block: prepare for multiple request_lists
[linux-2.6/libata-dev.git] / block / blk-core.c
blobf392a2edf4627197682229f4c02919166135109c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
37 #include "blk.h"
38 #include "blk-cgroup.h"
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
44 DEFINE_IDA(blk_queue_ida);
47 * For the allocated request tables
49 static struct kmem_cache *request_cachep;
52 * For queue allocation
54 struct kmem_cache *blk_requestq_cachep;
57 * Controlling structure to kblockd
59 static struct workqueue_struct *kblockd_workqueue;
61 static void drive_stat_acct(struct request *rq, int new_io)
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
67 if (!blk_do_io_stat(rq))
68 return;
70 cpu = part_stat_lock();
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
94 part_stat_unlock();
97 void blk_queue_congestion_threshold(struct request_queue *q)
99 int nr;
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
132 void blk_rq_init(struct request_queue *q, struct request *rq)
134 memset(rq, 0, sizeof(*rq));
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
151 EXPORT_SYMBOL(blk_rq_init);
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
181 void blk_dump_rq_flags(struct request *rq, char *msg)
183 int bit;
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
202 EXPORT_SYMBOL(blk_dump_rq_flags);
204 static void blk_delay_work(struct work_struct *work)
206 struct request_queue *q;
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
229 EXPORT_SYMBOL(blk_delay_queue);
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
240 void blk_start_queue(struct request_queue *q)
242 WARN_ON(!irqs_disabled());
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
247 EXPORT_SYMBOL(blk_start_queue);
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
263 void blk_stop_queue(struct request_queue *q)
265 __cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
268 EXPORT_SYMBOL(blk_stop_queue);
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
288 void blk_sync_queue(struct request_queue *q)
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
293 EXPORT_SYMBOL(blk_sync_queue);
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
303 void __blk_run_queue(struct request_queue *q)
305 if (unlikely(blk_queue_stopped(q)))
306 return;
308 q->request_fn(q);
310 EXPORT_SYMBOL(__blk_run_queue);
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
320 void blk_run_queue_async(struct request_queue *q)
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
327 EXPORT_SYMBOL(blk_run_queue_async);
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
335 * May be used to restart queueing when a request has completed.
337 void blk_run_queue(struct request_queue *q)
339 unsigned long flags;
341 spin_lock_irqsave(q->queue_lock, flags);
342 __blk_run_queue(q);
343 spin_unlock_irqrestore(q->queue_lock, flags);
345 EXPORT_SYMBOL(blk_run_queue);
347 void blk_put_queue(struct request_queue *q)
349 kobject_put(&q->kobj);
351 EXPORT_SYMBOL(blk_put_queue);
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
362 void blk_drain_queue(struct request_queue *q, bool drain_all)
364 int i;
366 while (true) {
367 bool drain = false;
369 spin_lock_irq(q->queue_lock);
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
375 if (q->elevator)
376 elv_drain_elevator(q);
378 blkcg_drain_queue(q);
381 * This function might be called on a queue which failed
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
387 if (!list_empty(&q->queue_head) && q->request_fn)
388 __blk_run_queue(q);
390 drain |= q->nr_rqs_elvpriv;
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->nr_rqs[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
406 spin_unlock_irq(q->queue_lock);
408 if (!drain)
409 break;
410 msleep(10);
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
418 if (q->request_fn) {
419 spin_lock_irq(q->queue_lock);
420 for (i = 0; i < ARRAY_SIZE(q->rq.wait); i++)
421 wake_up_all(&q->rq.wait[i]);
422 spin_unlock_irq(q->queue_lock);
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
432 * throttled or issued before. On return, it's guaranteed that no request
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
436 void blk_queue_bypass_start(struct request_queue *q)
438 bool drain;
440 spin_lock_irq(q->queue_lock);
441 drain = !q->bypass_depth++;
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
445 if (drain) {
446 blk_drain_queue(q, false);
447 /* ensure blk_queue_bypass() is %true inside RCU read lock */
448 synchronize_rcu();
451 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
454 * blk_queue_bypass_end - leave queue bypass mode
455 * @q: queue of interest
457 * Leave bypass mode and restore the normal queueing behavior.
459 void blk_queue_bypass_end(struct request_queue *q)
461 spin_lock_irq(q->queue_lock);
462 if (!--q->bypass_depth)
463 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
464 WARN_ON_ONCE(q->bypass_depth < 0);
465 spin_unlock_irq(q->queue_lock);
467 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
470 * blk_cleanup_queue - shutdown a request queue
471 * @q: request queue to shutdown
473 * Mark @q DEAD, drain all pending requests, destroy and put it. All
474 * future requests will be failed immediately with -ENODEV.
476 void blk_cleanup_queue(struct request_queue *q)
478 spinlock_t *lock = q->queue_lock;
480 /* mark @q DEAD, no new request or merges will be allowed afterwards */
481 mutex_lock(&q->sysfs_lock);
482 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483 spin_lock_irq(lock);
486 * Dead queue is permanently in bypass mode till released. Note
487 * that, unlike blk_queue_bypass_start(), we aren't performing
488 * synchronize_rcu() after entering bypass mode to avoid the delay
489 * as some drivers create and destroy a lot of queues while
490 * probing. This is still safe because blk_release_queue() will be
491 * called only after the queue refcnt drops to zero and nothing,
492 * RCU or not, would be traversing the queue by then.
494 q->bypass_depth++;
495 queue_flag_set(QUEUE_FLAG_BYPASS, q);
497 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
498 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
499 queue_flag_set(QUEUE_FLAG_DEAD, q);
500 spin_unlock_irq(lock);
501 mutex_unlock(&q->sysfs_lock);
503 /* drain all requests queued before DEAD marking */
504 blk_drain_queue(q, true);
506 /* @q won't process any more request, flush async actions */
507 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
508 blk_sync_queue(q);
510 spin_lock_irq(lock);
511 if (q->queue_lock != &q->__queue_lock)
512 q->queue_lock = &q->__queue_lock;
513 spin_unlock_irq(lock);
515 /* @q is and will stay empty, shutdown and put */
516 blk_put_queue(q);
518 EXPORT_SYMBOL(blk_cleanup_queue);
520 int blk_init_rl(struct request_list *rl, struct request_queue *q,
521 gfp_t gfp_mask)
523 if (unlikely(rl->rq_pool))
524 return 0;
526 rl->q = q;
527 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
528 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
529 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
530 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
532 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
533 mempool_free_slab, request_cachep,
534 gfp_mask, q->node);
535 if (!rl->rq_pool)
536 return -ENOMEM;
538 return 0;
541 void blk_exit_rl(struct request_list *rl)
543 if (rl->rq_pool)
544 mempool_destroy(rl->rq_pool);
547 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
549 return blk_alloc_queue_node(gfp_mask, -1);
551 EXPORT_SYMBOL(blk_alloc_queue);
553 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
555 struct request_queue *q;
556 int err;
558 q = kmem_cache_alloc_node(blk_requestq_cachep,
559 gfp_mask | __GFP_ZERO, node_id);
560 if (!q)
561 return NULL;
563 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
564 if (q->id < 0)
565 goto fail_q;
567 q->backing_dev_info.ra_pages =
568 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
569 q->backing_dev_info.state = 0;
570 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
571 q->backing_dev_info.name = "block";
572 q->node = node_id;
574 err = bdi_init(&q->backing_dev_info);
575 if (err)
576 goto fail_id;
578 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
579 laptop_mode_timer_fn, (unsigned long) q);
580 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
581 INIT_LIST_HEAD(&q->queue_head);
582 INIT_LIST_HEAD(&q->timeout_list);
583 INIT_LIST_HEAD(&q->icq_list);
584 #ifdef CONFIG_BLK_CGROUP
585 INIT_LIST_HEAD(&q->blkg_list);
586 #endif
587 INIT_LIST_HEAD(&q->flush_queue[0]);
588 INIT_LIST_HEAD(&q->flush_queue[1]);
589 INIT_LIST_HEAD(&q->flush_data_in_flight);
590 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
592 kobject_init(&q->kobj, &blk_queue_ktype);
594 mutex_init(&q->sysfs_lock);
595 spin_lock_init(&q->__queue_lock);
598 * By default initialize queue_lock to internal lock and driver can
599 * override it later if need be.
