md/raid10: Handle read errors during recovery better.
[linux-2.6/libata-dev.git] / drivers / md / raid10.c
blobfc9ebbab3f6277356ecfb4343d3c1298ef3003e5
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
38 * far_offset (stored in bit 16 of layout )
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
57 * Number of guaranteed r10bios in case of extreme VM load:
59 #define NR_RAID10_BIOS 256
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 conf_t *conf = data;
67 int size = offsetof(struct r10bio_s, devs[conf->copies]);
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
70 return kzalloc(size, gfp_flags);
73 static void r10bio_pool_free(void *r10_bio, void *data)
75 kfree(r10_bio);
78 /* Maximum size of each resync request */
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
81 /* amount of memory to reserve for resync requests */
82 #define RESYNC_WINDOW (1024*1024)
83 /* maximum number of concurrent requests, memory permitting */
84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
87 * When performing a resync, we need to read and compare, so
88 * we need as many pages are there are copies.
89 * When performing a recovery, we need 2 bios, one for read,
90 * one for write (we recover only one drive per r10buf)
93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
95 conf_t *conf = data;
96 struct page *page;
97 r10bio_t *r10_bio;
98 struct bio *bio;
99 int i, j;
100 int nalloc;
102 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 if (!r10_bio)
104 return NULL;
106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107 nalloc = conf->copies; /* resync */
108 else
109 nalloc = 2; /* recovery */
112 * Allocate bios.
114 for (j = nalloc ; j-- ; ) {
115 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
116 if (!bio)
117 goto out_free_bio;
118 r10_bio->devs[j].bio = bio;
121 * Allocate RESYNC_PAGES data pages and attach them
122 * where needed.
124 for (j = 0 ; j < nalloc; j++) {
125 bio = r10_bio->devs[j].bio;
126 for (i = 0; i < RESYNC_PAGES; i++) {
127 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128 &conf->mddev->recovery)) {
129 /* we can share bv_page's during recovery */
130 struct bio *rbio = r10_bio->devs[0].bio;
131 page = rbio->bi_io_vec[i].bv_page;
132 get_page(page);
133 } else
134 page = alloc_page(gfp_flags);
135 if (unlikely(!page))
136 goto out_free_pages;
138 bio->bi_io_vec[i].bv_page = page;
142 return r10_bio;
144 out_free_pages:
145 for ( ; i > 0 ; i--)
146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
158 static void r10buf_pool_free(void *__r10_bio, void *data)
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
169 safe_put_page(bio->bi_io_vec[i].bv_page);
170 bio->bi_io_vec[i].bv_page = NULL;
172 bio_put(bio);
175 r10bio_pool_free(r10bio, conf);
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 int i;
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
184 if (!BIO_SPECIAL(*bio))
185 bio_put(*bio);
186 *bio = NULL;
190 static void free_r10bio(r10bio_t *r10_bio)
192 conf_t *conf = r10_bio->mddev->private;
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
198 static void put_buf(r10bio_t *r10_bio)
200 conf_t *conf = r10_bio->mddev->private;
202 mempool_free(r10_bio, conf->r10buf_pool);
204 lower_barrier(conf);
207 static void reschedule_retry(r10bio_t *r10_bio)
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev->private;
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
215 conf->nr_queued ++;
216 spin_unlock_irqrestore(&conf->device_lock, flags);
218 /* wake up frozen array... */
219 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r10bio_t *r10_bio)
231 struct bio *bio = r10_bio->master_bio;
232 int done;
233 conf_t *conf = r10_bio->mddev->private;
235 if (bio->bi_phys_segments) {
236 unsigned long flags;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 bio->bi_phys_segments--;
239 done = (bio->bi_phys_segments == 0);
240 spin_unlock_irqrestore(&conf->device_lock, flags);
241 } else
242 done = 1;
243 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244 clear_bit(BIO_UPTODATE, &bio->bi_flags);
245 if (done) {
246 bio_endio(bio, 0);
248 * Wake up any possible resync thread that waits for the device
249 * to go idle.
251 allow_barrier(conf);
253 free_r10bio(r10_bio);
257 * Update disk head position estimator based on IRQ completion info.
259 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
261 conf_t *conf = r10_bio->mddev->private;
263 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264 r10_bio->devs[slot].addr + (r10_bio->sectors);
268 * Find the disk number which triggered given bio
270 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
271 struct bio *bio, int *slotp)
273 int slot;
275 for (slot = 0; slot < conf->copies; slot++)
276 if (r10_bio->devs[slot].bio == bio)
277 break;
279 BUG_ON(slot == conf->copies);
280 update_head_pos(slot, r10_bio);
282 if (slotp)
283 *slotp = slot;
284 return r10_bio->devs[slot].devnum;
287 static void raid10_end_read_request(struct bio *bio, int error)
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t *r10_bio = bio->bi_private;
291 int slot, dev;
292 conf_t *conf = r10_bio->mddev->private;
295 slot = r10_bio->read_slot;
296 dev = r10_bio->devs[slot].devnum;
298 * this branch is our 'one mirror IO has finished' event handler:
300 update_head_pos(slot, r10_bio);
302 if (uptodate) {
304 * Set R10BIO_Uptodate in our master bio, so that
305 * we will return a good error code to the higher
306 * levels even if IO on some other mirrored buffer fails.
308 * The 'master' represents the composite IO operation to
309 * user-side. So if something waits for IO, then it will
310 * wait for the 'master' bio.
312 set_bit(R10BIO_Uptodate, &r10_bio->state);
313 raid_end_bio_io(r10_bio);
314 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
315 } else {
317 * oops, read error - keep the refcount on the rdev
319 char b[BDEVNAME_SIZE];
320 printk_ratelimited(KERN_ERR
321 "md/raid10:%s: %s: rescheduling sector %llu\n",
322 mdname(conf->mddev),
323 bdevname(conf->mirrors[dev].rdev->bdev, b),
324 (unsigned long long)r10_bio->sector);
325 set_bit(R10BIO_ReadError, &r10_bio->state);
326 reschedule_retry(r10_bio);
330 static void close_write(r10bio_t *r10_bio)
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 r10_bio->sectors,
335 !test_bit(R10BIO_Degraded, &r10_bio->state),
337 md_write_end(r10_bio->mddev);
340 static void raid10_end_write_request(struct bio *bio, int error)
342 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
343 r10bio_t *r10_bio = bio->bi_private;
344 int dev;
345 int dec_rdev = 1;
346 conf_t *conf = r10_bio->mddev->private;
347 int slot;
349 dev = find_bio_disk(conf, r10_bio, bio, &slot);
352 * this branch is our 'one mirror IO has finished' event handler:
354 if (!uptodate) {
355 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
356 set_bit(R10BIO_WriteError, &r10_bio->state);
357 dec_rdev = 0;
358 } else {
360 * Set R10BIO_Uptodate in our master bio, so that
361 * we will return a good error code for to the higher
362 * levels even if IO on some other mirrored buffer fails.
364 * The 'master' represents the composite IO operation to
365 * user-side. So if something waits for IO, then it will
366 * wait for the 'master' bio.
368 sector_t first_bad;
369 int bad_sectors;
371 set_bit(R10BIO_Uptodate, &r10_bio->state);
373 /* Maybe we can clear some bad blocks. */
374 if (is_badblock(conf->mirrors[dev].rdev,
375 r10_bio->devs[slot].addr,
376 r10_bio->sectors,
377 &first_bad, &bad_sectors)) {
378 bio_put(bio);
379 r10_bio->devs[slot].bio = IO_MADE_GOOD;
380 dec_rdev = 0;
381 set_bit(R10BIO_MadeGood, &r10_bio->state);
387 * Let's see if all mirrored write operations have finished
388 * already.
390 if (atomic_dec_and_test(&r10_bio->remaining)) {
391 if (test_bit(R10BIO_WriteError, &r10_bio->state))
392 reschedule_retry(r10_bio);
393 else {
394 close_write(r10_bio);
395 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
396 reschedule_retry(r10_bio);
397 else
398 raid_end_bio_io(r10_bio);
401 if (dec_rdev)
402 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
407 * RAID10 layout manager
408 * As well as the chunksize and raid_disks count, there are two
409 * parameters: near_copies and far_copies.
410 * near_copies * far_copies must be <= raid_disks.
411 * Normally one of these will be 1.
412 * If both are 1, we get raid0.
413 * If near_copies == raid_disks, we get raid1.
415 * Chunks are laid out in raid0 style with near_copies copies of the
416 * first chunk, followed by near_copies copies of the next chunk and
417 * so on.
418 * If far_copies > 1, then after 1/far_copies of the array has been assigned
419 * as described above, we start again with a device offset of near_copies.
420 * So we effectively have another copy of the whole array further down all
421 * the drives, but with blocks on different drives.
422 * With this layout, and block is never stored twice on the one device.
424 * raid10_find_phys finds the sector offset of a given virtual sector
425 * on each device that it is on.
427 * raid10_find_virt does the reverse mapping, from a device and a
428 * sector offset to a virtual address
431 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
433 int n,f;
434 sector_t sector;
435 sector_t chunk;
436 sector_t stripe;
437 int dev;
439 int slot = 0;
441 /* now calculate first sector/dev */
442 chunk = r10bio->sector >> conf->chunk_shift;
443 sector = r10bio->sector & conf->chunk_mask;
445 chunk *= conf->near_copies;
446 stripe = chunk;
447 dev = sector_div(stripe, conf->raid_disks);
448 if (conf->far_offset)
449 stripe *= conf->far_copies;
451 sector += stripe << conf->chunk_shift;
453 /* and calculate all the others */
454 for (n=0; n < conf->near_copies; n++) {
455 int d = dev;
456 sector_t s = sector;
457 r10bio->devs[slot].addr = sector;
458 r10bio->devs[slot].devnum = d;
459 slot++;
461 for (f = 1; f < conf->far_copies; f++) {
462 d += conf->near_copies;
463 if (d >= conf->raid_disks)
464 d -= conf->raid_disks;
465 s += conf->stride;
466 r10bio->devs[slot].devnum = d;
467 r10bio->devs[slot].addr = s;
468 slot++;
470 dev++;
471 if (dev >= conf->raid_disks) {
472 dev = 0;
473 sector += (conf->chunk_mask + 1);
476 BUG_ON(slot != conf->copies);
479 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
481 sector_t offset, chunk, vchunk;
483 offset = sector & conf->chunk_mask;
484 if (conf->far_offset) {
485 int fc;
486 chunk = sector >> conf->chunk_shift;
487 fc = sector_div(chunk, conf->far_copies);
488 dev -= fc * conf->near_copies;
489 if (dev < 0)
490 dev += conf->raid_disks;
491 } else {
492 while (sector >= conf->stride) {
493 sector -= conf->stride;
494 if (dev < conf->near_copies)
495 dev += conf->raid_disks - conf->near_copies;
496 else
497 dev -= conf->near_copies;
499 chunk = sector >> conf->chunk_shift;
501 vchunk = chunk * conf->raid_disks + dev;
502 sector_div(vchunk, conf->near_copies);
503 return (vchunk << conf->chunk_shift) + offset;
507 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
508 * @q: request queue
509 * @bvm: properties of new bio
510 * @biovec: the request that could be merged to it.
