1262 struct list_head
*dst
,
1263 unsigned long *scanned
, int order
,
1264 isolate_mode_t mode
,
1266 struct mem_cgroup
*mem_cont
,
1267 int active
, int file
)
1269 unsigned long nr_taken
= 0;
1273 struct list_head
*src
;
1274 struct page_cgroup
*pc
, *tmp
;
1275 int nid
= zone_to_nid(z
);
1276 int zid
= zone_idx(z
);
1277 struct mem_cgroup_per_zone
*mz
;
1278 int lru
= LRU_FILE
* file
+ active
;
1282 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1283 src
= &mz
->lists
[lru
];
1286 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1287 if (scan
>= nr_to_scan
)
1290 if (unlikely(!PageCgroupUsed(pc
)))
1293 page
= lookup_cgroup_page(pc
);
1295 if (unlikely(!PageLRU(page
)))
1299 ret
= __isolate_lru_page(page
, mode
, file
);
1302 list_move(&page
->lru
, dst
);
1303 mem_cgroup_del_lru(page
);
1304 nr_taken
+= hpage_nr_pages(page
);
1307 /* we don't affect global LRU but rotate in our LRU */
1308 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1317 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1323 #define mem_cgroup_from_res_counter(counter, member) \
1324 container_of(counter, struct mem_cgroup, member)
1327 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1328 * @mem: the memory cgroup
1330 * Returns the maximum amount of memory @mem can be charged with, in
1333 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1335 unsigned long long margin
;
1337 margin
= res_counter_margin(&memcg
->res
);
1338 if (do_swap_account
)
1339 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1340 return margin
>> PAGE_SHIFT
;
1343 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1345 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1348 if (cgrp
->parent
== NULL
)
1349 return vm_swappiness
;
1351 return memcg
->swappiness
;
1354 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1359 spin_lock(&memcg
->pcp_counter_lock
);
1360 for_each_online_cpu(cpu
)
1361 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1362 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1363 spin_unlock(&memcg
->pcp_counter_lock
);
1369 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1376 spin_lock(&memcg
->pcp_counter_lock
);
1377 for_each_online_cpu(cpu
)
1378 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1379 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1380 spin_unlock(&memcg
->pcp_counter_lock
);
1384 * 2 routines for checking "mem" is under move_account() or not.
1386 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1387 * for avoiding race in accounting. If true,
1388 * pc->mem_cgroup may be overwritten.
1390 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1391 * under hierarchy of moving cgroups. This is for
1392 * waiting at hith-memory prressure caused by "move".
1395 static bool mem_cgroup_stealed(struct mem_cgroup
*memcg
)
1397 VM_BUG_ON(!rcu_read_lock_held());
1398 return this_cpu_read(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1401 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1403 struct mem_cgroup
*from
;
1404 struct mem_cgroup
*to
;
1407 * Unlike task_move routines, we access mc.to, mc.from not under
1408 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1410 spin_lock(&mc
.lock
);
1416 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1417 || mem_cgroup_same_or_subtree(memcg
, to
);
1419 spin_unlock(&mc
.lock
);
1423 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1425 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1426 if (mem_cgroup_under_move(memcg
)) {
1428 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1429 /* moving charge context might have finished. */
1432 finish_wait(&mc
.waitq
, &wait
);
1440 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1441 * @memcg: The memory cgroup that went over limit
1442 * @p: Task that is going to be killed
1444 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1447 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1449 struct cgroup
*task_cgrp
;
1450 struct cgroup
*mem_cgrp
;
1452 * Need a buffer in BSS, can't rely on allocations. The code relies
1453 * on the assumption that OOM is serialized for memory controller.
1454 * If this assumption is broken, revisit this code.
1456 static char memcg_name
[PATH_MAX
];
1465 mem_cgrp
= memcg
->css
.cgroup
;
1466 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1468 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1471 * Unfortunately, we are unable to convert to a useful name
1472 * But we'll still print out the usage information
1479 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1482 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1490 * Continues from above, so we don't need an KERN_ level
1492 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1495 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1496 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1497 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1498 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1499 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1501 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1502 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1503 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1507 * This function returns the number of memcg under hierarchy tree. Returns
1508 * 1(self count) if no children.
1510 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1513 struct mem_cgroup
*iter
;
1515 for_each_mem_cgroup_tree(iter
, memcg
)
1521 * Return the memory (and swap, if configured) limit for a memcg.
1523 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1528 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1529 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1531 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1533 * If memsw is finite and limits the amount of swap space available
1534 * to this memcg, return that limit.
1536 return min(limit
, memsw
);
1540 * Visit the first child (need not be the first child as per the ordering
1541 * of the cgroup list, since we track last_scanned_child) of @mem and use
1542 * that to reclaim free pages from.
1544 static struct mem_cgroup
*
1545 mem_cgroup_select_victim(struct mem_cgroup
*root_memcg
)
1547 struct mem_cgroup
*ret
= NULL
;
1548 struct cgroup_subsys_state
*css
;
1551 if (!root_memcg
->use_hierarchy
) {
1552 css_get(&root_memcg
->css
);
1558 nextid
= root_memcg
->last_scanned_child
+ 1;
1559 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_memcg
->css
,
1561 if (css
&& css_tryget(css
))
1562 ret
= container_of(css
, struct mem_cgroup
, css
);
1565 /* Updates scanning parameter */
1567 /* this means start scan from ID:1 */
1568 root_memcg
->last_scanned_child
= 0;
1570 root_memcg
->last_scanned_child
= found
;
1577 * test_mem_cgroup_node_reclaimable
1578 * @mem: the target memcg
1579 * @nid: the node ID to be checked.
1580 * @noswap : specify true here if the user wants flle only information.
1582 * This function returns whether the specified memcg contains any
1583 * reclaimable pages on a node. Returns true if there are any reclaimable
1584 * pages in the node.
1586 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1587 int nid
, bool noswap
)
1589 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1591 if (noswap
|| !total_swap_pages
)
1593 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1598 #if MAX_NUMNODES > 1
1601 * Always updating the nodemask is not very good - even if we have an empty
1602 * list or the wrong list here, we can start from some node and traverse all
1603 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1606 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1610 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1611 * pagein/pageout changes since the last update.
1613 if (!atomic_read(&memcg
->numainfo_events
))
1615 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1618 /* make a nodemask where this memcg uses memory from */
1619 memcg
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1621 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1623 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1624 node_clear(nid
, memcg
->scan_nodes
);
1627 atomic_set(&memcg
->numainfo_events
, 0);
1628 atomic_set(&memcg
->numainfo_updating
, 0);
1632 * Selecting a node where we start reclaim from. Because what we need is just
1633 * reducing usage counter, start from anywhere is O,K. Considering
1634 * memory reclaim from current node, there are pros. and cons.
1636 * Freeing memory from current node means freeing memory from a node which
1637 * we'll use or we've used. So, it may make LRU bad. And if several threads
1638 * hit limits, it will see a contention on a node. But freeing from remote
1639 * node means more costs for memory reclaim because of memory latency.
1641 * Now, we use round-robin. Better algorithm is welcomed.
1643 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1647 mem_cgroup_may_update_nodemask(memcg
);
1648 node
= memcg
->last_scanned_node
;
1650 node
= next_node(node
, memcg
->scan_nodes
);
1651 if (node
== MAX_NUMNODES
)
1652 node
= first_node(memcg
->scan_nodes
);
1654 * We call this when we hit limit, not when pages are added to LRU.
1655 * No LRU may hold pages because all pages are UNEVICTABLE or
1656 * memcg is too small and all pages are not on LRU. In that case,
1657 * we use curret node.
1659 if (unlikely(node
== MAX_NUMNODES
))
1660 node
= numa_node_id();
1662 memcg
->last_scanned_node
= node
;
1667 * Check all nodes whether it contains reclaimable pages or not.
1668 * For quick scan, we make use of scan_nodes. This will allow us to skip
1669 * unused nodes. But scan_nodes is lazily updated and may not cotain
1670 * enough new information. We need to do double check.
1672 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1677 * quick check...making use of scan_node.
1678 * We can skip unused nodes.
1680 if (!nodes_empty(memcg
->scan_nodes
)) {
1681 for (nid
= first_node(memcg
->scan_nodes
);
1683 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1685 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1690 * Check rest of nodes.
1692 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1693 if (node_isset(nid
, memcg
->scan_nodes
))
1695 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1702 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1707 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1709 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1714 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1715 * we reclaimed from, so that we don't end up penalizing one child extensively
1716 * based on its position in the children list.
1718 * root_memcg is the original ancestor that we've been reclaim from.
1720 * We give up and return to the caller when we visit root_memcg twice.
1721 * (other groups can be removed while we're walking....)
1723 * If shrink==true, for avoiding to free too much, this returns immedieately.
1725 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_memcg
,
1728 unsigned long reclaim_options
,
1729 unsigned long *total_scanned
)
1731 struct mem_cgroup
*victim
;
1734 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1735 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1736 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1737 unsigned long excess
;
1738 unsigned long nr_scanned
;
1740 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1742 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1743 if (!check_soft
&& !shrink
&& root_memcg
->memsw_is_minimum
)
1747 victim
= mem_cgroup_select_victim(root_memcg
);
1748 if (victim
== root_memcg
) {
1751 * We are not draining per cpu cached charges during
1752 * soft limit reclaim because global reclaim doesn't
1753 * care about charges. It tries to free some memory and
1754 * charges will not give any.
1756 if (!check_soft
&& loop
>= 1)
1757 drain_all_stock_async(root_memcg
);
1760 * If we have not been able to reclaim
1761 * anything, it might because there are
1762 * no reclaimable pages under this hierarchy
1764 if (!check_soft
|| !total
) {
1765 css_put(&victim
->css
);
1769 * We want to do more targeted reclaim.
1770 * excess >> 2 is not to excessive so as to
1771 * reclaim too much, nor too less that we keep
1772 * coming back to reclaim from this cgroup
1774 if (total
>= (excess
>> 2) ||
1775 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1776 css_put(&victim
->css
);
1781 if (!mem_cgroup_reclaimable(victim
, noswap
)) {
1782 /* this cgroup's local usage == 0 */
1783 css_put(&victim
->css
);
1786 /* we use swappiness of local cgroup */
1788 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1789 noswap
, zone
, &nr_scanned
);
1790 *total_scanned
+= nr_scanned
;
1792 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1794 css_put(&victim
->css
);
1796 * At shrinking usage, we can't check we should stop here or
1797 * reclaim more. It's depends on callers. last_scanned_child
1798 * will work enough for keeping fairness under tree.
1804 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1806 } else if (mem_cgroup_margin(root_memcg
))
1813 * Check OOM-Killer is already running under our hierarchy.
1814 * If someone is running, return false.
1815 * Has to be called with memcg_oom_lock
1817 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1819 struct mem_cgroup
*iter
, *failed
= NULL
;
1822 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1823 if (iter
->oom_lock
) {
1825 * this subtree of our hierarchy is already locked
1826 * so we cannot give a lock.
1831 iter
->oom_lock
= true;
1838 * OK, we failed to lock the whole subtree so we have to clean up
1839 * what we set up to the failing subtree
1842 for_each_mem_cgroup_tree_cond(iter
, memcg
, cond
) {
1843 if (iter
== failed
) {
1847 iter
->oom_lock
= false;
1853 * Has to be called with memcg_oom_lock
1855 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1857 struct mem_cgroup
*iter
;
1859 for_each_mem_cgroup_tree(iter
, memcg
)
1860 iter
->oom_lock
= false;
1864 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1866 struct mem_cgroup
*iter
;
1868 for_each_mem_cgroup_tree(iter
, memcg
)
1869 atomic_inc(&iter
->under_oom
);
1872 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1874 struct mem_cgroup
*iter
;
1877 * When a new child is created while the hierarchy is under oom,
1878 * mem_cgroup_oom_lock() may not be called. We have to use
1879 * atomic_add_unless() here.
