2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <linux/slab.h>
99 #include <net/tcp_states.h>
100 #include <linux/skbuff.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <net/net_namespace.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include "udp_impl.h"
111 struct udp_table udp_table __read_mostly
;
112 EXPORT_SYMBOL(udp_table
);
114 long sysctl_udp_mem
[3] __read_mostly
;
115 EXPORT_SYMBOL(sysctl_udp_mem
);
117 int sysctl_udp_rmem_min __read_mostly
;
118 EXPORT_SYMBOL(sysctl_udp_rmem_min
);
120 int sysctl_udp_wmem_min __read_mostly
;
121 EXPORT_SYMBOL(sysctl_udp_wmem_min
);
123 atomic_long_t udp_memory_allocated
;
124 EXPORT_SYMBOL(udp_memory_allocated
);
126 #define MAX_UDP_PORTS 65536
127 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
129 static int udp_lib_lport_inuse(struct net
*net
, __u16 num
,
130 const struct udp_hslot
*hslot
,
131 unsigned long *bitmap
,
133 int (*saddr_comp
)(const struct sock
*sk1
,
134 const struct sock
*sk2
),
138 struct hlist_nulls_node
*node
;
140 sk_nulls_for_each(sk2
, node
, &hslot
->head
)
141 if (net_eq(sock_net(sk2
), net
) &&
143 (bitmap
|| udp_sk(sk2
)->udp_port_hash
== num
) &&
144 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
145 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
146 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
147 (*saddr_comp
)(sk
, sk2
)) {
149 __set_bit(udp_sk(sk2
)->udp_port_hash
>> log
,
158 * Note: we still hold spinlock of primary hash chain, so no other writer
159 * can insert/delete a socket with local_port == num
161 static int udp_lib_lport_inuse2(struct net
*net
, __u16 num
,
162 struct udp_hslot
*hslot2
,
164 int (*saddr_comp
)(const struct sock
*sk1
,
165 const struct sock
*sk2
))
168 struct hlist_nulls_node
*node
;
171 spin_lock(&hslot2
->lock
);
172 udp_portaddr_for_each_entry(sk2
, node
, &hslot2
->head
)
173 if (net_eq(sock_net(sk2
), net
) &&
175 (udp_sk(sk2
)->udp_port_hash
== num
) &&
176 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
177 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
178 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
179 (*saddr_comp
)(sk
, sk2
)) {
183 spin_unlock(&hslot2
->lock
);
188 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
190 * @sk: socket struct in question
191 * @snum: port number to look up
192 * @saddr_comp: AF-dependent comparison of bound local IP addresses
193 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
196 int udp_lib_get_port(struct sock
*sk
, unsigned short snum
,
197 int (*saddr_comp
)(const struct sock
*sk1
,
198 const struct sock
*sk2
),
199 unsigned int hash2_nulladdr
)
201 struct udp_hslot
*hslot
, *hslot2
;
202 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
204 struct net
*net
= sock_net(sk
);
207 int low
, high
, remaining
;
209 unsigned short first
, last
;
210 DECLARE_BITMAP(bitmap
, PORTS_PER_CHAIN
);
212 inet_get_local_port_range(&low
, &high
);
213 remaining
= (high
- low
) + 1;
216 first
= (((u64
)rand
* remaining
) >> 32) + low
;
218 * force rand to be an odd multiple of UDP_HTABLE_SIZE
220 rand
= (rand
| 1) * (udptable
->mask
+ 1);
221 last
= first
+ udptable
->mask
+ 1;
223 hslot
= udp_hashslot(udptable
, net
, first
);
224 bitmap_zero(bitmap
, PORTS_PER_CHAIN
);
225 spin_lock_bh(&hslot
->lock
);
226 udp_lib_lport_inuse(net
, snum
, hslot
, bitmap
, sk
,
227 saddr_comp
, udptable
->log
);
231 * Iterate on all possible values of snum for this hash.
232 * Using steps of an odd multiple of UDP_HTABLE_SIZE
233 * give us randomization and full range coverage.
236 if (low
<= snum
&& snum
<= high
&&
237 !test_bit(snum
>> udptable
->log
, bitmap
) &&
238 !inet_is_reserved_local_port(snum
))
241 } while (snum
!= first
);
242 spin_unlock_bh(&hslot
->lock
);
243 } while (++first
!= last
);
246 hslot
= udp_hashslot(udptable
, net
, snum
);
247 spin_lock_bh(&hslot
->lock
);
248 if (hslot
->count
> 10) {
250 unsigned int slot2
= udp_sk(sk
)->udp_portaddr_hash
^ snum
;
252 slot2
&= udptable
->mask
;
253 hash2_nulladdr
&= udptable
->mask
;
255 hslot2
= udp_hashslot2(udptable
, slot2
);
256 if (hslot
->count
< hslot2
->count
)
257 goto scan_primary_hash
;
259 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
,
261 if (!exist
&& (hash2_nulladdr
!= slot2
)) {
262 hslot2
= udp_hashslot2(udptable
, hash2_nulladdr
);
263 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
,
272 if (udp_lib_lport_inuse(net
, snum
, hslot
, NULL
, sk
,
277 inet_sk(sk
)->inet_num
= snum
;
278 udp_sk(sk
)->udp_port_hash
= snum
;
279 udp_sk(sk
)->udp_portaddr_hash
^= snum
;
280 if (sk_unhashed(sk
)) {
281 sk_nulls_add_node_rcu(sk
, &hslot
->head
);
283 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, 1);
285 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
286 spin_lock(&hslot2
->lock
);
287 hlist_nulls_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
290 spin_unlock(&hslot2
->lock
);
294 spin_unlock_bh(&hslot
->lock
);
298 EXPORT_SYMBOL(udp_lib_get_port
);
300 static int ipv4_rcv_saddr_equal(const struct sock
*sk1
, const struct sock
*sk2
)
302 struct inet_sock
*inet1
= inet_sk(sk1
), *inet2
= inet_sk(sk2
);
304 return (!ipv6_only_sock(sk2
) &&
305 (!inet1
->inet_rcv_saddr
|| !inet2
->inet_rcv_saddr
||
306 inet1
->inet_rcv_saddr
== inet2
->inet_rcv_saddr
));
309 static unsigned int udp4_portaddr_hash(struct net
*net
, __be32 saddr
,
312 return jhash_1word((__force u32
)saddr
, net_hash_mix(net
)) ^ port
;
315 int udp_v4_get_port(struct sock
*sk
, unsigned short snum
)
317 unsigned int hash2_nulladdr
=
318 udp4_portaddr_hash(sock_net(sk
), htonl(INADDR_ANY
), snum
);
319 unsigned int hash2_partial
=
320 udp4_portaddr_hash(sock_net(sk
), inet_sk(sk
)->inet_rcv_saddr
, 0);
322 /* precompute partial secondary hash */
323 udp_sk(sk
)->udp_portaddr_hash
= hash2_partial
;
324 return udp_lib_get_port(sk
, snum
, ipv4_rcv_saddr_equal
, hash2_nulladdr
);
327 static inline int compute_score(struct sock
*sk
, struct net
*net
, __be32 saddr
,
329 __be16 sport
, __be32 daddr
, __be16 dport
, int dif
)
333 if (net_eq(sock_net(sk
), net
) && udp_sk(sk
)->udp_port_hash
== hnum
&&
334 !ipv6_only_sock(sk
)) {
335 struct inet_sock
*inet
= inet_sk(sk
);
337 score
= (sk
->sk_family
== PF_INET
? 1 : 0);
338 if (inet
->inet_rcv_saddr
) {
339 if (inet
->inet_rcv_saddr
!= daddr
)
343 if (inet
->inet_daddr
) {
344 if (inet
->inet_daddr
!= saddr
)
348 if (inet
->inet_dport
) {
349 if (inet
->inet_dport
!= sport
)
353 if (sk
->sk_bound_dev_if
) {
354 if (sk
->sk_bound_dev_if
!= dif
)
363 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
365 #define SCORE2_MAX (1 + 2 + 2 + 2)
366 static inline int compute_score2(struct sock
*sk
, struct net
*net
,
367 __be32 saddr
, __be16 sport
,
368 __be32 daddr
, unsigned int hnum
, int dif
)
372 if (net_eq(sock_net(sk
), net
) && !ipv6_only_sock(sk
)) {
373 struct inet_sock
*inet
= inet_sk(sk
);
375 if (inet
->inet_rcv_saddr
!= daddr
)
377 if (inet
->inet_num
!= hnum
)
380 score
= (sk
->sk_family
== PF_INET
? 1 : 0);
381 if (inet
->inet_daddr
) {
382 if (inet
->inet_daddr
!= saddr
)
386 if (inet
->inet_dport
) {
387 if (inet
->inet_dport
!= sport
)
391 if (sk
->sk_bound_dev_if
) {
392 if (sk
->sk_bound_dev_if
!= dif
)
401 /* called with read_rcu_lock() */
402 static struct sock
*udp4_lib_lookup2(struct net
*net
,
403 __be32 saddr
, __be16 sport
,
404 __be32 daddr
, unsigned int hnum
, int dif
,
405 struct udp_hslot
*hslot2
, unsigned int slot2
)
407 struct sock
*sk
, *result
;
408 struct hlist_nulls_node
*node
;
414 udp_portaddr_for_each_entry_rcu(sk
, node
, &hslot2
->head
) {
415 score
= compute_score2(sk
, net
, saddr
, sport
,
417 if (score
> badness
) {
420 if (score
== SCORE2_MAX
)
425 * if the nulls value we got at the end of this lookup is
426 * not the expected one, we must restart lookup.