601 q->queue_lock = &q->__queue_lock;
604 * A queue starts its life with bypass turned on to avoid
605 * unnecessary bypass on/off overhead and nasty surprises during
606 * init. The initial bypass will be finished at the end of
607 * blk_init_allocated_queue().
609 q->bypass_depth = 1;
610 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
612 if (blkcg_init_queue(q))
613 goto fail_id;
615 return q;
617 fail_id:
618 ida_simple_remove(&blk_queue_ida, q->id);
619 fail_q:
620 kmem_cache_free(blk_requestq_cachep, q);
621 return NULL;
623 EXPORT_SYMBOL(blk_alloc_queue_node);
626 * blk_init_queue - prepare a request queue for use with a block device
627 * @rfn: The function to be called to process requests that have been
628 * placed on the queue.
629 * @lock: Request queue spin lock
631 * Description:
632 * If a block device wishes to use the standard request handling procedures,
633 * which sorts requests and coalesces adjacent requests, then it must
634 * call blk_init_queue(). The function @rfn will be called when there
635 * are requests on the queue that need to be processed. If the device
636 * supports plugging, then @rfn may not be called immediately when requests
637 * are available on the queue, but may be called at some time later instead.
638 * Plugged queues are generally unplugged when a buffer belonging to one
639 * of the requests on the queue is needed, or due to memory pressure.
641 * @rfn is not required, or even expected, to remove all requests off the
642 * queue, but only as many as it can handle at a time. If it does leave
643 * requests on the queue, it is responsible for arranging that the requests
644 * get dealt with eventually.
646 * The queue spin lock must be held while manipulating the requests on the
647 * request queue; this lock will be taken also from interrupt context, so irq
648 * disabling is needed for it.
650 * Function returns a pointer to the initialized request queue, or %NULL if
651 * it didn't succeed.
653 * Note:
654 * blk_init_queue() must be paired with a blk_cleanup_queue() call
655 * when the block device is deactivated (such as at module unload).
658 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
660 return blk_init_queue_node(rfn, lock, -1);
662 EXPORT_SYMBOL(blk_init_queue);
664 struct request_queue *
665 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
667 struct request_queue *uninit_q, *q;
669 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
670 if (!uninit_q)
671 return NULL;
673 q = blk_init_allocated_queue(uninit_q, rfn, lock);
674 if (!q)
675 blk_cleanup_queue(uninit_q);
677 return q;
679 EXPORT_SYMBOL(blk_init_queue_node);
681 struct request_queue *
682 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
683 spinlock_t *lock)
685 if (!q)
686 return NULL;
688 if (blk_init_rl(&q->rq, q, GFP_KERNEL))
689 return NULL;
691 q->request_fn = rfn;
692 q->prep_rq_fn = NULL;
693 q->unprep_rq_fn = NULL;
694 q->queue_flags = QUEUE_FLAG_DEFAULT;
696 /* Override internal queue lock with supplied lock pointer */
697 if (lock)
698 q->queue_lock = lock;
701 * This also sets hw/phys segments, boundary and size
703 blk_queue_make_request(q, blk_queue_bio);
705 q->sg_reserved_size = INT_MAX;
707 /* init elevator */
708 if (elevator_init(q, NULL))
709 return NULL;
711 blk_queue_congestion_threshold(q);
713 /* all done, end the initial bypass */
714 blk_queue_bypass_end(q);
715 return q;
717 EXPORT_SYMBOL(blk_init_allocated_queue);
719 bool blk_get_queue(struct request_queue *q)
721 if (likely(!blk_queue_dead(q))) {
722 __blk_get_queue(q);
723 return true;
726 return false;
728 EXPORT_SYMBOL(blk_get_queue);
730 static inline void blk_free_request(struct request_list *rl, struct request *rq)
732 if (rq->cmd_flags & REQ_ELVPRIV) {
733 elv_put_request(rl->q, rq);
734 if (rq->elv.icq)
735 put_io_context(rq->elv.icq->ioc);
738 mempool_free(rq, rl->rq_pool);
742 * ioc_batching returns true if the ioc is a valid batching request and
743 * should be given priority access to a request.
745 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
747 if (!ioc)
748 return 0;
751 * Make sure the process is able to allocate at least 1 request
752 * even if the batch times out, otherwise we could theoretically
753 * lose wakeups.
755 return ioc->nr_batch_requests == q->nr_batching ||
756 (ioc->nr_batch_requests > 0
757 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
761 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
762 * will cause the process to be a "batcher" on all queues in the system. This
763 * is the behaviour we want though - once it gets a wakeup it should be given
764 * a nice run.
766 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
768 if (!ioc || ioc_batching(q, ioc))
769 return;
771 ioc->nr_batch_requests = q->nr_batching;
772 ioc->last_waited = jiffies;
775 static void __freed_request(struct request_list *rl, int sync)
777 struct request_queue *q = rl->q;
779 if (rl->count[sync] < queue_congestion_off_threshold(q))
780 blk_clear_queue_congested(q, sync);
782 if (rl->count[sync] + 1 <= q->nr_requests) {
783 if (waitqueue_active(&rl->wait[sync]))
784 wake_up(&rl->wait[sync]);
786 blk_clear_rl_full(rl, sync);
791 * A request has just been released. Account for it, update the full and
792 * congestion status, wake up any waiters. Called under q->queue_lock.
794 static void freed_request(struct request_list *rl, unsigned int flags)
796 struct request_queue *q = rl->q;
797 int sync = rw_is_sync(flags);
799 q->nr_rqs[sync]--;
800 rl->count[sync]--;
801 if (flags & REQ_ELVPRIV)
802 q->nr_rqs_elvpriv--;
804 __freed_request(rl, sync);
806 if (unlikely(rl->starved[sync ^ 1]))
807 __freed_request(rl, sync ^ 1);
811 * Determine if elevator data should be initialized when allocating the
812 * request associated with @bio.
814 static bool blk_rq_should_init_elevator(struct bio *bio)
816 if (!bio)
817 return true;
820 * Flush requests do not use the elevator so skip initialization.
821 * This allows a request to share the flush and elevator data.
823 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
824 return false;
826 return true;
830 * rq_ioc - determine io_context for request allocation
831 * @bio: request being allocated is for this bio (can be %NULL)
833 * Determine io_context to use for request allocation for @bio. May return
834 * %NULL if %current->io_context doesn't exist.
836 static struct io_context *rq_ioc(struct bio *bio)
838 #ifdef CONFIG_BLK_CGROUP
839 if (bio && bio->bi_ioc)
840 return bio->bi_ioc;
841 #endif
842 return current->io_context;
846 * __get_request - get a free request
847 * @rl: request list to allocate from
848 * @rw_flags: RW and SYNC flags
849 * @bio: bio to allocate request for (can be %NULL)
850 * @gfp_mask: allocation mask
852 * Get a free request from @q. This function may fail under memory
853 * pressure or if @q is dead.
855 * Must be callled with @q->queue_lock held and,
856 * Returns %NULL on failure, with @q->queue_lock held.
857 * Returns !%NULL on success, with @q->queue_lock *not held*.
859 static struct request *__get_request(struct request_list *rl, int rw_flags,
860 struct bio *bio, gfp_t gfp_mask)
862 struct request_queue *q = rl->q;
863 struct request *rq;
864 struct elevator_type *et = q->elevator->type;
865 struct io_context *ioc = rq_ioc(bio);
866 struct io_cq *icq = NULL;
867 const bool is_sync = rw_is_sync(rw_flags) != 0;
868 int may_queue;
870 if (unlikely(blk_queue_dead(q)))
871 return NULL;
873 may_queue = elv_may_queue(q, rw_flags);
874 if (may_queue == ELV_MQUEUE_NO)
875 goto rq_starved;
877 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
878 if (rl->count[is_sync]+1 >= q->nr_requests) {
880 * The queue will fill after this allocation, so set
881 * it as full, and mark this process as "batching".
882 * This process will be allowed to complete a batch of
883 * requests, others will be blocked.