512 * Return amount of bytes we can accept at this offset
513 * If near_copies == raid_disk, there are no striping issues,
514 * but in that case, the function isn't called at all.
516 static int raid10_mergeable_bvec(struct request_queue *q,
517 struct bvec_merge_data *bvm,
518 struct bio_vec *biovec)
520 mddev_t *mddev = q->queuedata;
521 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
522 int max;
523 unsigned int chunk_sectors = mddev->chunk_sectors;
524 unsigned int bio_sectors = bvm->bi_size >> 9;
526 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
527 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
528 if (max <= biovec->bv_len && bio_sectors == 0)
529 return biovec->bv_len;
530 else
531 return max;
535 * This routine returns the disk from which the requested read should
536 * be done. There is a per-array 'next expected sequential IO' sector
537 * number - if this matches on the next IO then we use the last disk.
538 * There is also a per-disk 'last know head position' sector that is
539 * maintained from IRQ contexts, both the normal and the resync IO
540 * completion handlers update this position correctly. If there is no
541 * perfect sequential match then we pick the disk whose head is closest.
543 * If there are 2 mirrors in the same 2 devices, performance degrades
544 * because position is mirror, not device based.
546 * The rdev for the device selected will have nr_pending incremented.
550 * FIXME: possibly should rethink readbalancing and do it differently
551 * depending on near_copies / far_copies geometry.
553 static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
555 const sector_t this_sector = r10_bio->sector;
556 int disk, slot;
557 int sectors = r10_bio->sectors;
558 int best_good_sectors;
559 sector_t new_distance, best_dist;
560 mdk_rdev_t *rdev;
561 int do_balance;
562 int best_slot;
564 raid10_find_phys(conf, r10_bio);
565 rcu_read_lock();
566 retry:
567 sectors = r10_bio->sectors;
568 best_slot = -1;
569 best_dist = MaxSector;
570 best_good_sectors = 0;
571 do_balance = 1;
573 * Check if we can balance. We can balance on the whole
574 * device if no resync is going on (recovery is ok), or below
575 * the resync window. We take the first readable disk when
576 * above the resync window.
578 if (conf->mddev->recovery_cp < MaxSector
579 && (this_sector + sectors >= conf->next_resync))
580 do_balance = 0;
582 for (slot = 0; slot < conf->copies ; slot++) {
583 sector_t first_bad;
584 int bad_sectors;
585 sector_t dev_sector;
587 if (r10_bio->devs[slot].bio == IO_BLOCKED)
588 continue;
589 disk = r10_bio->devs[slot].devnum;
590 rdev = rcu_dereference(conf->mirrors[disk].rdev);
591 if (rdev == NULL)
592 continue;
593 if (!test_bit(In_sync, &rdev->flags))
594 continue;
596 dev_sector = r10_bio->devs[slot].addr;
597 if (is_badblock(rdev, dev_sector, sectors,
598 &first_bad, &bad_sectors)) {
599 if (best_dist < MaxSector)
600 /* Already have a better slot */
601 continue;
602 if (first_bad <= dev_sector) {
603 /* Cannot read here. If this is the
604 * 'primary' device, then we must not read
605 * beyond 'bad_sectors' from another device.
607 bad_sectors -= (dev_sector - first_bad);
608 if (!do_balance && sectors > bad_sectors)
609 sectors = bad_sectors;
610 if (best_good_sectors > sectors)
611 best_good_sectors = sectors;
612 } else {
613 sector_t good_sectors =
614 first_bad - dev_sector;
615 if (good_sectors > best_good_sectors) {
616 best_good_sectors = good_sectors;
617 best_slot = slot;
619 if (!do_balance)
620 /* Must read from here */
621 break;
623 continue;
624 } else
625 best_good_sectors = sectors;
627 if (!do_balance)
628 break;
630 /* This optimisation is debatable, and completely destroys
631 * sequential read speed for 'far copies' arrays. So only
632 * keep it for 'near' arrays, and review those later.
634 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
635 break;
637 /* for far > 1 always use the lowest address */
638 if (conf->far_copies > 1)
639 new_distance = r10_bio->devs[slot].addr;
640 else
641 new_distance = abs(r10_bio->devs[slot].addr -
642 conf->mirrors[disk].head_position);
643 if (new_distance < best_dist) {
644 best_dist = new_distance;
645 best_slot = slot;
648 if (slot == conf->copies)
649 slot = best_slot;
651 if (slot >= 0) {
652 disk = r10_bio->devs[slot].devnum;
653 rdev = rcu_dereference(conf->mirrors[disk].rdev);
654 if (!rdev)
655 goto retry;
656 atomic_inc(&rdev->nr_pending);
657 if (test_bit(Faulty, &rdev->flags)) {
658 /* Cannot risk returning a device that failed
659 * before we inc'ed nr_pending
661 rdev_dec_pending(rdev, conf->mddev);
662 goto retry;
664 r10_bio->read_slot = slot;
665 } else
666 disk = -1;
667 rcu_read_unlock();
668 *max_sectors = best_good_sectors;
670 return disk;
673 static int raid10_congested(void *data, int bits)
675 mddev_t *mddev = data;
676 conf_t *conf = mddev->private;
677 int i, ret = 0;
679 if (mddev_congested(mddev, bits))
680 return 1;
681 rcu_read_lock();
682 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
683 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
684 if (rdev && !test_bit(Faulty, &rdev->flags)) {
685 struct request_queue *q = bdev_get_queue(rdev->bdev);
687 ret |= bdi_congested(&q->backing_dev_info, bits);
690 rcu_read_unlock();
691 return ret;
694 static void flush_pending_writes(conf_t *conf)
696 /* Any writes that have been queued but are awaiting
697 * bitmap updates get flushed here.
699 spin_lock_irq(&conf->device_lock);
701 if (conf->pending_bio_list.head) {
702 struct bio *bio;
703 bio = bio_list_get(&conf->pending_bio_list);
704 spin_unlock_irq(&conf->device_lock);
705 /* flush any pending bitmap writes to disk
706 * before proceeding w/ I/O */
707 bitmap_unplug(conf->mddev->bitmap);
709 while (bio) { /* submit pending writes */
710 struct bio *next = bio->bi_next;
711 bio->bi_next = NULL;
712 generic_make_request(bio);
713 bio = next;
715 } else
716 spin_unlock_irq(&conf->device_lock);
719 /* Barriers....
720 * Sometimes we need to suspend IO while we do something else,
721 * either some resync/recovery, or reconfigure the array.
722 * To do this we raise a 'barrier'.
723 * The 'barrier' is a counter that can be raised multiple times
724 * to count how many activities are happening which preclude
725 * normal IO.
726 * We can only raise the barrier if there is no pending IO.
727 * i.e. if nr_pending == 0.
728 * We choose only to raise the barrier if no-one is waiting for the
729 * barrier to go down. This means that as soon as an IO request
730 * is ready, no other operations which require a barrier will start
731 * until the IO request has had a chance.
733 * So: regular IO calls 'wait_barrier'. When that returns there
734 * is no backgroup IO happening, It must arrange to call
735 * allow_barrier when it has finished its IO.
736 * backgroup IO calls must call raise_barrier. Once that returns
737 * there is no normal IO happeing. It must arrange to call
738 * lower_barrier when the particular background IO completes.
741 static void raise_barrier(conf_t *conf, int force)
743 BUG_ON(force && !conf->barrier);
744 spin_lock_irq(&conf->resync_lock);
746 /* Wait until no block IO is waiting (unless 'force') */
747 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
748 conf->resync_lock, );
750 /* block any new IO from starting */
751 conf->barrier++;
753 /* Now wait for all pending IO to complete */
754 wait_event_lock_irq(conf->wait_barrier,
755 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
756 conf->resync_lock, );
758 spin_unlock_irq(&conf->resync_lock);
761 static void lower_barrier(conf_t *conf)
763 unsigned long flags;
764 spin_lock_irqsave(&conf->resync_lock, flags);
765 conf->barrier--;
766 spin_unlock_irqrestore(&conf->resync_lock, flags);
767 wake_up(&conf->wait_barrier);
770 static void wait_barrier(conf_t *conf)
772 spin_lock_irq(&conf->resync_lock);
773 if (conf->barrier) {
774 conf->nr_waiting++;
775 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
776 conf->resync_lock,
778 conf->nr_waiting--;
780 conf->nr_pending++;
781 spin_unlock_irq(&conf->resync_lock);
784 static void allow_barrier(conf_t *conf)
786 unsigned long flags;
787 spin_lock_irqsave(&conf->resync_lock, flags);
788 conf->nr_pending--;
789 spin_unlock_irqrestore(&conf->resync_lock, flags);
790 wake_up(&conf->wait_barrier);
793 static void freeze_array(conf_t *conf)
795 /* stop syncio and normal IO and wait for everything to
796 * go quiet.
797 * We increment barrier and nr_waiting, and then
798 * wait until nr_pending match nr_queued+1
799 * This is called in the context of one normal IO request
800 * that has failed. Thus any sync request that might be pending
801 * will be blocked by nr_pending, and we need to wait for
802 * pending IO requests to complete or be queued for re-try.
803 * Thus the number queued (nr_queued) plus this request (1)
804 * must match the number of pending IOs (nr_pending) before
805 * we continue.
807 spin_lock_irq(&conf->resync_lock);
808 conf->barrier++;
809 conf->nr_waiting++;
810 wait_event_lock_irq(conf->wait_barrier,
811 conf->nr_pending == conf->nr_queued+1,
812 conf->resync_lock,
813 flush_pending_writes(conf));
815 spin_unlock_irq(&conf->resync_lock);
818 static void unfreeze_array(conf_t *conf)
820 /* reverse the effect of the freeze */
821 spin_lock_irq(&conf->resync_lock);
822 conf->barrier--;
823 conf->nr_waiting--;
824 wake_up(&conf->wait_barrier);
825 spin_unlock_irq(&conf->resync_lock);
828 static int make_request(mddev_t *mddev, struct bio * bio)
830 conf_t *conf = mddev->private;
831 mirror_info_t *mirror;
832 r10bio_t *r10_bio;
833 struct bio *read_bio;
834 int i;
835 int chunk_sects = conf->chunk_mask + 1;
836 const int rw = bio_data_dir(bio);
837 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
838 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
839 unsigned long flags;
840 mdk_rdev_t *blocked_rdev;
841 int plugged;
842 int sectors_handled;
843 int max_sectors;
845 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
846 md_flush_request(mddev, bio);
847 return 0;
850 /* If this request crosses a chunk boundary, we need to
851 * split it. This will only happen for 1 PAGE (or less) requests.
853 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
854 > chunk_sects &&
855 conf->near_copies < conf->raid_disks)) {
856 struct bio_pair *bp;
857 /* Sanity check -- queue functions should prevent this happening */
858 if (bio->bi_vcnt != 1 ||
859 bio->bi_idx != 0)
860 goto bad_map;
861 /* This is a one page bio that upper layers
862 * refuse to split for us, so we need to split it.
864 bp = bio_split(bio,
865 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
867 /* Each of these 'make_request' calls will call 'wait_barrier'.
868 * If the first succeeds but the second blocks due to the resync
869 * thread raising the barrier, we will deadlock because the
870 * IO to the underlying device will be queued in generic_make_request
871 * and will never complete, so will never reduce nr_pending.