427 * We probably met an item that was moved to another chain.
429 if (get_nulls_value(node
) != slot2
)
434 if (unlikely(!atomic_inc_not_zero_hint(&result
->sk_refcnt
, 2)))
436 else if (unlikely(compute_score2(result
, net
, saddr
, sport
,
437 daddr
, hnum
, dif
) < badness
)) {
445 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
446 * harder than this. -DaveM
448 struct sock
*__udp4_lib_lookup(struct net
*net
, __be32 saddr
,
449 __be16 sport
, __be32 daddr
, __be16 dport
,
450 int dif
, struct udp_table
*udptable
)
452 struct sock
*sk
, *result
;
453 struct hlist_nulls_node
*node
;
454 unsigned short hnum
= ntohs(dport
);
455 unsigned int hash2
, slot2
, slot
= udp_hashfn(net
, hnum
, udptable
->mask
);
456 struct udp_hslot
*hslot2
, *hslot
= &udptable
->hash
[slot
];
460 if (hslot
->count
> 10) {
461 hash2
= udp4_portaddr_hash(net
, daddr
, hnum
);
462 slot2
= hash2
& udptable
->mask
;
463 hslot2
= &udptable
->hash2
[slot2
];
464 if (hslot
->count
< hslot2
->count
)
467 result
= udp4_lib_lookup2(net
, saddr
, sport
,
471 hash2
= udp4_portaddr_hash(net
, htonl(INADDR_ANY
), hnum
);
472 slot2
= hash2
& udptable
->mask
;
473 hslot2
= &udptable
->hash2
[slot2
];
474 if (hslot
->count
< hslot2
->count
)
477 result
= udp4_lib_lookup2(net
, saddr
, sport
,
478 htonl(INADDR_ANY
), hnum
, dif
,
487 sk_nulls_for_each_rcu(sk
, node
, &hslot
->head
) {
488 score
= compute_score(sk
, net
, saddr
, hnum
, sport
,
490 if (score
> badness
) {
496 * if the nulls value we got at the end of this lookup is
497 * not the expected one, we must restart lookup.
498 * We probably met an item that was moved to another chain.
500 if (get_nulls_value(node
) != slot
)
504 if (unlikely(!atomic_inc_not_zero_hint(&result
->sk_refcnt
, 2)))
506 else if (unlikely(compute_score(result
, net
, saddr
, hnum
, sport
,
507 daddr
, dport
, dif
) < badness
)) {
515 EXPORT_SYMBOL_GPL(__udp4_lib_lookup
);
517 static inline struct sock
*__udp4_lib_lookup_skb(struct sk_buff
*skb
,
518 __be16 sport
, __be16 dport
,
519 struct udp_table
*udptable
)
522 const struct iphdr
*iph
= ip_hdr(skb
);
524 if (unlikely(sk
= skb_steal_sock(skb
)))
527 return __udp4_lib_lookup(dev_net(skb_dst(skb
)->dev
), iph
->saddr
, sport
,
528 iph
->daddr
, dport
, inet_iif(skb
),
532 struct sock
*udp4_lib_lookup(struct net
*net
, __be32 saddr
, __be16 sport
,
533 __be32 daddr
, __be16 dport
, int dif
)
535 return __udp4_lib_lookup(net
, saddr
, sport
, daddr
, dport
, dif
, &udp_table
);
537 EXPORT_SYMBOL_GPL(udp4_lib_lookup
);
539 static inline struct sock
*udp_v4_mcast_next(struct net
*net
, struct sock
*sk
,
540 __be16 loc_port
, __be32 loc_addr
,
541 __be16 rmt_port
, __be32 rmt_addr
,
544 struct hlist_nulls_node
*node
;
546 unsigned short hnum
= ntohs(loc_port
);
548 sk_nulls_for_each_from(s
, node
) {
549 struct inet_sock
*inet
= inet_sk(s
);
551 if (!net_eq(sock_net(s
), net
) ||
552 udp_sk(s
)->udp_port_hash
!= hnum
||
553 (inet
->inet_daddr
&& inet
->inet_daddr
!= rmt_addr
) ||
554 (inet
->inet_dport
!= rmt_port
&& inet
->inet_dport
) ||
555 (inet
->inet_rcv_saddr
&&
556 inet
->inet_rcv_saddr
!= loc_addr
) ||
558 (s
->sk_bound_dev_if
&& s
->sk_bound_dev_if
!= dif
))
560 if (!ip_mc_sf_allow(s
, loc_addr
, rmt_addr
, dif
))
570 * This routine is called by the ICMP module when it gets some
571 * sort of error condition. If err < 0 then the socket should
572 * be closed and the error returned to the user. If err > 0
573 * it's just the icmp type << 8 | icmp code.
574 * Header points to the ip header of the error packet. We move
575 * on past this. Then (as it used to claim before adjustment)
576 * header points to the first 8 bytes of the udp header. We need
577 * to find the appropriate port.
580 void __udp4_lib_err(struct sk_buff
*skb
, u32 info
, struct udp_table
*udptable
)
582 struct inet_sock
*inet
;
583 const struct iphdr
*iph
= (const struct iphdr
*)skb
->data
;
584 struct udphdr
*uh
= (struct udphdr
*)(skb
->data
+(iph
->ihl
<<2));
585 const int type
= icmp_hdr(skb
)->type
;
586 const int code
= icmp_hdr(skb
)->code
;
590 struct net
*net
= dev_net(skb
->dev
);
592 sk
= __udp4_lib_lookup(net
, iph
->daddr
, uh
->dest
,
593 iph
->saddr
, uh
->source
, skb
->dev
->ifindex
, udptable
);
595 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
596 return; /* No socket for error */
605 case ICMP_TIME_EXCEEDED
:
608 case ICMP_SOURCE_QUENCH
:
610 case ICMP_PARAMETERPROB
:
614 case ICMP_DEST_UNREACH
:
615 if (code
== ICMP_FRAG_NEEDED
) { /* Path MTU discovery */
616 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
) {
624 if (code
<= NR_ICMP_UNREACH
) {
625 harderr
= icmp_err_convert
[code
].fatal
;
626 err
= icmp_err_convert
[code
].errno
;
632 * RFC1122: OK. Passes ICMP errors back to application, as per
635 if (!inet
->recverr
) {
636 if (!harderr
|| sk
->sk_state
!= TCP_ESTABLISHED
)
639 ip_icmp_error(sk
, skb
, err
, uh
->dest
, info
, (u8
*)(uh
+1));
642 sk
->sk_error_report(sk
);
647 void udp_err(struct sk_buff
*skb
, u32 info
)
649 __udp4_lib_err(skb
, info
, &udp_table
);
653 * Throw away all pending data and cancel the corking. Socket is locked.