885 if (!blk_rl_full(rl, is_sync)) {
886 ioc_set_batching(q, ioc);
887 blk_set_rl_full(rl, is_sync);
888 } else {
889 if (may_queue != ELV_MQUEUE_MUST
890 && !ioc_batching(q, ioc)) {
892 * The queue is full and the allocating
893 * process is not a "batcher", and not
894 * exempted by the IO scheduler
896 return NULL;
900 blk_set_queue_congested(q, is_sync);
904 * Only allow batching queuers to allocate up to 50% over the defined
905 * limit of requests, otherwise we could have thousands of requests
906 * allocated with any setting of ->nr_requests
908 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
909 return NULL;
911 q->nr_rqs[is_sync]++;
912 rl->count[is_sync]++;
913 rl->starved[is_sync] = 0;
916 * Decide whether the new request will be managed by elevator. If
917 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
918 * prevent the current elevator from being destroyed until the new
919 * request is freed. This guarantees icq's won't be destroyed and
920 * makes creating new ones safe.
922 * Also, lookup icq while holding queue_lock. If it doesn't exist,
923 * it will be created after releasing queue_lock.
925 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
926 rw_flags |= REQ_ELVPRIV;
927 q->nr_rqs_elvpriv++;
928 if (et->icq_cache && ioc)
929 icq = ioc_lookup_icq(ioc, q);
932 if (blk_queue_io_stat(q))
933 rw_flags |= REQ_IO_STAT;
934 spin_unlock_irq(q->queue_lock);
936 /* allocate and init request */
937 rq = mempool_alloc(rl->rq_pool, gfp_mask);
938 if (!rq)
939 goto fail_alloc;
941 blk_rq_init(q, rq);
942 rq->cmd_flags = rw_flags | REQ_ALLOCED;
944 /* init elvpriv */
945 if (rw_flags & REQ_ELVPRIV) {
946 if (unlikely(et->icq_cache && !icq)) {
947 if (ioc)
948 icq = ioc_create_icq(ioc, q, gfp_mask);
949 if (!icq)
950 goto fail_elvpriv;
953 rq->elv.icq = icq;
954 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
955 goto fail_elvpriv;
957 /* @rq->elv.icq holds io_context until @rq is freed */
958 if (icq)
959 get_io_context(icq->ioc);
961 out:
963 * ioc may be NULL here, and ioc_batching will be false. That's
964 * OK, if the queue is under the request limit then requests need
965 * not count toward the nr_batch_requests limit. There will always
966 * be some limit enforced by BLK_BATCH_TIME.
968 if (ioc_batching(q, ioc))
969 ioc->nr_batch_requests--;
971 trace_block_getrq(q, bio, rw_flags & 1);
972 return rq;
974 fail_elvpriv:
976 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
977 * and may fail indefinitely under memory pressure and thus
978 * shouldn't stall IO. Treat this request as !elvpriv. This will
979 * disturb iosched and blkcg but weird is bettern than dead.
981 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
982 dev_name(q->backing_dev_info.dev));
984 rq->cmd_flags &= ~REQ_ELVPRIV;
985 rq->elv.icq = NULL;
987 spin_lock_irq(q->queue_lock);
988 q->nr_rqs_elvpriv--;
989 spin_unlock_irq(q->queue_lock);
990 goto out;
992 fail_alloc:
994 * Allocation failed presumably due to memory. Undo anything we
995 * might have messed up.
997 * Allocating task should really be put onto the front of the wait
998 * queue, but this is pretty rare.
1000 spin_lock_irq(q->queue_lock);
1001 freed_request(rl, rw_flags);
1004 * in the very unlikely event that allocation failed and no
1005 * requests for this direction was pending, mark us starved so that
1006 * freeing of a request in the other direction will notice
1007 * us. another possible fix would be to split the rq mempool into
1008 * READ and WRITE
1010 rq_starved:
1011 if (unlikely(rl->count[is_sync] == 0))
1012 rl->starved[is_sync] = 1;
1013 return NULL;
1017 * get_request - get a free request
1018 * @q: request_queue to allocate request from
1019 * @rw_flags: RW and SYNC flags
1020 * @bio: bio to allocate request for (can be %NULL)
1021 * @gfp_mask: allocation mask
1023 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1024 * function keeps retrying under memory pressure and fails iff @q is dead.
1026 * Must be callled with @q->queue_lock held and,
1027 * Returns %NULL on failure, with @q->queue_lock held.
1028 * Returns !%NULL on success, with @q->queue_lock *not held*.
1030 static struct request *get_request(struct request_queue *q, int rw_flags,
1031 struct bio *bio, gfp_t gfp_mask)
1033 const bool is_sync = rw_is_sync(rw_flags) != 0;
1034 DEFINE_WAIT(wait);
1035 struct request_list *rl = &q->rq;
1036 struct request *rq;
1037 retry:
1038 rq = __get_request(&q->rq, rw_flags, bio, gfp_mask);
1039 if (rq)
1040 return rq;
1042 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q)))
1043 return NULL;
1045 /* wait on @rl and retry */
1046 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1047 TASK_UNINTERRUPTIBLE);
1049 trace_block_sleeprq(q, bio, rw_flags & 1);
1051 spin_unlock_irq(q->queue_lock);
1052 io_schedule();
1055 * After sleeping, we become a "batching" process and will be able
1056 * to allocate at least one request, and up to a big batch of them
1057 * for a small period time. See ioc_batching, ioc_set_batching
1059 ioc_set_batching(q, current->io_context);
1061 spin_lock_irq(q->queue_lock);
1062 finish_wait(&rl->wait[is_sync], &wait);
1064 goto retry;
1067 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1069 struct request *rq;
1071 BUG_ON(rw != READ && rw != WRITE);
1073 /* create ioc upfront */
1074 create_io_context(gfp_mask, q->node);
1076 spin_lock_irq(q->queue_lock);
1077 rq = get_request(q, rw, NULL, gfp_mask);
1078 if (!rq)
1079 spin_unlock_irq(q->queue_lock);
1080 /* q->queue_lock is unlocked at this point */
1082 return rq;
1084 EXPORT_SYMBOL(blk_get_request);
1087 * blk_make_request - given a bio, allocate a corresponding struct request.
1088 * @q: target request queue
1089 * @bio: The bio describing the memory mappings that will be submitted for IO.
1090 * It may be a chained-bio properly constructed by block/bio layer.
1091 * @gfp_mask: gfp flags to be used for memory allocation
1093 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1094 * type commands. Where the struct request needs to be farther initialized by
1095 * the caller. It is passed a &struct bio, which describes the memory info of
1096 * the I/O transfer.
1098 * The caller of blk_make_request must make sure that bi_io_vec
1099 * are set to describe the memory buffers. That bio_data_dir() will return
1100 * the needed direction of the request. (And all bio's in the passed bio-chain
1101 * are properly set accordingly)
1103 * If called under none-sleepable conditions, mapped bio buffers must not
1104 * need bouncing, by calling the appropriate masked or flagged allocator,
1105 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1106 * BUG.
1108 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1109 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1110 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1111 * completion of a bio that hasn't been submitted yet, thus resulting in a
1112 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1113 * of bio_alloc(), as that avoids the mempool deadlock.
1114 * If possible a big IO should be split into smaller parts when allocation
1115 * fails. Partial allocation should not be an error, or you risk a live-lock.
1117 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1118 gfp_t gfp_mask)
1120 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1122 if (unlikely(!rq))
1123 return ERR_PTR(-ENOMEM);
1125 for_each_bio(bio) {
1126 struct bio *bounce_bio = bio;
1127 int ret;
1129 blk_queue_bounce(q, &bounce_bio);
1130 ret = blk_rq_append_bio(q, rq, bounce_bio);
1131 if (unlikely(ret)) {
1132 blk_put_request(rq);
1133 return ERR_PTR(ret);
1137 return rq;
1139 EXPORT_SYMBOL(blk_make_request);
1142 * blk_requeue_request - put a request back on queue
1143 * @q: request queue where request should be inserted
1144 * @rq: request to be inserted
1146 * Description:
1147 * Drivers often keep queueing requests until the hardware cannot accept
1148 * more, when that condition happens we need to put the request back
1149 * on the queue. Must be called with queue lock held.
