microblaze: Fix pmd_populate macro
[linux-2.6/libata-dev.git] / drivers / mtd / nand / nandsim.c
blobc25648bb5793423ba0c6ce8378744b912715bdc9
1 /*
2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
42 #include <linux/fs.h>
43 #include <linux/pagemap.h>
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #endif
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
58 #endif
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
61 #endif
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
64 #endif
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
67 #endif
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE 50
70 #endif
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH 8
73 #endif
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS 0
76 #endif
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG 0
79 #endif
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG 0
82 #endif
83 #ifndef CONFIG_NANDSIM_MAX_PARTS
84 #define CONFIG_NANDSIM_MAX_PARTS 32
85 #endif
87 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
88 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
89 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
90 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
91 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
92 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
93 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
94 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
95 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
96 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
97 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
98 static uint log = CONFIG_NANDSIM_LOG;
99 static uint dbg = CONFIG_NANDSIM_DBG;
100 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
101 static unsigned int parts_num;
102 static char *badblocks = NULL;
103 static char *weakblocks = NULL;
104 static char *weakpages = NULL;
105 static unsigned int bitflips = 0;
106 static char *gravepages = NULL;
107 static unsigned int rptwear = 0;
108 static unsigned int overridesize = 0;
109 static char *cache_file = NULL;
111 module_param(first_id_byte, uint, 0400);
112 module_param(second_id_byte, uint, 0400);
113 module_param(third_id_byte, uint, 0400);
114 module_param(fourth_id_byte, uint, 0400);
115 module_param(access_delay, uint, 0400);
116 module_param(programm_delay, uint, 0400);
117 module_param(erase_delay, uint, 0400);
118 module_param(output_cycle, uint, 0400);
119 module_param(input_cycle, uint, 0400);
120 module_param(bus_width, uint, 0400);
121 module_param(do_delays, uint, 0400);
122 module_param(log, uint, 0400);
123 module_param(dbg, uint, 0400);
124 module_param_array(parts, ulong, &parts_num, 0400);
125 module_param(badblocks, charp, 0400);
126 module_param(weakblocks, charp, 0400);
127 module_param(weakpages, charp, 0400);
128 module_param(bitflips, uint, 0400);
129 module_param(gravepages, charp, 0400);
130 module_param(rptwear, uint, 0400);
131 module_param(overridesize, uint, 0400);
132 module_param(cache_file, charp, 0400);
134 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
135 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
136 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
137 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
138 MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
139 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
140 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
141 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
142 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
143 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
144 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
145 MODULE_PARM_DESC(log, "Perform logging if not zero");
146 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
147 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
148 /* Page and erase block positions for the following parameters are independent of any partitions */
149 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
150 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
151 " separated by commas e.g. 113:2 means eb 113"
152 " can be erased only twice before failing");
153 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
154 " separated by commas e.g. 1401:2 means page 1401"
155 " can be written only twice before failing");
156 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
157 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
158 " separated by commas e.g. 1401:2 means page 1401"
159 " can be read only twice before failing");
160 MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
161 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
162 "The size is specified in erase blocks and as the exponent of a power of two"
163 " e.g. 5 means a size of 32 erase blocks");
164 MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
166 /* The largest possible page size */
167 #define NS_LARGEST_PAGE_SIZE 4096
169 /* The prefix for simulator output */
170 #define NS_OUTPUT_PREFIX "[nandsim]"
172 /* Simulator's output macros (logging, debugging, warning, error) */
173 #define NS_LOG(args...) \
174 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
175 #define NS_DBG(args...) \
176 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
177 #define NS_WARN(args...) \
178 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
179 #define NS_ERR(args...) \
180 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
181 #define NS_INFO(args...) \
182 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
184 /* Busy-wait delay macros (microseconds, milliseconds) */
185 #define NS_UDELAY(us) \
186 do { if (do_delays) udelay(us); } while(0)
187 #define NS_MDELAY(us) \
188 do { if (do_delays) mdelay(us); } while(0)
190 /* Is the nandsim structure initialized ? */
191 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
193 /* Good operation completion status */
194 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
196 /* Operation failed completion status */
197 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
199 /* Calculate the page offset in flash RAM image by (row, column) address */
200 #define NS_RAW_OFFSET(ns) \
201 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
203 /* Calculate the OOB offset in flash RAM image by (row, column) address */
204 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
206 /* After a command is input, the simulator goes to one of the following states */
207 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
208 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
209 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
210 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
211 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
212 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
213 #define STATE_CMD_STATUS 0x00000007 /* read status */
214 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
215 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
216 #define STATE_CMD_READID 0x0000000A /* read ID */
217 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
218 #define STATE_CMD_RESET 0x0000000C /* reset */
219 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
220 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
221 #define STATE_CMD_MASK 0x0000000F /* command states mask */
223 /* After an address is input, the simulator goes to one of these states */
224 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
225 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
226 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
227 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
228 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
230 /* Durind data input/output the simulator is in these states */
231 #define STATE_DATAIN 0x00000100 /* waiting for data input */
232 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
234 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
235 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
236 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
237 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
238 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
240 /* Previous operation is done, ready to accept new requests */
241 #define STATE_READY 0x00000000
243 /* This state is used to mark that the next state isn't known yet */
244 #define STATE_UNKNOWN 0x10000000
246 /* Simulator's actions bit masks */
247 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
248 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
249 #define ACTION_SECERASE 0x00300000 /* erase sector */
250 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
251 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
252 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
253 #define ACTION_MASK 0x00700000 /* action mask */
255 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
256 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
258 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
259 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
260 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
261 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
262 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
263 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
264 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
265 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
266 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
267 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
269 /* Remove action bits ftom state */
270 #define NS_STATE(x) ((x) & ~ACTION_MASK)
273 * Maximum previous states which need to be saved. Currently saving is
274 * only needed for page programm operation with preceeded read command
275 * (which is only valid for 512-byte pages).
277 #define NS_MAX_PREVSTATES 1
279 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
280 #define NS_MAX_HELD_PAGES 16
283 * A union to represent flash memory contents and flash buffer.
285 union ns_mem {
286 u_char *byte; /* for byte access */
287 uint16_t *word; /* for 16-bit word access */
291 * The structure which describes all the internal simulator data.
293 struct nandsim {
294 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
295 unsigned int nbparts;
297 uint busw; /* flash chip bus width (8 or 16) */
298 u_char ids[4]; /* chip's ID bytes */
299 uint32_t options; /* chip's characteristic bits */
300 uint32_t state; /* current chip state */
301 uint32_t nxstate; /* next expected state */
303 uint32_t *op; /* current operation, NULL operations isn't known yet */
304 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
305 uint16_t npstates; /* number of previous states saved */
306 uint16_t stateidx; /* current state index */
308 /* The simulated NAND flash pages array */
309 union ns_mem *pages;
311 /* Slab allocator for nand pages */
312 struct kmem_cache *nand_pages_slab;
314 /* Internal buffer of page + OOB size bytes */
315 union ns_mem buf;
317 /* NAND flash "geometry" */
318 struct {
319 uint64_t totsz; /* total flash size, bytes */
320 uint32_t secsz; /* flash sector (erase block) size, bytes */
321 uint pgsz; /* NAND flash page size, bytes */
322 uint oobsz; /* page OOB area size, bytes */
323 uint64_t totszoob; /* total flash size including OOB, bytes */
324 uint pgszoob; /* page size including OOB , bytes*/
325 uint secszoob; /* sector size including OOB, bytes */
326 uint pgnum; /* total number of pages */
327 uint pgsec; /* number of pages per sector */
328 uint secshift; /* bits number in sector size */
329 uint pgshift; /* bits number in page size */
330 uint oobshift; /* bits number in OOB size */
331 uint pgaddrbytes; /* bytes per page address */
332 uint secaddrbytes; /* bytes per sector address */
333 uint idbytes; /* the number ID bytes that this chip outputs */
334 } geom;
336 /* NAND flash internal registers */
337 struct {
338 unsigned command; /* the command register */
339 u_char status; /* the status register */
340 uint row; /* the page number */
341 uint column; /* the offset within page */
342 uint count; /* internal counter */
343 uint num; /* number of bytes which must be processed */
344 uint off; /* fixed page offset */
345 } regs;
347 /* NAND flash lines state */
348 struct {
349 int ce; /* chip Enable */
350 int cle; /* command Latch Enable */
351 int ale; /* address Latch Enable */
352 int wp; /* write Protect */
353 } lines;
355 /* Fields needed when using a cache file */
356 struct file *cfile; /* Open file */
357 unsigned char *pages_written; /* Which pages have been written */
358 void *file_buf;
359 struct page *held_pages[NS_MAX_HELD_PAGES];
360 int held_cnt;
364 * Operations array. To perform any operation the simulator must pass
365 * through the correspondent states chain.