1881 for_each_mem_cgroup_tree(iter
, memcg
)
1882 atomic_add_unless(&iter
->under_oom
, -1, 0);
1885 static DEFINE_SPINLOCK(memcg_oom_lock
);
1886 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1888 struct oom_wait_info
{
1889 struct mem_cgroup
*mem
;
1893 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1894 unsigned mode
, int sync
, void *arg
)
1896 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
,
1898 struct oom_wait_info
*oom_wait_info
;
1900 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1901 oom_wait_memcg
= oom_wait_info
->mem
;
1904 * Both of oom_wait_info->mem and wake_mem are stable under us.
1905 * Then we can use css_is_ancestor without taking care of RCU.
1907 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
1908 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
1910 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1913 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
1915 /* for filtering, pass "memcg" as argument. */
1916 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1919 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1921 if (memcg
&& atomic_read(&memcg
->under_oom
))
1922 memcg_wakeup_oom(memcg
);
1926 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1928 bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
)
1930 struct oom_wait_info owait
;
1931 bool locked
, need_to_kill
;
1934 owait
.wait
.flags
= 0;
1935 owait
.wait
.func
= memcg_oom_wake_function
;
1936 owait
.wait
.private = current
;
1937 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1938 need_to_kill
= true;
1939 mem_cgroup_mark_under_oom(memcg
);
1941 /* At first, try to OOM lock hierarchy under memcg.*/
1942 spin_lock(&memcg_oom_lock
);
1943 locked
= mem_cgroup_oom_lock(memcg
);
1945 * Even if signal_pending(), we can't quit charge() loop without
1946 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1947 * under OOM is always welcomed, use TASK_KILLABLE here.
1949 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1950 if (!locked
|| memcg
->oom_kill_disable
)
1951 need_to_kill
= false;
1953 mem_cgroup_oom_notify(memcg
);
1954 spin_unlock(&memcg_oom_lock
);
1957 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1958 mem_cgroup_out_of_memory(memcg
, mask
);
1961 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1963 spin_lock(&memcg_oom_lock
);
1965 mem_cgroup_oom_unlock(memcg
);
1966 memcg_wakeup_oom(memcg
);
1967 spin_unlock(&memcg_oom_lock
);
1969 mem_cgroup_unmark_under_oom(memcg
);
1971 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1973 /* Give chance to dying process */
1974 schedule_timeout_uninterruptible(1);
1979 * Currently used to update mapped file statistics, but the routine can be
1980 * generalized to update other statistics as well.
1982 * Notes: Race condition
1984 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1985 * it tends to be costly. But considering some conditions, we doesn't need
1986 * to do so _always_.
1988 * Considering "charge", lock_page_cgroup() is not required because all
1989 * file-stat operations happen after a page is attached to radix-tree. There
1990 * are no race with "charge".
1992 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1993 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1994 * if there are race with "uncharge". Statistics itself is properly handled
1997 * Considering "move", this is an only case we see a race. To make the race
1998 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1999 * possibility of race condition. If there is, we take a lock.
2002 void mem_cgroup_update_page_stat(struct page
*page
,
2003 enum mem_cgroup_page_stat_item idx
, int val
)
2005 struct mem_cgroup
*memcg
;
2006 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2007 bool need_unlock
= false;
2008 unsigned long uninitialized_var(flags
);
2014 memcg
= pc
->mem_cgroup
;
2015 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2017 /* pc->mem_cgroup is unstable ? */
2018 if (unlikely(mem_cgroup_stealed(memcg
)) || PageTransHuge(page
)) {
2019 /* take a lock against to access pc->mem_cgroup */
2020 move_lock_page_cgroup(pc
, &flags
);
2022 memcg
= pc
->mem_cgroup
;
2023 if (!memcg
|| !PageCgroupUsed(pc
))
2028 case MEMCG_NR_FILE_MAPPED
:
2030 SetPageCgroupFileMapped(pc
);
2031 else if (!page_mapped(page
))
2032 ClearPageCgroupFileMapped(pc
);
2033 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
2039 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2042 if (unlikely(need_unlock
))
2043 move_unlock_page_cgroup(pc
, &flags
);
2047 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
2050 * size of first charge trial. "32" comes from vmscan.c's magic value.
2051 * TODO: maybe necessary to use big numbers in big irons.
2053 #define CHARGE_BATCH 32U
2054 struct memcg_stock_pcp
{
2055 struct mem_cgroup
*cached
; /* this never be root cgroup */
2056 unsigned int nr_pages
;
2057 struct work_struct work
;
2058 unsigned long flags
;
2059 #define FLUSHING_CACHED_CHARGE (0)
2061 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2062 static DEFINE_MUTEX(percpu_charge_mutex
);
2065 * Try to consume stocked charge on this cpu. If success, one page is consumed
2066 * from local stock and true is returned. If the stock is 0 or charges from a
2067 * cgroup which is not current target, returns false. This stock will be
2070 static bool consume_stock(struct mem_cgroup
*memcg
)
2072 struct memcg_stock_pcp
*stock
;
2075 stock
= &get_cpu_var(memcg_stock
);
2076 if (memcg
== stock
->cached
&& stock
->nr_pages
)
2078 else /* need to call res_counter_charge */
2080 put_cpu_var(memcg_stock
);
2085 * Returns stocks cached in percpu to res_counter and reset cached information.
2087 static void drain_stock(struct memcg_stock_pcp
*stock
)
2089 struct mem_cgroup
*old
= stock
->cached
;
2091 if (stock
->nr_pages
) {
2092 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2094 res_counter_uncharge(&old
->res
, bytes
);
2095 if (do_swap_account
)
2096 res_counter_uncharge(&old
->memsw
, bytes
);
2097 stock
->nr_pages
= 0;
2099 stock
->cached
= NULL
;
2103 * This must be called under preempt disabled or must be called by
2104 * a thread which is pinned to local cpu.
2106 static void drain_local_stock(struct work_struct
*dummy
)
2108 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2110 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2114 * Cache charges(val) which is from res_counter, to local per_cpu area.
2115 * This will be consumed by consume_stock() function, later.
2117 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2119 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2121 if (stock
->cached
!= memcg
) { /* reset if necessary */
2123 stock
->cached
= memcg
;
2125 stock
->nr_pages
+= nr_pages
;
2126 put_cpu_var(memcg_stock
);
2130 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2131 * of the hierarchy under it. sync flag says whether we should block
2132 * until the work is done.
2134 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2138 /* Notify other cpus that system-wide "drain" is running */
2141 for_each_online_cpu(cpu
) {
2142 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2143 struct mem_cgroup
*memcg
;
2145 memcg
= stock
->cached
;
2146 if (!memcg
|| !stock
->nr_pages
)
2148 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2150 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2152 drain_local_stock(&stock
->work
);
2154 schedule_work_on(cpu
, &stock
->work
);
2162 for_each_online_cpu(cpu
) {
2163 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2164 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2165 flush_work(&stock
->work
);
2172 * Tries to drain stocked charges in other cpus. This function is asynchronous
2173 * and just put a work per cpu for draining localy on each cpu. Caller can
2174 * expects some charges will be back to res_counter later but cannot wait for
2177 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2180 * If someone calls draining, avoid adding more kworker runs.
2182 if (!mutex_trylock(&percpu_charge_mutex
))
2184 drain_all_stock(root_memcg
, false);
2185 mutex_unlock(&percpu_charge_mutex
);
2188 /* This is a synchronous drain interface. */
2189 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2191 /* called when force_empty is called */
2192 mutex_lock(&percpu_charge_mutex
);
2193 drain_all_stock(root_memcg
, true);
2194 mutex_unlock(&percpu_charge_mutex
);
2198 * This function drains percpu counter value from DEAD cpu and
2199 * move it to local cpu. Note that this function can be preempted.
2201 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2205 spin_lock(&memcg
->pcp_counter_lock
);
2206 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2207 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2209 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2210 memcg
->nocpu_base
.count
[i
] += x
;
2212 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2213 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2215 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2216 memcg
->nocpu_base
.events
[i
] += x
;
2218 /* need to clear ON_MOVE value, works as a kind of lock. */
2219 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2220 spin_unlock(&memcg
->pcp_counter_lock
);
2223 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*memcg
, int cpu
)
2225 int idx
= MEM_CGROUP_ON_MOVE
;
2227 spin_lock(&memcg
->pcp_counter_lock
);
2228 per_cpu(memcg
->stat
->count
[idx
], cpu
) = memcg
->nocpu_base
.count
[idx
];
2229 spin_unlock(&memcg
->pcp_counter_lock
);
2232 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2233 unsigned long action
,
2236 int cpu
= (unsigned long)hcpu
;
2237 struct memcg_stock_pcp
*stock
;
2238 struct mem_cgroup
*iter
;
2240 if ((action
== CPU_ONLINE
)) {
2241 for_each_mem_cgroup_all(iter
)
2242 synchronize_mem_cgroup_on_move(iter
, cpu
);
2246 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2249 for_each_mem_cgroup_all(iter
)
2250 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2252 stock
= &per_cpu(memcg_stock
, cpu
);
2258 /* See __mem_cgroup_try_charge() for details */
2260 CHARGE_OK
, /* success */
2261 CHARGE_RETRY
, /* need to retry but retry is not bad */
2262 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2263 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2264 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2267 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2268 unsigned int nr_pages
, bool oom_check
)
2270 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2271 struct mem_cgroup
*mem_over_limit
;
2272 struct res_counter
*fail_res
;
2273 unsigned long flags
= 0;
2276 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2279 if (!do_swap_account
)
2281 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2285 res_counter_uncharge(&memcg
->res
, csize
);
2286 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2287 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2289 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2291 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2292 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2294 * Never reclaim on behalf of optional batching, retry with a
2295 * single page instead.
2297 if (nr_pages
== CHARGE_BATCH
)
2298 return CHARGE_RETRY
;
2300 if (!(gfp_mask
& __GFP_WAIT
))
2301 return CHARGE_WOULDBLOCK
;
2303 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2304 gfp_mask
, flags
, NULL
);
2305 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2306 return CHARGE_RETRY
;
2308 * Even though the limit is exceeded at this point, reclaim
2309 * may have been able to free some pages. Retry the charge
2310 * before killing the task.
2312 * Only for regular pages, though: huge pages are rather
2313 * unlikely to succeed so close to the limit, and we fall back
2314 * to regular pages anyway in case of failure.
2316 if (nr_pages
== 1 && ret
)
2317 return CHARGE_RETRY
;
2320 * At task move, charge accounts can be doubly counted. So, it's
2321 * better to wait until the end of task_move if something is going on.
2323 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2324 return CHARGE_RETRY
;
2326 /* If we don't need to call oom-killer at el, return immediately */
2328 return CHARGE_NOMEM
;
2330 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2331 return CHARGE_OOM_DIE
;
2333 return CHARGE_RETRY
;
2337 * Unlike exported interface, "oom" parameter is added. if oom==true,
2338 * oom-killer can be invoked.
2340 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2342 unsigned int nr_pages
,
2343 struct mem_cgroup
**ptr
,
2346 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2347 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2348 struct mem_cgroup
*memcg
= NULL
;
2352 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2353 * in system level. So, allow to go ahead dying process in addition to
2356 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2357 || fatal_signal_pending(current
)))
2361 * We always charge the cgroup the mm_struct belongs to.