655 void udp_flush_pending_frames(struct sock
*sk
)
657 struct udp_sock
*up
= udp_sk(sk
);
662 ip_flush_pending_frames(sk
);
665 EXPORT_SYMBOL(udp_flush_pending_frames
);
668 * udp4_hwcsum - handle outgoing HW checksumming
669 * @skb: sk_buff containing the filled-in UDP header
670 * (checksum field must be zeroed out)
671 * @src: source IP address
672 * @dst: destination IP address
674 static void udp4_hwcsum(struct sk_buff
*skb
, __be32 src
, __be32 dst
)
676 struct udphdr
*uh
= udp_hdr(skb
);
677 struct sk_buff
*frags
= skb_shinfo(skb
)->frag_list
;
678 int offset
= skb_transport_offset(skb
);
679 int len
= skb
->len
- offset
;
685 * Only one fragment on the socket.
687 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
688 skb
->csum_offset
= offsetof(struct udphdr
, check
);
689 uh
->check
= ~csum_tcpudp_magic(src
, dst
, len
,
693 * HW-checksum won't work as there are two or more
694 * fragments on the socket so that all csums of sk_buffs
698 csum
= csum_add(csum
, frags
->csum
);
700 } while ((frags
= frags
->next
));
702 csum
= skb_checksum(skb
, offset
, hlen
, csum
);
703 skb
->ip_summed
= CHECKSUM_NONE
;
705 uh
->check
= csum_tcpudp_magic(src
, dst
, len
, IPPROTO_UDP
, csum
);
707 uh
->check
= CSUM_MANGLED_0
;
711 static int udp_send_skb(struct sk_buff
*skb
, struct flowi4
*fl4
)
713 struct sock
*sk
= skb
->sk
;
714 struct inet_sock
*inet
= inet_sk(sk
);
717 int is_udplite
= IS_UDPLITE(sk
);
718 int offset
= skb_transport_offset(skb
);
719 int len
= skb
->len
- offset
;
723 * Create a UDP header
726 uh
->source
= inet
->inet_sport
;
727 uh
->dest
= fl4
->fl4_dport
;
728 uh
->len
= htons(len
);
731 if (is_udplite
) /* UDP-Lite */
732 csum
= udplite_csum(skb
);
734 else if (sk
->sk_no_check
== UDP_CSUM_NOXMIT
) { /* UDP csum disabled */
736 skb
->ip_summed
= CHECKSUM_NONE
;
739 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) { /* UDP hardware csum */
741 udp4_hwcsum(skb
, fl4
->saddr
, fl4
->daddr
);
745 csum
= udp_csum(skb
);
747 /* add protocol-dependent pseudo-header */
748 uh
->check
= csum_tcpudp_magic(fl4
->saddr
, fl4
->daddr
, len
,
749 sk
->sk_protocol
, csum
);
751 uh
->check
= CSUM_MANGLED_0
;
754 err
= ip_send_skb(skb
);
756 if (err
== -ENOBUFS
&& !inet
->recverr
) {
757 UDP_INC_STATS_USER(sock_net(sk
),
758 UDP_MIB_SNDBUFERRORS
, is_udplite
);
762 UDP_INC_STATS_USER(sock_net(sk
),
763 UDP_MIB_OUTDATAGRAMS
, is_udplite
);
768 * Push out all pending data as one UDP datagram. Socket is locked.
770 static int udp_push_pending_frames(struct sock
*sk
)
772 struct udp_sock
*up
= udp_sk(sk
);
773 struct inet_sock
*inet
= inet_sk(sk
);
774 struct flowi4
*fl4
= &inet
->cork
.fl
.u
.ip4
;
778 skb
= ip_finish_skb(sk
, fl4
);
782 err
= udp_send_skb(skb
, fl4
);
790 int udp_sendmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
793 struct inet_sock
*inet
= inet_sk(sk
);
794 struct udp_sock
*up
= udp_sk(sk
);
795 struct flowi4 fl4_stack
;
798 struct ipcm_cookie ipc
;
799 struct rtable
*rt
= NULL
;
802 __be32 daddr
, faddr
, saddr
;
805 int err
, is_udplite
= IS_UDPLITE(sk
);
806 int corkreq
= up
->corkflag
|| msg
->msg_flags
&MSG_MORE
;
807 int (*getfrag
)(void *, char *, int, int, int, struct sk_buff
*);
809 struct ip_options_data opt_copy
;
818 if (msg
->msg_flags
& MSG_OOB
) /* Mirror BSD error message compatibility */
824 getfrag
= is_udplite
? udplite_getfrag
: ip_generic_getfrag
;
826 fl4
= &inet
->cork
.fl
.u
.ip4
;
829 * There are pending frames.
830 * The socket lock must be held while it's corked.
833 if (likely(up
->pending
)) {
834 if (unlikely(up
->pending
!= AF_INET
)) {
842 ulen
+= sizeof(struct udphdr
);
845 * Get and verify the address.
848 struct sockaddr_in
* usin
= (struct sockaddr_in
*)msg
->msg_name
;
849 if (msg
->msg_namelen
< sizeof(*usin
))
851 if (usin
->sin_family
!= AF_INET
) {
852 if (usin
->sin_family
!= AF_UNSPEC
)
853 return -EAFNOSUPPORT
;
856 daddr
= usin
->sin_addr
.s_addr
;
857 dport
= usin
->sin_port
;
861 if (sk
->sk_state
!= TCP_ESTABLISHED
)
862 return -EDESTADDRREQ
;
863 daddr
= inet
->inet_daddr
;
864 dport
= inet
->inet_dport
;
865 /* Open fast path for connected socket.