367 static struct nandsim_operations {
368 uint32_t reqopts; /* options which are required to perform the operation */
369 uint32_t states[NS_OPER_STATES]; /* operation's states */
370 } ops[NS_OPER_NUM] = {
371 /* Read page + OOB from the beginning */
372 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
373 STATE_DATAOUT, STATE_READY}},
374 /* Read page + OOB from the second half */
375 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
376 STATE_DATAOUT, STATE_READY}},
377 /* Read OOB */
378 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
379 STATE_DATAOUT, STATE_READY}},
380 /* Programm page starting from the beginning */
381 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
382 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
383 /* Programm page starting from the beginning */
384 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
385 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
386 /* Programm page starting from the second half */
387 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
388 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389 /* Programm OOB */
390 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
391 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
392 /* Erase sector */
393 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
394 /* Read status */
395 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
396 /* Read multi-plane status */
397 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
398 /* Read ID */
399 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
400 /* Large page devices read page */
401 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
402 STATE_DATAOUT, STATE_READY}},
403 /* Large page devices random page read */
404 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
405 STATE_DATAOUT, STATE_READY}},
408 struct weak_block {
409 struct list_head list;
410 unsigned int erase_block_no;
411 unsigned int max_erases;
412 unsigned int erases_done;
415 static LIST_HEAD(weak_blocks);
417 struct weak_page {
418 struct list_head list;
419 unsigned int page_no;
420 unsigned int max_writes;
421 unsigned int writes_done;
424 static LIST_HEAD(weak_pages);
426 struct grave_page {
427 struct list_head list;
428 unsigned int page_no;
429 unsigned int max_reads;
430 unsigned int reads_done;
433 static LIST_HEAD(grave_pages);
435 static unsigned long *erase_block_wear = NULL;
436 static unsigned int wear_eb_count = 0;
437 static unsigned long total_wear = 0;
438 static unsigned int rptwear_cnt = 0;
440 /* MTD structure for NAND controller */
441 static struct mtd_info *nsmtd;
443 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
446 * Allocate array of page pointers, create slab allocation for an array
447 * and initialize the array by NULL pointers.
449 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
451 static int alloc_device(struct nandsim *ns)
453 struct file *cfile;
454 int i, err;
456 if (cache_file) {
457 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
458 if (IS_ERR(cfile))
459 return PTR_ERR(cfile);
460 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
461 NS_ERR("alloc_device: cache file not readable\n");
462 err = -EINVAL;
463 goto err_close;
465 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
466 NS_ERR("alloc_device: cache file not writeable\n");
467 err = -EINVAL;
468 goto err_close;
470 ns->pages_written = vmalloc(ns->geom.pgnum);
471 if (!ns->pages_written) {
472 NS_ERR("alloc_device: unable to allocate pages written array\n");
473 err = -ENOMEM;
474 goto err_close;
476 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
477 if (!ns->file_buf) {
478 NS_ERR("alloc_device: unable to allocate file buf\n");
479 err = -ENOMEM;
480 goto err_free;
482 ns->cfile = cfile;
483 memset(ns->pages_written, 0, ns->geom.pgnum);
484 return 0;
487 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
488 if (!ns->pages) {
489 NS_ERR("alloc_device: unable to allocate page array\n");
490 return -ENOMEM;
492 for (i = 0; i < ns->geom.pgnum; i++) {
493 ns->pages[i].byte = NULL;
495 ns->nand_pages_slab = kmem_cache_create("nandsim",
496 ns->geom.pgszoob, 0, 0, NULL);
497 if (!ns->nand_pages_slab) {
498 NS_ERR("cache_create: unable to create kmem_cache\n");
499 return -ENOMEM;
502 return 0;
504 err_free:
505 vfree(ns->pages_written);
506 err_close:
507 filp_close(cfile, NULL);
508 return err;
512 * Free any allocated pages, and free the array of page pointers.
514 static void free_device(struct nandsim *ns)
516 int i;
518 if (ns->cfile) {
519 kfree(ns->file_buf);
520 vfree(ns->pages_written);
521 filp_close(ns->cfile, NULL);
522 return;
525 if (ns->pages) {
526 for (i = 0; i < ns->geom.pgnum; i++) {
527 if (ns->pages[i].byte)
528 kmem_cache_free(ns->nand_pages_slab,
529 ns->pages[i].byte);
531 kmem_cache_destroy(ns->nand_pages_slab);
532 vfree(ns->pages);
536 static char *get_partition_name(int i)
538 char buf[64];
539 sprintf(buf, "NAND simulator partition %d", i);
540 return kstrdup(buf, GFP_KERNEL);
543 static uint64_t divide(uint64_t n, uint32_t d)
545 do_div(n, d);
546 return n;
550 * Initialize the nandsim structure.
552 * RETURNS: 0 if success, -ERRNO if failure.