1151 void blk_requeue_request(struct request_queue *q, struct request *rq)
1153 blk_delete_timer(rq);
1154 blk_clear_rq_complete(rq);
1155 trace_block_rq_requeue(q, rq);
1157 if (blk_rq_tagged(rq))
1158 blk_queue_end_tag(q, rq);
1160 BUG_ON(blk_queued_rq(rq));
1162 elv_requeue_request(q, rq);
1164 EXPORT_SYMBOL(blk_requeue_request);
1166 static void add_acct_request(struct request_queue *q, struct request *rq,
1167 int where)
1169 drive_stat_acct(rq, 1);
1170 __elv_add_request(q, rq, where);
1173 static void part_round_stats_single(int cpu, struct hd_struct *part,
1174 unsigned long now)
1176 if (now == part->stamp)
1177 return;
1179 if (part_in_flight(part)) {
1180 __part_stat_add(cpu, part, time_in_queue,
1181 part_in_flight(part) * (now - part->stamp));
1182 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1184 part->stamp = now;
1188 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1189 * @cpu: cpu number for stats access
1190 * @part: target partition
1192 * The average IO queue length and utilisation statistics are maintained
1193 * by observing the current state of the queue length and the amount of
1194 * time it has been in this state for.
1196 * Normally, that accounting is done on IO completion, but that can result
1197 * in more than a second's worth of IO being accounted for within any one
1198 * second, leading to >100% utilisation. To deal with that, we call this
1199 * function to do a round-off before returning the results when reading
1200 * /proc/diskstats. This accounts immediately for all queue usage up to
1201 * the current jiffies and restarts the counters again.
1203 void part_round_stats(int cpu, struct hd_struct *part)
1205 unsigned long now = jiffies;
1207 if (part->partno)
1208 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1209 part_round_stats_single(cpu, part, now);
1211 EXPORT_SYMBOL_GPL(part_round_stats);
1214 * queue lock must be held
1216 void __blk_put_request(struct request_queue *q, struct request *req)
1218 if (unlikely(!q))
1219 return;
1220 if (unlikely(--req->ref_count))
1221 return;
1223 elv_completed_request(q, req);
1225 /* this is a bio leak */
1226 WARN_ON(req->bio != NULL);
1229 * Request may not have originated from ll_rw_blk. if not,
1230 * it didn't come out of our reserved rq pools
1232 if (req->cmd_flags & REQ_ALLOCED) {
1233 unsigned int flags = req->cmd_flags;
1235 BUG_ON(!list_empty(&req->queuelist));
1236 BUG_ON(!hlist_unhashed(&req->hash));
1238 blk_free_request(&q->rq, req);
1239 freed_request(&q->rq, flags);
1242 EXPORT_SYMBOL_GPL(__blk_put_request);
1244 void blk_put_request(struct request *req)
1246 unsigned long flags;
1247 struct request_queue *q = req->q;
1249 spin_lock_irqsave(q->queue_lock, flags);
1250 __blk_put_request(q, req);
1251 spin_unlock_irqrestore(q->queue_lock, flags);
1253 EXPORT_SYMBOL(blk_put_request);
1256 * blk_add_request_payload - add a payload to a request
1257 * @rq: request to update
1258 * @page: page backing the payload
1259 * @len: length of the payload.
1261 * This allows to later add a payload to an already submitted request by
1262 * a block driver. The driver needs to take care of freeing the payload
1263 * itself.
1265 * Note that this is a quite horrible hack and nothing but handling of
1266 * discard requests should ever use it.
1268 void blk_add_request_payload(struct request *rq, struct page *page,
1269 unsigned int len)
1271 struct bio *bio = rq->bio;
1273 bio->bi_io_vec->bv_page = page;
1274 bio->bi_io_vec->bv_offset = 0;
1275 bio->bi_io_vec->bv_len = len;
1277 bio->bi_size = len;
1278 bio->bi_vcnt = 1;
1279 bio->bi_phys_segments = 1;
1281 rq->__data_len = rq->resid_len = len;
1282 rq->nr_phys_segments = 1;
1283 rq->buffer = bio_data(bio);
1285 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1287 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1288 struct bio *bio)
1290 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1292 if (!ll_back_merge_fn(q, req, bio))
1293 return false;
1295 trace_block_bio_backmerge(q, bio);
1297 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1298 blk_rq_set_mixed_merge(req);
1300 req->biotail->bi_next = bio;
1301 req->biotail = bio;
1302 req->__data_len += bio->bi_size;
1303 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1305 drive_stat_acct(req, 0);
1306 return true;
1309 static bool bio_attempt_front_merge(struct request_queue *q,
1310 struct request *req, struct bio *bio)
1312 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1314 if (!ll_front_merge_fn(q, req, bio))
1315 return false;
1317 trace_block_bio_frontmerge(q, bio);
1319 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1320 blk_rq_set_mixed_merge(req);
1322 bio->bi_next = req->bio;
1323 req->bio = bio;
1326 * may not be valid. if the low level driver said
1327 * it didn't need a bounce buffer then it better
1328 * not touch req->buffer either...
1330 req->buffer = bio_data(bio);
1331 req->__sector = bio->bi_sector;
1332 req->__data_len += bio->bi_size;
1333 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1335 drive_stat_acct(req, 0);
1336 return true;
1340 * attempt_plug_merge - try to merge with %current's plugged list
1341 * @q: request_queue new bio is being queued at
1342 * @bio: new bio being queued
1343 * @request_count: out parameter for number of traversed plugged requests
1345 * Determine whether @bio being queued on @q can be merged with a request
1346 * on %current's plugged list. Returns %true if merge was successful,
1347 * otherwise %false.
1349 * Plugging coalesces IOs from the same issuer for the same purpose without
1350 * going through @q->queue_lock. As such it's more of an issuing mechanism
1351 * than scheduling, and the request, while may have elvpriv data, is not
1352 * added on the elevator at this point. In addition, we don't have
1353 * reliable access to the elevator outside queue lock. Only check basic
1354 * merging parameters without querying the elevator.
1356 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1357 unsigned int *request_count)
1359 struct blk_plug *plug;
1360 struct request *rq;
1361 bool ret = false;
1363 plug = current->plug;
1364 if (!plug)
1365 goto out;
1366 *request_count = 0;
1368 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1369 int el_ret;
1371 if (rq->q == q)
1372 (*request_count)++;
1374 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1375 continue;
1377 el_ret = blk_try_merge(rq, bio);
1378 if (el_ret == ELEVATOR_BACK_MERGE) {
1379 ret = bio_attempt_back_merge(q, rq, bio);
1380 if (ret)
1381 break;
1382 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1383 ret = bio_attempt_front_merge(q, rq, bio);
1384 if (ret)
1385 break;
1388 out:
1389 return ret;
1392 void init_request_from_bio(struct request *req, struct bio *bio)
1394 req->cmd_type = REQ_TYPE_FS;
1396 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1397 if (bio->bi_rw & REQ_RAHEAD)
1398 req->cmd_flags |= REQ_FAILFAST_MASK;
1400 req->errors = 0;
1401 req->__sector = bio->bi_sector;
1402 req->ioprio = bio_prio(bio);
1403 blk_rq_bio_prep(req->q, req, bio);
1406 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1408 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1409 struct blk_plug *plug;
1410 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1411 struct request *req;
1412 unsigned int request_count = 0;
1415 * low level driver can indicate that it wants pages above a
1416 * certain limit bounced to low memory (ie for highmem, or even
1417 * ISA dma in theory)
1419 blk_queue_bounce(q, &bio);
1421 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1422 spin_lock_irq(q->queue_lock);
1423 where = ELEVATOR_INSERT_FLUSH;
1424 goto get_rq;
1428 * Check if we can merge with the plugged list before grabbing
1429 * any locks.