866 Route will not be used, if at least one option is set.
870 ipc
.addr
= inet
->inet_saddr
;
872 ipc
.oif
= sk
->sk_bound_dev_if
;
873 err
= sock_tx_timestamp(sk
, &ipc
.tx_flags
);
876 if (msg
->msg_controllen
) {
877 err
= ip_cmsg_send(sock_net(sk
), msg
, &ipc
);
885 struct ip_options_rcu
*inet_opt
;
888 inet_opt
= rcu_dereference(inet
->inet_opt
);
890 memcpy(&opt_copy
, inet_opt
,
891 sizeof(*inet_opt
) + inet_opt
->opt
.optlen
);
892 ipc
.opt
= &opt_copy
.opt
;
898 ipc
.addr
= faddr
= daddr
;
900 if (ipc
.opt
&& ipc
.opt
->opt
.srr
) {
903 faddr
= ipc
.opt
->opt
.faddr
;
906 tos
= RT_TOS(inet
->tos
);
907 if (sock_flag(sk
, SOCK_LOCALROUTE
) ||
908 (msg
->msg_flags
& MSG_DONTROUTE
) ||
909 (ipc
.opt
&& ipc
.opt
->opt
.is_strictroute
)) {
914 if (ipv4_is_multicast(daddr
)) {
916 ipc
.oif
= inet
->mc_index
;
918 saddr
= inet
->mc_addr
;
923 rt
= (struct rtable
*)sk_dst_check(sk
, 0);
926 struct net
*net
= sock_net(sk
);
929 flowi4_init_output(fl4
, ipc
.oif
, sk
->sk_mark
, tos
,
930 RT_SCOPE_UNIVERSE
, sk
->sk_protocol
,
931 inet_sk_flowi_flags(sk
)|FLOWI_FLAG_CAN_SLEEP
,
932 faddr
, saddr
, dport
, inet
->inet_sport
);
934 security_sk_classify_flow(sk
, flowi4_to_flowi(fl4
));
935 rt
= ip_route_output_flow(net
, fl4
, sk
);
939 if (err
== -ENETUNREACH
)
940 IP_INC_STATS_BH(net
, IPSTATS_MIB_OUTNOROUTES
);
945 if ((rt
->rt_flags
& RTCF_BROADCAST
) &&
946 !sock_flag(sk
, SOCK_BROADCAST
))
949 sk_dst_set(sk
, dst_clone(&rt
->dst
));
952 if (msg
->msg_flags
&MSG_CONFIRM
)
958 daddr
= ipc
.addr
= fl4
->daddr
;
960 /* Lockless fast path for the non-corking case. */
962 skb
= ip_make_skb(sk
, fl4
, getfrag
, msg
->msg_iov
, ulen
,
963 sizeof(struct udphdr
), &ipc
, &rt
,
966 if (skb
&& !IS_ERR(skb
))
967 err
= udp_send_skb(skb
, fl4
);
972 if (unlikely(up
->pending
)) {
973 /* The socket is already corked while preparing it. */
974 /* ... which is an evident application bug. --ANK */
977 LIMIT_NETDEBUG(KERN_DEBUG
"udp cork app bug 2\n");
982 * Now cork the socket to pend data.
984 fl4
= &inet
->cork
.fl
.u
.ip4
;
987 fl4
->fl4_dport
= dport
;
988 fl4
->fl4_sport
= inet
->inet_sport
;
989 up
->pending
= AF_INET
;
993 err
= ip_append_data(sk
, fl4
, getfrag
, msg
->msg_iov
, ulen
,
994 sizeof(struct udphdr
), &ipc
, &rt
,
995 corkreq
? msg
->msg_flags
|MSG_MORE
: msg
->msg_flags
);
997 udp_flush_pending_frames(sk
);
999 err
= udp_push_pending_frames(sk
);
1000 else if (unlikely(skb_queue_empty(&sk
->sk_write_queue
)))
1011 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1012 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1013 * we don't have a good statistic (IpOutDiscards but it can be too many
1014 * things). We could add another new stat but at least for now that
1015 * seems like overkill.
1017 if (err
== -ENOBUFS
|| test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1018 UDP_INC_STATS_USER(sock_net(sk
),
1019 UDP_MIB_SNDBUFERRORS
, is_udplite
);
1024 dst_confirm(&rt
->dst
);
1025 if (!(msg
->msg_flags
&MSG_PROBE
) || len
)
1026 goto back_from_confirm
;
1030 EXPORT_SYMBOL(udp_sendmsg
);
1032 int udp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1033 size_t size
, int flags
)
1035 struct inet_sock
*inet
= inet_sk(sk
);
1036 struct udp_sock
*up
= udp_sk(sk
);
1040 struct msghdr msg
= { .msg_flags
= flags
|MSG_MORE
};
1042 /* Call udp_sendmsg to specify destination address which
1043 * sendpage interface can't pass.
1044 * This will succeed only when the socket is connected.
1046 ret
= udp_sendmsg(NULL
, sk
, &msg
, 0);
1053 if (unlikely(!up
->pending
)) {
1056 LIMIT_NETDEBUG(KERN_DEBUG
"udp cork app bug 3\n");
1060 ret
= ip_append_page(sk
, &inet
->cork
.fl
.u
.ip4
,
1061 page
, offset
, size
, flags
);
1062 if (ret
== -EOPNOTSUPP
) {
1064 return sock_no_sendpage(sk
->sk_socket
, page
, offset
,
1068 udp_flush_pending_frames(sk
);
1073 if (!(up
->corkflag
|| (flags
&MSG_MORE
)))
1074 ret
= udp_push_pending_frames(sk
);
1084 * first_packet_length - return length of first packet in receive queue
1087 * Drops all bad checksum frames, until a valid one is found.
1088 * Returns the length of found skb, or 0 if none is found.
1090 static unsigned int first_packet_length(struct sock
*sk
)
1092 struct sk_buff_head list_kill
, *rcvq
= &sk
->sk_receive_queue
;
1093 struct sk_buff
*skb
;
1096 __skb_queue_head_init(&list_kill
);
1098 spin_lock_bh(&rcvq
->lock
);
1099 while ((skb
= skb_peek(rcvq
)) != NULL
&&
1100 udp_lib_checksum_complete(skb
)) {
1101 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
,
1103 atomic_inc(&sk
->sk_drops
);
1104 __skb_unlink(skb
, rcvq
);
1105 __skb_queue_tail(&list_kill
, skb
);
1107 res
= skb
? skb
->len
: 0;
1108 spin_unlock_bh(&rcvq
->lock
);
1110 if (!skb_queue_empty(&list_kill
)) {
1111 bool slow
= lock_sock_fast(sk
);
1113 __skb_queue_purge(&list_kill
);
1114 sk_mem_reclaim_partial(sk
);
1115 unlock_sock_fast(sk
, slow
);
1121 * IOCTL requests applicable to the UDP protocol
1124 int udp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
1129 int amount
= sk_wmem_alloc_get(sk
);
1131 return put_user(amount
, (int __user
*)arg
);
1136 unsigned int amount
= first_packet_length(sk
);
1140 * We will only return the amount
1141 * of this packet since that is all
1142 * that will be read.
1144 amount
-= sizeof(struct udphdr
);
1146 return put_user(amount
, (int __user
*)arg
);
1150 return -ENOIOCTLCMD
;
1155 EXPORT_SYMBOL(udp_ioctl
);
1158 * This should be easy, if there is something there we
1159 * return it, otherwise we block.
1162 int udp_recvmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1163 size_t len
, int noblock
, int flags
, int *addr_len
)
1165 struct inet_sock
*inet
= inet_sk(sk
);
1166 struct sockaddr_in
*sin
= (struct sockaddr_in
*)msg
->msg_name
;
1167 struct sk_buff
*skb
;
1168 unsigned int ulen
, copied
;
1171 int is_udplite
= IS_UDPLITE(sk
);
1175 * Check any passed addresses
1178 *addr_len
= sizeof(*sin
);
1180 if (flags
& MSG_ERRQUEUE
)
1181 return ip_recv_error(sk
, msg
, len
);
1184 skb
= __skb_recv_datagram(sk
, flags
| (noblock
? MSG_DONTWAIT
: 0),
1189 ulen
= skb
->len
- sizeof(struct udphdr
);
1193 else if (copied
< ulen
)
1194 msg
->msg_flags
|= MSG_TRUNC
;
1197 * If checksum is needed at all, try to do it while copying the
1198 * data. If the data is truncated, or if we only want a partial
1199 * coverage checksum (UDP-Lite), do it before the copy.