2362 * The mm_struct's mem_cgroup changes on task migration if the
2363 * thread group leader migrates. It's possible that mm is not
2364 * set, if so charge the init_mm (happens for pagecache usage).
2369 if (*ptr
) { /* css should be a valid one */
2371 VM_BUG_ON(css_is_removed(&memcg
->css
));
2372 if (mem_cgroup_is_root(memcg
))
2374 if (nr_pages
== 1 && consume_stock(memcg
))
2376 css_get(&memcg
->css
);
2378 struct task_struct
*p
;
2381 p
= rcu_dereference(mm
->owner
);
2383 * Because we don't have task_lock(), "p" can exit.
2384 * In that case, "memcg" can point to root or p can be NULL with
2385 * race with swapoff. Then, we have small risk of mis-accouning.
2386 * But such kind of mis-account by race always happens because
2387 * we don't have cgroup_mutex(). It's overkill and we allo that
2389 * (*) swapoff at el will charge against mm-struct not against
2390 * task-struct. So, mm->owner can be NULL.
2392 memcg
= mem_cgroup_from_task(p
);
2393 if (!memcg
|| mem_cgroup_is_root(memcg
)) {
2397 if (nr_pages
== 1 && consume_stock(memcg
)) {
2399 * It seems dagerous to access memcg without css_get().
2400 * But considering how consume_stok works, it's not
2401 * necessary. If consume_stock success, some charges
2402 * from this memcg are cached on this cpu. So, we
2403 * don't need to call css_get()/css_tryget() before
2404 * calling consume_stock().
2409 /* after here, we may be blocked. we need to get refcnt */
2410 if (!css_tryget(&memcg
->css
)) {
2420 /* If killed, bypass charge */
2421 if (fatal_signal_pending(current
)) {
2422 css_put(&memcg
->css
);
2427 if (oom
&& !nr_oom_retries
) {
2429 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2432 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, oom_check
);
2436 case CHARGE_RETRY
: /* not in OOM situation but retry */
2438 css_put(&memcg
->css
);
2441 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2442 css_put(&memcg
->css
);
2444 case CHARGE_NOMEM
: /* OOM routine works */
2446 css_put(&memcg
->css
);
2449 /* If oom, we never return -ENOMEM */
2452 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2453 css_put(&memcg
->css
);
2456 } while (ret
!= CHARGE_OK
);
2458 if (batch
> nr_pages
)
2459 refill_stock(memcg
, batch
- nr_pages
);
2460 css_put(&memcg
->css
);
2473 * Somemtimes we have to undo a charge we got by try_charge().
2474 * This function is for that and do uncharge, put css's refcnt.
2475 * gotten by try_charge().
2477 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2478 unsigned int nr_pages
)
2480 if (!mem_cgroup_is_root(memcg
)) {
2481 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2483 res_counter_uncharge(&memcg
->res
, bytes
);
2484 if (do_swap_account
)
2485 res_counter_uncharge(&memcg
->memsw
, bytes
);
2490 * A helper function to get mem_cgroup from ID. must be called under
2491 * rcu_read_lock(). The caller must check css_is_removed() or some if
2492 * it's concern. (dropping refcnt from swap can be called against removed
2495 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2497 struct cgroup_subsys_state
*css
;
2499 /* ID 0 is unused ID */
2502 css
= css_lookup(&mem_cgroup_subsys
, id
);
2505 return container_of(css
, struct mem_cgroup
, css
);
2508 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2510 struct mem_cgroup
*memcg
= NULL
;
2511 struct page_cgroup
*pc
;
2515 VM_BUG_ON(!PageLocked(page
));
2517 pc
= lookup_page_cgroup(page
);
2518 lock_page_cgroup(pc
);
2519 if (PageCgroupUsed(pc
)) {
2520 memcg
= pc
->mem_cgroup
;
2521 if (memcg
&& !css_tryget(&memcg
->css
))
2523 } else if (PageSwapCache(page
)) {
2524 ent
.val
= page_private(page
);
2525 id
= lookup_swap_cgroup(ent
);
2527 memcg
= mem_cgroup_lookup(id
);
2528 if (memcg
&& !css_tryget(&memcg
->css
))
2532 unlock_page_cgroup(pc
);
2536 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2538 unsigned int nr_pages
,
2539 struct page_cgroup
*pc
,
2540 enum charge_type ctype
)
2542 lock_page_cgroup(pc
);
2543 if (unlikely(PageCgroupUsed(pc
))) {
2544 unlock_page_cgroup(pc
);
2545 __mem_cgroup_cancel_charge(memcg
, nr_pages
);
2549 * we don't need page_cgroup_lock about tail pages, becase they are not
2550 * accessed by any other context at this point.
2552 pc
->mem_cgroup
= memcg
;
2554 * We access a page_cgroup asynchronously without lock_page_cgroup().
2555 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2556 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2557 * before USED bit, we need memory barrier here.
2558 * See mem_cgroup_add_lru_list(), etc.
2562 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2563 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2564 SetPageCgroupCache(pc
);
2565 SetPageCgroupUsed(pc
);
2567 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2568 ClearPageCgroupCache(pc
);
2569 SetPageCgroupUsed(pc
);
2575 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), nr_pages
);
2576 unlock_page_cgroup(pc
);
2578 * "charge_statistics" updated event counter. Then, check it.
2579 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2580 * if they exceeds softlimit.
2582 memcg_check_events(memcg
, page
);
2585 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2587 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2588 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2590 * Because tail pages are not marked as "used", set it. We're under
2591 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2593 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2595 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2596 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2597 unsigned long flags
;
2599 if (mem_cgroup_disabled())
2602 * We have no races with charge/uncharge but will have races with
2603 * page state accounting.
2605 move_lock_page_cgroup(head_pc
, &flags
);
2607 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2608 smp_wmb(); /* see __commit_charge() */
2609 if (PageCgroupAcctLRU(head_pc
)) {
2611 struct mem_cgroup_per_zone
*mz
;
2614 * LRU flags cannot be copied because we need to add tail
2615 *.page to LRU by generic call and our hook will be called.
2616 * We hold lru_lock, then, reduce counter directly.
2618 lru
= page_lru(head
);
2619 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2620 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2622 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2623 move_unlock_page_cgroup(head_pc
, &flags
);
2628 * mem_cgroup_move_account - move account of the page
2630 * @nr_pages: number of regular pages (>1 for huge pages)
2631 * @pc: page_cgroup of the page.
2632 * @from: mem_cgroup which the page is moved from.
2633 * @to: mem_cgroup which the page is moved to. @from != @to.
2634 * @uncharge: whether we should call uncharge and css_put against @from.
2636 * The caller must confirm following.
2637 * - page is not on LRU (isolate_page() is useful.)
2638 * - compound_lock is held when nr_pages > 1
2640 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2641 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2642 * true, this function does "uncharge" from old cgroup, but it doesn't if
2643 * @uncharge is false, so a caller should do "uncharge".
2645 static int mem_cgroup_move_account(struct page
*page
,
2646 unsigned int nr_pages
,
2647 struct page_cgroup
*pc
,
2648 struct mem_cgroup
*from
,
2649 struct mem_cgroup
*to
,
2652 unsigned long flags
;
2655 VM_BUG_ON(from
== to
);
2656 VM_BUG_ON(PageLRU(page
));
2658 * The page is isolated from LRU. So, collapse function
2659 * will not handle this page. But page splitting can happen.
2660 * Do this check under compound_page_lock(). The caller should
2664 if (nr_pages
> 1 && !PageTransHuge(page
))
2667 lock_page_cgroup(pc
);
2670 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2673 move_lock_page_cgroup(pc
, &flags
);
2675 if (PageCgroupFileMapped(pc
)) {
2676 /* Update mapped_file data for mem_cgroup */
2678 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2679 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2682 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2684 /* This is not "cancel", but cancel_charge does all we need. */
2685 __mem_cgroup_cancel_charge(from
, nr_pages
);
2687 /* caller should have done css_get */
2688 pc
->mem_cgroup
= to
;
2689 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2691 * We charges against "to" which may not have any tasks. Then, "to"
2692 * can be under rmdir(). But in current implementation, caller of
2693 * this function is just force_empty() and move charge, so it's
2694 * guaranteed that "to" is never removed. So, we don't check rmdir
2697 move_unlock_page_cgroup(pc
, &flags
);
2700 unlock_page_cgroup(pc
);
2704 memcg_check_events(to
, page
);
2705 memcg_check_events(from
, page
);
2711 * move charges to its parent.
2714 static int mem_cgroup_move_parent(struct page
*page
,
2715 struct page_cgroup
*pc
,
2716 struct mem_cgroup
*child
,
2719 struct cgroup
*cg
= child
->css
.cgroup
;
2720 struct cgroup
*pcg
= cg
->parent
;
2721 struct mem_cgroup
*parent
;
2722 unsigned int nr_pages
;
2723 unsigned long uninitialized_var(flags
);
2731 if (!get_page_unless_zero(page
))
2733 if (isolate_lru_page(page
))
2736 nr_pages
= hpage_nr_pages(page
);
2738 parent
= mem_cgroup_from_cont(pcg
);
2739 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2744 flags
= compound_lock_irqsave(page
);
2746 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2748 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2751 compound_unlock_irqrestore(page
, flags
);
2753 putback_lru_page(page
);
2761 * Charge the memory controller for page usage.
2763 * 0 if the charge was successful
2764 * < 0 if the cgroup is over its limit
2766 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2767 gfp_t gfp_mask
, enum charge_type ctype
)
2769 struct mem_cgroup
*memcg
= NULL
;
2770 unsigned int nr_pages
= 1;
2771 struct page_cgroup
*pc
;
2775 if (PageTransHuge(page
)) {
2776 nr_pages
<<= compound_order(page
);
2777 VM_BUG_ON(!PageTransHuge(page
));
2779 * Never OOM-kill a process for a huge page. The
2780 * fault handler will fall back to regular pages.
2785 pc
= lookup_page_cgroup(page
);
2786 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2788 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
2792 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, pc
, ctype
);
2796 int mem_cgroup_newpage_charge(struct page
*page
,
2797 struct mm_struct
*mm
, gfp_t gfp_mask
)
2799 if (mem_cgroup_disabled())
2802 * If already mapped, we don't have to account.
2803 * If page cache, page->mapping has address_space.
2804 * But page->mapping may have out-of-use anon_vma pointer,
2805 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2808 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2812 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2813 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2817 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2818 enum charge_type ctype
);
2821 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*memcg
,
2822 enum charge_type ctype
)
2824 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2826 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2827 * is already on LRU. It means the page may on some other page_cgroup's
2828 * LRU. Take care of it.
2830 mem_cgroup_lru_del_before_commit(page
);
2831 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
2832 mem_cgroup_lru_add_after_commit(page
);
2836 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2839 struct mem_cgroup
*memcg
= NULL
;
2842 if (mem_cgroup_disabled())
2844 if (PageCompound(page
))
2850 if (page_is_file_cache(page
)) {
2851 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &memcg
, true);
2856 * FUSE reuses pages without going through the final
2857 * put that would remove them from the LRU list, make
2858 * sure that they get relinked properly.
2860 __mem_cgroup_commit_charge_lrucare(page
, memcg
,
2861 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2865 if (PageSwapCache(page
)) {
2866 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &memcg
);
2868 __mem_cgroup_commit_charge_swapin(page
, memcg
,
2869 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2871 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2872 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2878 * While swap-in, try_charge -> commit or cancel, the page is locked.