1431 if (attempt_plug_merge(q, bio, &request_count))
1432 return;
1434 spin_lock_irq(q->queue_lock);
1436 el_ret = elv_merge(q, &req, bio);
1437 if (el_ret == ELEVATOR_BACK_MERGE) {
1438 if (bio_attempt_back_merge(q, req, bio)) {
1439 elv_bio_merged(q, req, bio);
1440 if (!attempt_back_merge(q, req))
1441 elv_merged_request(q, req, el_ret);
1442 goto out_unlock;
1444 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1445 if (bio_attempt_front_merge(q, req, bio)) {
1446 elv_bio_merged(q, req, bio);
1447 if (!attempt_front_merge(q, req))
1448 elv_merged_request(q, req, el_ret);
1449 goto out_unlock;
1453 get_rq:
1455 * This sync check and mask will be re-done in init_request_from_bio(),
1456 * but we need to set it earlier to expose the sync flag to the
1457 * rq allocator and io schedulers.
1459 rw_flags = bio_data_dir(bio);
1460 if (sync)
1461 rw_flags |= REQ_SYNC;
1464 * Grab a free request. This is might sleep but can not fail.
1465 * Returns with the queue unlocked.
1467 req = get_request(q, rw_flags, bio, GFP_NOIO);
1468 if (unlikely(!req)) {
1469 bio_endio(bio, -ENODEV); /* @q is dead */
1470 goto out_unlock;
1474 * After dropping the lock and possibly sleeping here, our request
1475 * may now be mergeable after it had proven unmergeable (above).
1476 * We don't worry about that case for efficiency. It won't happen
1477 * often, and the elevators are able to handle it.
1479 init_request_from_bio(req, bio);
1481 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1482 req->cpu = raw_smp_processor_id();
1484 plug = current->plug;
1485 if (plug) {
1487 * If this is the first request added after a plug, fire
1488 * of a plug trace. If others have been added before, check
1489 * if we have multiple devices in this plug. If so, make a
1490 * note to sort the list before dispatch.
1492 if (list_empty(&plug->list))
1493 trace_block_plug(q);
1494 else {
1495 if (!plug->should_sort) {
1496 struct request *__rq;
1498 __rq = list_entry_rq(plug->list.prev);
1499 if (__rq->q != q)
1500 plug->should_sort = 1;
1502 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1503 blk_flush_plug_list(plug, false);
1504 trace_block_plug(q);
1507 list_add_tail(&req->queuelist, &plug->list);
1508 drive_stat_acct(req, 1);
1509 } else {
1510 spin_lock_irq(q->queue_lock);
1511 add_acct_request(q, req, where);
1512 __blk_run_queue(q);
1513 out_unlock:
1514 spin_unlock_irq(q->queue_lock);
1517 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1520 * If bio->bi_dev is a partition, remap the location
1522 static inline void blk_partition_remap(struct bio *bio)
1524 struct block_device *bdev = bio->bi_bdev;
1526 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1527 struct hd_struct *p = bdev->bd_part;
1529 bio->bi_sector += p->start_sect;
1530 bio->bi_bdev = bdev->bd_contains;
1532 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1533 bdev->bd_dev,
1534 bio->bi_sector - p->start_sect);
1538 static void handle_bad_sector(struct bio *bio)
1540 char b[BDEVNAME_SIZE];
1542 printk(KERN_INFO "attempt to access beyond end of device\n");
1543 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1544 bdevname(bio->bi_bdev, b),
1545 bio->bi_rw,
1546 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1547 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1549 set_bit(BIO_EOF, &bio->bi_flags);
1552 #ifdef CONFIG_FAIL_MAKE_REQUEST
1554 static DECLARE_FAULT_ATTR(fail_make_request);
1556 static int __init setup_fail_make_request(char *str)
1558 return setup_fault_attr(&fail_make_request, str);
1560 __setup("fail_make_request=", setup_fail_make_request);
1562 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1564 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1567 static int __init fail_make_request_debugfs(void)
1569 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1570 NULL, &fail_make_request);
1572 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1575 late_initcall(fail_make_request_debugfs);
1577 #else /* CONFIG_FAIL_MAKE_REQUEST */
1579 static inline bool should_fail_request(struct hd_struct *part,
1580 unsigned int bytes)
1582 return false;
1585 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1588 * Check whether this bio extends beyond the end of the device.
1590 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1592 sector_t maxsector;
1594 if (!nr_sectors)
1595 return 0;
1597 /* Test device or partition size, when known. */
1598 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1599 if (maxsector) {
1600 sector_t sector = bio->bi_sector;
1602 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1604 * This may well happen - the kernel calls bread()
1605 * without checking the size of the device, e.g., when
1606 * mounting a device.
1608 handle_bad_sector(bio);
1609 return 1;
1613 return 0;
1616 static noinline_for_stack bool
1617 generic_make_request_checks(struct bio *bio)
1619 struct request_queue *q;
1620 int nr_sectors = bio_sectors(bio);
1621 int err = -EIO;
1622 char b[BDEVNAME_SIZE];
1623 struct hd_struct *part;
1625 might_sleep();
1627 if (bio_check_eod(bio, nr_sectors))
1628 goto end_io;
1630 q = bdev_get_queue(bio->bi_bdev);
1631 if (unlikely(!q)) {
1632 printk(KERN_ERR
1633 "generic_make_request: Trying to access "
1634 "nonexistent block-device %s (%Lu)\n",
1635 bdevname(bio->bi_bdev, b),
1636 (long long) bio->bi_sector);
1637 goto end_io;
1640 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1641 nr_sectors > queue_max_hw_sectors(q))) {
1642 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1643 bdevname(bio->bi_bdev, b),
1644 bio_sectors(bio),
1645 queue_max_hw_sectors(q));
1646 goto end_io;
1649 part = bio->bi_bdev->bd_part;
1650 if (should_fail_request(part, bio->bi_size) ||
1651 should_fail_request(&part_to_disk(part)->part0,
1652 bio->bi_size))
1653 goto end_io;
1656 * If this device has partitions, remap block n
1657 * of partition p to block n+start(p) of the disk.
1659 blk_partition_remap(bio);
1661 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1662 goto end_io;
1664 if (bio_check_eod(bio, nr_sectors))
1665 goto end_io;
1668 * Filter flush bio's early so that make_request based
1669 * drivers without flush support don't have to worry
1670 * about them.
1672 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1673 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1674 if (!nr_sectors) {
1675 err = 0;
1676 goto end_io;
1680 if ((bio->bi_rw & REQ_DISCARD) &&
1681 (!blk_queue_discard(q) ||
1682 ((bio->bi_rw & REQ_SECURE) &&
1683 !blk_queue_secdiscard(q)))) {
1684 err = -EOPNOTSUPP;
1685 goto end_io;
1689 * Various block parts want %current->io_context and lazy ioc
1690 * allocation ends up trading a lot of pain for a small amount of
1691 * memory. Just allocate it upfront. This may fail and block
1692 * layer knows how to live with it.
1694 create_io_context(GFP_ATOMIC, q->node);
1696 if (blk_throtl_bio(q, bio))
1697 return false; /* throttled, will be resubmitted later */
1699 trace_block_bio_queue(q, bio);
1700 return true;
1702 end_io:
1703 bio_endio(bio, err);
1704 return false;
1708 * generic_make_request - hand a buffer to its device driver for I/O
1709 * @bio: The bio describing the location in memory and on the device.
1711 * generic_make_request() is used to make I/O requests of block
1712 * devices. It is passed a &struct bio, which describes the I/O that needs
1713 * to be done.
1715 * generic_make_request() does not return any status. The
1716 * success/failure status of the request, along with notification of
1717 * completion, is delivered asynchronously through the bio->bi_end_io
1718 * function described (one day) else where.
1720 * The caller of generic_make_request must make sure that bi_io_vec
1721 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1722 * set to describe the device address, and the
1723 * bi_end_io and optionally bi_private are set to describe how
1724 * completion notification should be signaled.
1726 * generic_make_request and the drivers it calls may use bi_next if this
1727 * bio happens to be merged with someone else, and may resubmit the bio to
1728 * a lower device by calling into generic_make_request recursively, which
1729 * means the bio should NOT be touched after the call to ->make_request_fn.