1202 if (copied
< ulen
|| UDP_SKB_CB(skb
)->partial_cov
) {
1203 if (udp_lib_checksum_complete(skb
))
1207 if (skb_csum_unnecessary(skb
))
1208 err
= skb_copy_datagram_iovec(skb
, sizeof(struct udphdr
),
1209 msg
->msg_iov
, copied
);
1211 err
= skb_copy_and_csum_datagram_iovec(skb
,
1212 sizeof(struct udphdr
),
1223 UDP_INC_STATS_USER(sock_net(sk
),
1224 UDP_MIB_INDATAGRAMS
, is_udplite
);
1226 sock_recv_ts_and_drops(msg
, sk
, skb
);
1228 /* Copy the address. */
1230 sin
->sin_family
= AF_INET
;
1231 sin
->sin_port
= udp_hdr(skb
)->source
;
1232 sin
->sin_addr
.s_addr
= ip_hdr(skb
)->saddr
;
1233 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
1235 if (inet
->cmsg_flags
)
1236 ip_cmsg_recv(msg
, skb
);
1239 if (flags
& MSG_TRUNC
)
1243 skb_free_datagram_locked(sk
, skb
);
1248 slow
= lock_sock_fast(sk
);
1249 if (!skb_kill_datagram(sk
, skb
, flags
))
1250 UDP_INC_STATS_USER(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1251 unlock_sock_fast(sk
, slow
);
1256 /* starting over for a new packet */
1257 msg
->msg_flags
&= ~MSG_TRUNC
;
1262 int udp_disconnect(struct sock
*sk
, int flags
)
1264 struct inet_sock
*inet
= inet_sk(sk
);
1266 * 1003.1g - break association.
1269 sk
->sk_state
= TCP_CLOSE
;
1270 inet
->inet_daddr
= 0;
1271 inet
->inet_dport
= 0;
1272 sock_rps_reset_rxhash(sk
);
1273 sk
->sk_bound_dev_if
= 0;
1274 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
1275 inet_reset_saddr(sk
);
1277 if (!(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
)) {
1278 sk
->sk_prot
->unhash(sk
);
1279 inet
->inet_sport
= 0;
1284 EXPORT_SYMBOL(udp_disconnect
);
1286 void udp_lib_unhash(struct sock
*sk
)
1288 if (sk_hashed(sk
)) {
1289 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1290 struct udp_hslot
*hslot
, *hslot2
;
1292 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1293 udp_sk(sk
)->udp_port_hash
);
1294 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1296 spin_lock_bh(&hslot
->lock
);
1297 if (sk_nulls_del_node_init_rcu(sk
)) {
1299 inet_sk(sk
)->inet_num
= 0;
1300 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, -1);
1302 spin_lock(&hslot2
->lock
);
1303 hlist_nulls_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1305 spin_unlock(&hslot2
->lock
);
1307 spin_unlock_bh(&hslot
->lock
);
1310 EXPORT_SYMBOL(udp_lib_unhash
);
1313 * inet_rcv_saddr was changed, we must rehash secondary hash
1315 void udp_lib_rehash(struct sock
*sk
, u16 newhash
)
1317 if (sk_hashed(sk
)) {
1318 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1319 struct udp_hslot
*hslot
, *hslot2
, *nhslot2
;
1321 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1322 nhslot2
= udp_hashslot2(udptable
, newhash
);
1323 udp_sk(sk
)->udp_portaddr_hash
= newhash
;
1324 if (hslot2
!= nhslot2
) {
1325 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1326 udp_sk(sk
)->udp_port_hash
);
1327 /* we must lock primary chain too */
1328 spin_lock_bh(&hslot
->lock
);
1330 spin_lock(&hslot2
->lock
);
1331 hlist_nulls_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1333 spin_unlock(&hslot2
->lock
);
1335 spin_lock(&nhslot2
->lock
);
1336 hlist_nulls_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
1339 spin_unlock(&nhslot2
->lock
);
1341 spin_unlock_bh(&hslot
->lock
);
1345 EXPORT_SYMBOL(udp_lib_rehash
);
1347 static void udp_v4_rehash(struct sock
*sk
)
1349 u16 new_hash
= udp4_portaddr_hash(sock_net(sk
),
1350 inet_sk(sk
)->inet_rcv_saddr
,
1351 inet_sk(sk
)->inet_num
);
1352 udp_lib_rehash(sk
, new_hash
);
1355 static int __udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1359 if (inet_sk(sk
)->inet_daddr
)
1360 sock_rps_save_rxhash(sk
, skb
);
1362 rc
= sock_queue_rcv_skb(sk
, skb
);
1364 int is_udplite
= IS_UDPLITE(sk
);
1366 /* Note that an ENOMEM error is charged twice */
1368 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_RCVBUFERRORS
,
1370 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1372 trace_udp_fail_queue_rcv_skb(rc
, sk
);
1383 * >0: "udp encap" protocol resubmission
1385 * Note that in the success and error cases, the skb is assumed to
1386 * have either been requeued or freed.
1388 int udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1390 struct udp_sock
*up
= udp_sk(sk
);
1392 int is_udplite
= IS_UDPLITE(sk
);
1395 * Charge it to the socket, dropping if the queue is full.
1397 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1401 if (up
->encap_type
) {
1402 int (*encap_rcv
)(struct sock
*sk
, struct sk_buff
*skb
);
1405 * This is an encapsulation socket so pass the skb to
1406 * the socket's udp_encap_rcv() hook. Otherwise, just
1407 * fall through and pass this up the UDP socket.
1408 * up->encap_rcv() returns the following value:
1409 * =0 if skb was successfully passed to the encap
1410 * handler or was discarded by it.
1411 * >0 if skb should be passed on to UDP.
1412 * <0 if skb should be resubmitted as proto -N
1415 /* if we're overly short, let UDP handle it */
1416 encap_rcv
= ACCESS_ONCE(up
->encap_rcv
);
1417 if (skb
->len
> sizeof(struct udphdr
) && encap_rcv
!= NULL
) {
1420 ret
= encap_rcv(sk
, skb
);
1422 UDP_INC_STATS_BH(sock_net(sk
),
1423 UDP_MIB_INDATAGRAMS
,
1429 /* FALLTHROUGH -- it's a UDP Packet */
1433 * UDP-Lite specific tests, ignored on UDP sockets
1435 if ((is_udplite
& UDPLITE_RECV_CC
) && UDP_SKB_CB(skb
)->partial_cov
) {
1438 * MIB statistics other than incrementing the error count are
1439 * disabled for the following two types of errors: these depend
1440 * on the application settings, not on the functioning of the
1441 * protocol stack as such.
1443 * RFC 3828 here recommends (sec 3.3): "There should also be a
1444 * way ... to ... at least let the receiving application block
1445 * delivery of packets with coverage values less than a value
1446 * provided by the application."
1448 if (up
->pcrlen
== 0) { /* full coverage was set */
1449 LIMIT_NETDEBUG(KERN_WARNING
"UDPLITE: partial coverage "
1450 "%d while full coverage %d requested\n",
1451 UDP_SKB_CB(skb
)->cscov
, skb
->len
);
1454 /* The next case involves violating the min. coverage requested
1455 * by the receiver. This is subtle: if receiver wants x and x is
1456 * greater than the buffersize/MTU then receiver will complain
1457 * that it wants x while sender emits packets of smaller size y.
1458 * Therefore the above ...()->partial_cov statement is essential.
1460 if (UDP_SKB_CB(skb
)->cscov
< up
->pcrlen
) {
1461 LIMIT_NETDEBUG(KERN_WARNING
1462 "UDPLITE: coverage %d too small, need min %d\n",
1463 UDP_SKB_CB(skb
)->cscov
, up
->pcrlen
);
1468 if (rcu_access_pointer(sk
->sk_filter
) &&
1469 udp_lib_checksum_complete(skb
))
1473 if (sk_rcvqueues_full(sk
, skb
))
1478 ipv4_pktinfo_prepare(skb
);
1480 if (!sock_owned_by_user(sk
))
1481 rc
= __udp_queue_rcv_skb(sk
, skb
);
1482 else if (sk_add_backlog(sk
, skb
)) {
1491 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1492 atomic_inc(&sk
->sk_drops
);
1498 static void flush_stack(struct sock
**stack
, unsigned int count
,
1499 struct sk_buff
*skb
, unsigned int final
)
1502 struct sk_buff
*skb1
= NULL
;
1505 for (i
= 0; i
< count
; i
++) {
1507 if (likely(skb1
== NULL
))
1508 skb1
= (i
== final
) ? skb
: skb_clone(skb
, GFP_ATOMIC
);
1511 atomic_inc(&sk
->sk_drops
);
1512 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_RCVBUFERRORS
,
1514 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
,
1518 if (skb1
&& udp_queue_rcv_skb(sk
, skb1
) <= 0)
1526 * Multicasts and broadcasts go to each listener.