872 * So increment nr_waiting here so no new raise_barriers will
873 * succeed, and so the second wait_barrier cannot block.
875 spin_lock_irq(&conf->resync_lock);
876 conf->nr_waiting++;
877 spin_unlock_irq(&conf->resync_lock);
879 if (make_request(mddev, &bp->bio1))
880 generic_make_request(&bp->bio1);
881 if (make_request(mddev, &bp->bio2))
882 generic_make_request(&bp->bio2);
884 spin_lock_irq(&conf->resync_lock);
885 conf->nr_waiting--;
886 wake_up(&conf->wait_barrier);
887 spin_unlock_irq(&conf->resync_lock);
889 bio_pair_release(bp);
890 return 0;
891 bad_map:
892 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
893 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
894 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
896 bio_io_error(bio);
897 return 0;
900 md_write_start(mddev, bio);
903 * Register the new request and wait if the reconstruction
904 * thread has put up a bar for new requests.
905 * Continue immediately if no resync is active currently.
907 wait_barrier(conf);
909 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
911 r10_bio->master_bio = bio;
912 r10_bio->sectors = bio->bi_size >> 9;
914 r10_bio->mddev = mddev;
915 r10_bio->sector = bio->bi_sector;
916 r10_bio->state = 0;
918 /* We might need to issue multiple reads to different
919 * devices if there are bad blocks around, so we keep
920 * track of the number of reads in bio->bi_phys_segments.
921 * If this is 0, there is only one r10_bio and no locking
922 * will be needed when the request completes. If it is
923 * non-zero, then it is the number of not-completed requests.
925 bio->bi_phys_segments = 0;
926 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
928 if (rw == READ) {
930 * read balancing logic:
932 int disk;
933 int slot;
935 read_again:
936 disk = read_balance(conf, r10_bio, &max_sectors);
937 slot = r10_bio->read_slot;
938 if (disk < 0) {
939 raid_end_bio_io(r10_bio);
940 return 0;
942 mirror = conf->mirrors + disk;
944 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
945 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
946 max_sectors);
948 r10_bio->devs[slot].bio = read_bio;
950 read_bio->bi_sector = r10_bio->devs[slot].addr +
951 mirror->rdev->data_offset;
952 read_bio->bi_bdev = mirror->rdev->bdev;
953 read_bio->bi_end_io = raid10_end_read_request;
954 read_bio->bi_rw = READ | do_sync;
955 read_bio->bi_private = r10_bio;
957 if (max_sectors < r10_bio->sectors) {
958 /* Could not read all from this device, so we will
959 * need another r10_bio.
961 sectors_handled = (r10_bio->sectors + max_sectors
962 - bio->bi_sector);
963 r10_bio->sectors = max_sectors;
964 spin_lock_irq(&conf->device_lock);
965 if (bio->bi_phys_segments == 0)
966 bio->bi_phys_segments = 2;
967 else
968 bio->bi_phys_segments++;
969 spin_unlock(&conf->device_lock);
970 /* Cannot call generic_make_request directly
971 * as that will be queued in __generic_make_request
972 * and subsequent mempool_alloc might block
973 * waiting for it. so hand bio over to raid10d.
975 reschedule_retry(r10_bio);
977 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
979 r10_bio->master_bio = bio;
980 r10_bio->sectors = ((bio->bi_size >> 9)
981 - sectors_handled);
982 r10_bio->state = 0;
983 r10_bio->mddev = mddev;
984 r10_bio->sector = bio->bi_sector + sectors_handled;
985 goto read_again;
986 } else
987 generic_make_request(read_bio);
988 return 0;
992 * WRITE:
994 /* first select target devices under rcu_lock and
995 * inc refcount on their rdev. Record them by setting
996 * bios[x] to bio
997 * If there are known/acknowledged bad blocks on any device
998 * on which we have seen a write error, we want to avoid
999 * writing to those blocks. This potentially requires several
1000 * writes to write around the bad blocks. Each set of writes
1001 * gets its own r10_bio with a set of bios attached. The number
1002 * of r10_bios is recored in bio->bi_phys_segments just as with
1003 * the read case.
1005 plugged = mddev_check_plugged(mddev);
1007 raid10_find_phys(conf, r10_bio);
1008 retry_write:
1009 blocked_rdev = NULL;
1010 rcu_read_lock();
1011 max_sectors = r10_bio->sectors;
1013 for (i = 0; i < conf->copies; i++) {
1014 int d = r10_bio->devs[i].devnum;
1015 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
1016 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1017 atomic_inc(&rdev->nr_pending);
1018 blocked_rdev = rdev;
1019 break;
1021 r10_bio->devs[i].bio = NULL;
1022 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1023 set_bit(R10BIO_Degraded, &r10_bio->state);
1024 continue;
1026 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1027 sector_t first_bad;
1028 sector_t dev_sector = r10_bio->devs[i].addr;
1029 int bad_sectors;
1030 int is_bad;
1032 is_bad = is_badblock(rdev, dev_sector,
1033 max_sectors,
1034 &first_bad, &bad_sectors);
1035 if (is_bad < 0) {
1036 /* Mustn't write here until the bad block
1037 * is acknowledged
1039 atomic_inc(&rdev->nr_pending);
1040 set_bit(BlockedBadBlocks, &rdev->flags);
1041 blocked_rdev = rdev;
1042 break;
1044 if (is_bad && first_bad <= dev_sector) {
1045 /* Cannot write here at all */
1046 bad_sectors -= (dev_sector - first_bad);
1047 if (bad_sectors < max_sectors)
1048 /* Mustn't write more than bad_sectors
1049 * to other devices yet
1051 max_sectors = bad_sectors;
1052 /* We don't set R10BIO_Degraded as that
1053 * only applies if the disk is missing,
1054 * so it might be re-added, and we want to
1055 * know to recover this chunk.
1056 * In this case the device is here, and the
1057 * fact that this chunk is not in-sync is
1058 * recorded in the bad block log.
1060 continue;
1062 if (is_bad) {
1063 int good_sectors = first_bad - dev_sector;
1064 if (good_sectors < max_sectors)
1065 max_sectors = good_sectors;
1068 r10_bio->devs[i].bio = bio;
1069 atomic_inc(&rdev->nr_pending);
1071 rcu_read_unlock();
1073 if (unlikely(blocked_rdev)) {
1074 /* Have to wait for this device to get unblocked, then retry */
1075 int j;
1076 int d;
1078 for (j = 0; j < i; j++)
1079 if (r10_bio->devs[j].bio) {
1080 d = r10_bio->devs[j].devnum;
1081 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1083 allow_barrier(conf);
1084 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1085 wait_barrier(conf);
1086 goto retry_write;
1089 if (max_sectors < r10_bio->sectors) {
1090 /* We are splitting this into multiple parts, so
1091 * we need to prepare for allocating another r10_bio.
1093 r10_bio->sectors = max_sectors;
1094 spin_lock_irq(&conf->device_lock);
1095 if (bio->bi_phys_segments == 0)
1096 bio->bi_phys_segments = 2;
1097 else
1098 bio->bi_phys_segments++;
1099 spin_unlock_irq(&conf->device_lock);
1101 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1103 atomic_set(&r10_bio->remaining, 1);
1104 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1106 for (i = 0; i < conf->copies; i++) {
1107 struct bio *mbio;
1108 int d = r10_bio->devs[i].devnum;
1109 if (!r10_bio->devs[i].bio)
1110 continue;
1112 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1113 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1114 max_sectors);
1115 r10_bio->devs[i].bio = mbio;
1117 mbio->bi_sector = (r10_bio->devs[i].addr+
1118 conf->mirrors[d].rdev->data_offset);
1119 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1120 mbio->bi_end_io = raid10_end_write_request;
1121 mbio->bi_rw = WRITE | do_sync | do_fua;
1122 mbio->bi_private = r10_bio;
1124 atomic_inc(&r10_bio->remaining);
1125 spin_lock_irqsave(&conf->device_lock, flags);
1126 bio_list_add(&conf->pending_bio_list, mbio);
1127 spin_unlock_irqrestore(&conf->device_lock, flags);
1130 if (atomic_dec_and_test(&r10_bio->remaining)) {
1131 /* This matches the end of raid10_end_write_request() */
1132 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
1133 r10_bio->sectors,
1134 !test_bit(R10BIO_Degraded, &r10_bio->state),
1136 md_write_end(mddev);
1137 raid_end_bio_io(r10_bio);
1140 /* In case raid10d snuck in to freeze_array */
1141 wake_up(&conf->wait_barrier);
1143 if (sectors_handled < (bio->bi_size >> 9)) {
1144 /* We need another r10_bio. It has already been counted
1145 * in bio->bi_phys_segments.
1147 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1149 r10_bio->master_bio = bio;
1150 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1152 r10_bio->mddev = mddev;
1153 r10_bio->sector = bio->bi_sector + sectors_handled;
1154 r10_bio->state = 0;
1155 goto retry_write;
1158 if (do_sync || !mddev->bitmap || !plugged)
1159 md_wakeup_thread(mddev->thread);
1160 return 0;
1163 static void status(struct seq_file *seq, mddev_t *mddev)
1165 conf_t *conf = mddev->private;
1166 int i;
1168 if (conf->near_copies < conf->raid_disks)
1169 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1170 if (conf->near_copies > 1)
1171 seq_printf(seq, " %d near-copies", conf->near_copies);
1172 if (conf->far_copies > 1) {
1173 if (conf->far_offset)
1174 seq_printf(seq, " %d offset-copies", conf->far_copies);
1175 else
1176 seq_printf(seq, " %d far-copies", conf->far_copies);
1178 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1179 conf->raid_disks - mddev->degraded);
1180 for (i = 0; i < conf->raid_disks; i++)
1181 seq_printf(seq, "%s",
1182 conf->mirrors[i].rdev &&
1183 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1184 seq_printf(seq, "]");
1187 /* check if there are enough drives for
1188 * every block to appear on atleast one.
1189 * Don't consider the device numbered 'ignore'
1190 * as we might be about to remove it.
1192 static int enough(conf_t *conf, int ignore)
1194 int first = 0;
1196 do {
1197 int n = conf->copies;
1198 int cnt = 0;
1199 while (n--) {
1200 if (conf->mirrors[first].rdev &&
1201 first != ignore)
1202 cnt++;
1203 first = (first+1) % conf->raid_disks;
1205 if (cnt == 0)
1206 return 0;
1207 } while (first != 0);
1208 return 1;
1211 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1213 char b[BDEVNAME_SIZE];
1214 conf_t *conf = mddev->private;
1217 * If it is not operational, then we have already marked it as dead
1218 * else if it is the last working disks, ignore the error, let the
1219 * next level up know.
1220 * else mark the drive as failed
1222 if (test_bit(In_sync, &rdev->flags)
1223 && !enough(conf, rdev->raid_disk))
1225 * Don't fail the drive, just return an IO error.
1227 return;
1228 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1229 unsigned long flags;
1230 spin_lock_irqsave(&conf->device_lock, flags);
1231 mddev->degraded++;
1232 spin_unlock_irqrestore(&conf->device_lock, flags);
1234 * if recovery is running, make sure it aborts.