2879 * And when try_charge() successfully returns, one refcnt to memcg without
2880 * struct page_cgroup is acquired. This refcnt will be consumed by
2881 * "commit()" or removed by "cancel()"
2883 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2885 gfp_t mask
, struct mem_cgroup
**ptr
)
2887 struct mem_cgroup
*memcg
;
2892 if (mem_cgroup_disabled())
2895 if (!do_swap_account
)
2898 * A racing thread's fault, or swapoff, may have already updated
2899 * the pte, and even removed page from swap cache: in those cases
2900 * do_swap_page()'s pte_same() test will fail; but there's also a
2901 * KSM case which does need to charge the page.
2903 if (!PageSwapCache(page
))
2905 memcg
= try_get_mem_cgroup_from_page(page
);
2909 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2910 css_put(&memcg
->css
);
2915 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2919 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2920 enum charge_type ctype
)
2922 if (mem_cgroup_disabled())
2926 cgroup_exclude_rmdir(&ptr
->css
);
2928 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2930 * Now swap is on-memory. This means this page may be
2931 * counted both as mem and swap....double count.
2932 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2933 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2934 * may call delete_from_swap_cache() before reach here.
2936 if (do_swap_account
&& PageSwapCache(page
)) {
2937 swp_entry_t ent
= {.val
= page_private(page
)};
2939 struct mem_cgroup
*memcg
;
2941 id
= swap_cgroup_record(ent
, 0);
2943 memcg
= mem_cgroup_lookup(id
);
2946 * This recorded memcg can be obsolete one. So, avoid
2947 * calling css_tryget
2949 if (!mem_cgroup_is_root(memcg
))
2950 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2951 mem_cgroup_swap_statistics(memcg
, false);
2952 mem_cgroup_put(memcg
);
2957 * At swapin, we may charge account against cgroup which has no tasks.
2958 * So, rmdir()->pre_destroy() can be called while we do this charge.
2959 * In that case, we need to call pre_destroy() again. check it here.
2961 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2964 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2966 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2967 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2970 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
2972 if (mem_cgroup_disabled())
2976 __mem_cgroup_cancel_charge(memcg
, 1);
2979 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
2980 unsigned int nr_pages
,
2981 const enum charge_type ctype
)
2983 struct memcg_batch_info
*batch
= NULL
;
2984 bool uncharge_memsw
= true;
2986 /* If swapout, usage of swap doesn't decrease */
2987 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2988 uncharge_memsw
= false;
2990 batch
= ¤t
->memcg_batch
;
2992 * In usual, we do css_get() when we remember memcg pointer.
2993 * But in this case, we keep res->usage until end of a series of
2994 * uncharges. Then, it's ok to ignore memcg's refcnt.
2997 batch
->memcg
= memcg
;
2999 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3000 * In those cases, all pages freed continuously can be expected to be in
3001 * the same cgroup and we have chance to coalesce uncharges.
3002 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3003 * because we want to do uncharge as soon as possible.
3006 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
3007 goto direct_uncharge
;
3010 goto direct_uncharge
;
3013 * In typical case, batch->memcg == mem. This means we can
3014 * merge a series of uncharges to an uncharge of res_counter.
3015 * If not, we uncharge res_counter ony by one.
3017 if (batch
->memcg
!= memcg
)
3018 goto direct_uncharge
;
3019 /* remember freed charge and uncharge it later */
3022 batch
->memsw_nr_pages
++;
3025 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
3027 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
3028 if (unlikely(batch
->memcg
!= memcg
))
3029 memcg_oom_recover(memcg
);
3034 * uncharge if !page_mapped(page)
3036 static struct mem_cgroup
*
3037 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
3039 struct mem_cgroup
*memcg
= NULL
;
3040 unsigned int nr_pages
= 1;
3041 struct page_cgroup
*pc
;
3043 if (mem_cgroup_disabled())
3046 if (PageSwapCache(page
))
3049 if (PageTransHuge(page
)) {
3050 nr_pages
<<= compound_order(page
);
3051 VM_BUG_ON(!PageTransHuge(page
));
3054 * Check if our page_cgroup is valid
3056 pc
= lookup_page_cgroup(page
);
3057 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
3060 lock_page_cgroup(pc
);
3062 memcg
= pc
->mem_cgroup
;
3064 if (!PageCgroupUsed(pc
))
3068 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
3069 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3070 /* See mem_cgroup_prepare_migration() */
3071 if (page_mapped(page
) || PageCgroupMigration(pc
))
3074 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3075 if (!PageAnon(page
)) { /* Shared memory */
3076 if (page
->mapping
&& !page_is_file_cache(page
))
3078 } else if (page_mapped(page
)) /* Anon */
3085 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -nr_pages
);
3087 ClearPageCgroupUsed(pc
);
3089 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3090 * freed from LRU. This is safe because uncharged page is expected not
3091 * to be reused (freed soon). Exception is SwapCache, it's handled by
3092 * special functions.
3095 unlock_page_cgroup(pc
);
3097 * even after unlock, we have memcg->res.usage here and this memcg
3098 * will never be freed.
3100 memcg_check_events(memcg
, page
);
3101 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3102 mem_cgroup_swap_statistics(memcg
, true);
3103 mem_cgroup_get(memcg
);
3105 if (!mem_cgroup_is_root(memcg
))
3106 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
3111 unlock_page_cgroup(pc
);
3115 void mem_cgroup_uncharge_page(struct page
*page
)
3118 if (page_mapped(page
))
3120 if (page
->mapping
&& !PageAnon(page
))
3122 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3125 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3127 VM_BUG_ON(page_mapped(page
));
3128 VM_BUG_ON(page
->mapping
);
3129 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3133 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3134 * In that cases, pages are freed continuously and we can expect pages
3135 * are in the same memcg. All these calls itself limits the number of
3136 * pages freed at once, then uncharge_start/end() is called properly.
3137 * This may be called prural(2) times in a context,
3140 void mem_cgroup_uncharge_start(void)
3142 current
->memcg_batch
.do_batch
++;
3143 /* We can do nest. */
3144 if (current
->memcg_batch
.do_batch
== 1) {
3145 current
->memcg_batch
.memcg
= NULL
;
3146 current
->memcg_batch
.nr_pages
= 0;
3147 current
->memcg_batch
.memsw_nr_pages
= 0;
3151 void mem_cgroup_uncharge_end(void)
3153 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3155 if (!batch
->do_batch
)
3159 if (batch
->do_batch
) /* If stacked, do nothing. */
3165 * This "batch->memcg" is valid without any css_get/put etc...
3166 * bacause we hide charges behind us.
3168 if (batch
->nr_pages
)
3169 res_counter_uncharge(&batch
->memcg
->res
,
3170 batch
->nr_pages
* PAGE_SIZE
);
3171 if (batch
->memsw_nr_pages
)
3172 res_counter_uncharge(&batch
->memcg
->memsw
,
3173 batch
->memsw_nr_pages
* PAGE_SIZE
);
3174 memcg_oom_recover(batch
->memcg
);
3175 /* forget this pointer (for sanity check) */
3176 batch
->memcg
= NULL
;
3181 * called after __delete_from_swap_cache() and drop "page" account.
3182 * memcg information is recorded to swap_cgroup of "ent"
3185 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3187 struct mem_cgroup
*memcg
;
3188 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3190 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3191 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3193 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3196 * record memcg information, if swapout && memcg != NULL,
3197 * mem_cgroup_get() was called in uncharge().
3199 if (do_swap_account
&& swapout
&& memcg
)
3200 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3204 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3206 * called from swap_entry_free(). remove record in swap_cgroup and
3207 * uncharge "memsw" account.
3209 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3211 struct mem_cgroup
*memcg
;
3214 if (!do_swap_account
)
3217 id
= swap_cgroup_record(ent
, 0);
3219 memcg
= mem_cgroup_lookup(id
);
3222 * We uncharge this because swap is freed.
3223 * This memcg can be obsolete one. We avoid calling css_tryget
3225 if (!mem_cgroup_is_root(memcg
))
3226 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3227 mem_cgroup_swap_statistics(memcg
, false);
3228 mem_cgroup_put(memcg
);
3234 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3235 * @entry: swap entry to be moved
3236 * @from: mem_cgroup which the entry is moved from
3237 * @to: mem_cgroup which the entry is moved to
3238 * @need_fixup: whether we should fixup res_counters and refcounts.
3240 * It succeeds only when the swap_cgroup's record for this entry is the same
3241 * as the mem_cgroup's id of @from.
3243 * Returns 0 on success, -EINVAL on failure.
3245 * The caller must have charged to @to, IOW, called res_counter_charge() about
3246 * both res and memsw, and called css_get().
3248 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3249 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3251 unsigned short old_id
, new_id
;
3253 old_id
= css_id(&from
->css
);
3254 new_id
= css_id(&to
->css
);
3256 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3257 mem_cgroup_swap_statistics(from
, false);
3258 mem_cgroup_swap_statistics(to
, true);
3260 * This function is only called from task migration context now.
3261 * It postpones res_counter and refcount handling till the end
3262 * of task migration(mem_cgroup_clear_mc()) for performance
3263 * improvement. But we cannot postpone mem_cgroup_get(to)
3264 * because if the process that has been moved to @to does
3265 * swap-in, the refcount of @to might be decreased to 0.
3269 if (!mem_cgroup_is_root(from
))
3270 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3271 mem_cgroup_put(from
);
3273 * we charged both to->res and to->memsw, so we should
3276 if (!mem_cgroup_is_root(to
))
3277 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3284 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3285 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3292 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3295 int mem_cgroup_prepare_migration(struct page
*page
,
3296 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3298 struct mem_cgroup
*memcg
= NULL
;
3299 struct page_cgroup
*pc
;
3300 enum charge_type ctype
;
3305 VM_BUG_ON(PageTransHuge(page
));
3306 if (mem_cgroup_disabled())
3309 pc
= lookup_page_cgroup(page
);
3310 lock_page_cgroup(pc
);
3311 if (PageCgroupUsed(pc
)) {
3312 memcg
= pc
->mem_cgroup
;
3313 css_get(&memcg
->css
);
3315 * At migrating an anonymous page, its mapcount goes down
3316 * to 0 and uncharge() will be called. But, even if it's fully
3317 * unmapped, migration may fail and this page has to be
3318 * charged again. We set MIGRATION flag here and delay uncharge
3319 * until end_migration() is called
3321 * Corner Case Thinking
3323 * When the old page was mapped as Anon and it's unmap-and-freed
3324 * while migration was ongoing.
3325 * If unmap finds the old page, uncharge() of it will be delayed
3326 * until end_migration(). If unmap finds a new page, it's
3327 * uncharged when it make mapcount to be 1->0. If unmap code
3328 * finds swap_migration_entry, the new page will not be mapped
3329 * and end_migration() will find it(mapcount==0).
3332 * When the old page was mapped but migraion fails, the kernel
3333 * remaps it. A charge for it is kept by MIGRATION flag even
3334 * if mapcount goes down to 0. We can do remap successfully
3335 * without charging it again.
3338 * The "old" page is under lock_page() until the end of
3339 * migration, so, the old page itself will not be swapped-out.
3340 * If the new page is swapped out before end_migraton, our
3341 * hook to usual swap-out path will catch the event.