1528 * Note: called only from the BH handler context.
1530 static int __udp4_lib_mcast_deliver(struct net
*net
, struct sk_buff
*skb
,
1532 __be32 saddr
, __be32 daddr
,
1533 struct udp_table
*udptable
)
1535 struct sock
*sk
, *stack
[256 / sizeof(struct sock
*)];
1536 struct udp_hslot
*hslot
= udp_hashslot(udptable
, net
, ntohs(uh
->dest
));
1538 unsigned int i
, count
= 0;
1540 spin_lock(&hslot
->lock
);
1541 sk
= sk_nulls_head(&hslot
->head
);
1542 dif
= skb
->dev
->ifindex
;
1543 sk
= udp_v4_mcast_next(net
, sk
, uh
->dest
, daddr
, uh
->source
, saddr
, dif
);
1545 stack
[count
++] = sk
;
1546 sk
= udp_v4_mcast_next(net
, sk_nulls_next(sk
), uh
->dest
,
1547 daddr
, uh
->source
, saddr
, dif
);
1548 if (unlikely(count
== ARRAY_SIZE(stack
))) {
1551 flush_stack(stack
, count
, skb
, ~0);
1556 * before releasing chain lock, we must take a reference on sockets
1558 for (i
= 0; i
< count
; i
++)
1559 sock_hold(stack
[i
]);
1561 spin_unlock(&hslot
->lock
);
1564 * do the slow work with no lock held
1567 flush_stack(stack
, count
, skb
, count
- 1);
1569 for (i
= 0; i
< count
; i
++)
1577 /* Initialize UDP checksum. If exited with zero value (success),
1578 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1579 * Otherwise, csum completion requires chacksumming packet body,
1580 * including udp header and folding it to skb->csum.
1582 static inline int udp4_csum_init(struct sk_buff
*skb
, struct udphdr
*uh
,
1585 const struct iphdr
*iph
;
1588 UDP_SKB_CB(skb
)->partial_cov
= 0;
1589 UDP_SKB_CB(skb
)->cscov
= skb
->len
;
1591 if (proto
== IPPROTO_UDPLITE
) {
1592 err
= udplite_checksum_init(skb
, uh
);
1598 if (uh
->check
== 0) {
1599 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1600 } else if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1601 if (!csum_tcpudp_magic(iph
->saddr
, iph
->daddr
, skb
->len
,
1603 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1605 if (!skb_csum_unnecessary(skb
))
1606 skb
->csum
= csum_tcpudp_nofold(iph
->saddr
, iph
->daddr
,
1607 skb
->len
, proto
, 0);
1608 /* Probably, we should checksum udp header (it should be in cache
1609 * in any case) and data in tiny packets (< rx copybreak).
1616 * All we need to do is get the socket, and then do a checksum.
1619 int __udp4_lib_rcv(struct sk_buff
*skb
, struct udp_table
*udptable
,
1624 unsigned short ulen
;
1625 struct rtable
*rt
= skb_rtable(skb
);
1626 __be32 saddr
, daddr
;
1627 struct net
*net
= dev_net(skb
->dev
);
1630 * Validate the packet.
1632 if (!pskb_may_pull(skb
, sizeof(struct udphdr
)))
1633 goto drop
; /* No space for header. */
1636 ulen
= ntohs(uh
->len
);
1637 saddr
= ip_hdr(skb
)->saddr
;
1638 daddr
= ip_hdr(skb
)->daddr
;
1640 if (ulen
> skb
->len
)
1643 if (proto
== IPPROTO_UDP
) {
1644 /* UDP validates ulen. */
1645 if (ulen
< sizeof(*uh
) || pskb_trim_rcsum(skb
, ulen
))
1650 if (udp4_csum_init(skb
, uh
, proto
))
1653 if (rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
))
1654 return __udp4_lib_mcast_deliver(net
, skb
, uh
,
1655 saddr
, daddr
, udptable
);
1657 sk
= __udp4_lib_lookup_skb(skb
, uh
->source
, uh
->dest
, udptable
);
1660 int ret
= udp_queue_rcv_skb(sk
, skb
);
1663 /* a return value > 0 means to resubmit the input, but
1664 * it wants the return to be -protocol, or 0
1671 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1675 /* No socket. Drop packet silently, if checksum is wrong */
1676 if (udp_lib_checksum_complete(skb
))
1679 UDP_INC_STATS_BH(net
, UDP_MIB_NOPORTS
, proto
== IPPROTO_UDPLITE
);
1680 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_PORT_UNREACH
, 0);
1683 * Hmm. We got an UDP packet to a port to which we
1684 * don't wanna listen. Ignore it.
1690 LIMIT_NETDEBUG(KERN_DEBUG
"UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1691 proto
== IPPROTO_UDPLITE
? "-Lite" : "",
1702 * RFC1122: OK. Discards the bad packet silently (as far as
1703 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1705 LIMIT_NETDEBUG(KERN_DEBUG
"UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1706 proto
== IPPROTO_UDPLITE
? "-Lite" : "",
1713 UDP_INC_STATS_BH(net
, UDP_MIB_INERRORS
, proto
== IPPROTO_UDPLITE
);
1718 int udp_rcv(struct sk_buff
*skb
)
1720 return __udp4_lib_rcv(skb
, &udp_table
, IPPROTO_UDP
);
1723 void udp_destroy_sock(struct sock
*sk
)
1725 bool slow
= lock_sock_fast(sk
);
1726 udp_flush_pending_frames(sk
);
1727 unlock_sock_fast(sk
, slow
);
1731 * Socket option code for UDP
1733 int udp_lib_setsockopt(struct sock
*sk
, int level
, int optname
,
1734 char __user
*optval
, unsigned int optlen
,
1735 int (*push_pending_frames
)(struct sock
*))
1737 struct udp_sock
*up
= udp_sk(sk
);
1740 int is_udplite
= IS_UDPLITE(sk
);
1742 if (optlen
< sizeof(int))
1745 if (get_user(val
, (int __user
*)optval
))
1755 (*push_pending_frames
)(sk
);
1763 case UDP_ENCAP_ESPINUDP
:
1764 case UDP_ENCAP_ESPINUDP_NON_IKE
:
1765 up
->encap_rcv
= xfrm4_udp_encap_rcv
;
1767 case UDP_ENCAP_L2TPINUDP
:
1768 up
->encap_type
= val
;
1777 * UDP-Lite's partial checksum coverage (RFC 3828).
1779 /* The sender sets actual checksum coverage length via this option.