1236 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1238 set_bit(Blocked, &rdev->flags);
1239 set_bit(Faulty, &rdev->flags);
1240 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1241 printk(KERN_ALERT
1242 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1243 "md/raid10:%s: Operation continuing on %d devices.\n",
1244 mdname(mddev), bdevname(rdev->bdev, b),
1245 mdname(mddev), conf->raid_disks - mddev->degraded);
1248 static void print_conf(conf_t *conf)
1250 int i;
1251 mirror_info_t *tmp;
1253 printk(KERN_DEBUG "RAID10 conf printout:\n");
1254 if (!conf) {
1255 printk(KERN_DEBUG "(!conf)\n");
1256 return;
1258 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1259 conf->raid_disks);
1261 for (i = 0; i < conf->raid_disks; i++) {
1262 char b[BDEVNAME_SIZE];
1263 tmp = conf->mirrors + i;
1264 if (tmp->rdev)
1265 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1266 i, !test_bit(In_sync, &tmp->rdev->flags),
1267 !test_bit(Faulty, &tmp->rdev->flags),
1268 bdevname(tmp->rdev->bdev,b));
1272 static void close_sync(conf_t *conf)
1274 wait_barrier(conf);
1275 allow_barrier(conf);
1277 mempool_destroy(conf->r10buf_pool);
1278 conf->r10buf_pool = NULL;
1281 static int raid10_spare_active(mddev_t *mddev)
1283 int i;
1284 conf_t *conf = mddev->private;
1285 mirror_info_t *tmp;
1286 int count = 0;
1287 unsigned long flags;
1290 * Find all non-in_sync disks within the RAID10 configuration
1291 * and mark them in_sync
1293 for (i = 0; i < conf->raid_disks; i++) {
1294 tmp = conf->mirrors + i;
1295 if (tmp->rdev
1296 && !test_bit(Faulty, &tmp->rdev->flags)
1297 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1298 count++;
1299 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1302 spin_lock_irqsave(&conf->device_lock, flags);
1303 mddev->degraded -= count;
1304 spin_unlock_irqrestore(&conf->device_lock, flags);
1306 print_conf(conf);
1307 return count;
1311 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1313 conf_t *conf = mddev->private;
1314 int err = -EEXIST;
1315 int mirror;
1316 int first = 0;
1317 int last = conf->raid_disks - 1;
1319 if (mddev->recovery_cp < MaxSector)
1320 /* only hot-add to in-sync arrays, as recovery is
1321 * very different from resync
1323 return -EBUSY;
1324 if (!enough(conf, -1))
1325 return -EINVAL;
1327 if (rdev->raid_disk >= 0)
1328 first = last = rdev->raid_disk;
1330 if (rdev->saved_raid_disk >= first &&
1331 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1332 mirror = rdev->saved_raid_disk;
1333 else
1334 mirror = first;
1335 for ( ; mirror <= last ; mirror++) {
1336 mirror_info_t *p = &conf->mirrors[mirror];
1337 if (p->recovery_disabled == mddev->recovery_disabled)
1338 continue;
1339 if (!p->rdev)
1340 continue;
1342 disk_stack_limits(mddev->gendisk, rdev->bdev,
1343 rdev->data_offset << 9);
1344 /* as we don't honour merge_bvec_fn, we must
1345 * never risk violating it, so limit
1346 * ->max_segments to one lying with a single
1347 * page, as a one page request is never in
1348 * violation.
1350 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1351 blk_queue_max_segments(mddev->queue, 1);
1352 blk_queue_segment_boundary(mddev->queue,
1353 PAGE_CACHE_SIZE - 1);
1356 p->head_position = 0;
1357 rdev->raid_disk = mirror;
1358 err = 0;
1359 if (rdev->saved_raid_disk != mirror)
1360 conf->fullsync = 1;
1361 rcu_assign_pointer(p->rdev, rdev);
1362 break;
1365 md_integrity_add_rdev(rdev, mddev);
1366 print_conf(conf);
1367 return err;
1370 static int raid10_remove_disk(mddev_t *mddev, int number)
1372 conf_t *conf = mddev->private;
1373 int err = 0;
1374 mdk_rdev_t *rdev;
1375 mirror_info_t *p = conf->mirrors+ number;
1377 print_conf(conf);
1378 rdev = p->rdev;
1379 if (rdev) {
1380 if (test_bit(In_sync, &rdev->flags) ||
1381 atomic_read(&rdev->nr_pending)) {
1382 err = -EBUSY;
1383 goto abort;
1385 /* Only remove faulty devices in recovery
1386 * is not possible.
1388 if (!test_bit(Faulty, &rdev->flags) &&
1389 mddev->recovery_disabled != p->recovery_disabled &&
1390 enough(conf, -1)) {
1391 err = -EBUSY;
1392 goto abort;
1394 p->rdev = NULL;
1395 synchronize_rcu();
1396 if (atomic_read(&rdev->nr_pending)) {
1397 /* lost the race, try later */
1398 err = -EBUSY;
1399 p->rdev = rdev;
1400 goto abort;
1402 err = md_integrity_register(mddev);
1404 abort:
1406 print_conf(conf);
1407 return err;
1411 static void end_sync_read(struct bio *bio, int error)
1413 r10bio_t *r10_bio = bio->bi_private;
1414 conf_t *conf = r10_bio->mddev->private;
1415 int d;
1417 d = find_bio_disk(conf, r10_bio, bio, NULL);
1419 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1420 set_bit(R10BIO_Uptodate, &r10_bio->state);
1421 else
1422 /* The write handler will notice the lack of
1423 * R10BIO_Uptodate and record any errors etc
1425 atomic_add(r10_bio->sectors,
1426 &conf->mirrors[d].rdev->corrected_errors);
1428 /* for reconstruct, we always reschedule after a read.
1429 * for resync, only after all reads
1431 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1432 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1433 atomic_dec_and_test(&r10_bio->remaining)) {
1434 /* we have read all the blocks,
1435 * do the comparison in process context in raid10d
1437 reschedule_retry(r10_bio);
1441 static void end_sync_request(r10bio_t *r10_bio)
1443 mddev_t *mddev = r10_bio->mddev;
1445 while (atomic_dec_and_test(&r10_bio->remaining)) {
1446 if (r10_bio->master_bio == NULL) {
1447 /* the primary of several recovery bios */
1448 sector_t s = r10_bio->sectors;
1449 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1450 test_bit(R10BIO_WriteError, &r10_bio->state))
1451 reschedule_retry(r10_bio);
1452 else
1453 put_buf(r10_bio);
1454 md_done_sync(mddev, s, 1);
1455 break;
1456 } else {
1457 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1458 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1459 test_bit(R10BIO_WriteError, &r10_bio->state))
1460 reschedule_retry(r10_bio);
1461 else
1462 put_buf(r10_bio);
1463 r10_bio = r10_bio2;
1468 static void end_sync_write(struct bio *bio, int error)
1470 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1471 r10bio_t *r10_bio = bio->bi_private;
1472 mddev_t *mddev = r10_bio->mddev;
1473 conf_t *conf = mddev->private;
1474 int d;
1475 sector_t first_bad;
1476 int bad_sectors;
1477 int slot;
1479 d = find_bio_disk(conf, r10_bio, bio, &slot);
1481 if (!uptodate) {
1482 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1483 set_bit(R10BIO_WriteError, &r10_bio->state);
1484 } else if (is_badblock(conf->mirrors[d].rdev,
1485 r10_bio->devs[slot].addr,
1486 r10_bio->sectors,
1487 &first_bad, &bad_sectors))
1488 set_bit(R10BIO_MadeGood, &r10_bio->state);
1490 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1492 end_sync_request(r10_bio);
1496 * Note: sync and recover and handled very differently for raid10
1497 * This code is for resync.
1498 * For resync, we read through virtual addresses and read all blocks.
1499 * If there is any error, we schedule a write. The lowest numbered
1500 * drive is authoritative.
1501 * However requests come for physical address, so we need to map.
1502 * For every physical address there are raid_disks/copies virtual addresses,
1503 * which is always are least one, but is not necessarly an integer.
1504 * This means that a physical address can span multiple chunks, so we may
1505 * have to submit multiple io requests for a single sync request.
1508 * We check if all blocks are in-sync and only write to blocks that
1509 * aren't in sync
1511 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1513 conf_t *conf = mddev->private;
1514 int i, first;
1515 struct bio *tbio, *fbio;
1517 atomic_set(&r10_bio->remaining, 1);
1519 /* find the first device with a block */
1520 for (i=0; i<conf->copies; i++)
1521 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1522 break;
1524 if (i == conf->copies)
1525 goto done;
1527 first = i;
1528 fbio = r10_bio->devs[i].bio;
1530 /* now find blocks with errors */
1531 for (i=0 ; i < conf->copies ; i++) {
1532 int j, d;
1533 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1535 tbio = r10_bio->devs[i].bio;
1537 if (tbio->bi_end_io != end_sync_read)
1538 continue;
1539 if (i == first)
1540 continue;
1541 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1542 /* We know that the bi_io_vec layout is the same for
1543 * both 'first' and 'i', so we just compare them.
1544 * All vec entries are PAGE_SIZE;
1546 for (j = 0; j < vcnt; j++)
1547 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1548 page_address(tbio->bi_io_vec[j].bv_page),
1549 PAGE_SIZE))
1550 break;
1551 if (j == vcnt)
1552 continue;
1553 mddev->resync_mismatches += r10_bio->sectors;
1554 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1555 /* Don't fix anything. */
1556 continue;
1558 /* Ok, we need to write this bio, either to correct an
1559 * inconsistency or to correct an unreadable block.
1560 * First we need to fixup bv_offset, bv_len and
1561 * bi_vecs, as the read request might have corrupted these
1563 tbio->bi_vcnt = vcnt;
1564 tbio->bi_size = r10_bio->sectors << 9;
1565 tbio->bi_idx = 0;
1566 tbio->bi_phys_segments = 0;
1567 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1568 tbio->bi_flags |= 1 << BIO_UPTODATE;
1569 tbio->bi_next = NULL;
1570 tbio->bi_rw = WRITE;
1571 tbio->bi_private = r10_bio;
1572 tbio->bi_sector = r10_bio->devs[i].addr;
1574 for (j=0; j < vcnt ; j++) {
1575 tbio->bi_io_vec[j].bv_offset = 0;
1576 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1578 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1579 page_address(fbio->bi_io_vec[j].bv_page),
1580 PAGE_SIZE);
1582 tbio->bi_end_io = end_sync_write;
1584 d = r10_bio->devs[i].devnum;
1585 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1586 atomic_inc(&r10_bio->remaining);
1587 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1589 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1590 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1591 generic_make_request(tbio);
1594 done:
1595 if (atomic_dec_and_test(&r10_bio->remaining)) {
1596 md_done_sync(mddev, r10_bio->sectors, 1);
1597 put_buf(r10_bio);
1602 * Now for the recovery code.
1603 * Recovery happens across physical sectors.
1604 * We recover all non-is_sync drives by finding the virtual address of
1605 * each, and then choose a working drive that also has that virt address.
1606 * There is a separate r10_bio for each non-in_sync drive.
1607 * Only the first two slots are in use. The first for reading,
1608 * The second for writing.