3344 SetPageCgroupMigration(pc
);
3346 unlock_page_cgroup(pc
);
3348 * If the page is not charged at this point,
3355 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3356 css_put(&memcg
->css
);/* drop extra refcnt */
3357 if (ret
|| *ptr
== NULL
) {
3358 if (PageAnon(page
)) {
3359 lock_page_cgroup(pc
);
3360 ClearPageCgroupMigration(pc
);
3361 unlock_page_cgroup(pc
);
3363 * The old page may be fully unmapped while we kept it.
3365 mem_cgroup_uncharge_page(page
);
3370 * We charge new page before it's used/mapped. So, even if unlock_page()
3371 * is called before end_migration, we can catch all events on this new
3372 * page. In the case new page is migrated but not remapped, new page's
3373 * mapcount will be finally 0 and we call uncharge in end_migration().
3375 pc
= lookup_page_cgroup(newpage
);
3377 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3378 else if (page_is_file_cache(page
))
3379 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3381 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3382 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
3386 /* remove redundant charge if migration failed*/
3387 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
3388 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3390 struct page
*used
, *unused
;
3391 struct page_cgroup
*pc
;
3395 /* blocks rmdir() */
3396 cgroup_exclude_rmdir(&memcg
->css
);
3397 if (!migration_ok
) {
3405 * We disallowed uncharge of pages under migration because mapcount
3406 * of the page goes down to zero, temporarly.
3407 * Clear the flag and check the page should be charged.
3409 pc
= lookup_page_cgroup(oldpage
);
3410 lock_page_cgroup(pc
);
3411 ClearPageCgroupMigration(pc
);
3412 unlock_page_cgroup(pc
);
3414 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3417 * If a page is a file cache, radix-tree replacement is very atomic
3418 * and we can skip this check. When it was an Anon page, its mapcount
3419 * goes down to 0. But because we added MIGRATION flage, it's not
3420 * uncharged yet. There are several case but page->mapcount check
3421 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3422 * check. (see prepare_charge() also)
3425 mem_cgroup_uncharge_page(used
);
3427 * At migration, we may charge account against cgroup which has no
3429 * So, rmdir()->pre_destroy() can be called while we do this charge.
3430 * In that case, we need to call pre_destroy() again. check it here.
3432 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
3435 #ifdef CONFIG_DEBUG_VM
3436 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3438 struct page_cgroup
*pc
;
3440 pc
= lookup_page_cgroup(page
);
3441 if (likely(pc
) && PageCgroupUsed(pc
))
3446 bool mem_cgroup_bad_page_check(struct page
*page
)
3448 if (mem_cgroup_disabled())
3451 return lookup_page_cgroup_used(page
) != NULL
;
3454 void mem_cgroup_print_bad_page(struct page
*page
)
3456 struct page_cgroup
*pc
;
3458 pc
= lookup_page_cgroup_used(page
);
3463 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3464 pc
, pc
->flags
, pc
->mem_cgroup
);
3466 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3469 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3474 printk(KERN_CONT
"(%s)\n",
3475 (ret
< 0) ? "cannot get the path" : path
);
3481 static DEFINE_MUTEX(set_limit_mutex
);
3483 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3484 unsigned long long val
)
3487 u64 memswlimit
, memlimit
;
3489 int children
= mem_cgroup_count_children(memcg
);
3490 u64 curusage
, oldusage
;
3494 * For keeping hierarchical_reclaim simple, how long we should retry
3495 * is depends on callers. We set our retry-count to be function
3496 * of # of children which we should visit in this loop.
3498 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3500 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3503 while (retry_count
) {
3504 if (signal_pending(current
)) {
3509 * Rather than hide all in some function, I do this in
3510 * open coded manner. You see what this really does.
3511 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3513 mutex_lock(&set_limit_mutex
);
3514 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3515 if (memswlimit
< val
) {
3517 mutex_unlock(&set_limit_mutex
);
3521 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3525 ret
= res_counter_set_limit(&memcg
->res
, val
);
3527 if (memswlimit
== val
)
3528 memcg
->memsw_is_minimum
= true;
3530 memcg
->memsw_is_minimum
= false;
3532 mutex_unlock(&set_limit_mutex
);
3537 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3538 MEM_CGROUP_RECLAIM_SHRINK
,
3540 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3541 /* Usage is reduced ? */
3542 if (curusage
>= oldusage
)
3545 oldusage
= curusage
;
3547 if (!ret
&& enlarge
)
3548 memcg_oom_recover(memcg
);
3553 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3554 unsigned long long val
)
3557 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3558 int children
= mem_cgroup_count_children(memcg
);
3562 /* see mem_cgroup_resize_res_limit */
3563 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3564 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3565 while (retry_count
) {
3566 if (signal_pending(current
)) {
3571 * Rather than hide all in some function, I do this in
3572 * open coded manner. You see what this really does.
3573 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3575 mutex_lock(&set_limit_mutex
);
3576 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3577 if (memlimit
> val
) {
3579 mutex_unlock(&set_limit_mutex
);
3582 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3583 if (memswlimit
< val
)
3585 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3587 if (memlimit
== val
)
3588 memcg
->memsw_is_minimum
= true;
3590 memcg
->memsw_is_minimum
= false;
3592 mutex_unlock(&set_limit_mutex
);
3597 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3598 MEM_CGROUP_RECLAIM_NOSWAP
|
3599 MEM_CGROUP_RECLAIM_SHRINK
,
3601 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3602 /* Usage is reduced ? */
3603 if (curusage
>= oldusage
)
3606 oldusage
= curusage
;
3608 if (!ret
&& enlarge
)
3609 memcg_oom_recover(memcg
);
3613 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3615 unsigned long *total_scanned
)
3617 unsigned long nr_reclaimed
= 0;
3618 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3619 unsigned long reclaimed
;
3621 struct mem_cgroup_tree_per_zone
*mctz
;
3622 unsigned long long excess
;
3623 unsigned long nr_scanned
;
3628 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3630 * This loop can run a while, specially if mem_cgroup's continuously
3631 * keep exceeding their soft limit and putting the system under
3638 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3643 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3645 MEM_CGROUP_RECLAIM_SOFT
,
3647 nr_reclaimed
+= reclaimed
;
3648 *total_scanned
+= nr_scanned
;
3649 spin_lock(&mctz
->lock
);
3652 * If we failed to reclaim anything from this memory cgroup
3653 * it is time to move on to the next cgroup
3659 * Loop until we find yet another one.
3661 * By the time we get the soft_limit lock
3662 * again, someone might have aded the
3663 * group back on the RB tree. Iterate to
3664 * make sure we get a different mem.
3665 * mem_cgroup_largest_soft_limit_node returns
3666 * NULL if no other cgroup is present on
3670 __mem_cgroup_largest_soft_limit_node(mctz
);
3672 css_put(&next_mz
->mem
->css
);
3673 else /* next_mz == NULL or other memcg */
3677 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3678 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3680 * One school of thought says that we should not add
3681 * back the node to the tree if reclaim returns 0.
3682 * But our reclaim could return 0, simply because due
3683 * to priority we are exposing a smaller subset of
3684 * memory to reclaim from. Consider this as a longer
3687 /* If excess == 0, no tree ops */
3688 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3689 spin_unlock(&mctz
->lock
);
3690 css_put(&mz
->mem
->css
);
3693 * Could not reclaim anything and there are no more
3694 * mem cgroups to try or we seem to be looping without
3695 * reclaiming anything.
3697 if (!nr_reclaimed
&&
3699 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3701 } while (!nr_reclaimed
);
3703 css_put(&next_mz
->mem
->css
);
3704 return nr_reclaimed
;
3708 * This routine traverse page_cgroup in given list and drop them all.
3709 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3711 static int mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3712 int node
, int zid
, enum lru_list lru
)
3715 struct mem_cgroup_per_zone
*mz
;
3716 struct page_cgroup
*pc
, *busy
;
3717 unsigned long flags
, loop
;
3718 struct list_head
*list
;
3721 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3722 mz
= mem_cgroup_zoneinfo(memcg
, node
, zid
);
3723 list
= &mz
->lists
[lru
];
3725 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3726 /* give some margin against EBUSY etc...*/
3733 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3734 if (list_empty(list
)) {
3735 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3738 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3740 list_move(&pc
->lru
, list
);
3742 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3745 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3747 page
= lookup_cgroup_page(pc
);
3749 ret
= mem_cgroup_move_parent(page
, pc
, memcg
, GFP_KERNEL
);
3753 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3754 /* found lock contention or "pc" is obsolete. */
3761 if (!ret
&& !list_empty(list
))
3767 * make mem_cgroup's charge to be 0 if there is no task.
3768 * This enables deleting this mem_cgroup.
3770 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
, bool free_all
)
3773 int node
, zid
, shrink
;
3774 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3775 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
3777 css_get(&memcg
->css
);
3780 /* should free all ? */
3786 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3789 if (signal_pending(current
))
3791 /* This is for making all *used* pages to be on LRU. */
3792 lru_add_drain_all();
3793 drain_all_stock_sync(memcg
);
3795 mem_cgroup_start_move(memcg
);
3796 for_each_node_state(node
, N_HIGH_MEMORY
) {
3797 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3800 ret
= mem_cgroup_force_empty_list(memcg
,
3809 mem_cgroup_end_move(memcg
);
3810 memcg_oom_recover(memcg
);
3811 /* it seems parent cgroup doesn't have enough mem */
3815 /* "ret" should also be checked to ensure all lists are empty. */
3816 } while (memcg
->res
.usage
> 0 || ret
);
3818 css_put(&memcg
->css
);
3822 /* returns EBUSY if there is a task or if we come here twice. */
3823 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3827 /* we call try-to-free pages for make this cgroup empty */
3828 lru_add_drain_all();
3829 /* try to free all pages in this cgroup */
3831 while (nr_retries
&& memcg
->res
.usage
> 0) {
3834 if (signal_pending(current
)) {
3838 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
3842 /* maybe some writeback is necessary */
3843 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3848 /* try move_account...there may be some *locked* pages. */
3852 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3854 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3858 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3860 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3863 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3867 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3868 struct cgroup
*parent
= cont
->parent
;
3869 struct mem_cgroup
*parent_memcg
= NULL
;
3872 parent_memcg
= mem_cgroup_from_cont(parent
);
3876 * If parent's use_hierarchy is set, we can't make any modifications
3877 * in the child subtrees. If it is unset, then the change can
3878 * occur, provided the current cgroup has no children.
3880 * For the root cgroup, parent_mem is NULL, we allow value to be
3881 * set if there are no children.
3883 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3884 (val
== 1 || val
== 0)) {
3885 if (list_empty(&cont
->children
))
3886 memcg
->use_hierarchy
= val
;
3897 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
3898 enum mem_cgroup_stat_index idx
)
3900 struct mem_cgroup
*iter
;
3903 /* Per-cpu values can be negative, use a signed accumulator */
3904 for_each_mem_cgroup_tree(iter
, memcg
)
3905 val
+= mem_cgroup_read_stat(iter
, idx
);
3907 if (val
< 0) /* race ? */
3912 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3916 if (!mem_cgroup_is_root(memcg
)) {
3918 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3920 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3923 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3924 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3927 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
3929 return val
<< PAGE_SHIFT
;
3932 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3934 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3938 type
= MEMFILE_TYPE(cft
->private);
3939 name
= MEMFILE_ATTR(cft
->private);
3942 if (name
== RES_USAGE
)
3943 val
= mem_cgroup_usage(memcg
, false);
3945 val
= res_counter_read_u64(&memcg
->res
, name
);
3948 if (name
== RES_USAGE
)
3949 val
= mem_cgroup_usage(memcg
, true);
3951 val
= res_counter_read_u64(&memcg
->memsw
, name
);
3960 * The user of this function is...