1780 * The case coverage > packet length is handled by send module. */
1781 case UDPLITE_SEND_CSCOV
:
1782 if (!is_udplite
) /* Disable the option on UDP sockets */
1783 return -ENOPROTOOPT
;
1784 if (val
!= 0 && val
< 8) /* Illegal coverage: use default (8) */
1786 else if (val
> USHRT_MAX
)
1789 up
->pcflag
|= UDPLITE_SEND_CC
;
1792 /* The receiver specifies a minimum checksum coverage value. To make
1793 * sense, this should be set to at least 8 (as done below). If zero is
1794 * used, this again means full checksum coverage. */
1795 case UDPLITE_RECV_CSCOV
:
1796 if (!is_udplite
) /* Disable the option on UDP sockets */
1797 return -ENOPROTOOPT
;
1798 if (val
!= 0 && val
< 8) /* Avoid silly minimal values. */
1800 else if (val
> USHRT_MAX
)
1803 up
->pcflag
|= UDPLITE_RECV_CC
;
1813 EXPORT_SYMBOL(udp_lib_setsockopt
);
1815 int udp_setsockopt(struct sock
*sk
, int level
, int optname
,
1816 char __user
*optval
, unsigned int optlen
)
1818 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
1819 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
1820 udp_push_pending_frames
);
1821 return ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
1824 #ifdef CONFIG_COMPAT
1825 int compat_udp_setsockopt(struct sock
*sk
, int level
, int optname
,
1826 char __user
*optval
, unsigned int optlen
)
1828 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
1829 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
1830 udp_push_pending_frames
);
1831 return compat_ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
1835 int udp_lib_getsockopt(struct sock
*sk
, int level
, int optname
,
1836 char __user
*optval
, int __user
*optlen
)
1838 struct udp_sock
*up
= udp_sk(sk
);
1841 if (get_user(len
, optlen
))
1844 len
= min_t(unsigned int, len
, sizeof(int));
1855 val
= up
->encap_type
;
1858 /* The following two cannot be changed on UDP sockets, the return is
1859 * always 0 (which corresponds to the full checksum coverage of UDP). */
1860 case UDPLITE_SEND_CSCOV
:
1864 case UDPLITE_RECV_CSCOV
:
1869 return -ENOPROTOOPT
;
1872 if (put_user(len
, optlen
))
1874 if (copy_to_user(optval
, &val
, len
))
1878 EXPORT_SYMBOL(udp_lib_getsockopt
);
1880 int udp_getsockopt(struct sock
*sk
, int level
, int optname
,
1881 char __user
*optval
, int __user
*optlen
)
1883 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
1884 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
1885 return ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
1888 #ifdef CONFIG_COMPAT
1889 int compat_udp_getsockopt(struct sock
*sk
, int level
, int optname
,
1890 char __user
*optval
, int __user
*optlen
)
1892 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
1893 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
1894 return compat_ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
1898 * udp_poll - wait for a UDP event.
1899 * @file - file struct
1901 * @wait - poll table
1903 * This is same as datagram poll, except for the special case of
1904 * blocking sockets. If application is using a blocking fd
1905 * and a packet with checksum error is in the queue;
1906 * then it could get return from select indicating data available
1907 * but then block when reading it. Add special case code
1908 * to work around these arguably broken applications.
1910 unsigned int udp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
1912 unsigned int mask
= datagram_poll(file
, sock
, wait
);
1913 struct sock
*sk
= sock
->sk
;
1915 /* Check for false positives due to checksum errors */
1916 if ((mask
& POLLRDNORM
) && !(file
->f_flags
& O_NONBLOCK
) &&
1917 !(sk
->sk_shutdown
& RCV_SHUTDOWN
) && !first_packet_length(sk
))
1918 mask
&= ~(POLLIN
| POLLRDNORM
);
1923 EXPORT_SYMBOL(udp_poll
);
1925 struct proto udp_prot
= {
1927 .owner
= THIS_MODULE
,
1928 .close
= udp_lib_close
,
1929 .connect
= ip4_datagram_connect
,
1930 .disconnect
= udp_disconnect
,
1932 .destroy
= udp_destroy_sock
,
1933 .setsockopt
= udp_setsockopt
,
1934 .getsockopt
= udp_getsockopt
,
1935 .sendmsg
= udp_sendmsg
,
1936 .recvmsg
= udp_recvmsg
,
1937 .sendpage
= udp_sendpage
,
1938 .backlog_rcv
= __udp_queue_rcv_skb
,
1939 .hash
= udp_lib_hash
,
1940 .unhash
= udp_lib_unhash
,
1941 .rehash
= udp_v4_rehash
,
1942 .get_port
= udp_v4_get_port
,
1943 .memory_allocated
= &udp_memory_allocated
,
1944 .sysctl_mem
= sysctl_udp_mem
,
1945 .sysctl_wmem
= &sysctl_udp_wmem_min
,
1946 .sysctl_rmem
= &sysctl_udp_rmem_min
,
1947 .obj_size
= sizeof(struct udp_sock
),
1948 .slab_flags
= SLAB_DESTROY_BY_RCU
,
1949 .h
.udp_table
= &udp_table
,
1950 #ifdef CONFIG_COMPAT
1951 .compat_setsockopt
= compat_udp_setsockopt
,
1952 .compat_getsockopt
= compat_udp_getsockopt
,
1954 .clear_sk
= sk_prot_clear_portaddr_nulls
,
1956 EXPORT_SYMBOL(udp_prot
);
1958 /* ------------------------------------------------------------------------ */
1959 #ifdef CONFIG_PROC_FS
1961 static struct sock
*udp_get_first(struct seq_file
*seq
, int start
)
1964 struct udp_iter_state
*state
= seq
->private;
1965 struct net
*net
= seq_file_net(seq
);
1967 for (state
->bucket
= start
; state
->bucket
<= state
->udp_table
->mask
;
1969 struct hlist_nulls_node
*node
;
1970 struct udp_hslot
*hslot
= &state
->udp_table
->hash
[state
->bucket
];
1972 if (hlist_nulls_empty(&hslot
->head
))
1975 spin_lock_bh(&hslot
->lock
);
1976 sk_nulls_for_each(sk
, node
, &hslot
->head
) {
1977 if (!net_eq(sock_net(sk
), net
))
1979 if (sk
->sk_family
== state
->family
)
1982 spin_unlock_bh(&hslot
->lock
);
1989 static struct sock
*udp_get_next(struct seq_file
*seq
, struct sock
*sk
)
1991 struct udp_iter_state
*state
= seq
->private;
1992 struct net
*net
= seq_file_net(seq
);
1995 sk
= sk_nulls_next(sk
);
1996 } while (sk
&& (!net_eq(sock_net(sk
), net
) || sk
->sk_family
!= state
->family
));
1999 if (state
->bucket
<= state
->udp_table
->mask
)
2000 spin_unlock_bh(&state
->udp_table
->hash
[state
->bucket
].lock
);
2001 return udp_get_first(seq
, state
->bucket
+ 1);
2006 static struct sock
*udp_get_idx(struct seq_file
*seq
, loff_t pos
)
2008 struct sock
*sk
= udp_get_first(seq
, 0);
2011 while (pos
&& (sk
= udp_get_next(seq
, sk
)) != NULL
)
2013 return pos
? NULL
: sk
;
2016 static void *udp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2018 struct udp_iter_state
*state
= seq
->private;
2019 state
->bucket
= MAX_UDP_PORTS
;
2021 return *pos
? udp_get_idx(seq
, *pos
-1) : SEQ_START_TOKEN
;
2024 static void *udp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2028 if (v
== SEQ_START_TOKEN
)
2029 sk
= udp_get_idx(seq
, 0);
2031 sk
= udp_get_next(seq
, v