1611 static void fix_recovery_read_error(r10bio_t *r10_bio)
1613 /* We got a read error during recovery.
1614 * We repeat the read in smaller page-sized sections.
1615 * If a read succeeds, write it to the new device or record
1616 * a bad block if we cannot.
1617 * If a read fails, record a bad block on both old and
1618 * new devices.
1620 mddev_t *mddev = r10_bio->mddev;
1621 conf_t *conf = mddev->private;
1622 struct bio *bio = r10_bio->devs[0].bio;
1623 sector_t sect = 0;
1624 int sectors = r10_bio->sectors;
1625 int idx = 0;
1626 int dr = r10_bio->devs[0].devnum;
1627 int dw = r10_bio->devs[1].devnum;
1629 while (sectors) {
1630 int s = sectors;
1631 mdk_rdev_t *rdev;
1632 sector_t addr;
1633 int ok;
1635 if (s > (PAGE_SIZE>>9))
1636 s = PAGE_SIZE >> 9;
1638 rdev = conf->mirrors[dr].rdev;
1639 addr = r10_bio->devs[0].addr + sect,
1640 ok = sync_page_io(rdev,
1641 addr,
1642 s << 9,
1643 bio->bi_io_vec[idx].bv_page,
1644 READ, false);
1645 if (ok) {
1646 rdev = conf->mirrors[dw].rdev;
1647 addr = r10_bio->devs[1].addr + sect;
1648 ok = sync_page_io(rdev,
1649 addr,
1650 s << 9,
1651 bio->bi_io_vec[idx].bv_page,
1652 WRITE, false);
1653 if (!ok)
1654 set_bit(WriteErrorSeen, &rdev->flags);
1656 if (!ok) {
1657 /* We don't worry if we cannot set a bad block -
1658 * it really is bad so there is no loss in not
1659 * recording it yet
1661 rdev_set_badblocks(rdev, addr, s, 0);
1663 if (rdev != conf->mirrors[dw].rdev) {
1664 /* need bad block on destination too */
1665 mdk_rdev_t *rdev2 = conf->mirrors[dw].rdev;
1666 addr = r10_bio->devs[1].addr + sect;
1667 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1668 if (!ok) {
1669 /* just abort the recovery */
1670 printk(KERN_NOTICE
1671 "md/raid10:%s: recovery aborted"
1672 " due to read error\n",
1673 mdname(mddev));
1675 conf->mirrors[dw].recovery_disabled
1676 = mddev->recovery_disabled;
1677 set_bit(MD_RECOVERY_INTR,
1678 &mddev->recovery);
1679 break;
1684 sectors -= s;
1685 sect += s;
1686 idx++;
1690 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1692 conf_t *conf = mddev->private;
1693 int d;
1694 struct bio *wbio;
1696 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1697 fix_recovery_read_error(r10_bio);
1698 end_sync_request(r10_bio);
1699 return;
1703 * share the pages with the first bio
1704 * and submit the write request
1706 wbio = r10_bio->devs[1].bio;
1707 d = r10_bio->devs[1].devnum;
1709 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1710 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1711 generic_make_request(wbio);
1716 * Used by fix_read_error() to decay the per rdev read_errors.
1717 * We halve the read error count for every hour that has elapsed
1718 * since the last recorded read error.
1721 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1723 struct timespec cur_time_mon;
1724 unsigned long hours_since_last;
1725 unsigned int read_errors = atomic_read(&rdev->read_errors);
1727 ktime_get_ts(&cur_time_mon);
1729 if (rdev->last_read_error.tv_sec == 0 &&
1730 rdev->last_read_error.tv_nsec == 0) {
1731 /* first time we've seen a read error */
1732 rdev->last_read_error = cur_time_mon;
1733 return;
1736 hours_since_last = (cur_time_mon.tv_sec -
1737 rdev->last_read_error.tv_sec) / 3600;
1739 rdev->last_read_error = cur_time_mon;
1742 * if hours_since_last is > the number of bits in read_errors
1743 * just set read errors to 0. We do this to avoid
1744 * overflowing the shift of read_errors by hours_since_last.
1746 if (hours_since_last >= 8 * sizeof(read_errors))
1747 atomic_set(&rdev->read_errors, 0);
1748 else
1749 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1753 * This is a kernel thread which:
1755 * 1. Retries failed read operations on working mirrors.
1756 * 2. Updates the raid superblock when problems encounter.
1757 * 3. Performs writes following reads for array synchronising.
1760 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1762 int sect = 0; /* Offset from r10_bio->sector */
1763 int sectors = r10_bio->sectors;
1764 mdk_rdev_t*rdev;
1765 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1766 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1768 /* still own a reference to this rdev, so it cannot
1769 * have been cleared recently.
1771 rdev = conf->mirrors[d].rdev;
1773 if (test_bit(Faulty, &rdev->flags))
1774 /* drive has already been failed, just ignore any
1775 more fix_read_error() attempts */
1776 return;
1778 check_decay_read_errors(mddev, rdev);
1779 atomic_inc(&rdev->read_errors);
1780 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1781 char b[BDEVNAME_SIZE];
1782 bdevname(rdev->bdev, b);
1784 printk(KERN_NOTICE
1785 "md/raid10:%s: %s: Raid device exceeded "
1786 "read_error threshold [cur %d:max %d]\n",
1787 mdname(mddev), b,
1788 atomic_read(&rdev->read_errors), max_read_errors);
1789 printk(KERN_NOTICE
1790 "md/raid10:%s: %s: Failing raid device\n",
1791 mdname(mddev), b);
1792 md_error(mddev, conf->mirrors[d].rdev);
1793 return;
1796 while(sectors) {
1797 int s = sectors;
1798 int sl = r10_bio->read_slot;
1799 int success = 0;
1800 int start;
1802 if (s > (PAGE_SIZE>>9))
1803 s = PAGE_SIZE >> 9;
1805 rcu_read_lock();
1806 do {
1807 sector_t first_bad;
1808 int bad_sectors;
1810 d = r10_bio->devs[sl].devnum;
1811 rdev = rcu_dereference(conf->mirrors[d].rdev);
1812 if (rdev &&
1813 test_bit(In_sync, &rdev->flags) &&
1814 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1815 &first_bad, &bad_sectors) == 0) {
1816 atomic_inc(&rdev->nr_pending);
1817 rcu_read_unlock();
1818 success = sync_page_io(rdev,
1819 r10_bio->devs[sl].addr +
1820 sect,
1821 s<<9,
1822 conf->tmppage, READ, false);
1823 rdev_dec_pending(rdev, mddev);
1824 rcu_read_lock();
1825 if (success)
1826 break;
1828 sl++;
1829 if (sl == conf->copies)
1830 sl = 0;
1831 } while (!success && sl != r10_bio->read_slot);
1832 rcu_read_unlock();
1834 if (!success) {
1835 /* Cannot read from anywhere -- bye bye array */
1836 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1837 md_error(mddev, conf->mirrors[dn].rdev);
1838 break;
1841 start = sl;
1842 /* write it back and re-read */
1843 rcu_read_lock();
1844 while (sl != r10_bio->read_slot) {
1845 char b[BDEVNAME_SIZE];
1847 if (sl==0)
1848 sl = conf->copies;
1849 sl--;
1850 d = r10_bio->devs[sl].devnum;
1851 rdev = rcu_dereference(conf->mirrors[d].rdev);
1852 if (!rdev ||
1853 !test_bit(In_sync, &rdev->flags))
1854 continue;
1856 atomic_inc(&rdev->nr_pending);
1857 rcu_read_unlock();
1858 if (sync_page_io(rdev,
1859 r10_bio->devs[sl].addr +
1860 sect,
1861 s<<9, conf->tmppage, WRITE, false)
1862 == 0) {
1863 /* Well, this device is dead */
1864 printk(KERN_NOTICE
1865 "md/raid10:%s: read correction "
1866 "write failed"
1867 " (%d sectors at %llu on %s)\n",
1868 mdname(mddev), s,
1869 (unsigned long long)(
1870 sect + rdev->data_offset),
1871 bdevname(rdev->bdev, b));
1872 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1873 "drive\n",
1874 mdname(mddev),
1875 bdevname(rdev->bdev, b));
1876 md_error(mddev, rdev);
1878 rdev_dec_pending(rdev, mddev);
1879 rcu_read_lock();
1881 sl = start;
1882 while (sl != r10_bio->read_slot) {
1883 char b[BDEVNAME_SIZE];
1885 if (sl==0)
1886 sl = conf->copies;
1887 sl--;
1888 d = r10_bio->devs[sl].devnum;
1889 rdev = rcu_dereference(conf->mirrors[d].rdev);
1890 if (!rdev ||
1891 !test_bit(In_sync, &rdev->flags))
1892 continue;
1894 atomic_inc(&rdev->nr_pending);
1895 rcu_read_unlock();
1896 if (sync_page_io(rdev,
1897 r10_bio->devs[sl].addr +
1898 sect,
1899 s<<9, conf->tmppage,
1900 READ, false) == 0) {
1901 /* Well, this device is dead */
1902 printk(KERN_NOTICE
1903 "md/raid10:%s: unable to read back "
1904 "corrected sectors"
1905 " (%d sectors at %llu on %s)\n",
1906 mdname(mddev), s,
1907 (unsigned long long)(
1908 sect + rdev->data_offset),
1909 bdevname(rdev->bdev, b));
1910 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1911 "drive\n",
1912 mdname(mddev),
1913 bdevname(rdev->bdev, b));
1915 md_error(mddev, rdev);
1916 } else {
1917 printk(KERN_INFO
1918 "md/raid10:%s: read error corrected"
1919 " (%d sectors at %llu on %s)\n",
1920 mdname(mddev), s,
1921 (unsigned long long)(
1922 sect + rdev->data_offset),
1923 bdevname(rdev->bdev, b));
1924 atomic_add(s, &rdev->corrected_errors);
1927 rdev_dec_pending(rdev, mddev);
1928 rcu_read_lock();
1930 rcu_read_unlock();
1932 sectors -= s;
1933 sect += s;
1937 static void bi_complete(struct bio *bio, int error)
1939 complete((struct completion *)bio->bi_private);
1942 static int submit_bio_wait(int rw, struct bio *bio)
1944 struct completion event;
1945 rw |= REQ_SYNC;
1947 init_completion(&event);
1948 bio->bi_private = &event;
1949 bio->bi_end_io = bi_complete;
1950 submit_bio(rw, bio);
1951 wait_for_completion(&event);
1953 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1956 static int narrow_write_error(r10bio_t *r10_bio, int i)
1958 struct bio *bio = r10_bio->master_bio;
1959 mddev_t *mddev = r10_bio->mddev;
1960 conf_t *conf = mddev->private;
1961 mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1962 /* bio has the data to be written to slot 'i' where
1963 * we just recently had a write error.
1964 * We repeatedly clone the bio and trim down to one block,
1965 * then try the write. Where the write fails we record
1966 * a bad block.
1967 * It is conceivable that the bio doesn't exactly align with
1968 * blocks. We must handle this.
1970 * We currently own a reference to the rdev.