3963 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3966 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3968 unsigned long long val
;
3971 type
= MEMFILE_TYPE(cft
->private);
3972 name
= MEMFILE_ATTR(cft
->private);
3975 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3979 /* This function does all necessary parse...reuse it */
3980 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3984 ret
= mem_cgroup_resize_limit(memcg
, val
);
3986 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3988 case RES_SOFT_LIMIT
:
3989 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3993 * For memsw, soft limits are hard to implement in terms
3994 * of semantics, for now, we support soft limits for
3995 * control without swap
3998 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
4003 ret
= -EINVAL
; /* should be BUG() ? */
4009 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
4010 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
4012 struct cgroup
*cgroup
;
4013 unsigned long long min_limit
, min_memsw_limit
, tmp
;
4015 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4016 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4017 cgroup
= memcg
->css
.cgroup
;
4018 if (!memcg
->use_hierarchy
)
4021 while (cgroup
->parent
) {
4022 cgroup
= cgroup
->parent
;
4023 memcg
= mem_cgroup_from_cont(cgroup
);
4024 if (!memcg
->use_hierarchy
)
4026 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4027 min_limit
= min(min_limit
, tmp
);
4028 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4029 min_memsw_limit
= min(min_memsw_limit
, tmp
);
4032 *mem_limit
= min_limit
;
4033 *memsw_limit
= min_memsw_limit
;
4037 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
4039 struct mem_cgroup
*memcg
;
4042 memcg
= mem_cgroup_from_cont(cont
);
4043 type
= MEMFILE_TYPE(event
);
4044 name
= MEMFILE_ATTR(event
);
4048 res_counter_reset_max(&memcg
->res
);
4050 res_counter_reset_max(&memcg
->memsw
);
4054 res_counter_reset_failcnt(&memcg
->res
);
4056 res_counter_reset_failcnt(&memcg
->memsw
);
4063 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
4066 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
4070 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4071 struct cftype
*cft
, u64 val
)
4073 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4075 if (val
>= (1 << NR_MOVE_TYPE
))
4078 * We check this value several times in both in can_attach() and
4079 * attach(), so we need cgroup lock to prevent this value from being
4083 memcg
->move_charge_at_immigrate
= val
;
4089 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4090 struct cftype
*cft
, u64 val
)
4097 /* For read statistics */
4115 struct mcs_total_stat
{
4116 s64 stat
[NR_MCS_STAT
];
4122 } memcg_stat_strings
[NR_MCS_STAT
] = {
4123 {"cache", "total_cache"},
4124 {"rss", "total_rss"},
4125 {"mapped_file", "total_mapped_file"},
4126 {"pgpgin", "total_pgpgin"},
4127 {"pgpgout", "total_pgpgout"},
4128 {"swap", "total_swap"},
4129 {"pgfault", "total_pgfault"},
4130 {"pgmajfault", "total_pgmajfault"},
4131 {"inactive_anon", "total_inactive_anon"},
4132 {"active_anon", "total_active_anon"},
4133 {"inactive_file", "total_inactive_file"},
4134 {"active_file", "total_active_file"},
4135 {"unevictable", "total_unevictable"}
4140 mem_cgroup_get_local_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4145 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4146 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4147 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4148 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4149 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
4150 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4151 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGIN
);
4152 s
->stat
[MCS_PGPGIN
] += val
;
4153 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGOUT
);
4154 s
->stat
[MCS_PGPGOUT
] += val
;
4155 if (do_swap_account
) {
4156 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
4157 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4159 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGFAULT
);
4160 s
->stat
[MCS_PGFAULT
] += val
;
4161 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4162 s
->stat
[MCS_PGMAJFAULT
] += val
;
4165 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_ANON
));
4166 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4167 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_ANON
));
4168 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4169 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_FILE
));
4170 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4171 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_FILE
));
4172 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4173 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
4174 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4178 mem_cgroup_get_total_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4180 struct mem_cgroup
*iter
;
4182 for_each_mem_cgroup_tree(iter
, memcg
)
4183 mem_cgroup_get_local_stat(iter
, s
);
4187 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4190 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4191 unsigned long node_nr
;
4192 struct cgroup
*cont
= m
->private;
4193 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4195 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL
);
4196 seq_printf(m
, "total=%lu", total_nr
);
4197 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4198 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
, LRU_ALL
);
4199 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4203 file_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_FILE
);
4204 seq_printf(m
, "file=%lu", file_nr
);
4205 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4206 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4208 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4212 anon_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_ANON
);
4213 seq_printf(m
, "anon=%lu", anon_nr
);
4214 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4215 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4217 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4221 unevictable_nr
= mem_cgroup_nr_lru_pages(mem_cont
, BIT(LRU_UNEVICTABLE
));
4222 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4223 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4224 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4225 BIT(LRU_UNEVICTABLE
));
4226 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4231 #endif /* CONFIG_NUMA */
4233 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4234 struct cgroup_map_cb
*cb
)
4236 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4237 struct mcs_total_stat mystat
;
4240 memset(&mystat
, 0, sizeof(mystat
));
4241 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4244 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4245 if (i
== MCS_SWAP
&& !do_swap_account
)
4247 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4250 /* Hierarchical information */
4252 unsigned long long limit
, memsw_limit
;
4253 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4254 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4255 if (do_swap_account
)
4256 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4259 memset(&mystat
, 0, sizeof(mystat
));
4260 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4261 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4262 if (i
== MCS_SWAP
&& !do_swap_account
)
4264 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4267 #ifdef CONFIG_DEBUG_VM
4270 struct mem_cgroup_per_zone
*mz
;
4271 unsigned long recent_rotated
[2] = {0, 0};
4272 unsigned long recent_scanned
[2] = {0, 0};
4274 for_each_online_node(nid
)
4275 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4276 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4278 recent_rotated
[0] +=
4279 mz
->reclaim_stat
.recent_rotated
[0];
4280 recent_rotated
[1] +=
4281 mz
->reclaim_stat
.recent_rotated
[1];
4282 recent_scanned
[0] +=
4283 mz
->reclaim_stat
.recent_scanned
[0];
4284 recent_scanned
[1] +=
4285 mz
->reclaim_stat
.recent_scanned
[1];
4287 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4288 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4289 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4290 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4297 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4299 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4301 return mem_cgroup_swappiness(memcg
);
4304 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4307 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4308 struct mem_cgroup
*parent
;
4313 if (cgrp
->parent
== NULL
)
4316 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4320 /* If under hierarchy, only empty-root can set this value */
4321 if ((parent
->use_hierarchy
) ||
4322 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4327 memcg
->swappiness
= val
;
4334 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4336 struct mem_cgroup_threshold_ary
*t
;
4342 t
= rcu_dereference(memcg
->thresholds
.primary
);
4344 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4349 usage
= mem_cgroup_usage(memcg
, swap
);
4352 * current_threshold points to threshold just below usage.
4353 * If it's not true, a threshold was crossed after last
4354 * call of __mem_cgroup_threshold().
4356 i
= t
->current_threshold
;
4359 * Iterate backward over array of thresholds starting from
4360 * current_threshold and check if a threshold is crossed.
4361 * If none of thresholds below usage is crossed, we read
4362 * only one element of the array here.
4364 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4365 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4367 /* i = current_threshold + 1 */
4371 * Iterate forward over array of thresholds starting from
4372 * current_threshold+1 and check if a threshold is crossed.
4373 * If none of thresholds above usage is crossed, we read
4374 * only one element of the array here.
4376 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4377 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4379 /* Update current_threshold */
4380 t
->current_threshold
= i
- 1;
4385 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4388 __mem_cgroup_threshold(memcg
, false);
4389 if (do_swap_account
)
4390 __mem_cgroup_threshold(memcg
, true);
4392 memcg
= parent_mem_cgroup(memcg
);
4396 static int compare_thresholds(const void *a
, const void *b
)
4398 const struct mem_cgroup_threshold
*_a
= a
;
4399 const struct mem_cgroup_threshold
*_b
= b
;
4401 return _a
->threshold
- _b
->threshold
;
4404 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4406 struct mem_cgroup_eventfd_list
*ev
;
4408 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4409 eventfd_signal(ev
->eventfd
, 1);
4413 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4415 struct mem_cgroup
*iter
;
4417 for_each_mem_cgroup_tree(iter
, memcg
)
4418 mem_cgroup_oom_notify_cb(iter
);
4421 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4422 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4424 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4425 struct mem_cgroup_thresholds
*thresholds
;
4426 struct mem_cgroup_threshold_ary
*new;
4427 int type
= MEMFILE_TYPE(cft
->private);
4428 u64 threshold
, usage
;
4431 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4435 mutex_lock(&memcg
->thresholds_lock
);
4438 thresholds
= &memcg
->thresholds
;
4439 else if (type
== _MEMSWAP
)
4440 thresholds
= &memcg
->memsw_thresholds
;
4444 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4446 /* Check if a threshold crossed before adding a new one */
4447 if (thresholds
->primary
)
4448 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4450 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4452 /* Allocate memory for new array of thresholds */
4453 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4461 /* Copy thresholds (if any) to new array */
4462 if (thresholds
->primary
) {
4463 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4464 sizeof(struct mem_cgroup_threshold
));
4467 /* Add new threshold */
4468 new->entries
[size
- 1].eventfd
= eventfd
;
4469 new->entries
[size
- 1].threshold
= threshold
;
4471 /* Sort thresholds. Registering of new threshold isn't time-critical */
4472 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4473 compare_thresholds
, NULL
);
4475 /* Find current threshold */
4476 new->current_threshold
= -1;
4477 for (i
= 0; i
< size
; i
++) {
4478 if (new->entries
[i
].threshold
< usage
) {
4480 * new->current_threshold will not be used until
4481 * rcu_assign_pointer(), so it's safe to increment
4484 ++new->current_threshold
;
4488 /* Free old spare buffer and save old primary buffer as spare */
4489 kfree(thresholds
->spare
);
4490 thresholds
->spare
= thresholds
->primary
;
4492 rcu_assign_pointer(thresholds
->primary
, new);
4494 /* To be sure that nobody uses thresholds */
4498 mutex_unlock(&memcg
->thresholds_lock
);
4503 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4504 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4506 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4507 struct mem_cgroup_thresholds
*thresholds
;
4508 struct mem_cgroup_threshold_ary
*new;
4509 int type
= MEMFILE_TYPE(cft
->private);
4513 mutex_lock(&memcg
->thresholds_lock
);
4515 thresholds
= &memcg
->thresholds
;
4516 else if (type
== _MEMSWAP
)
4517 thresholds
= &memcg
->memsw_thresholds
;
4522 * Something went wrong if we trying to unregister a threshold
4523 * if we don't have thresholds
4525 BUG_ON(!thresholds
);
4527 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4529 /* Check if a threshold crossed before removing */
4530 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4532 /* Calculate new number of threshold */
4534 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4535 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4539 new = thresholds
->spare
;
4541 /* Set thresholds array to NULL if we don't have thresholds */
4550 /* Copy thresholds and find current threshold */
4551 new->current_threshold
= -1;
4552 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4553 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4556 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4557 if (new->entries
[j
].threshold
< usage
) {
4559 * new->current_threshold will not be used
4560 * until rcu_assign_pointer(), so it's safe to increment
4563 ++new->current_threshold
;
4569 /* Swap primary and spare array */
4570 thresholds
->spare
= thresholds
->primary
;
4571 rcu_assign_pointer(thresholds
->primary
, new);
4573 /* To be sure that nobody uses thresholds */
4576 mutex_unlock(&memcg
->thresholds_lock
);
4579 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4580 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4582 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4583 struct mem_cgroup_eventfd_list
*event
;
4584 int type
= MEMFILE_TYPE(cft
->private);
4586 BUG_ON(type
!= _OOM_TYPE
);
4587 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4591 spin_lock(&memcg_oom_lock
);
4593 event
->eventfd
= eventfd
;
4594 list_add(&event
->list
, &memcg
->oom_notify
);
4596 /* already in OOM ? */
4597 if (atomic_read(&memcg
->under_oom
))
4598 eventfd_signal(eventfd
, 1);
4599 spin_unlock(&memcg_oom_lock
);
4604 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4605 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4607 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4608 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4609 int type
= MEMFILE_TYPE(cft
->private);
4611 BUG_ON(type
!= _OOM_TYPE
);
4613 spin_lock(&memcg_oom_lock
);
4615 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4616 if (ev
->eventfd
== eventfd
) {
4617 list_del(&ev
->list
);
4622 spin_unlock(&memcg_oom_lock
);
4625 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4626 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4628 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4630 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
4632 if (atomic_read(&memcg
->under_oom
))
4633 cb
->fill(cb
, "under_oom", 1);
4635 cb
->fill(cb
, "under_oom", 0);
4639 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4640 struct cftype
*cft
, u64 val
)
4642 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4643 struct mem_cgroup
*parent
;
4645 /* cannot set to root cgroup and only 0 and 1 are allowed */
4646 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4649 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4652 /* oom-kill-disable is a flag for subhierarchy. */
4653 if ((parent
->use_hierarchy
) ||
4654 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4658 memcg
->oom_kill_disable
= val
;
4660 memcg_oom_recover(memcg
);
4666 static const struct file_operations mem_control_numa_stat_file_operations
= {
4668 .llseek
= seq_lseek
,
4669 .release
= single_release
,
4672 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4674 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4676 file
->f_op
= &mem_control_numa_stat_file_operations
;
4677 return single_open(file
, mem_control_numa_stat_show
, cont
);
4679 #endif /* CONFIG_NUMA */
4681 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4682 static int register_kmem_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4685 * Part of this would be better living in a separate allocation
4686 * function, leaving us with just the cgroup tree population work.