554 static int init_nandsim(struct mtd_info *mtd)
556 struct nand_chip *chip = mtd->priv;
557 struct nandsim *ns = chip->priv;
558 int i, ret = 0;
559 uint64_t remains;
560 uint64_t next_offset;
562 if (NS_IS_INITIALIZED(ns)) {
563 NS_ERR("init_nandsim: nandsim is already initialized\n");
564 return -EIO;
567 /* Force mtd to not do delays */
568 chip->chip_delay = 0;
570 /* Initialize the NAND flash parameters */
571 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
572 ns->geom.totsz = mtd->size;
573 ns->geom.pgsz = mtd->writesize;
574 ns->geom.oobsz = mtd->oobsize;
575 ns->geom.secsz = mtd->erasesize;
576 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
577 ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
578 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
579 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
580 ns->geom.pgshift = chip->page_shift;
581 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
582 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
583 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
584 ns->options = 0;
586 if (ns->geom.pgsz == 256) {
587 ns->options |= OPT_PAGE256;
589 else if (ns->geom.pgsz == 512) {
590 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
591 if (ns->busw == 8)
592 ns->options |= OPT_PAGE512_8BIT;
593 } else if (ns->geom.pgsz == 2048) {
594 ns->options |= OPT_PAGE2048;
595 } else if (ns->geom.pgsz == 4096) {
596 ns->options |= OPT_PAGE4096;
597 } else {
598 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
599 return -EIO;
602 if (ns->options & OPT_SMALLPAGE) {
603 if (ns->geom.totsz <= (32 << 20)) {
604 ns->geom.pgaddrbytes = 3;
605 ns->geom.secaddrbytes = 2;
606 } else {
607 ns->geom.pgaddrbytes = 4;
608 ns->geom.secaddrbytes = 3;
610 } else {
611 if (ns->geom.totsz <= (128 << 20)) {
612 ns->geom.pgaddrbytes = 4;
613 ns->geom.secaddrbytes = 2;
614 } else {
615 ns->geom.pgaddrbytes = 5;
616 ns->geom.secaddrbytes = 3;
620 /* Fill the partition_info structure */
621 if (parts_num > ARRAY_SIZE(ns->partitions)) {
622 NS_ERR("too many partitions.\n");
623 ret = -EINVAL;
624 goto error;
626 remains = ns->geom.totsz;
627 next_offset = 0;
628 for (i = 0; i < parts_num; ++i) {
629 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
631 if (!part_sz || part_sz > remains) {
632 NS_ERR("bad partition size.\n");
633 ret = -EINVAL;
634 goto error;
636 ns->partitions[i].name = get_partition_name(i);
637 ns->partitions[i].offset = next_offset;
638 ns->partitions[i].size = part_sz;
639 next_offset += ns->partitions[i].size;
640 remains -= ns->partitions[i].size;
642 ns->nbparts = parts_num;
643 if (remains) {
644 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
645 NS_ERR("too many partitions.\n");
646 ret = -EINVAL;
647 goto error;
649 ns->partitions[i].name = get_partition_name(i);
650 ns->partitions[i].offset = next_offset;
651 ns->partitions[i].size = remains;
652 ns->nbparts += 1;
655 /* Detect how many ID bytes the NAND chip outputs */
656 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
657 if (second_id_byte != nand_flash_ids[i].id)
658 continue;
659 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
660 ns->options |= OPT_AUTOINCR;
663 if (ns->busw == 16)
664 NS_WARN("16-bit flashes support wasn't tested\n");
666 printk("flash size: %llu MiB\n",
667 (unsigned long long)ns->geom.totsz >> 20);
668 printk("page size: %u bytes\n", ns->geom.pgsz);
669 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
670 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
671 printk("pages number: %u\n", ns->geom.pgnum);
672 printk("pages per sector: %u\n", ns->geom.pgsec);
673 printk("bus width: %u\n", ns->busw);
674 printk("bits in sector size: %u\n", ns->geom.secshift);
675 printk("bits in page size: %u\n", ns->geom.pgshift);
676 printk("bits in OOB size: %u\n", ns->geom.oobshift);
677 printk("flash size with OOB: %llu KiB\n",
678 (unsigned long long)ns->geom.totszoob >> 10);
679 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
680 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
681 printk("options: %#x\n", ns->options);
683 if ((ret = alloc_device(ns)) != 0)
684 goto error;
686 /* Allocate / initialize the internal buffer */
687 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
688 if (!ns->buf.byte) {
689 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
690 ns->geom.pgszoob);
691 ret = -ENOMEM;
692 goto error;
694 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
696 return 0;
698 error:
699 free_device(ns);
701 return ret;
705 * Free the nandsim structure.
707 static void free_nandsim(struct nandsim *ns)
709 kfree(ns->buf.byte);
710 free_device(ns);
712 return;
715 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
717 char *w;
718 int zero_ok;
719 unsigned int erase_block_no;
720 loff_t offset;
722 if (!badblocks)
723 return 0;
724 w = badblocks;
725 do {
726 zero_ok = (*w == '0' ? 1 : 0);
727 erase_block_no = simple_strtoul(w, &w, 0);
728 if (!zero_ok && !erase_block_no) {
729 NS_ERR("invalid badblocks.\n");
730 return -EINVAL;
732 offset = erase_block_no * ns->geom.secsz;
733 if (mtd->block_markbad(mtd, offset)) {
734 NS_ERR("invalid badblocks.\n");
735 return -EINVAL;
737 if (*w == ',')
738 w += 1;
739 } while (*w);
740 return 0;
743 static int parse_weakblocks(void)
745 char *w;
746 int zero_ok;
747 unsigned int erase_block_no;
748 unsigned int max_erases;
749 struct weak_block *wb;
751 if (!weakblocks)
752 return 0;
753 w = weakblocks;
754 do {
755 zero_ok = (*w == '0' ? 1 : 0);
756 erase_block_no = simple_strtoul(w, &w, 0);
757 if (!zero_ok && !erase_block_no) {
758 NS_ERR("invalid weakblocks.\n");
759 return -EINVAL;
761 max_erases = 3;
762 if (*w == ':') {
763 w += 1;
764 max_erases = simple_strtoul(w, &w, 0);
766 if (*w == ',')
767 w += 1;
768 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
769 if (!wb) {
770 NS_ERR("unable to allocate memory.\n");
771 return -ENOMEM;
773 wb->erase_block_no = erase_block_no;
774 wb->max_erases = max_erases;
775 list_add(&wb->list, &weak_blocks);
776 } while (*w);
777 return 0;
780 static int erase_error(unsigned int erase_block_no)
782 struct weak_block *wb;
784 list_for_each_entry(wb, &weak_blocks, list)
785 if (wb->erase_block_no == erase_block_no) {
786 if (wb->erases_done >= wb->max_erases)
787 return 1;
788 wb->erases_done += 1;
789 return 0;
791 return 0;
794 static int parse_weakpages(void)
796 char *w;
797 int zero_ok;
798 unsigned int page_no;
799 unsigned int max_writes;
800 struct weak_page *wp;
802 if (!weakpages)
803 return 0;
804 w = weakpages;
805 do {
806 zero_ok = (*w == '0' ? 1 : 0);
807 page_no = simple_strtoul(w, &w, 0);
808 if (!zero_ok && !page_no) {
809 NS_ERR("invalid weakpagess.\n");
810 return -EINVAL;
812 max_writes = 3;
813 if (*w == ':') {
814 w += 1;
815 max_writes = simple_strtoul(w, &w, 0);
817 if (*w == ',')
818 w += 1;
819 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
820 if (!wp) {
821 NS_ERR("unable to allocate memory.\n");
822 return -ENOMEM;
824 wp->page_no = page_no;
825 wp->max_writes = max_writes;
826 list_add(&wp->list, &weak_pages);
827 } while (*w);
828 return 0;
831 static int write_error(unsigned int page_no)
833 struct weak_page *wp;
835 list_for_each_entry(wp, &weak_pages, list)
836 if (wp->page_no == page_no) {