1973 int block_sectors;
1974 sector_t sector;
1975 int sectors;
1976 int sect_to_write = r10_bio->sectors;
1977 int ok = 1;
1979 if (rdev->badblocks.shift < 0)
1980 return 0;
1982 block_sectors = 1 << rdev->badblocks.shift;
1983 sector = r10_bio->sector;
1984 sectors = ((r10_bio->sector + block_sectors)
1985 & ~(sector_t)(block_sectors - 1))
1986 - sector;
1988 while (sect_to_write) {
1989 struct bio *wbio;
1990 if (sectors > sect_to_write)
1991 sectors = sect_to_write;
1992 /* Write at 'sector' for 'sectors' */
1993 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1994 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
1995 wbio->bi_sector = (r10_bio->devs[i].addr+
1996 rdev->data_offset+
1997 (sector - r10_bio->sector));
1998 wbio->bi_bdev = rdev->bdev;
1999 if (submit_bio_wait(WRITE, wbio) == 0)
2000 /* Failure! */
2001 ok = rdev_set_badblocks(rdev, sector,
2002 sectors, 0)
2003 && ok;
2005 bio_put(wbio);
2006 sect_to_write -= sectors;
2007 sector += sectors;
2008 sectors = block_sectors;
2010 return ok;
2013 static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
2015 int slot = r10_bio->read_slot;
2016 int mirror = r10_bio->devs[slot].devnum;
2017 struct bio *bio;
2018 conf_t *conf = mddev->private;
2019 mdk_rdev_t *rdev;
2020 char b[BDEVNAME_SIZE];
2021 unsigned long do_sync;
2022 int max_sectors;
2024 /* we got a read error. Maybe the drive is bad. Maybe just
2025 * the block and we can fix it.
2026 * We freeze all other IO, and try reading the block from
2027 * other devices. When we find one, we re-write
2028 * and check it that fixes the read error.
2029 * This is all done synchronously while the array is
2030 * frozen.
2032 if (mddev->ro == 0) {
2033 freeze_array(conf);
2034 fix_read_error(conf, mddev, r10_bio);
2035 unfreeze_array(conf);
2037 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2039 bio = r10_bio->devs[slot].bio;
2040 bdevname(bio->bi_bdev, b);
2041 r10_bio->devs[slot].bio =
2042 mddev->ro ? IO_BLOCKED : NULL;
2043 read_more:
2044 mirror = read_balance(conf, r10_bio, &max_sectors);
2045 if (mirror == -1) {
2046 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2047 " read error for block %llu\n",
2048 mdname(mddev), b,
2049 (unsigned long long)r10_bio->sector);
2050 raid_end_bio_io(r10_bio);
2051 bio_put(bio);
2052 return;
2055 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2056 if (bio)
2057 bio_put(bio);
2058 slot = r10_bio->read_slot;
2059 rdev = conf->mirrors[mirror].rdev;
2060 printk_ratelimited(
2061 KERN_ERR
2062 "md/raid10:%s: %s: redirecting"
2063 "sector %llu to another mirror\n",
2064 mdname(mddev),
2065 bdevname(rdev->bdev, b),
2066 (unsigned long long)r10_bio->sector);
2067 bio = bio_clone_mddev(r10_bio->master_bio,
2068 GFP_NOIO, mddev);
2069 md_trim_bio(bio,
2070 r10_bio->sector - bio->bi_sector,
2071 max_sectors);
2072 r10_bio->devs[slot].bio = bio;
2073 bio->bi_sector = r10_bio->devs[slot].addr
2074 + rdev->data_offset;
2075 bio->bi_bdev = rdev->bdev;
2076 bio->bi_rw = READ | do_sync;
2077 bio->bi_private = r10_bio;
2078 bio->bi_end_io = raid10_end_read_request;
2079 if (max_sectors < r10_bio->sectors) {
2080 /* Drat - have to split this up more */
2081 struct bio *mbio = r10_bio->master_bio;
2082 int sectors_handled =
2083 r10_bio->sector + max_sectors
2084 - mbio->bi_sector;
2085 r10_bio->sectors = max_sectors;
2086 spin_lock_irq(&conf->device_lock);
2087 if (mbio->bi_phys_segments == 0)
2088 mbio->bi_phys_segments = 2;
2089 else
2090 mbio->bi_phys_segments++;
2091 spin_unlock_irq(&conf->device_lock);
2092 generic_make_request(bio);
2093 bio = NULL;
2095 r10_bio = mempool_alloc(conf->r10bio_pool,
2096 GFP_NOIO);
2097 r10_bio->master_bio = mbio;
2098 r10_bio->sectors = (mbio->bi_size >> 9)
2099 - sectors_handled;
2100 r10_bio->state = 0;
2101 set_bit(R10BIO_ReadError,
2102 &r10_bio->state);
2103 r10_bio->mddev = mddev;
2104 r10_bio->sector = mbio->bi_sector
2105 + sectors_handled;
2107 goto read_more;
2108 } else
2109 generic_make_request(bio);
2112 static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2114 /* Some sort of write request has finished and it
2115 * succeeded in writing where we thought there was a
2116 * bad block. So forget the bad block.
2117 * Or possibly if failed and we need to record
2118 * a bad block.
2120 int m;
2121 mdk_rdev_t *rdev;
2123 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2124 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2125 for (m = 0; m < conf->copies; m++) {
2126 int dev = r10_bio->devs[m].devnum;
2127 rdev = conf->mirrors[dev].rdev;
2128 if (r10_bio->devs[m].bio == NULL)
2129 continue;
2130 if (test_bit(BIO_UPTODATE,
2131 &r10_bio->devs[m].bio->bi_flags)) {
2132 rdev_clear_badblocks(
2133 rdev,
2134 r10_bio->devs[m].addr,
2135 r10_bio->sectors);
2136 } else {
2137 if (!rdev_set_badblocks(
2138 rdev,
2139 r10_bio->devs[m].addr,
2140 r10_bio->sectors, 0))
2141 md_error(conf->mddev, rdev);
2144 put_buf(r10_bio);
2145 } else {
2146 for (m = 0; m < conf->copies; m++) {
2147 int dev = r10_bio->devs[m].devnum;
2148 struct bio *bio = r10_bio->devs[m].bio;
2149 rdev = conf->mirrors[dev].rdev;
2150 if (bio == IO_MADE_GOOD) {
2151 rdev_clear_badblocks(
2152 rdev,
2153 r10_bio->devs[m].addr,
2154 r10_bio->sectors);
2155 rdev_dec_pending(rdev, conf->mddev);
2156 } else if (bio != NULL &&
2157 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2158 if (!narrow_write_error(r10_bio, m)) {
2159 md_error(conf->mddev, rdev);
2160 set_bit(R10BIO_Degraded,
2161 &r10_bio->state);
2163 rdev_dec_pending(rdev, conf->mddev);
2166 if (test_bit(R10BIO_WriteError,
2167 &r10_bio->state))
2168 close_write(r10_bio);
2169 raid_end_bio_io(r10_bio);
2173 static void raid10d(mddev_t *mddev)
2175 r10bio_t *r10_bio;
2176 unsigned long flags;
2177 conf_t *conf = mddev->private;
2178 struct list_head *head = &conf->retry_list;
2179 struct blk_plug plug;
2181 md_check_recovery(mddev);
2183 blk_start_plug(&plug);
2184 for (;;) {
2186 flush_pending_writes(conf);
2188 spin_lock_irqsave(&conf->device_lock, flags);
2189 if (list_empty(head)) {
2190 spin_unlock_irqrestore(&conf->device_lock, flags);
2191 break;
2193 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2194 list_del(head->prev);
2195 conf->nr_queued--;
2196 spin_unlock_irqrestore(&conf->device_lock, flags);
2198 mddev = r10_bio->mddev;
2199 conf = mddev->private;
2200 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2201 test_bit(R10BIO_WriteError, &r10_bio->state))
2202 handle_write_completed(conf, r10_bio);
2203 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2204 sync_request_write(mddev, r10_bio);
2205 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2206 recovery_request_write(mddev, r10_bio);
2207 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2208 handle_read_error(mddev, r10_bio);
2209 else {
2210 /* just a partial read to be scheduled from a
2211 * separate context
2213 int slot = r10_bio->read_slot;
2214 generic_make_request(r10_bio->devs[slot].bio);
2217 cond_resched();
2218 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2219 md_check_recovery(mddev);
2221 blk_finish_plug(&plug);
2225 static int init_resync(conf_t *conf)
2227 int buffs;
2229 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2230 BUG_ON(conf->r10buf_pool);
2231 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2232 if (!conf->r10buf_pool)
2233 return -ENOMEM;
2234 conf->next_resync = 0;
2235 return 0;
2239 * perform a "sync" on one "block"
2241 * We need to make sure that no normal I/O request - particularly write
2242 * requests - conflict with active sync requests.
2244 * This is achieved by tracking pending requests and a 'barrier' concept
2245 * that can be installed to exclude normal IO requests.
2247 * Resync and recovery are handled very differently.
2248 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2250 * For resync, we iterate over virtual addresses, read all copies,
2251 * and update if there are differences. If only one copy is live,
2252 * skip it.
2253 * For recovery, we iterate over physical addresses, read a good
2254 * value for each non-in_sync drive, and over-write.
2256 * So, for recovery we may have several outstanding complex requests for a
2257 * given address, one for each out-of-sync device. We model this by allocating
2258 * a number of r10_bio structures, one for each out-of-sync device.
2259 * As we setup these structures, we collect all bio's together into a list
2260 * which we then process collectively to add pages, and then process again
2261 * to pass to generic_make_request.
2263 * The r10_bio structures are linked using a borrowed master_bio pointer.
2264 * This link is counted in ->remaining. When the r10_bio that points to NULL
2265 * has its remaining count decremented to 0, the whole complex operation
2266 * is complete.
2270 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2271 int *skipped, int go_faster)
2273 conf_t *conf = mddev->private;
2274 r10bio_t *r10_bio;
2275 struct bio *biolist = NULL, *bio;
2276 sector_t max_sector, nr_sectors;
2277 int i;
2278 int max_sync;
2279 sector_t sync_blocks;
2280 sector_t sectors_skipped = 0;
2281 int chunks_skipped = 0;
2283 if (!conf->r10buf_pool)
2284 if (init_resync(conf))
2285 return 0;
2287 skipped:
2288 max_sector = mddev->dev_sectors;
2289 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2290 max_sector = mddev->resync_max_sectors;
2291 if (sector_nr >= max_sector) {
2292 /* If we aborted, we need to abort the
2293 * sync on the 'current' bitmap chucks (there can
2294 * be several when recovering multiple devices).
2295 * as we may have started syncing it but not finished.
2296 * We can find the current address in
2297 * mddev->curr_resync, but for recovery,
2298 * we need to convert that to several
2299 * virtual addresses.
2301 if (mddev->curr_resync < max_sector) { /* aborted */
2302 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2303 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2304 &sync_blocks, 1);
2305 else for (i=0; i<conf->raid_disks; i++) {
2306 sector_t sect =
2307 raid10_find_virt(conf, mddev->curr_resync, i);
2308 bitmap_end_sync(mddev->bitmap, sect,
2309 &sync_blocks, 1);
2311 } else /* completed sync */
2312 conf->fullsync = 0;
2314 bitmap_close_sync(mddev->bitmap);
2315 close_sync(conf);
2316 *skipped = 1;
2317 return sectors_skipped;
2319 if (chunks_skipped >= conf->raid_disks) {
2320 /* if there has been nothing to do on any drive,
2321 * then there is nothing to do at all..