4687 * We, however, depend on state such as network's proto_list that
4688 * is only initialized after cgroup creation. I found the less
4689 * cumbersome way to deal with it to defer it all to populate time
4691 return mem_cgroup_sockets_init(cont
, ss
);
4694 static void kmem_cgroup_destroy(struct cgroup_subsys
*ss
,
4695 struct cgroup
*cont
)
4697 mem_cgroup_sockets_destroy(cont
, ss
);
4700 static int register_kmem_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4705 static void kmem_cgroup_destroy(struct cgroup_subsys
*ss
,
4706 struct cgroup
*cont
)
4711 static struct cftype mem_cgroup_files
[] = {
4713 .name
= "usage_in_bytes",
4714 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4715 .read_u64
= mem_cgroup_read
,
4716 .register_event
= mem_cgroup_usage_register_event
,
4717 .unregister_event
= mem_cgroup_usage_unregister_event
,
4720 .name
= "max_usage_in_bytes",
4721 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4722 .trigger
= mem_cgroup_reset
,
4723 .read_u64
= mem_cgroup_read
,
4726 .name
= "limit_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4728 .write_string
= mem_cgroup_write
,
4729 .read_u64
= mem_cgroup_read
,
4732 .name
= "soft_limit_in_bytes",
4733 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4734 .write_string
= mem_cgroup_write
,
4735 .read_u64
= mem_cgroup_read
,
4739 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4740 .trigger
= mem_cgroup_reset
,
4741 .read_u64
= mem_cgroup_read
,
4745 .read_map
= mem_control_stat_show
,
4748 .name
= "force_empty",
4749 .trigger
= mem_cgroup_force_empty_write
,
4752 .name
= "use_hierarchy",
4753 .write_u64
= mem_cgroup_hierarchy_write
,
4754 .read_u64
= mem_cgroup_hierarchy_read
,
4757 .name
= "swappiness",
4758 .read_u64
= mem_cgroup_swappiness_read
,
4759 .write_u64
= mem_cgroup_swappiness_write
,
4762 .name
= "move_charge_at_immigrate",
4763 .read_u64
= mem_cgroup_move_charge_read
,
4764 .write_u64
= mem_cgroup_move_charge_write
,
4767 .name
= "oom_control",
4768 .read_map
= mem_cgroup_oom_control_read
,
4769 .write_u64
= mem_cgroup_oom_control_write
,
4770 .register_event
= mem_cgroup_oom_register_event
,
4771 .unregister_event
= mem_cgroup_oom_unregister_event
,
4772 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4776 .name
= "numa_stat",
4777 .open
= mem_control_numa_stat_open
,
4783 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4784 static struct cftype memsw_cgroup_files
[] = {
4786 .name
= "memsw.usage_in_bytes",
4787 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4788 .read_u64
= mem_cgroup_read
,
4789 .register_event
= mem_cgroup_usage_register_event
,
4790 .unregister_event
= mem_cgroup_usage_unregister_event
,
4793 .name
= "memsw.max_usage_in_bytes",
4794 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4795 .trigger
= mem_cgroup_reset
,
4796 .read_u64
= mem_cgroup_read
,
4799 .name
= "memsw.limit_in_bytes",
4800 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4801 .write_string
= mem_cgroup_write
,
4802 .read_u64
= mem_cgroup_read
,
4805 .name
= "memsw.failcnt",
4806 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4807 .trigger
= mem_cgroup_reset
,
4808 .read_u64
= mem_cgroup_read
,
4812 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4814 if (!do_swap_account
)
4816 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4817 ARRAY_SIZE(memsw_cgroup_files
));
4820 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4826 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4828 struct mem_cgroup_per_node
*pn
;
4829 struct mem_cgroup_per_zone
*mz
;
4831 int zone
, tmp
= node
;
4833 * This routine is called against possible nodes.
4834 * But it's BUG to call kmalloc() against offline node.
4836 * TODO: this routine can waste much memory for nodes which will
4837 * never be onlined. It's better to use memory hotplug callback
4840 if (!node_state(node
, N_NORMAL_MEMORY
))
4842 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4846 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4847 mz
= &pn
->zoneinfo
[zone
];
4849 INIT_LIST_HEAD(&mz
->lists
[l
]);
4850 mz
->usage_in_excess
= 0;
4851 mz
->on_tree
= false;
4854 memcg
->info
.nodeinfo
[node
] = pn
;
4858 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4860 kfree(memcg
->info
.nodeinfo
[node
]);
4863 static struct mem_cgroup
*mem_cgroup_alloc(void)
4865 struct mem_cgroup
*mem
;
4866 int size
= sizeof(struct mem_cgroup
);
4868 /* Can be very big if MAX_NUMNODES is very big */
4869 if (size
< PAGE_SIZE
)
4870 mem
= kzalloc(size
, GFP_KERNEL
);
4872 mem
= vzalloc(size
);
4877 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4880 spin_lock_init(&mem
->pcp_counter_lock
);
4884 if (size
< PAGE_SIZE
)
4892 * At destroying mem_cgroup, references from swap_cgroup can remain.
4893 * (scanning all at force_empty is too costly...)
4895 * Instead of clearing all references at force_empty, we remember
4896 * the number of reference from swap_cgroup and free mem_cgroup when
4897 * it goes down to 0.
4899 * Removal of cgroup itself succeeds regardless of refs from swap.
4902 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4906 mem_cgroup_remove_from_trees(memcg
);
4907 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
4909 for_each_node_state(node
, N_POSSIBLE
)
4910 free_mem_cgroup_per_zone_info(memcg
, node
);
4912 free_percpu(memcg
->stat
);
4913 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4919 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
4921 atomic_inc(&memcg
->refcnt
);
4924 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
4926 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
4927 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4928 __mem_cgroup_free(memcg
);
4930 mem_cgroup_put(parent
);
4934 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
4936 __mem_cgroup_put(memcg
, 1);
4940 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4942 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4944 if (!memcg
->res
.parent
)
4946 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
4948 EXPORT_SYMBOL(parent_mem_cgroup
);
4950 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4951 static void __init
enable_swap_cgroup(void)
4953 if (!mem_cgroup_disabled() && really_do_swap_account
)
4954 do_swap_account
= 1;
4957 static void __init
enable_swap_cgroup(void)
4962 static int mem_cgroup_soft_limit_tree_init(void)
4964 struct mem_cgroup_tree_per_node
*rtpn
;
4965 struct mem_cgroup_tree_per_zone
*rtpz
;
4966 int tmp
, node
, zone
;
4968 for_each_node_state(node
, N_POSSIBLE
) {
4970 if (!node_state(node
, N_NORMAL_MEMORY
))
4972 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4976 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4978 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4979 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4980 rtpz
->rb_root
= RB_ROOT
;
4981 spin_lock_init(&rtpz
->lock
);
4987 static struct cgroup_subsys_state
* __ref
4988 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4990 struct mem_cgroup
*memcg
, *parent
;
4991 long error
= -ENOMEM
;
4994 memcg
= mem_cgroup_alloc();
4996 return ERR_PTR(error
);
4998 for_each_node_state(node
, N_POSSIBLE
)
4999 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
5003 if (cont
->parent
== NULL
) {
5005 enable_swap_cgroup();
5007 if (mem_cgroup_soft_limit_tree_init())
5009 root_mem_cgroup
= memcg
;
5010 for_each_possible_cpu(cpu
) {
5011 struct memcg_stock_pcp
*stock
=
5012 &per_cpu(memcg_stock
, cpu
);
5013 INIT_WORK(&stock
->work
, drain_local_stock
);
5015 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5017 parent
= mem_cgroup_from_cont(cont
->parent
);
5018 memcg
->use_hierarchy
= parent
->use_hierarchy
;
5019 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
5022 if (parent
&& parent
->use_hierarchy
) {
5023 res_counter_init(&memcg
->res
, &parent
->res
);
5024 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
5026 * We increment refcnt of the parent to ensure that we can
5027 * safely access it on res_counter_charge/uncharge.
5028 * This refcnt will be decremented when freeing this
5029 * mem_cgroup(see mem_cgroup_put).