837 if (wp->writes_done >= wp->max_writes)
838 return 1;
839 wp->writes_done += 1;
840 return 0;
842 return 0;
845 static int parse_gravepages(void)
847 char *g;
848 int zero_ok;
849 unsigned int page_no;
850 unsigned int max_reads;
851 struct grave_page *gp;
853 if (!gravepages)
854 return 0;
855 g = gravepages;
856 do {
857 zero_ok = (*g == '0' ? 1 : 0);
858 page_no = simple_strtoul(g, &g, 0);
859 if (!zero_ok && !page_no) {
860 NS_ERR("invalid gravepagess.\n");
861 return -EINVAL;
863 max_reads = 3;
864 if (*g == ':') {
865 g += 1;
866 max_reads = simple_strtoul(g, &g, 0);
868 if (*g == ',')
869 g += 1;
870 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
871 if (!gp) {
872 NS_ERR("unable to allocate memory.\n");
873 return -ENOMEM;
875 gp->page_no = page_no;
876 gp->max_reads = max_reads;
877 list_add(&gp->list, &grave_pages);
878 } while (*g);
879 return 0;
882 static int read_error(unsigned int page_no)
884 struct grave_page *gp;
886 list_for_each_entry(gp, &grave_pages, list)
887 if (gp->page_no == page_no) {
888 if (gp->reads_done >= gp->max_reads)
889 return 1;
890 gp->reads_done += 1;
891 return 0;
893 return 0;
896 static void free_lists(void)
898 struct list_head *pos, *n;
899 list_for_each_safe(pos, n, &weak_blocks) {
900 list_del(pos);
901 kfree(list_entry(pos, struct weak_block, list));
903 list_for_each_safe(pos, n, &weak_pages) {
904 list_del(pos);
905 kfree(list_entry(pos, struct weak_page, list));
907 list_for_each_safe(pos, n, &grave_pages) {
908 list_del(pos);
909 kfree(list_entry(pos, struct grave_page, list));
911 kfree(erase_block_wear);
914 static int setup_wear_reporting(struct mtd_info *mtd)
916 size_t mem;
918 if (!rptwear)
919 return 0;
920 wear_eb_count = divide(mtd->size, mtd->erasesize);
921 mem = wear_eb_count * sizeof(unsigned long);
922 if (mem / sizeof(unsigned long) != wear_eb_count) {
923 NS_ERR("Too many erase blocks for wear reporting\n");
924 return -ENOMEM;
926 erase_block_wear = kzalloc(mem, GFP_KERNEL);
927 if (!erase_block_wear) {
928 NS_ERR("Too many erase blocks for wear reporting\n");
929 return -ENOMEM;
931 return 0;
934 static void update_wear(unsigned int erase_block_no)
936 unsigned long wmin = -1, wmax = 0, avg;
937 unsigned long deciles[10], decile_max[10], tot = 0;
938 unsigned int i;
940 if (!erase_block_wear)
941 return;
942 total_wear += 1;
943 if (total_wear == 0)
944 NS_ERR("Erase counter total overflow\n");
945 erase_block_wear[erase_block_no] += 1;
946 if (erase_block_wear[erase_block_no] == 0)
947 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
948 rptwear_cnt += 1;
949 if (rptwear_cnt < rptwear)
950 return;
951 rptwear_cnt = 0;
952 /* Calc wear stats */
953 for (i = 0; i < wear_eb_count; ++i) {
954 unsigned long wear = erase_block_wear[i];
955 if (wear < wmin)
956 wmin = wear;
957 if (wear > wmax)
958 wmax = wear;
959 tot += wear;
961 for (i = 0; i < 9; ++i) {
962 deciles[i] = 0;
963 decile_max[i] = (wmax * (i + 1) + 5) / 10;
965 deciles[9] = 0;
966 decile_max[9] = wmax;
967 for (i = 0; i < wear_eb_count; ++i) {
968 int d;
969 unsigned long wear = erase_block_wear[i];
970 for (d = 0; d < 10; ++d)
971 if (wear <= decile_max[d]) {
972 deciles[d] += 1;
973 break;
976 avg = tot / wear_eb_count;
977 /* Output wear report */
978 NS_INFO("*** Wear Report ***\n");
979 NS_INFO("Total numbers of erases: %lu\n", tot);
980 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
981 NS_INFO("Average number of erases: %lu\n", avg);
982 NS_INFO("Maximum number of erases: %lu\n", wmax);
983 NS_INFO("Minimum number of erases: %lu\n", wmin);
984 for (i = 0; i < 10; ++i) {
985 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
986 if (from > decile_max[i])
987 continue;
988 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
989 from,
990 decile_max[i],
991 deciles[i]);
993 NS_INFO("*** End of Wear Report ***\n");
997 * Returns the string representation of 'state' state.
999 static char *get_state_name(uint32_t state)
1001 switch (NS_STATE(state)) {
1002 case STATE_CMD_READ0:
1003 return "STATE_CMD_READ0";
1004 case STATE_CMD_READ1:
1005 return "STATE_CMD_READ1";
1006 case STATE_CMD_PAGEPROG:
1007 return "STATE_CMD_PAGEPROG";
1008 case STATE_CMD_READOOB:
1009 return "STATE_CMD_READOOB";
1010 case STATE_CMD_READSTART:
1011 return "STATE_CMD_READSTART";
1012 case STATE_CMD_ERASE1:
1013 return "STATE_CMD_ERASE1";
1014 case STATE_CMD_STATUS:
1015 return "STATE_CMD_STATUS";
1016 case STATE_CMD_STATUS_M:
1017 return "STATE_CMD_STATUS_M";
1018 case STATE_CMD_SEQIN:
1019 return "STATE_CMD_SEQIN";
1020 case STATE_CMD_READID:
1021 return "STATE_CMD_READID";
1022 case STATE_CMD_ERASE2:
1023 return "STATE_CMD_ERASE2";
1024 case STATE_CMD_RESET:
1025 return "STATE_CMD_RESET";
1026 case STATE_CMD_RNDOUT:
1027 return "STATE_CMD_RNDOUT";
1028 case STATE_CMD_RNDOUTSTART:
1029 return "STATE_CMD_RNDOUTSTART";
1030 case STATE_ADDR_PAGE:
1031 return "STATE_ADDR_PAGE";
1032 case STATE_ADDR_SEC:
1033 return "STATE_ADDR_SEC";
1034 case STATE_ADDR_ZERO:
1035 return "STATE_ADDR_ZERO";
1036 case STATE_ADDR_COLUMN:
1037 return "STATE_ADDR_COLUMN";
1038 case STATE_DATAIN:
1039 return "STATE_DATAIN";
1040 case STATE_DATAOUT:
1041 return "STATE_DATAOUT";
1042 case STATE_DATAOUT_ID:
1043 return "STATE_DATAOUT_ID";
1044 case STATE_DATAOUT_STATUS:
1045 return "STATE_DATAOUT_STATUS";
1046 case STATE_DATAOUT_STATUS_M:
1047 return "STATE_DATAOUT_STATUS_M";
1048 case STATE_READY:
1049 return "STATE_READY";
1050 case STATE_UNKNOWN:
1051 return "STATE_UNKNOWN";
1054 NS_ERR("get_state_name: unknown state, BUG\n");
1055 return NULL;
1059 * Check if command is valid.
1061 * RETURNS: 1 if wrong command, 0 if right.
1063 static int check_command(int cmd)
1065 switch (cmd) {
1067 case NAND_CMD_READ0:
1068 case NAND_CMD_READ1:
1069 case NAND_CMD_READSTART:
1070 case NAND_CMD_PAGEPROG:
1071 case NAND_CMD_READOOB:
1072 case NAND_CMD_ERASE1:
1073 case NAND_CMD_STATUS:
1074 case NAND_CMD_SEQIN:
1075 case NAND_CMD_READID:
1076 case NAND_CMD_ERASE2:
1077 case NAND_CMD_RESET:
1078 case NAND_CMD_RNDOUT:
1079 case NAND_CMD_RNDOUTSTART:
1080 return 0;
1082 case NAND_CMD_STATUS_MULTI:
1083 default:
1084 return 1;
1089 * Returns state after command is accepted by command number.
1091 static uint32_t get_state_by_command(unsigned command)
1093 switch (command) {
1094 case NAND_CMD_READ0:
1095 return STATE_CMD_READ0;
1096 case NAND_CMD_READ1:
1097 return STATE_CMD_READ1;
1098 case NAND_CMD_PAGEPROG:
1099 return STATE_CMD_PAGEPROG;
1100 case NAND_CMD_READSTART:
1101 return STATE_CMD_READSTART;
1102 case NAND_CMD_READOOB:
1103 return STATE_CMD_READOOB;
1104 case NAND_CMD_ERASE1:
1105 return STATE_CMD_ERASE1;
1106 case NAND_CMD_STATUS:
1107 return STATE_CMD_STATUS;
1108 case NAND_CMD_STATUS_MULTI:
1109 return STATE_CMD_STATUS_M;
1110 case NAND_CMD_SEQIN:
1111 return STATE_CMD_SEQIN;
1112 case NAND_CMD_READID:
1113 return STATE_CMD_READID;
1114 case NAND_CMD_ERASE2:
1115 return STATE_CMD_ERASE2;
1116 case NAND_CMD_RESET:
1117 return STATE_CMD_RESET;
1118 case NAND_CMD_RNDOUT:
1119 return STATE_CMD_RNDOUT;
1120 case NAND_CMD_RNDOUTSTART:
1121 return STATE_CMD_RNDOUTSTART;
1124 NS_ERR("get_state_by_command: unknown command, BUG\n");
1125 return 0;
1129 * Move an address byte to the correspondent internal register.