2323 *skipped = 1;
2324 return (max_sector - sector_nr) + sectors_skipped;
2327 if (max_sector > mddev->resync_max)
2328 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2330 /* make sure whole request will fit in a chunk - if chunks
2331 * are meaningful
2333 if (conf->near_copies < conf->raid_disks &&
2334 max_sector > (sector_nr | conf->chunk_mask))
2335 max_sector = (sector_nr | conf->chunk_mask) + 1;
2337 * If there is non-resync activity waiting for us then
2338 * put in a delay to throttle resync.
2340 if (!go_faster && conf->nr_waiting)
2341 msleep_interruptible(1000);
2343 /* Again, very different code for resync and recovery.
2344 * Both must result in an r10bio with a list of bios that
2345 * have bi_end_io, bi_sector, bi_bdev set,
2346 * and bi_private set to the r10bio.
2347 * For recovery, we may actually create several r10bios
2348 * with 2 bios in each, that correspond to the bios in the main one.
2349 * In this case, the subordinate r10bios link back through a
2350 * borrowed master_bio pointer, and the counter in the master
2351 * includes a ref from each subordinate.
2353 /* First, we decide what to do and set ->bi_end_io
2354 * To end_sync_read if we want to read, and
2355 * end_sync_write if we will want to write.
2358 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2359 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2360 /* recovery... the complicated one */
2361 int j;
2362 r10_bio = NULL;
2364 for (i=0 ; i<conf->raid_disks; i++) {
2365 int still_degraded;
2366 r10bio_t *rb2;
2367 sector_t sect;
2368 int must_sync;
2369 int any_working;
2371 if (conf->mirrors[i].rdev == NULL ||
2372 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2373 continue;
2375 still_degraded = 0;
2376 /* want to reconstruct this device */
2377 rb2 = r10_bio;
2378 sect = raid10_find_virt(conf, sector_nr, i);
2379 /* Unless we are doing a full sync, we only need
2380 * to recover the block if it is set in the bitmap
2382 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2383 &sync_blocks, 1);
2384 if (sync_blocks < max_sync)
2385 max_sync = sync_blocks;
2386 if (!must_sync &&
2387 !conf->fullsync) {
2388 /* yep, skip the sync_blocks here, but don't assume
2389 * that there will never be anything to do here
2391 chunks_skipped = -1;
2392 continue;
2395 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2396 raise_barrier(conf, rb2 != NULL);
2397 atomic_set(&r10_bio->remaining, 0);
2399 r10_bio->master_bio = (struct bio*)rb2;
2400 if (rb2)
2401 atomic_inc(&rb2->remaining);
2402 r10_bio->mddev = mddev;
2403 set_bit(R10BIO_IsRecover, &r10_bio->state);
2404 r10_bio->sector = sect;
2406 raid10_find_phys(conf, r10_bio);
2408 /* Need to check if the array will still be
2409 * degraded
2411 for (j=0; j<conf->raid_disks; j++)
2412 if (conf->mirrors[j].rdev == NULL ||
2413 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2414 still_degraded = 1;
2415 break;
2418 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2419 &sync_blocks, still_degraded);
2421 any_working = 0;
2422 for (j=0; j<conf->copies;j++) {
2423 int k;
2424 int d = r10_bio->devs[j].devnum;
2425 sector_t from_addr, to_addr;
2426 mdk_rdev_t *rdev;
2427 sector_t sector, first_bad;
2428 int bad_sectors;
2429 if (!conf->mirrors[d].rdev ||
2430 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2431 continue;
2432 /* This is where we read from */
2433 any_working = 1;
2434 rdev = conf->mirrors[d].rdev;
2435 sector = r10_bio->devs[j].addr;
2437 if (is_badblock(rdev, sector, max_sync,
2438 &first_bad, &bad_sectors)) {
2439 if (first_bad > sector)
2440 max_sync = first_bad - sector;
2441 else {
2442 bad_sectors -= (sector
2443 - first_bad);
2444 if (max_sync > bad_sectors)
2445 max_sync = bad_sectors;
2446 continue;
2449 bio = r10_bio->devs[0].bio;
2450 bio->bi_next = biolist;
2451 biolist = bio;
2452 bio->bi_private = r10_bio;
2453 bio->bi_end_io = end_sync_read;
2454 bio->bi_rw = READ;
2455 from_addr = r10_bio->devs[j].addr;
2456 bio->bi_sector = from_addr +
2457 conf->mirrors[d].rdev->data_offset;
2458 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2459 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2460 atomic_inc(&r10_bio->remaining);
2461 /* and we write to 'i' */
2463 for (k=0; k<conf->copies; k++)
2464 if (r10_bio->devs[k].devnum == i)
2465 break;
2466 BUG_ON(k == conf->copies);
2467 bio = r10_bio->devs[1].bio;
2468 bio->bi_next = biolist;
2469 biolist = bio;
2470 bio->bi_private = r10_bio;
2471 bio->bi_end_io = end_sync_write;
2472 bio->bi_rw = WRITE;
2473 to_addr = r10_bio->devs[k].addr;
2474 bio->bi_sector = to_addr +
2475 conf->mirrors[i].rdev->data_offset;
2476 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2478 r10_bio->devs[0].devnum = d;
2479 r10_bio->devs[0].addr = from_addr;
2480 r10_bio->devs[1].devnum = i;
2481 r10_bio->devs[1].addr = to_addr;
2483 break;
2485 if (j == conf->copies) {
2486 /* Cannot recover, so abort the recovery or
2487 * record a bad block */
2488 put_buf(r10_bio);
2489 if (rb2)
2490 atomic_dec(&rb2->remaining);
2491 r10_bio = rb2;
2492 if (any_working) {
2493 /* problem is that there are bad blocks
2494 * on other device(s)
2496 int k;
2497 for (k = 0; k < conf->copies; k++)
2498 if (r10_bio->devs[k].devnum == i)
2499 break;
2500 if (!rdev_set_badblocks(
2501 conf->mirrors[i].rdev,
2502 r10_bio->devs[k].addr,
2503 max_sync, 0))
2504 any_working = 0;
2506 if (!any_working) {
2507 if (!test_and_set_bit(MD_RECOVERY_INTR,
2508 &mddev->recovery))
2509 printk(KERN_INFO "md/raid10:%s: insufficient "
2510 "working devices for recovery.\n",
2511 mdname(mddev));
2512 conf->mirrors[i].recovery_disabled
2513 = mddev->recovery_disabled;
2515 break;
2518 if (biolist == NULL) {
2519 while (r10_bio) {
2520 r10bio_t *rb2 = r10_bio;
2521 r10_bio = (r10bio_t*) rb2->master_bio;
2522 rb2->master_bio = NULL;
2523 put_buf(rb2);
2525 goto giveup;
2527 } else {
2528 /* resync. Schedule a read for every block at this virt offset */
2529 int count = 0;
2531 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2533 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2534 &sync_blocks, mddev->degraded) &&
2535 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2536 &mddev->recovery)) {
2537 /* We can skip this block */
2538 *skipped = 1;
2539 return sync_blocks + sectors_skipped;
2541 if (sync_blocks < max_sync)
2542 max_sync = sync_blocks;
2543 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2545 r10_bio->mddev = mddev;
2546 atomic_set(&r10_bio->remaining, 0);
2547 raise_barrier(conf, 0);
2548 conf->next_resync = sector_nr;
2550 r10_bio->master_bio = NULL;
2551 r10_bio->sector = sector_nr;
2552 set_bit(R10BIO_IsSync, &r10_bio->state);
2553 raid10_find_phys(conf, r10_bio);
2554 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2556 for (i=0; i<conf->copies; i++) {
2557 int d = r10_bio->devs[i].devnum;
2558 sector_t first_bad, sector;
2559 int bad_sectors;
2561 bio = r10_bio->devs[i].bio;
2562 bio->bi_end_io = NULL;
2563 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2564 if (conf->mirrors[d].rdev == NULL ||
2565 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2566 continue;
2567 sector = r10_bio->devs[i].addr;
2568 if (is_badblock(conf->mirrors[d].rdev,
2569 sector, max_sync,
2570 &first_bad, &bad_sectors)) {
2571 if (first_bad > sector)
2572 max_sync = first_bad - sector;
2573 else {
2574 bad_sectors -= (sector - first_bad);
2575 if (max_sync > bad_sectors)
2576 max_sync = max_sync;
2577 continue;
2580 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2581 atomic_inc(&r10_bio->remaining);
2582 bio->bi_next = biolist;
2583 biolist = bio;
2584 bio->bi_private = r10_bio;
2585 bio->bi_end_io = end_sync_read;
2586 bio->bi_rw = READ;
2587 bio->bi_sector = sector +
2588 conf->mirrors[d].rdev->data_offset;
2589 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2590 count++;
2593 if (count < 2) {
2594 for (i=0; i<conf->copies; i++) {
2595 int d = r10_bio->devs[i].devnum;
2596 if (r10_bio->devs[i].bio->bi_end_io)
2597 rdev_dec_pending(conf->mirrors[d].rdev,
2598 mddev);
2600 put_buf(r10_bio);
2601 biolist = NULL;
2602 goto giveup;
2606 for (bio = biolist; bio ; bio=bio->bi_next) {
2608 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2609 if (bio->bi_end_io)
2610 bio->bi_flags |= 1 << BIO_UPTODATE;
2611 bio->bi_vcnt = 0;
2612 bio->bi_idx = 0;
2613 bio->bi_phys_segments = 0;
2614 bio->bi_size = 0;
2617 nr_sectors = 0;
2618 if (sector_nr + max_sync < max_sector)
2619 max_sector = sector_nr + max_sync;
2620 do {
2621 struct page *page;
2622 int len = PAGE_SIZE;
2623 if (sector_nr + (len>>9) > max_sector)
2624 len = (max_sector - sector_nr) << 9;
2625 if (len == 0)
2626 break;
2627 for (bio= biolist ; bio ; bio=bio->bi_next) {
2628 struct bio *bio2;
2629 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2630 if (bio_add_page(bio, page, len, 0))
2631 continue;
2633 /* stop here */
2634 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2635 for (bio2 = biolist;
2636 bio2 && bio2 != bio;
2637 bio2 = bio2->bi_next) {
2638 /* remove last page from this bio */
2639 bio2->bi_vcnt--;
2640 bio2->bi_size -= len;
2641 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2643 goto bio_full;
2645 nr_sectors += len>>9;
2646 sector_nr += len>>9;
2647 } while (biolist->bi_vcnt < RESYNC_PAGES);
2648 bio_full:
2649 r10_bio->sectors = nr_sectors;
2651 while (biolist) {
2652 bio = biolist;
2653 biolist = biolist->bi_next;
2655 bio->bi_next = NULL;
2656 r10_bio = bio->bi_private;
2657 r10_bio->sectors = nr_sectors;
2659 if (bio->bi_end_io == end_sync_read) {
2660 md_sync_acct(bio->bi_bdev, nr_sectors);
2661 generic_make_request(bio);
2665 if (sectors_skipped)
2666 /* pretend they weren't skipped, it makes
2667 * no important difference in this case
2669 md_done_sync(mddev, sectors_skipped, 1);
2671 return sectors_skipped + nr_sectors;
2672 giveup:
2673 /* There is nowhere to write, so all non-sync
2674 * drives must be failed or in resync, all drives
2675 * have a bad block, so try the next chunk...