5031 mem_cgroup_get(parent
);
5033 res_counter_init(&memcg
->res
, NULL
);
5034 res_counter_init(&memcg
->memsw
, NULL
);
5036 memcg
->last_scanned_child
= 0;
5037 memcg
->last_scanned_node
= MAX_NUMNODES
;
5038 INIT_LIST_HEAD(&memcg
->oom_notify
);
5041 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
5042 atomic_set(&memcg
->refcnt
, 1);
5043 memcg
->move_charge_at_immigrate
= 0;
5044 mutex_init(&memcg
->thresholds_lock
);
5047 __mem_cgroup_free(memcg
);
5048 return ERR_PTR(error
);
5051 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
5052 struct cgroup
*cont
)
5054 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5056 return mem_cgroup_force_empty(memcg
, false);
5059 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
5060 struct cgroup
*cont
)
5062 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5064 kmem_cgroup_destroy(ss
, cont
);
5066 mem_cgroup_put(memcg
);
5069 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
5070 struct cgroup
*cont
)
5074 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
5075 ARRAY_SIZE(mem_cgroup_files
));
5078 ret
= register_memsw_files(cont
, ss
);
5081 ret
= register_kmem_files(cont
, ss
);
5087 /* Handlers for move charge at task migration. */
5088 #define PRECHARGE_COUNT_AT_ONCE 256
5089 static int mem_cgroup_do_precharge(unsigned long count
)
5092 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5093 struct mem_cgroup
*memcg
= mc
.to
;
5095 if (mem_cgroup_is_root(memcg
)) {
5096 mc
.precharge
+= count
;
5097 /* we don't need css_get for root */
5100 /* try to charge at once */
5102 struct res_counter
*dummy
;
5104 * "memcg" cannot be under rmdir() because we've already checked
5105 * by cgroup_lock_live_cgroup() that it is not removed and we
5106 * are still under the same cgroup_mutex. So we can postpone
5109 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
5111 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
5112 PAGE_SIZE
* count
, &dummy
)) {
5113 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
5116 mc
.precharge
+= count
;
5120 /* fall back to one by one charge */
5122 if (signal_pending(current
)) {
5126 if (!batch_count
--) {
5127 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5130 ret
= __mem_cgroup_try_charge(NULL
,
5131 GFP_KERNEL
, 1, &memcg
, false);
5133 /* mem_cgroup_clear_mc() will do uncharge later */
5141 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5142 * @vma: the vma the pte to be checked belongs
5143 * @addr: the address corresponding to the pte to be checked
5144 * @ptent: the pte to be checked
5145 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5148 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5149 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5150 * move charge. if @target is not NULL, the page is stored in target->page
5151 * with extra refcnt got(Callers should handle it).
5152 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5153 * target for charge migration. if @target is not NULL, the entry is stored
5156 * Called with pte lock held.
5163 enum mc_target_type
{
5164 MC_TARGET_NONE
, /* not used */
5169 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5170 unsigned long addr
, pte_t ptent
)
5172 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5174 if (!page
|| !page_mapped(page
))
5176 if (PageAnon(page
)) {
5177 /* we don't move shared anon */
5178 if (!move_anon() || page_mapcount(page
) > 2)
5180 } else if (!move_file())
5181 /* we ignore mapcount for file pages */
5183 if (!get_page_unless_zero(page
))
5189 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5190 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5193 struct page
*page
= NULL
;
5194 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5196 if (!move_anon() || non_swap_entry(ent
))
5198 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5199 if (usage_count
> 1) { /* we don't move shared anon */
5204 if (do_swap_account
)
5205 entry
->val
= ent
.val
;
5210 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5211 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5213 struct page
*page
= NULL
;
5214 struct inode
*inode
;
5215 struct address_space
*mapping
;
5218 if (!vma
->vm_file
) /* anonymous vma */
5223 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5224 mapping
= vma
->vm_file
->f_mapping
;
5225 if (pte_none(ptent
))
5226 pgoff
= linear_page_index(vma
, addr
);
5227 else /* pte_file(ptent) is true */
5228 pgoff
= pte_to_pgoff(ptent
);
5230 /* page is moved even if it's not RSS of this task(page-faulted). */
5231 page
= find_get_page(mapping
, pgoff
);
5234 /* shmem/tmpfs may report page out on swap: account for that too. */
5235 if (radix_tree_exceptional_entry(page
)) {
5236 swp_entry_t swap
= radix_to_swp_entry(page
);
5237 if (do_swap_account
)
5239 page
= find_get_page(&swapper_space
, swap
.val
);
5245 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5246 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5248 struct page
*page
= NULL
;
5249 struct page_cgroup
*pc
;
5251 swp_entry_t ent
= { .val
= 0 };
5253 if (pte_present(ptent
))
5254 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5255 else if (is_swap_pte(ptent
))
5256 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5257 else if (pte_none(ptent
) || pte_file(ptent
))
5258 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5260 if (!page
&& !ent
.val
)
5263 pc
= lookup_page_cgroup(page
);
5265 * Do only loose check w/o page_cgroup lock.
5266 * mem_cgroup_move_account() checks the pc is valid or not under
5269 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5270 ret
= MC_TARGET_PAGE
;
5272 target
->page
= page
;
5274 if (!ret
|| !target
)
5277 /* There is a swap entry and a page doesn't exist or isn't charged */
5278 if (ent
.val
&& !ret
&&
5279 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5280 ret
= MC_TARGET_SWAP
;
5287 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5288 unsigned long addr
, unsigned long end
,
5289 struct mm_walk
*walk
)
5291 struct vm_area_struct
*vma
= walk
->private;
5295 split_huge_page_pmd(walk
->mm
, pmd
);
5297 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5298 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5299 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5300 mc
.precharge
++; /* increment precharge temporarily */
5301 pte_unmap_unlock(pte
- 1, ptl
);
5307 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5309 unsigned long precharge
;
5310 struct vm_area_struct
*vma
;
5312 down_read(&mm
->mmap_sem
);
5313 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5314 struct mm_walk mem_cgroup_count_precharge_walk
= {
5315 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5319 if (is_vm_hugetlb_page(vma
))
5321 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5322 &mem_cgroup_count_precharge_walk
);
5324 up_read(&mm
->mmap_sem
);
5326 precharge
= mc
.precharge
;
5332 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5334 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5336 VM_BUG_ON(mc
.moving_task
);
5337 mc
.moving_task
= current
;
5338 return mem_cgroup_do_precharge(precharge
);
5341 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5342 static void __mem_cgroup_clear_mc(void)
5344 struct mem_cgroup
*from
= mc
.from
;
5345 struct mem_cgroup
*to
= mc
.to
;
5347 /* we must uncharge all the leftover precharges from mc.to */
5349 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5353 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5354 * we must uncharge here.
5356 if (mc
.moved_charge
) {
5357 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5358 mc
.moved_charge
= 0;
5360 /* we must fixup refcnts and charges */
5361 if (mc
.moved_swap
) {
5362 /* uncharge swap account from the old cgroup */
5363 if (!mem_cgroup_is_root(mc
.from
))
5364 res_counter_uncharge(&mc
.from
->memsw
,
5365 PAGE_SIZE
* mc
.moved_swap
);
5366 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5368 if (!mem_cgroup_is_root(mc
.to
)) {
5370 * we charged both to->res and to->memsw, so we should
5373 res_counter_uncharge(&mc
.to
->res
,
5374 PAGE_SIZE
* mc
.moved_swap
);
5376 /* we've already done mem_cgroup_get(mc.to) */
5379 memcg_oom_recover(from
);
5380 memcg_oom_recover(to
);
5381 wake_up_all(&mc
.waitq
);
5384 static void mem_cgroup_clear_mc(void)
5386 struct mem_cgroup
*from
= mc
.from
;
5389 * we must clear moving_task before waking up waiters at the end of
5392 mc
.moving_task
= NULL
;
5393 __mem_cgroup_clear_mc();
5394 spin_lock(&mc
.lock
);
5397 spin_unlock(&mc
.lock
);
5398 mem_cgroup_end_move(from
);
5401 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5402 struct cgroup
*cgroup
,
5403 struct cgroup_taskset
*tset
)
5405 struct task_struct
*p
= cgroup_taskset_first(tset
);
5407 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
5409 if (memcg
->move_charge_at_immigrate
) {
5410 struct mm_struct
*mm
;
5411 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5413 VM_BUG_ON(from
== memcg
);
5415 mm
= get_task_mm(p
);
5418 /* We move charges only when we move a owner of the mm */
5419 if (mm
->owner
== p
) {
5422 VM_BUG_ON(mc
.precharge
);
5423 VM_BUG_ON(mc
.moved_charge
);
5424 VM_BUG_ON(mc
.moved_swap
);
5425 mem_cgroup_start_move(from
);
5426 spin_lock(&mc
.lock
);
5429 spin_unlock(&mc
.lock
);
5430 /* We set mc.moving_task later */
5432 ret
= mem_cgroup_precharge_mc(mm
);
5434 mem_cgroup_clear_mc();
5441 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5442 struct cgroup
*cgroup
,
5443 struct cgroup_taskset
*tset
)
5445 mem_cgroup_clear_mc();
5448 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5449 unsigned long addr
, unsigned long end
,
5450 struct mm_walk
*walk
)
5453 struct vm_area_struct
*vma
= walk
->private;
5457 split_huge_page_pmd(walk
->mm
, pmd
);
5459 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5460 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5461 pte_t ptent
= *(pte
++);
5462 union mc_target target
;
5465 struct page_cgroup
*pc
;
5471 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5473 case MC_TARGET_PAGE
:
5475 if (isolate_lru_page(page
))
5477 pc
= lookup_page_cgroup(page
);
5478 if (!mem_cgroup_move_account(page
, 1, pc
,
5479 mc
.from
, mc
.to
, false)) {
5481 /* we uncharge from mc.from later. */
5484 putback_lru_page(page
);
5485 put
: /* is_target_pte_for_mc() gets the page */
5488 case MC_TARGET_SWAP
:
5490 if (!mem_cgroup_move_swap_account(ent
,
5491 mc
.from
, mc
.to
, false)) {
5493 /* we fixup refcnts and charges later. */
5501 pte_unmap_unlock(pte
- 1, ptl
);
5506 * We have consumed all precharges we got in can_attach().
5507 * We try charge one by one, but don't do any additional
5508 * charges to mc.to if we have failed in charge once in attach()
5511 ret
= mem_cgroup_do_precharge(1);
5519 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5521 struct vm_area_struct
*vma
;
5523 lru_add_drain_all();
5525 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5527 * Someone who are holding the mmap_sem might be waiting in
5528 * waitq. So we cancel all extra charges, wake up all waiters,
5529 * and retry. Because we cancel precharges, we might not be able
5530 * to move enough charges, but moving charge is a best-effort
5531 * feature anyway, so it wouldn't be a big problem.
5533 __mem_cgroup_clear_mc();
5537 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5539 struct mm_walk mem_cgroup_move_charge_walk
= {
5540 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5544 if (is_vm_hugetlb_page(vma
))
5546 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5547 &mem_cgroup_move_charge_walk
);
5550 * means we have consumed all precharges and failed in
5551 * doing additional charge. Just abandon here.
5555 up_read(&mm
->mmap_sem
);
5558 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5559 struct cgroup
*cont
,
5560 struct cgroup_taskset
*tset
)
5562 struct task_struct
*p
= cgroup_taskset_first(tset
);
5563 struct mm_struct
*mm
= get_task_mm(p
);
5567 mem_cgroup_move_charge(mm
);
5572 mem_cgroup_clear_mc();
5574 #else /* !CONFIG_MMU */
5575 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5576 struct cgroup
*cgroup
,
5577 struct cgroup_taskset
*tset
)
5581 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5582 struct cgroup
*cgroup
,
5583 struct cgroup_taskset
*tset
)
5586 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5587 struct cgroup
*cont
,
5588 struct cgroup_taskset
*tset
)
5593 struct cgroup_subsys mem_cgroup_subsys
= {
5595 .subsys_id
= mem_cgroup_subsys_id
,
5596 .create
= mem_cgroup_create
,
5597 .pre_destroy
= mem_cgroup_pre_destroy
,
5598 .destroy
= mem_cgroup_destroy
,
5599 .populate
= mem_cgroup_populate
,
5600 .can_attach
= mem_cgroup_can_attach
,
5601 .cancel_attach
= mem_cgroup_cancel_attach
,
5602 .attach
= mem_cgroup_move_task
,
5607 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5608 static int __init
enable_swap_account(char *s
)
5610 /* consider enabled if no parameter or 1 is given */
5611 if (!strcmp(s
, "1"))
5612 really_do_swap_account
= 1;
5613 else if (!strcmp(s
, "0"))
5614 really_do_swap_account
= 0;
5617 __setup("swapaccount=", enable_swap_account
);