1131 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1133 uint byte = (uint)bt;
1135 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1136 ns->regs.column |= (byte << 8 * ns->regs.count);
1137 else {
1138 ns->regs.row |= (byte << 8 * (ns->regs.count -
1139 ns->geom.pgaddrbytes +
1140 ns->geom.secaddrbytes));
1143 return;
1147 * Switch to STATE_READY state.
1149 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1151 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1153 ns->state = STATE_READY;
1154 ns->nxstate = STATE_UNKNOWN;
1155 ns->op = NULL;
1156 ns->npstates = 0;
1157 ns->stateidx = 0;
1158 ns->regs.num = 0;
1159 ns->regs.count = 0;
1160 ns->regs.off = 0;
1161 ns->regs.row = 0;
1162 ns->regs.column = 0;
1163 ns->regs.status = status;
1167 * If the operation isn't known yet, try to find it in the global array
1168 * of supported operations.
1170 * Operation can be unknown because of the following.
1171 * 1. New command was accepted and this is the firs call to find the
1172 * correspondent states chain. In this case ns->npstates = 0;
1173 * 2. There is several operations which begin with the same command(s)
1174 * (for example program from the second half and read from the
1175 * second half operations both begin with the READ1 command). In this
1176 * case the ns->pstates[] array contains previous states.
1178 * Thus, the function tries to find operation containing the following
1179 * states (if the 'flag' parameter is 0):
1180 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1182 * If (one and only one) matching operation is found, it is accepted (
1183 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1184 * zeroed).
1186 * If there are several maches, the current state is pushed to the
1187 * ns->pstates.
1189 * The operation can be unknown only while commands are input to the chip.
1190 * As soon as address command is accepted, the operation must be known.
1191 * In such situation the function is called with 'flag' != 0, and the
1192 * operation is searched using the following pattern:
1193 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1195 * It is supposed that this pattern must either match one operation on
1196 * none. There can't be ambiguity in that case.
1198 * If no matches found, the functions does the following:
1199 * 1. if there are saved states present, try to ignore them and search
1200 * again only using the last command. If nothing was found, switch
1201 * to the STATE_READY state.
1202 * 2. if there are no saved states, switch to the STATE_READY state.
1204 * RETURNS: -2 - no matched operations found.
1205 * -1 - several matches.
1206 * 0 - operation is found.
1208 static int find_operation(struct nandsim *ns, uint32_t flag)
1210 int opsfound = 0;
1211 int i, j, idx = 0;
1213 for (i = 0; i < NS_OPER_NUM; i++) {
1215 int found = 1;
1217 if (!(ns->options & ops[i].reqopts))
1218 /* Ignore operations we can't perform */
1219 continue;
1221 if (flag) {
1222 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1223 continue;
1224 } else {
1225 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1226 continue;
1229 for (j = 0; j < ns->npstates; j++)
1230 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1231 && (ns->options & ops[idx].reqopts)) {
1232 found = 0;
1233 break;
1236 if (found) {
1237 idx = i;
1238 opsfound += 1;
1242 if (opsfound == 1) {
1243 /* Exact match */
1244 ns->op = &ops[idx].states[0];
1245 if (flag) {
1247 * In this case the find_operation function was
1248 * called when address has just began input. But it isn't
1249 * yet fully input and the current state must
1250 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1251 * state must be the next state (ns->nxstate).
1253 ns->stateidx = ns->npstates - 1;
1254 } else {
1255 ns->stateidx = ns->npstates;
1257 ns->npstates = 0;
1258 ns->state = ns->op[ns->stateidx];
1259 ns->nxstate = ns->op[ns->stateidx + 1];
1260 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1261 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1262 return 0;
1265 if (opsfound == 0) {
1266 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1267 if (ns->npstates != 0) {
1268 NS_DBG("find_operation: no operation found, try again with state %s\n",
1269 get_state_name(ns->state));
1270 ns->npstates = 0;
1271 return find_operation(ns, 0);
1274 NS_DBG("find_operation: no operations found\n");
1275 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1276 return -2;
1279 if (flag) {
1280 /* This shouldn't happen */
1281 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1282 return -2;
1285 NS_DBG("find_operation: there is still ambiguity\n");
1287 ns->pstates[ns->npstates++] = ns->state;
1289 return -1;
1292 static void put_pages(struct nandsim *ns)
1294 int i;
1296 for (i = 0; i < ns->held_cnt; i++)
1297 page_cache_release(ns->held_pages[i]);
1300 /* Get page cache pages in advance to provide NOFS memory allocation */
1301 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1303 pgoff_t index, start_index, end_index;
1304 struct page *page;
1305 struct address_space *mapping = file->f_mapping;
1307 start_index = pos >> PAGE_CACHE_SHIFT;
1308 end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1309 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1310 return -EINVAL;
1311 ns->held_cnt = 0;
1312 for (index = start_index; index <= end_index; index++) {
1313 page = find_get_page(mapping, index);
1314 if (page == NULL) {
1315 page = find_or_create_page(mapping, index, GFP_NOFS);
1316 if (page == NULL) {
1317 write_inode_now(mapping->host, 1);
1318 page = find_or_create_page(mapping, index, GFP_NOFS);
1320 if (page == NULL) {
1321 put_pages(ns);
1322 return -ENOMEM;
1324 unlock_page(page);
1326 ns->held_pages[ns->held_cnt++] = page;
1328 return 0;
1331 static int set_memalloc(void)
1333 if (current->flags & PF_MEMALLOC)
1334 return 0;
1335 current->flags |= PF_MEMALLOC;
1336 return 1;
1339 static void clear_memalloc(int memalloc)
1341 if (memalloc)
1342 current->flags &= ~PF_MEMALLOC;
1345 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1347 mm_segment_t old_fs;
1348 ssize_t tx;
1349 int err, memalloc;
1351 err = get_pages(ns, file, count, *pos);
1352 if (err)
1353 return err;
1354 old_fs = get_fs();
1355 set_fs(get_ds());
1356 memalloc = set_memalloc();
1357 tx = vfs_read(file, (char __user *)buf, count, pos);
1358 clear_memalloc(memalloc);
1359 set_fs(old_fs);
1360 put_pages(ns);
1361 return tx;
1364 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1366 mm_segment_t old_fs;
1367 ssize_t tx;
1368 int err, memalloc;
1370 err = get_pages(ns, file, count, *pos);
1371 if (err)
1372 return err;
1373 old_fs = get_fs();
1374 set_fs(get_ds());
1375 memalloc = set_memalloc();
1376 tx = vfs_write(file, (char __user *)buf, count, pos);
1377 clear_memalloc(memalloc);
1378 set_fs(old_fs);
1379 put_pages(ns);
1380 return tx;
1384 * Returns a pointer to the current page.
1386 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1388 return &(ns->pages[ns->regs.row]);
1392 * Retuns a pointer to the current byte, within the current page.