1731 void generic_make_request(struct bio *bio)
1733 struct bio_list bio_list_on_stack;
1735 if (!generic_make_request_checks(bio))
1736 return;
1739 * We only want one ->make_request_fn to be active at a time, else
1740 * stack usage with stacked devices could be a problem. So use
1741 * current->bio_list to keep a list of requests submited by a
1742 * make_request_fn function. current->bio_list is also used as a
1743 * flag to say if generic_make_request is currently active in this
1744 * task or not. If it is NULL, then no make_request is active. If
1745 * it is non-NULL, then a make_request is active, and new requests
1746 * should be added at the tail
1748 if (current->bio_list) {
1749 bio_list_add(current->bio_list, bio);
1750 return;
1753 /* following loop may be a bit non-obvious, and so deserves some
1754 * explanation.
1755 * Before entering the loop, bio->bi_next is NULL (as all callers
1756 * ensure that) so we have a list with a single bio.
1757 * We pretend that we have just taken it off a longer list, so
1758 * we assign bio_list to a pointer to the bio_list_on_stack,
1759 * thus initialising the bio_list of new bios to be
1760 * added. ->make_request() may indeed add some more bios
1761 * through a recursive call to generic_make_request. If it
1762 * did, we find a non-NULL value in bio_list and re-enter the loop
1763 * from the top. In this case we really did just take the bio
1764 * of the top of the list (no pretending) and so remove it from
1765 * bio_list, and call into ->make_request() again.
1767 BUG_ON(bio->bi_next);
1768 bio_list_init(&bio_list_on_stack);
1769 current->bio_list = &bio_list_on_stack;
1770 do {
1771 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1773 q->make_request_fn(q, bio);
1775 bio = bio_list_pop(current->bio_list);
1776 } while (bio);
1777 current->bio_list = NULL; /* deactivate */
1779 EXPORT_SYMBOL(generic_make_request);
1782 * submit_bio - submit a bio to the block device layer for I/O
1783 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1784 * @bio: The &struct bio which describes the I/O
1786 * submit_bio() is very similar in purpose to generic_make_request(), and
1787 * uses that function to do most of the work. Both are fairly rough
1788 * interfaces; @bio must be presetup and ready for I/O.
1791 void submit_bio(int rw, struct bio *bio)
1793 int count = bio_sectors(bio);
1795 bio->bi_rw |= rw;
1798 * If it's a regular read/write or a barrier with data attached,
1799 * go through the normal accounting stuff before submission.
1801 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1802 if (rw & WRITE) {
1803 count_vm_events(PGPGOUT, count);
1804 } else {
1805 task_io_account_read(bio->bi_size);
1806 count_vm_events(PGPGIN, count);
1809 if (unlikely(block_dump)) {
1810 char b[BDEVNAME_SIZE];
1811 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1812 current->comm, task_pid_nr(current),
1813 (rw & WRITE) ? "WRITE" : "READ",
1814 (unsigned long long)bio->bi_sector,
1815 bdevname(bio->bi_bdev, b),
1816 count);
1820 generic_make_request(bio);
1822 EXPORT_SYMBOL(submit_bio);
1825 * blk_rq_check_limits - Helper function to check a request for the queue limit
1826 * @q: the queue
1827 * @rq: the request being checked
1829 * Description:
1830 * @rq may have been made based on weaker limitations of upper-level queues
1831 * in request stacking drivers, and it may violate the limitation of @q.
1832 * Since the block layer and the underlying device driver trust @rq
1833 * after it is inserted to @q, it should be checked against @q before
1834 * the insertion using this generic function.
1836 * This function should also be useful for request stacking drivers
1837 * in some cases below, so export this function.
1838 * Request stacking drivers like request-based dm may change the queue
1839 * limits while requests are in the queue (e.g. dm's table swapping).
1840 * Such request stacking drivers should check those requests agaist
1841 * the new queue limits again when they dispatch those requests,
1842 * although such checkings are also done against the old queue limits
1843 * when submitting requests.
1845 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1847 if (rq->cmd_flags & REQ_DISCARD)
1848 return 0;
1850 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1851 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1852 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1853 return -EIO;
1857 * queue's settings related to segment counting like q->bounce_pfn
1858 * may differ from that of other stacking queues.
1859 * Recalculate it to check the request correctly on this queue's
1860 * limitation.
1862 blk_recalc_rq_segments(rq);
1863 if (rq->nr_phys_segments > queue_max_segments(q)) {
1864 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1865 return -EIO;
1868 return 0;
1870 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1873 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1874 * @q: the queue to submit the request
1875 * @rq: the request being queued
1877 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1879 unsigned long flags;
1880 int where = ELEVATOR_INSERT_BACK;
1882 if (blk_rq_check_limits(q, rq))
1883 return -EIO;
1885 if (rq->rq_disk &&
1886 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1887 return -EIO;
1889 spin_lock_irqsave(q->queue_lock, flags);
1890 if (unlikely(blk_queue_dead(q))) {
1891 spin_unlock_irqrestore(q->queue_lock, flags);
1892 return -ENODEV;
1896 * Submitting request must be dequeued before calling this function
1897 * because it will be linked to another request_queue
1899 BUG_ON(blk_queued_rq(rq));
1901 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1902 where = ELEVATOR_INSERT_FLUSH;
1904 add_acct_request(q, rq, where);
1905 if (where == ELEVATOR_INSERT_FLUSH)
1906 __blk_run_queue(q);
1907 spin_unlock_irqrestore(q->queue_lock, flags);
1909 return 0;
1911 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1914 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1915 * @rq: request to examine
1917 * Description:
1918 * A request could be merge of IOs which require different failure
1919 * handling. This function determines the number of bytes which
1920 * can be failed from the beginning of the request without
1921 * crossing into area which need to be retried further.
1923 * Return:
1924 * The number of bytes to fail.
1926 * Context:
1927 * queue_lock must be held.
1929 unsigned int blk_rq_err_bytes(const struct request *rq)
1931 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1932 unsigned int bytes = 0;
1933 struct bio *bio;
1935 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1936 return blk_rq_bytes(rq);
1939 * Currently the only 'mixing' which can happen is between
1940 * different fastfail types. We can safely fail portions
1941 * which have all the failfast bits that the first one has -
1942 * the ones which are at least as eager to fail as the first
1943 * one.
1945 for (bio = rq->bio; bio; bio = bio->bi_next) {
1946 if ((bio->bi_rw & ff) != ff)
1947 break;
1948 bytes += bio->bi_size;
1951 /* this could lead to infinite loop */
1952 BUG_ON(blk_rq_bytes(rq) && !bytes);
1953 return bytes;
1955 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1957 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1959 if (blk_do_io_stat(req)) {
1960 const int rw = rq_data_dir(req);
1961 struct hd_struct *part;
1962 int cpu;
1964 cpu = part_stat_lock();
1965 part = req->part;
1966 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1967 part_stat_unlock();
1971 static void blk_account_io_done(struct request *req)
1974 * Account IO completion. flush_rq isn't accounted as a
1975 * normal IO on queueing nor completion. Accounting the
1976 * containing request is enough.
1978 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1979 unsigned long duration = jiffies - req->start_time;
1980 const int rw = rq_data_dir(req);
1981 struct hd_struct *part;
1982 int cpu;
1984 cpu = part_stat_lock();
1985 part = req->part;
1987 part_stat_inc(cpu, part, ios[rw]);
1988 part_stat_add(cpu, part, ticks[rw], duration);
1989 part_round_stats(cpu, part);
1990 part_dec_in_flight(part, rw);
1992 hd_struct_put(part);
1993 part_stat_unlock();
1998 * blk_peek_request - peek at the top of a request queue
1999 * @q: request queue to peek at
2001 * Description:
2002 * Return the request at the top of @q. The returned request
2003 * should be started using blk_start_request() before LLD starts
2004 * processing it.
2006 * Return:
2007 * Pointer to the request at the top of @q if available. Null
2008 * otherwise.
2010 * Context:
2011 * queue_lock must be held.
2013 struct request *blk_peek_request(struct request_queue *q)
2015 struct request *rq;
2016 int ret;
2018 while ((rq = __elv_next_request(q)) != NULL) {
2019 if (!(rq->cmd_flags & REQ_STARTED)) {
2021 * This is the first time the device driver
2022 * sees this request (possibly after
2023 * requeueing). Notify IO scheduler.