);
2037 static void udp_seq_stop(struct seq_file
*seq
, void *v
)
2039 struct udp_iter_state
*state
= seq
->private;
2041 if (state
->bucket
<= state
->udp_table
->mask
)
2042 spin_unlock_bh(&state
->udp_table
->hash
[state
->bucket
].lock
);
2045 int udp_seq_open(struct inode
*inode
, struct file
*file
)
2047 struct udp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
2048 struct udp_iter_state
*s
;
2051 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
2052 sizeof(struct udp_iter_state
));
2056 s
= ((struct seq_file
*)file
->private_data
)->private;
2057 s
->family
= afinfo
->family
;
2058 s
->udp_table
= afinfo
->udp_table
;
2061 EXPORT_SYMBOL(udp_seq_open
);
2063 /* ------------------------------------------------------------------------ */
2064 int udp_proc_register(struct net
*net
, struct udp_seq_afinfo
*afinfo
)
2066 struct proc_dir_entry
*p
;
2069 afinfo
->seq_ops
.start
= udp_seq_start
;
2070 afinfo
->seq_ops
.next
= udp_seq_next
;
2071 afinfo
->seq_ops
.stop
= udp_seq_stop
;
2073 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
2074 afinfo
->seq_fops
, afinfo
);
2079 EXPORT_SYMBOL(udp_proc_register
);
2081 void udp_proc_unregister(struct net
*net
, struct udp_seq_afinfo
*afinfo
)
2083 proc_net_remove(net
, afinfo
->name
);
2085 EXPORT_SYMBOL(udp_proc_unregister
);
2087 /* ------------------------------------------------------------------------ */
2088 static void udp4_format_sock(struct sock
*sp
, struct seq_file
*f
,
2089 int bucket
, int *len
)
2091 struct inet_sock
*inet
= inet_sk(sp
);
2092 __be32 dest
= inet
->inet_daddr
;
2093 __be32 src
= inet
->inet_rcv_saddr
;
2094 __u16 destp
= ntohs(inet
->inet_dport
);
2095 __u16 srcp
= ntohs(inet
->inet_sport
);
2097 seq_printf(f
, "%5d: %08X:%04X %08X:%04X"
2098 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2099 bucket
, src
, srcp
, dest
, destp
, sp
->sk_state
,
2100 sk_wmem_alloc_get(sp
),
2101 sk_rmem_alloc_get(sp
),
2102 0, 0L, 0, sock_i_uid(sp
), 0, sock_i_ino(sp
),
2103 atomic_read(&sp
->sk_refcnt
), sp
,
2104 atomic_read(&sp
->sk_drops
), len
);
2107 int udp4_seq_show(struct seq_file
*seq
, void *v
)
2109 if (v
== SEQ_START_TOKEN
)
2110 seq_printf(seq
, "%-127s\n",
2111 " sl local_address rem_address st tx_queue "
2112 "rx_queue tr tm->when retrnsmt uid timeout "
2113 "inode ref pointer drops");
2115 struct udp_iter_state
*state
= seq
->private;
2118 udp4_format_sock(v
, seq
, state
->bucket
, &len
);
2119 seq_printf(seq
, "%*s\n", 127 - len
, "");
2124 static const struct file_operations udp_afinfo_seq_fops
= {
2125 .owner
= THIS_MODULE
,
2126 .open
= udp_seq_open
,
2128 .llseek
= seq_lseek
,
2129 .release
= seq_release_net
2132 /* ------------------------------------------------------------------------ */
2133 static struct udp_seq_afinfo udp4_seq_afinfo
= {
2136 .udp_table
= &udp_table
,
2137 .seq_fops
= &udp_afinfo_seq_fops
,
2139 .show
= udp4_seq_show
,
2143 static int __net_init
udp4_proc_init_net(struct net
*net
)
2145 return udp_proc_register(net
, &udp4_seq_afinfo
);
2148 static void __net_exit
udp4_proc_exit_net(struct net
*net
)
2150 udp_proc_unregister(net
, &udp4_seq_afinfo
);
2153 static struct pernet_operations udp4_net_ops
= {
2154 .init
= udp4_proc_init_net
,
2155 .exit
= udp4_proc_exit_net
,
2158 int __init
udp4_proc_init(void)
2160 return register_pernet_subsys(&udp4_net_ops
);
2163 void udp4_proc_exit(void)
2165 unregister_pernet_subsys(&udp4_net_ops
);
2167 #endif /* CONFIG_PROC_FS */
2169 static __initdata
unsigned long uhash_entries
;
2170 static int __init
set_uhash_entries(char *str
)
2174 uhash_entries
= simple_strtoul(str
, &str
, 0);
2175 if (uhash_entries
&& uhash_entries
< UDP_HTABLE_SIZE_MIN
)
2176 uhash_entries
= UDP_HTABLE_SIZE_MIN
;
2179 __setup("uhash_entries=", set_uhash_entries
);
2181 void __init
udp_table_init(struct udp_table
*table
, const char *name
)
2185 if (!CONFIG_BASE_SMALL
)
2186 table
->hash
= alloc_large_system_hash(name
,
2187 2 * sizeof(struct udp_hslot
),
2189 21, /* one slot per 2 MB */
2195 * Make sure hash table has the minimum size
2197 if (CONFIG_BASE_SMALL
|| table
->mask
< UDP_HTABLE_SIZE_MIN
- 1) {
2198 table
->hash
= kmalloc(UDP_HTABLE_SIZE_MIN
*
2199 2 * sizeof(struct udp_hslot
), GFP_KERNEL
);
2202 table
->log
= ilog2(UDP_HTABLE_SIZE_MIN
);
2203 table
->mask
= UDP_HTABLE_SIZE_MIN
- 1;
2205 table
->hash2
= table
->hash
+ (table
->mask
+ 1);
2206 for (i
= 0; i
<= table
->mask
; i
++) {
2207 INIT_HLIST_NULLS_HEAD(&table
->hash
[i
].head
, i
);
2208 table
->hash
[i
].count
= 0;
2209 spin_lock_init(&table
->hash
[i
].lock
);
2211 for (i
= 0; i
<= table
->mask
; i
++) {
2212 INIT_HLIST_NULLS_HEAD(&table
->hash2
[i
].head
, i
);
2213 table
->hash2
[i
].count
= 0;
2214 spin_lock_init(&table
->hash2
[i
].lock
);
2218 void __init
udp_init(void)
2220 unsigned long limit
;
2222 udp_table_init(&udp_table
, "UDP");
2223 limit
= nr_free_buffer_pages() / 8;
2224 limit
= max(limit
, 128UL);
2225 sysctl_udp_mem
[0] = limit
/ 4 * 3;
2226 sysctl_udp_mem
[1] = limit
;
2227 sysctl_udp_mem
[2] = sysctl_udp_mem
[0] * 2;
2229 sysctl_udp_rmem_min
= SK_MEM_QUANTUM
;
2230 sysctl_udp_wmem_min
= SK_MEM_QUANTUM
;
2233 int udp4_ufo_send_check(struct sk_buff
*skb
)
2235 const struct iphdr
*iph
;
2238 if (!pskb_may_pull(skb
, sizeof(*uh
)))
2244 uh
->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
, skb
->len
,
2246 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
2247 skb
->csum_offset
= offsetof(struct udphdr
, check
);
2248 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2252 struct sk_buff
*udp4_ufo_fragment(struct sk_buff
*skb
,
2253 netdev_features_t features
)
2255 struct sk_buff
*segs
= ERR_PTR(-EINVAL
);
2260 mss
= skb_shinfo(skb
)->gso_size
;
2261 if (unlikely(skb
->len
<= mss
))
2264 if (skb_gso_ok(skb
, features
| NETIF_F_GSO_ROBUST
)) {
2265 /* Packet is from an untrusted source, reset gso_segs. */
2266 int type
= skb_shinfo(skb
)->gso_type
;
2268 if (unlikely(type
& ~(SKB_GSO_UDP
| SKB_GSO_DODGY
) ||
2269 !(type
& (SKB_GSO_UDP
))))
2272 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss
);
2278 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2279 * do checksum of UDP packets sent as multiple IP fragments.
2281 offset
= skb_checksum_start_offset(skb
);
2282 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2283 offset
+= skb
->csum_offset
;
2284 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
);
2285 skb
->ip_summed
= CHECKSUM_NONE
;
2287 /* Fragment the skb. IP headers of the fragments are updated in
2288 * inet_gso_segment()
2290 segs
= skb_segment(skb
, features
);