1394 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1396 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1399 int do_read_error(struct nandsim *ns, int num)
1401 unsigned int page_no = ns->regs.row;
1403 if (read_error(page_no)) {
1404 int i;
1405 memset(ns->buf.byte, 0xFF, num);
1406 for (i = 0; i < num; ++i)
1407 ns->buf.byte[i] = random32();
1408 NS_WARN("simulating read error in page %u\n", page_no);
1409 return 1;
1411 return 0;
1414 void do_bit_flips(struct nandsim *ns, int num)
1416 if (bitflips && random32() < (1 << 22)) {
1417 int flips = 1;
1418 if (bitflips > 1)
1419 flips = (random32() % (int) bitflips) + 1;
1420 while (flips--) {
1421 int pos = random32() % (num * 8);
1422 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1423 NS_WARN("read_page: flipping bit %d in page %d "
1424 "reading from %d ecc: corrected=%u failed=%u\n",
1425 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1426 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1432 * Fill the NAND buffer with data read from the specified page.
1434 static void read_page(struct nandsim *ns, int num)
1436 union ns_mem *mypage;
1438 if (ns->cfile) {
1439 if (!ns->pages_written[ns->regs.row]) {
1440 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1441 memset(ns->buf.byte, 0xFF, num);
1442 } else {
1443 loff_t pos;
1444 ssize_t tx;
1446 NS_DBG("read_page: page %d written, reading from %d\n",
1447 ns->regs.row, ns->regs.column + ns->regs.off);
1448 if (do_read_error(ns, num))
1449 return;
1450 pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1451 tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1452 if (tx != num) {
1453 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1454 return;
1456 do_bit_flips(ns, num);
1458 return;
1461 mypage = NS_GET_PAGE(ns);
1462 if (mypage->byte == NULL) {
1463 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1464 memset(ns->buf.byte, 0xFF, num);
1465 } else {
1466 NS_DBG("read_page: page %d allocated, reading from %d\n",
1467 ns->regs.row, ns->regs.column + ns->regs.off);
1468 if (do_read_error(ns, num))
1469 return;
1470 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1471 do_bit_flips(ns, num);
1476 * Erase all pages in the specified sector.
1478 static void erase_sector(struct nandsim *ns)
1480 union ns_mem *mypage;
1481 int i;
1483 if (ns->cfile) {
1484 for (i = 0; i < ns->geom.pgsec; i++)
1485 if (ns->pages_written[ns->regs.row + i]) {
1486 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1487 ns->pages_written[ns->regs.row + i] = 0;
1489 return;
1492 mypage = NS_GET_PAGE(ns);
1493 for (i = 0; i < ns->geom.pgsec; i++) {
1494 if (mypage->byte != NULL) {
1495 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1496 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1497 mypage->byte = NULL;
1499 mypage++;
1504 * Program the specified page with the contents from the NAND buffer.
1506 static int prog_page(struct nandsim *ns, int num)
1508 int i;
1509 union ns_mem *mypage;
1510 u_char *pg_off;
1512 if (ns->cfile) {
1513 loff_t off, pos;
1514 ssize_t tx;
1515 int all;
1517 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1518 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1519 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1520 if (!ns->pages_written[ns->regs.row]) {
1521 all = 1;
1522 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1523 } else {
1524 all = 0;
1525 pos = off;
1526 tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1527 if (tx != num) {
1528 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1529 return -1;
1532 for (i = 0; i < num; i++)
1533 pg_off[i] &= ns->buf.byte[i];
1534 if (all) {
1535 pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1536 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1537 if (tx != ns->geom.pgszoob) {
1538 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1539 return -1;
1541 ns->pages_written[ns->regs.row] = 1;
1542 } else {
1543 pos = off;
1544 tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1545 if (tx != num) {
1546 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1547 return -1;
1550 return 0;
1553 mypage = NS_GET_PAGE(ns);
1554 if (mypage->byte == NULL) {
1555 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1557 * We allocate memory with GFP_NOFS because a flash FS may
1558 * utilize this. If it is holding an FS lock, then gets here,
1559 * then kernel memory alloc runs writeback which goes to the FS
1560 * again and deadlocks. This was seen in practice.
1562 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1563 if (mypage->byte == NULL) {
1564 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1565 return -1;
1567 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1570 pg_off = NS_PAGE_BYTE_OFF(ns);
1571 for (i = 0; i < num; i++)
1572 pg_off[i] &= ns->buf.byte[i];
1574 return 0;
1578 * If state has any action bit, perform this action.
1580 * RETURNS: 0 if success, -1 if error.
1582 static int do_state_action(struct nandsim *ns, uint32_t action)
1584 int num;
1585 int busdiv = ns->busw == 8 ? 1 : 2;
1586 unsigned int erase_block_no, page_no;
1588 action &= ACTION_MASK;
1590 /* Check that page address input is correct */
1591 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1592 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1593 return -1;
1596 switch (action) {
1598 case ACTION_CPY:
1600 * Copy page data to the internal buffer.
1603 /* Column shouldn't be very large */
1604 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1605 NS_ERR("do_state_action: column number is too large\n");
1606 break;
1608 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1609 read_page(ns, num);
1611 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1612 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1614 if (ns->regs.off == 0)
1615 NS_LOG("read page %d\n", ns->regs.row);
1616 else if (ns->regs.off < ns->geom.pgsz)
1617 NS_LOG("read page %d (second half)\n", ns->regs.row);
1618 else
1619 NS_LOG("read OOB of page %d\n", ns->regs.row);
1621 NS_UDELAY(access_delay);
1622 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1624 break;
1626 case ACTION_SECERASE:
1628 * Erase sector.
1631 if (ns->lines.wp) {
1632 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1633 return -1;
1636 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1637 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1638 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1639 return -1;
1642 ns->regs.row = (ns->regs.row <<
1643 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1644 ns->regs.column = 0;
1646 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1648 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1649 ns->regs.row, NS_RAW_OFFSET(ns));
1650 NS_LOG("erase sector %u\n", erase_block_no);
1652 erase_sector(ns);
1654 NS_MDELAY(erase_delay);
1656 if (erase_block_wear)
1657 update_wear(erase_block_no);
1659 if (erase_error(erase_block_no)) {
1660 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1661 return -1;
1664 break;
1666 case ACTION_PRGPAGE:
1668 * Programm page - move internal buffer data to the page.
1671 if (ns->lines.wp) {
1672 NS_WARN("do_state_action: device is write-protected, programm\n");
1673 return -1;
1676 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1677 if (num != ns->regs.count) {
1678 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1679 ns->regs.count, num);
1680 return -1;
1683 if (prog_page(ns, num) == -1)
1684 return -1;
1686 page_no = ns->regs.row;
1688 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1689 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1690 NS_LOG("programm page %d\n", ns->regs.row);
1692 NS_UDELAY(programm_delay);
1693 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1695 if (write_error(page_no)) {
1696 NS_WARN("simulating write failure in page %u\n", page_no);
1697 return -1;
1700 break;
1702 case ACTION_ZEROOFF:
1703 NS_DBG("do_state_action: set internal offset to 0\n");
1704 ns->regs.off = 0;
1705 break;
1707 case ACTION_HALFOFF:
1708 if (!(ns->options & OPT_PAGE512_8BIT)) {
1709 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1710 "byte page size 8x chips\n");
1711 return -1;
1713 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1714 ns->regs.off = ns->geom.pgsz/2;
1715 break;
1717 case ACTION_OOBOFF:
1718 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1719 ns->regs.off = ns->geom.pgsz;
1720 break;
1722 default:
1723 NS_DBG("do_state_action: BUG! unknown action\n");
1726 return 0;
1730 * Switch simulator's state.