2025 if (rq->cmd_flags & REQ_SORTED)
2026 elv_activate_rq(q, rq);
2029 * just mark as started even if we don't start
2030 * it, a request that has been delayed should
2031 * not be passed by new incoming requests
2033 rq->cmd_flags |= REQ_STARTED;
2034 trace_block_rq_issue(q, rq);
2037 if (!q->boundary_rq || q->boundary_rq == rq) {
2038 q->end_sector = rq_end_sector(rq);
2039 q->boundary_rq = NULL;
2042 if (rq->cmd_flags & REQ_DONTPREP)
2043 break;
2045 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2047 * make sure space for the drain appears we
2048 * know we can do this because max_hw_segments
2049 * has been adjusted to be one fewer than the
2050 * device can handle
2052 rq->nr_phys_segments++;
2055 if (!q->prep_rq_fn)
2056 break;
2058 ret = q->prep_rq_fn(q, rq);
2059 if (ret == BLKPREP_OK) {
2060 break;
2061 } else if (ret == BLKPREP_DEFER) {
2063 * the request may have been (partially) prepped.
2064 * we need to keep this request in the front to
2065 * avoid resource deadlock. REQ_STARTED will
2066 * prevent other fs requests from passing this one.
2068 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2069 !(rq->cmd_flags & REQ_DONTPREP)) {
2071 * remove the space for the drain we added
2072 * so that we don't add it again
2074 --rq->nr_phys_segments;
2077 rq = NULL;
2078 break;
2079 } else if (ret == BLKPREP_KILL) {
2080 rq->cmd_flags |= REQ_QUIET;
2082 * Mark this request as started so we don't trigger
2083 * any debug logic in the end I/O path.
2085 blk_start_request(rq);
2086 __blk_end_request_all(rq, -EIO);
2087 } else {
2088 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2089 break;
2093 return rq;
2095 EXPORT_SYMBOL(blk_peek_request);
2097 void blk_dequeue_request(struct request *rq)
2099 struct request_queue *q = rq->q;
2101 BUG_ON(list_empty(&rq->queuelist));
2102 BUG_ON(ELV_ON_HASH(rq));
2104 list_del_init(&rq->queuelist);
2107 * the time frame between a request being removed from the lists
2108 * and to it is freed is accounted as io that is in progress at
2109 * the driver side.
2111 if (blk_account_rq(rq)) {
2112 q->in_flight[rq_is_sync(rq)]++;
2113 set_io_start_time_ns(rq);
2118 * blk_start_request - start request processing on the driver
2119 * @req: request to dequeue
2121 * Description:
2122 * Dequeue @req and start timeout timer on it. This hands off the
2123 * request to the driver.
2125 * Block internal functions which don't want to start timer should
2126 * call blk_dequeue_request().
2128 * Context:
2129 * queue_lock must be held.
2131 void blk_start_request(struct request *req)
2133 blk_dequeue_request(req);
2136 * We are now handing the request to the hardware, initialize
2137 * resid_len to full count and add the timeout handler.
2139 req->resid_len = blk_rq_bytes(req);
2140 if (unlikely(blk_bidi_rq(req)))
2141 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2143 blk_add_timer(req);
2145 EXPORT_SYMBOL(blk_start_request);
2148 * blk_fetch_request - fetch a request from a request queue
2149 * @q: request queue to fetch a request from
2151 * Description:
2152 * Return the request at the top of @q. The request is started on
2153 * return and LLD can start processing it immediately.
2155 * Return:
2156 * Pointer to the request at the top of @q if available. Null
2157 * otherwise.
2159 * Context:
2160 * queue_lock must be held.
2162 struct request *blk_fetch_request(struct request_queue *q)
2164 struct request *rq;
2166 rq = blk_peek_request(q);
2167 if (rq)
2168 blk_start_request(rq);
2169 return rq;
2171 EXPORT_SYMBOL(blk_fetch_request);
2174 * blk_update_request - Special helper function for request stacking drivers
2175 * @req: the request being processed
2176 * @error: %0 for success, < %0 for error
2177 * @nr_bytes: number of bytes to complete @req
2179 * Description:
2180 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2181 * the request structure even if @req doesn't have leftover.
2182 * If @req has leftover, sets it up for the next range of segments.
2184 * This special helper function is only for request stacking drivers
2185 * (e.g. request-based dm) so that they can handle partial completion.
2186 * Actual device drivers should use blk_end_request instead.
2188 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2189 * %false return from this function.
2191 * Return:
2192 * %false - this request doesn't have any more data
2193 * %true - this request has more data
2195 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2197 int total_bytes, bio_nbytes, next_idx = 0;
2198 struct bio *bio;
2200 if (!req->bio)
2201 return false;
2203 trace_block_rq_complete(req->q, req);
2206 * For fs requests, rq is just carrier of independent bio's
2207 * and each partial completion should be handled separately.
2208 * Reset per-request error on each partial completion.
2210 * TODO: tj: This is too subtle. It would be better to let
2211 * low level drivers do what they see fit.
2213 if (req->cmd_type == REQ_TYPE_FS)
2214 req->errors = 0;
2216 if (error && req->cmd_type == REQ_TYPE_FS &&
2217 !(req->cmd_flags & REQ_QUIET)) {
2218 char *error_type;
2220 switch (error) {
2221 case -ENOLINK:
2222 error_type = "recoverable transport";
2223 break;
2224 case -EREMOTEIO:
2225 error_type = "critical target";
2226 break;
2227 case -EBADE:
2228 error_type = "critical nexus";
2229 break;
2230 case -EIO:
2231 default:
2232 error_type = "I/O";
2233 break;
2235 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2236 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2237 (unsigned long long)blk_rq_pos(req));
2240 blk_account_io_completion(req, nr_bytes);
2242 total_bytes = bio_nbytes = 0;
2243 while ((bio = req->bio) != NULL) {
2244 int nbytes;
2246 if (nr_bytes >= bio->bi_size) {
2247 req->bio = bio->bi_next;
2248 nbytes = bio->bi_size;
2249 req_bio_endio(req, bio, nbytes, error);
2250 next_idx = 0;
2251 bio_nbytes = 0;
2252 } else {
2253 int idx = bio->bi_idx + next_idx;
2255 if (unlikely(idx >= bio->bi_vcnt)) {
2256 blk_dump_rq_flags(req, "__end_that");
2257 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2258 __func__, idx, bio->bi_vcnt);
2259 break;
2262 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2263 BIO_BUG_ON(nbytes > bio->bi_size);
2266 * not a complete bvec done
2268 if (unlikely(nbytes > nr_bytes)) {
2269 bio_nbytes += nr_bytes;
2270 total_bytes += nr_bytes;
2271 break;
2275 * advance to the next vector
2277 next_idx++;
2278 bio_nbytes += nbytes;
2281 total_bytes += nbytes;
2282 nr_bytes -= nbytes;
2284 bio = req->bio;
2285 if (bio) {
2287 * end more in this run, or just return 'not-done'
2289 if (unlikely(nr_bytes <= 0))
2290 break;
2295 * completely done
2297 if (!req->bio) {
2299 * Reset counters so that the request stacking driver
2300 * can find how many bytes remain in the request
2301 * later.
2303 req->__data_len = 0;
2304 return false;
2308 * if the request wasn't completed, update state
2310 if (bio_nbytes) {
2311 req_bio_endio(req, bio, bio_nbytes, error);
2312 bio->bi_idx += next_idx;
2313 bio_iovec(bio)->bv_offset += nr_bytes;
2314 bio_iovec(bio)->bv_len -= nr_bytes;
2317 req->__data_len -= total_bytes;
2318 req->buffer = bio_data(req->bio);
2320 /* update sector only for requests with clear definition of sector */
2321 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2322 req->__sector += total_bytes >> 9;
2324 /* mixed attributes always follow the first bio */
2325 if (req->cmd_flags & REQ_MIXED_MERGE) {
2326 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2327 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2331 * If total number of sectors is less than the first segment
2332 * size, something has gone terribly wrong.