2677 if (sector_nr + max_sync < max_sector)
2678 max_sector = sector_nr + max_sync;
2680 sectors_skipped += (max_sector - sector_nr);
2681 chunks_skipped ++;
2682 sector_nr = max_sector;
2683 goto skipped;
2686 static sector_t
2687 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2689 sector_t size;
2690 conf_t *conf = mddev->private;
2692 if (!raid_disks)
2693 raid_disks = conf->raid_disks;
2694 if (!sectors)
2695 sectors = conf->dev_sectors;
2697 size = sectors >> conf->chunk_shift;
2698 sector_div(size, conf->far_copies);
2699 size = size * raid_disks;
2700 sector_div(size, conf->near_copies);
2702 return size << conf->chunk_shift;
2706 static conf_t *setup_conf(mddev_t *mddev)
2708 conf_t *conf = NULL;
2709 int nc, fc, fo;
2710 sector_t stride, size;
2711 int err = -EINVAL;
2713 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2714 !is_power_of_2(mddev->new_chunk_sectors)) {
2715 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2716 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2717 mdname(mddev), PAGE_SIZE);
2718 goto out;
2721 nc = mddev->new_layout & 255;
2722 fc = (mddev->new_layout >> 8) & 255;
2723 fo = mddev->new_layout & (1<<16);
2725 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2726 (mddev->new_layout >> 17)) {
2727 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2728 mdname(mddev), mddev->new_layout);
2729 goto out;
2732 err = -ENOMEM;
2733 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2734 if (!conf)
2735 goto out;
2737 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2738 GFP_KERNEL);
2739 if (!conf->mirrors)
2740 goto out;
2742 conf->tmppage = alloc_page(GFP_KERNEL);
2743 if (!conf->tmppage)
2744 goto out;
2747 conf->raid_disks = mddev->raid_disks;
2748 conf->near_copies = nc;
2749 conf->far_copies = fc;
2750 conf->copies = nc*fc;
2751 conf->far_offset = fo;
2752 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2753 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2755 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2756 r10bio_pool_free, conf);
2757 if (!conf->r10bio_pool)
2758 goto out;
2760 size = mddev->dev_sectors >> conf->chunk_shift;
2761 sector_div(size, fc);
2762 size = size * conf->raid_disks;
2763 sector_div(size, nc);
2764 /* 'size' is now the number of chunks in the array */
2765 /* calculate "used chunks per device" in 'stride' */
2766 stride = size * conf->copies;
2768 /* We need to round up when dividing by raid_disks to
2769 * get the stride size.
2771 stride += conf->raid_disks - 1;
2772 sector_div(stride, conf->raid_disks);
2774 conf->dev_sectors = stride << conf->chunk_shift;
2776 if (fo)
2777 stride = 1;
2778 else
2779 sector_div(stride, fc);
2780 conf->stride = stride << conf->chunk_shift;
2783 spin_lock_init(&conf->device_lock);
2784 INIT_LIST_HEAD(&conf->retry_list);
2786 spin_lock_init(&conf->resync_lock);
2787 init_waitqueue_head(&conf->wait_barrier);
2789 conf->thread = md_register_thread(raid10d, mddev, NULL);
2790 if (!conf->thread)
2791 goto out;
2793 conf->mddev = mddev;
2794 return conf;
2796 out:
2797 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2798 mdname(mddev));
2799 if (conf) {
2800 if (conf->r10bio_pool)
2801 mempool_destroy(conf->r10bio_pool);
2802 kfree(conf->mirrors);
2803 safe_put_page(conf->tmppage);
2804 kfree(conf);
2806 return ERR_PTR(err);
2809 static int run(mddev_t *mddev)
2811 conf_t *conf;
2812 int i, disk_idx, chunk_size;
2813 mirror_info_t *disk;
2814 mdk_rdev_t *rdev;
2815 sector_t size;
2818 * copy the already verified devices into our private RAID10
2819 * bookkeeping area. [whatever we allocate in run(),
2820 * should be freed in stop()]
2823 if (mddev->private == NULL) {
2824 conf = setup_conf(mddev);
2825 if (IS_ERR(conf))
2826 return PTR_ERR(conf);
2827 mddev->private = conf;
2829 conf = mddev->private;
2830 if (!conf)
2831 goto out;
2833 mddev->thread = conf->thread;
2834 conf->thread = NULL;
2836 chunk_size = mddev->chunk_sectors << 9;
2837 blk_queue_io_min(mddev->queue, chunk_size);
2838 if (conf->raid_disks % conf->near_copies)
2839 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2840 else
2841 blk_queue_io_opt(mddev->queue, chunk_size *
2842 (conf->raid_disks / conf->near_copies));
2844 list_for_each_entry(rdev, &mddev->disks, same_set) {
2846 disk_idx = rdev->raid_disk;
2847 if (disk_idx >= conf->raid_disks
2848 || disk_idx < 0)
2849 continue;
2850 disk = conf->mirrors + disk_idx;
2852 disk->rdev = rdev;
2853 disk_stack_limits(mddev->gendisk, rdev->bdev,
2854 rdev->data_offset << 9);
2855 /* as we don't honour merge_bvec_fn, we must never risk
2856 * violating it, so limit max_segments to 1 lying
2857 * within a single page.
2859 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2860 blk_queue_max_segments(mddev->queue, 1);
2861 blk_queue_segment_boundary(mddev->queue,
2862 PAGE_CACHE_SIZE - 1);
2865 disk->head_position = 0;
2867 /* need to check that every block has at least one working mirror */
2868 if (!enough(conf, -1)) {
2869 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2870 mdname(mddev));
2871 goto out_free_conf;
2874 mddev->degraded = 0;
2875 for (i = 0; i < conf->raid_disks; i++) {
2877 disk = conf->mirrors + i;
2879 if (!disk->rdev ||
2880 !test_bit(In_sync, &disk->rdev->flags)) {
2881 disk->head_position = 0;
2882 mddev->degraded++;
2883 if (disk->rdev)
2884 conf->fullsync = 1;
2888 if (mddev->recovery_cp != MaxSector)
2889 printk(KERN_NOTICE "md/raid10:%s: not clean"
2890 " -- starting background reconstruction\n",
2891 mdname(mddev));
2892 printk(KERN_INFO
2893 "md/raid10:%s: active with %d out of %d devices\n",
2894 mdname(mddev), conf->raid_disks - mddev->degraded,
2895 conf->raid_disks);
2897 * Ok, everything is just fine now
2899 mddev->dev_sectors = conf->dev_sectors;
2900 size = raid10_size(mddev, 0, 0);
2901 md_set_array_sectors(mddev, size);
2902 mddev->resync_max_sectors = size;
2904 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2905 mddev->queue->backing_dev_info.congested_data = mddev;
2907 /* Calculate max read-ahead size.
2908 * We need to readahead at least twice a whole stripe....
2909 * maybe...
2912 int stripe = conf->raid_disks *
2913 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2914 stripe /= conf->near_copies;
2915 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2916 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2919 if (conf->near_copies < conf->raid_disks)
2920 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2922 if (md_integrity_register(mddev))
2923 goto out_free_conf;
2925 return 0;
2927 out_free_conf:
2928 md_unregister_thread(mddev->thread);
2929 if (conf->r10bio_pool)
2930 mempool_destroy(conf->r10bio_pool);
2931 safe_put_page(conf->tmppage);
2932 kfree(conf->mirrors);
2933 kfree(conf);
2934 mddev->private = NULL;
2935 out:
2936 return -EIO;
2939 static int stop(mddev_t *mddev)
2941 conf_t *conf = mddev->private;
2943 raise_barrier(conf, 0);
2944 lower_barrier(conf);
2946 md_unregister_thread(mddev->thread);
2947 mddev->thread = NULL;
2948 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2949 if (conf->r10bio_pool)
2950 mempool_destroy(conf->r10bio_pool);
2951 kfree(conf->mirrors);
2952 kfree(conf);
2953 mddev->private = NULL;
2954 return 0;
2957 static void raid10_quiesce(mddev_t *mddev, int state)
2959 conf_t *conf = mddev->private;
2961 switch(state) {
2962 case 1:
2963 raise_barrier(conf, 0);
2964 break;
2965 case 0:
2966 lower_barrier(conf);
2967 break;
2971 static void *raid10_takeover_raid0(mddev_t *mddev)
2973 mdk_rdev_t *rdev;
2974 conf_t *conf;
2976 if (mddev->degraded > 0) {
2977 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2978 mdname(mddev));
2979 return ERR_PTR(-EINVAL);
2982 /* Set new parameters */
2983 mddev->new_level = 10;
2984 /* new layout: far_copies = 1, near_copies = 2 */
2985 mddev->new_layout = (1<<8) + 2;
2986 mddev->new_chunk_sectors = mddev->chunk_sectors;
2987 mddev->delta_disks = mddev->raid_disks;
2988 mddev->raid_disks *= 2;
2989 /* make sure it will be not marked as dirty */
2990 mddev->recovery_cp = MaxSector;
2992 conf = setup_conf(mddev);
2993 if (!IS_ERR(conf)) {
2994 list_for_each_entry(rdev, &mddev->disks, same_set)
2995 if (rdev->raid_disk >= 0)
2996 rdev->new_raid_disk = rdev->raid_disk * 2;
2997 conf->barrier = 1;
3000 return conf;
3003 static void *raid10_takeover(mddev_t *mddev)
3005 struct raid0_private_data *raid0_priv;
3007 /* raid10 can take over:
3008 * raid0 - providing it has only two drives
3010 if (mddev->level == 0) {
3011 /* for raid0 takeover only one zone is supported */
3012 raid0_priv = mddev->private;
3013 if (raid0_priv->nr_strip_zones > 1) {
3014 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3015 " with more than one zone.\n",
3016 mdname(mddev));
3017 return ERR_PTR(-EINVAL);
3019 return raid10_takeover_raid0(mddev);
3021 return ERR_PTR(-EINVAL);
3024 static struct mdk_personality raid10_personality =
3026 .name = "raid10",
3027 .level = 10,
3028 .owner = THIS_MODULE,
3029 .make_request = make_request,
3030 .run = run,
3031 .stop = stop,
3032 .status = status,
3033 .error_handler = error,
3034 .hot_add_disk = raid10_add_disk,
3035 .hot_remove_disk= raid10_remove_disk,
3036 .spare_active = raid10_spare_active,
3037 .sync_request = sync_request,
3038 .quiesce = raid10_quiesce,
3039 .size = raid10_size,
3040 .takeover = raid10_takeover,
3043 static int __init raid_init(void)
3045 return register_md_personality(&raid10_personality);
3048 static void raid_exit(void)
3050 unregister_md_personality(&raid10_personality);
3053 module_init(raid_init);
3054 module_exit(raid_exit);
3055 MODULE_LICENSE("GPL");
3056 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3057 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3058 MODULE_ALIAS("md-raid10");
3059 MODULE_ALIAS("md-level-10");