1732 static void switch_state(struct nandsim *ns)
1734 if (ns->op) {
1736 * The current operation have already been identified.
1737 * Just follow the states chain.
1740 ns->stateidx += 1;
1741 ns->state = ns->nxstate;
1742 ns->nxstate = ns->op[ns->stateidx + 1];
1744 NS_DBG("switch_state: operation is known, switch to the next state, "
1745 "state: %s, nxstate: %s\n",
1746 get_state_name(ns->state), get_state_name(ns->nxstate));
1748 /* See, whether we need to do some action */
1749 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1750 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1751 return;
1754 } else {
1756 * We don't yet know which operation we perform.
1757 * Try to identify it.
1761 * The only event causing the switch_state function to
1762 * be called with yet unknown operation is new command.
1764 ns->state = get_state_by_command(ns->regs.command);
1766 NS_DBG("switch_state: operation is unknown, try to find it\n");
1768 if (find_operation(ns, 0) != 0)
1769 return;
1771 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1772 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1773 return;
1777 /* For 16x devices column means the page offset in words */
1778 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1779 NS_DBG("switch_state: double the column number for 16x device\n");
1780 ns->regs.column <<= 1;
1783 if (NS_STATE(ns->nxstate) == STATE_READY) {
1785 * The current state is the last. Return to STATE_READY
1788 u_char status = NS_STATUS_OK(ns);
1790 /* In case of data states, see if all bytes were input/output */
1791 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1792 && ns->regs.count != ns->regs.num) {
1793 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1794 ns->regs.num - ns->regs.count);
1795 status = NS_STATUS_FAILED(ns);
1798 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1800 switch_to_ready_state(ns, status);
1802 return;
1803 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1805 * If the next state is data input/output, switch to it now
1808 ns->state = ns->nxstate;
1809 ns->nxstate = ns->op[++ns->stateidx + 1];
1810 ns->regs.num = ns->regs.count = 0;
1812 NS_DBG("switch_state: the next state is data I/O, switch, "
1813 "state: %s, nxstate: %s\n",
1814 get_state_name(ns->state), get_state_name(ns->nxstate));
1817 * Set the internal register to the count of bytes which
1818 * are expected to be input or output
1820 switch (NS_STATE(ns->state)) {
1821 case STATE_DATAIN:
1822 case STATE_DATAOUT:
1823 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1824 break;
1826 case STATE_DATAOUT_ID:
1827 ns->regs.num = ns->geom.idbytes;
1828 break;
1830 case STATE_DATAOUT_STATUS:
1831 case STATE_DATAOUT_STATUS_M:
1832 ns->regs.count = ns->regs.num = 0;
1833 break;
1835 default:
1836 NS_ERR("switch_state: BUG! unknown data state\n");
1839 } else if (ns->nxstate & STATE_ADDR_MASK) {
1841 * If the next state is address input, set the internal
1842 * register to the number of expected address bytes
1845 ns->regs.count = 0;
1847 switch (NS_STATE(ns->nxstate)) {
1848 case STATE_ADDR_PAGE:
1849 ns->regs.num = ns->geom.pgaddrbytes;
1851 break;
1852 case STATE_ADDR_SEC:
1853 ns->regs.num = ns->geom.secaddrbytes;
1854 break;
1856 case STATE_ADDR_ZERO:
1857 ns->regs.num = 1;
1858 break;
1860 case STATE_ADDR_COLUMN:
1861 /* Column address is always 2 bytes */
1862 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1863 break;
1865 default:
1866 NS_ERR("switch_state: BUG! unknown address state\n");
1868 } else {
1870 * Just reset internal counters.
1873 ns->regs.num = 0;
1874 ns->regs.count = 0;
1878 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1880 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1881 u_char outb = 0x00;
1883 /* Sanity and correctness checks */
1884 if (!ns->lines.ce) {
1885 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1886 return outb;
1888 if (ns->lines.ale || ns->lines.cle) {
1889 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1890 return outb;
1892 if (!(ns->state & STATE_DATAOUT_MASK)) {
1893 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1894 "return %#x\n", get_state_name(ns->state), (uint)outb);
1895 return outb;
1898 /* Status register may be read as many times as it is wanted */
1899 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1900 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1901 return ns->regs.status;
1904 /* Check if there is any data in the internal buffer which may be read */
1905 if (ns->regs.count == ns->regs.num) {
1906 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1907 return outb;
1910 switch (NS_STATE(ns->state)) {
1911 case STATE_DATAOUT:
1912 if (ns->busw == 8) {
1913 outb = ns->buf.byte[ns->regs.count];
1914 ns->regs.count += 1;
1915 } else {
1916 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1917 ns->regs.count += 2;
1919 break;
1920 case STATE_DATAOUT_ID:
1921 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1922 outb = ns->ids[ns->regs.count];
1923 ns->regs.count += 1;
1924 break;
1925 default:
1926 BUG();
1929 if (ns->regs.count == ns->regs.num) {
1930 NS_DBG("read_byte: all bytes were read\n");
1933 * The OPT_AUTOINCR allows to read next conseqitive pages without
1934 * new read operation cycle.
1936 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1937 ns->regs.count = 0;
1938 if (ns->regs.row + 1 < ns->geom.pgnum)
1939 ns->regs.row += 1;
1940 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1941 do_state_action(ns, ACTION_CPY);
1943 else if (NS_STATE(ns->nxstate) == STATE_READY)
1944 switch_state(ns);
1948 return outb;
1951 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1953 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1955 /* Sanity and correctness checks */
1956 if (!ns->lines.ce) {
1957 NS_ERR("write_byte: chip is disabled, ignore write\n");
1958 return;
1960 if (ns->lines.ale && ns->lines.cle) {
1961 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1962 return;
1965 if (ns->lines.cle == 1) {
1967 * The byte written is a command.
1970 if (byte == NAND_CMD_RESET) {
1971 NS_LOG("reset chip\n");
1972 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1973 return;
1976 /* Check that the command byte is correct */
1977 if (check_command(byte)) {
1978 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1979 return;
1982 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1983 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1984 || NS_STATE(ns->state) == STATE_DATAOUT) {
1985 int row = ns->regs.row;
1987 switch_state(ns);
1988 if (byte == NAND_CMD_RNDOUT)
1989 ns->regs.row = row;
1992 /* Check if chip is expecting command */
1993 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1994 /* Do not warn if only 2 id bytes are read */
1995 if (!(ns->regs.command == NAND_CMD_READID &&
1996 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1998 * We are in situation when something else (not command)
1999 * was expected but command was input. In this case ignore
2000 * previous command(s)/state(s) and accept the last one.
2002 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2003 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2005 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2008 NS_DBG("command byte corresponding to %s state accepted\n",
2009 get_state_name(get_state_by_command(byte)));
2010 ns->regs.command = byte;
2011 switch_state(ns);
2013 } else if (ns->lines.ale == 1) {
2015 * The byte written is an address.
2018 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2020 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2022 if (find_operation(ns, 1) < 0)
2023 return;
2025 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2026 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2027 return;
2030 ns->regs.count = 0;
2031 switch (NS_STATE(ns->nxstate)) {
2032 case STATE_ADDR_PAGE:
2033 ns->regs.num = ns->geom.pgaddrbytes;
2034 break;
2035 case STATE_ADDR_SEC:
2036 ns->regs.num = ns->geom.secaddrbytes;
2037 break;
2038 case STATE_ADDR_ZERO:
2039 ns->regs.num = 1;
2040 break;
2041 default:
2042 BUG();
2046 /* Check that chip is expecting address */
2047 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2048 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2049 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2050 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2051 return;
2054 /* Check if this is expected byte */
2055 if (ns->regs.count == ns->regs.num) {
2056 NS_ERR("write_byte: no more address bytes expected\n");
2057 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2058 return;
2061 accept_addr_byte(ns, byte);
2063 ns->regs.count += 1;
2065 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2066 (uint)byte, ns->regs.count, ns->regs.num);
2068 if (ns->regs.count == ns->regs.num) {
2069 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2070 switch_state(ns);
2073 } else {
2075 * The byte written is an input data.
2078 /* Check that chip is expecting data input */
2079 if (!(ns->state & STATE_DATAIN_MASK)) {
2080 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2081 "switch to %s\n", (uint)byte,
2082 get_state_name(ns->state), get_state_name(STATE_READY));
2083 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2084 return;
2087 /* Check if this is expected byte */
2088 if (ns->regs.count == ns->regs.num) {
2089 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2090 ns->regs.num);
2091 return;
2094 if (ns->busw == 8) {
2095 ns->buf.byte[ns->regs.count] = byte;
2096 ns->regs.count += 1;
2097 } else {
2098 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2099 ns->regs.count += 2;
2103 return;
2106 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2108 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2110 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2111 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2112 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2114 if (cmd != NAND_CMD_NONE)
2115 ns_nand_write_byte(mtd, cmd);
2118 static int ns_device_ready(struct mtd_info *mtd)
2120 NS_DBG("device_ready\n");
2121 return 1;
2124 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2126 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2128 NS_DBG("read_word\n");
2130 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2133 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2135 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2137 /* Check that chip is expecting data input */
2138 if (!(ns->state & STATE_DATAIN_MASK)) {
2139 NS_ERR("write_buf: data input isn't expected, state is %s, "
2140 "switch to STATE_READY\n", get_state_name(ns->state));
2141 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2142 return;
2145 /* Check if these are expected bytes */
2146 if (ns->regs.count + len > ns->regs.num) {
2147 NS_ERR("write_buf: too many input bytes\n");
2148 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2149 return;
2152 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2153 ns->regs.count += len;
2155 if (ns->regs.count == ns->regs.num) {
2156 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2160 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2162 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2164 /* Sanity and correctness checks */
2165 if (!ns->lines.ce) {
2166 NS_ERR("read_buf: chip is disabled\n");
2167 return;
2169 if (ns->lines.ale || ns->lines.cle) {
2170 NS_ERR("read_buf: ALE or CLE pin is high\n");
2171 return;
2173 if (!(ns->state & STATE_DATAOUT_MASK)) {
2174 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2175 get_state_name(ns->state));
2176 return;
2179 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2180 int i;
2182 for (i = 0; i < len; i++)
2183 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2185 return;
2188 /* Check if these are expected bytes */
2189 if (ns->regs.count + len > ns->regs.num) {
2190 NS_ERR("read_buf: too many bytes to read\n");
2191 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2192 return;
2195 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2196 ns->regs.count += len;
2198 if (ns->regs.count == ns->regs.num) {
2199 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2200 ns->regs.count = 0;
2201 if (ns->regs.row + 1 < ns->geom.pgnum)
2202 ns->regs.row += 1;
2203 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2204 do_state_action(ns, ACTION_CPY);
2206 else if (NS_STATE(ns->nxstate) == STATE_READY)
2207 switch_state(ns);
2210 return;
2213 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2215 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2217 if (!memcmp(buf, &ns_verify_buf[0], len)) {
2218 NS_DBG("verify_buf: the buffer is OK\n");
2219 return 0;
2220 } else {
2221 NS_DBG("verify_buf: the buffer is wrong\n");
2222 return -EFAULT;
2227 * Module initialization function
2229 static int __init ns_init_module(void)
2231 struct nand_chip *chip;
2232 struct nandsim *nand;
2233 int retval = -ENOMEM, i;
2235 if (bus_width != 8 && bus_width != 16) {
2236 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2237 return -EINVAL;
2240 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2241 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2242 + sizeof(struct nandsim), GFP_KERNEL);
2243 if (!nsmtd) {
2244 NS_ERR("unable to allocate core structures.\n");
2245 return -ENOMEM;
2247 chip = (struct nand_chip *)(nsmtd + 1);
2248 nsmtd->priv = (void *)chip;
2249 nand = (struct nandsim *)(chip + 1);
2250 chip->priv = (void *)nand;
2253 * Register simulator's callbacks.
2255 chip->cmd_ctrl = ns_hwcontrol;
2256 chip->read_byte = ns_nand_read_byte;
2257 chip->dev_ready = ns_device_ready;
2258 chip->write_buf = ns_nand_write_buf;
2259 chip->read_buf = ns_nand_read_buf;
2260 chip->verify_buf = ns_nand_verify_buf;
2261 chip->read_word = ns_nand_read_word;
2262 chip->ecc.mode = NAND_ECC_SOFT;
2263 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2264 /* and 'badblocks' parameters to work */
2265 chip->options |= NAND_SKIP_BBTSCAN;
2268 * Perform minimum nandsim structure initialization to handle
2269 * the initial ID read command correctly
2271 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2272 nand->geom.idbytes = 4;
2273 else
2274 nand->geom.idbytes = 2;
2275 nand->regs.status = NS_STATUS_OK(nand);
2276 nand->nxstate = STATE_UNKNOWN;
2277 nand->options |= OPT_PAGE256; /* temporary value */
2278 nand->ids[0] = first_id_byte;
2279 nand->ids[1] = second_id_byte;
2280 nand->ids[2] = third_id_byte;
2281 nand->ids[3] = fourth_id_byte;
2282 if (bus_width == 16) {
2283 nand->busw = 16;
2284 chip->options |= NAND_BUSWIDTH_16;
2287 nsmtd->owner = THIS_MODULE;
2289 if ((retval = parse_weakblocks()) != 0)
2290 goto error;
2292 if ((retval = parse_weakpages()) != 0)
2293 goto error;
2295 if ((retval = parse_gravepages()) != 0)
2296 goto error;
2298 if ((retval = nand_scan(nsmtd, 1)) != 0) {
2299 NS_ERR("can't register NAND Simulator\n");
2300 if (retval > 0)
2301 retval = -ENXIO;
2302 goto error;
2305 if (overridesize) {
2306 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2307 if (new_size >> overridesize != nsmtd->erasesize) {
2308 NS_ERR("overridesize is too big\n");
2309 goto err_exit;
2311 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2312 nsmtd->size = new_size;
2313 chip->chipsize = new_size;
2314 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2315 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2318 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2319 goto err_exit;
2321 if ((retval = init_nandsim(nsmtd)) != 0)
2322 goto err_exit;
2324 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2325 goto err_exit;
2327 if ((retval = nand_default_bbt(nsmtd)) != 0)
2328 goto err_exit;
2330 /* Register NAND partitions */
2331 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2332 goto err_exit;
2334 return 0;
2336 err_exit:
2337 free_nandsim(nand);
2338 nand_release(nsmtd);
2339 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2340 kfree(nand->partitions[i].name);
2341 error:
2342 kfree(nsmtd);
2343 free_lists();
2345 return retval;
2348 module_init(ns_init_module);
2351 * Module clean-up function
2353 static void __exit ns_cleanup_module(void)
2355 struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2356 int i;
2358 free_nandsim(ns); /* Free nandsim private resources */
2359 nand_release(nsmtd); /* Unregister driver */
2360 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2361 kfree(ns->partitions[i].name);
2362 kfree(nsmtd); /* Free other structures */
2363 free_lists();
2366 module_exit(ns_cleanup_module);
2368 MODULE_LICENSE ("GPL");
2369 MODULE_AUTHOR ("Artem B. Bityuckiy");
2370 MODULE_DESCRIPTION ("The NAND flash simulator");