2334 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2335 blk_dump_rq_flags(req, "request botched");
2336 req->__data_len = blk_rq_cur_bytes(req);
2339 /* recalculate the number of segments */
2340 blk_recalc_rq_segments(req);
2342 return true;
2344 EXPORT_SYMBOL_GPL(blk_update_request);
2346 static bool blk_update_bidi_request(struct request *rq, int error,
2347 unsigned int nr_bytes,
2348 unsigned int bidi_bytes)
2350 if (blk_update_request(rq, error, nr_bytes))
2351 return true;
2353 /* Bidi request must be completed as a whole */
2354 if (unlikely(blk_bidi_rq(rq)) &&
2355 blk_update_request(rq->next_rq, error, bidi_bytes))
2356 return true;
2358 if (blk_queue_add_random(rq->q))
2359 add_disk_randomness(rq->rq_disk);
2361 return false;
2365 * blk_unprep_request - unprepare a request
2366 * @req: the request
2368 * This function makes a request ready for complete resubmission (or
2369 * completion). It happens only after all error handling is complete,
2370 * so represents the appropriate moment to deallocate any resources
2371 * that were allocated to the request in the prep_rq_fn. The queue
2372 * lock is held when calling this.
2374 void blk_unprep_request(struct request *req)
2376 struct request_queue *q = req->q;
2378 req->cmd_flags &= ~REQ_DONTPREP;
2379 if (q->unprep_rq_fn)
2380 q->unprep_rq_fn(q, req);
2382 EXPORT_SYMBOL_GPL(blk_unprep_request);
2385 * queue lock must be held
2387 static void blk_finish_request(struct request *req, int error)
2389 if (blk_rq_tagged(req))
2390 blk_queue_end_tag(req->q, req);
2392 BUG_ON(blk_queued_rq(req));
2394 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2395 laptop_io_completion(&req->q->backing_dev_info);
2397 blk_delete_timer(req);
2399 if (req->cmd_flags & REQ_DONTPREP)
2400 blk_unprep_request(req);
2403 blk_account_io_done(req);
2405 if (req->end_io)
2406 req->end_io(req, error);
2407 else {
2408 if (blk_bidi_rq(req))
2409 __blk_put_request(req->next_rq->q, req->next_rq);
2411 __blk_put_request(req->q, req);
2416 * blk_end_bidi_request - Complete a bidi request
2417 * @rq: the request to complete
2418 * @error: %0 for success, < %0 for error
2419 * @nr_bytes: number of bytes to complete @rq
2420 * @bidi_bytes: number of bytes to complete @rq->next_rq
2422 * Description:
2423 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2424 * Drivers that supports bidi can safely call this member for any
2425 * type of request, bidi or uni. In the later case @bidi_bytes is
2426 * just ignored.
2428 * Return:
2429 * %false - we are done with this request
2430 * %true - still buffers pending for this request
2432 static bool blk_end_bidi_request(struct request *rq, int error,
2433 unsigned int nr_bytes, unsigned int bidi_bytes)
2435 struct request_queue *q = rq->q;
2436 unsigned long flags;
2438 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2439 return true;
2441 spin_lock_irqsave(q->queue_lock, flags);
2442 blk_finish_request(rq, error);
2443 spin_unlock_irqrestore(q->queue_lock, flags);
2445 return false;
2449 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2450 * @rq: the request to complete
2451 * @error: %0 for success, < %0 for error
2452 * @nr_bytes: number of bytes to complete @rq
2453 * @bidi_bytes: number of bytes to complete @rq->next_rq
2455 * Description:
2456 * Identical to blk_end_bidi_request() except that queue lock is
2457 * assumed to be locked on entry and remains so on return.
2459 * Return:
2460 * %false - we are done with this request
2461 * %true - still buffers pending for this request
2463 bool __blk_end_bidi_request(struct request *rq, int error,
2464 unsigned int nr_bytes, unsigned int bidi_bytes)
2466 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2467 return true;
2469 blk_finish_request(rq, error);
2471 return false;
2475 * blk_end_request - Helper function for drivers to complete the request.
2476 * @rq: the request being processed
2477 * @error: %0 for success, < %0 for error
2478 * @nr_bytes: number of bytes to complete
2480 * Description:
2481 * Ends I/O on a number of bytes attached to @rq.
2482 * If @rq has leftover, sets it up for the next range of segments.
2484 * Return:
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2488 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2490 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2492 EXPORT_SYMBOL(blk_end_request);
2495 * blk_end_request_all - Helper function for drives to finish the request.
2496 * @rq: the request to finish
2497 * @error: %0 for success, < %0 for error
2499 * Description:
2500 * Completely finish @rq.
2502 void blk_end_request_all(struct request *rq, int error)
2504 bool pending;
2505 unsigned int bidi_bytes = 0;
2507 if (unlikely(blk_bidi_rq(rq)))
2508 bidi_bytes = blk_rq_bytes(rq->next_rq);
2510 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2511 BUG_ON(pending);
2513 EXPORT_SYMBOL(blk_end_request_all);
2516 * blk_end_request_cur - Helper function to finish the current request chunk.
2517 * @rq: the request to finish the current chunk for
2518 * @error: %0 for success, < %0 for error
2520 * Description:
2521 * Complete the current consecutively mapped chunk from @rq.
2523 * Return:
2524 * %false - we are done with this request
2525 * %true - still buffers pending for this request
2527 bool blk_end_request_cur(struct request *rq, int error)
2529 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2531 EXPORT_SYMBOL(blk_end_request_cur);
2534 * blk_end_request_err - Finish a request till the next failure boundary.
2535 * @rq: the request to finish till the next failure boundary for
2536 * @error: must be negative errno
2538 * Description:
2539 * Complete @rq till the next failure boundary.
2541 * Return:
2542 * %false - we are done with this request
2543 * %true - still buffers pending for this request
2545 bool blk_end_request_err(struct request *rq, int error)
2547 WARN_ON(error >= 0);
2548 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2550 EXPORT_SYMBOL_GPL(blk_end_request_err);
2553 * __blk_end_request - Helper function for drivers to complete the request.
2554 * @rq: the request being processed
2555 * @error: %0 for success, < %0 for error
2556 * @nr_bytes: number of bytes to complete
2558 * Description:
2559 * Must be called with queue lock held unlike blk_end_request().
2561 * Return:
2562 * %false - we are done with this request
2563 * %true - still buffers pending for this request
2565 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2567 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2569 EXPORT_SYMBOL(__blk_end_request);
2572 * __blk_end_request_all - Helper function for drives to finish the request.
2573 * @rq: the request to finish
2574 * @error: %0 for success, < %0 for error
2576 * Description:
2577 * Completely finish @rq. Must be called with queue lock held.
2579 void __blk_end_request_all(struct request *rq, int error)
2581 bool pending;
2582 unsigned int bidi_bytes = 0;
2584 if (unlikely(blk_bidi_rq(rq)))
2585 bidi_bytes = blk_rq_bytes(rq->next_rq);
2587 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2588 BUG_ON(pending);
2590 EXPORT_SYMBOL(__blk_end_request_all);
2593 * __blk_end_request_cur - Helper function to finish the current request chunk.
2594 * @rq: the request to finish the current chunk for
2595 * @error: %0 for success, < %0 for error
2597 * Description:
2598 * Complete the current consecutively mapped chunk from @rq. Must
2599 * be called with queue lock held.
2601 * Return:
2602 * %false - we are done with this request
2603 * %true - still buffers pending for this request
2605 bool __blk_end_request_cur(struct request *rq, int error)
2607 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2609 EXPORT_SYMBOL(__blk_end_request_cur);
2612 * __blk_end_request_err - Finish a request till the next failure boundary.
2613 * @rq: the request to finish till the next failure boundary for
2614 * @error: must be negative errno
2616 * Description:
2617 * Complete @rq till the next failure boundary. Must be called
2618 * with queue lock held.
2620 * Return:
2621 * %false - we are done with this request
2622 * %true - still buffers pending for this request
2624 bool __blk_end_request_err(struct request *rq, int error)
2626 WARN_ON(error >= 0);
2627 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2629 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2631 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2632 struct bio *bio)
2634 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2635 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2637 if (bio_has_data(bio)) {
2638 rq->nr_phys_segments = bio_phys_segments(q, bio);
2639 rq->buffer = bio_data(bio);
2641 rq->__data_len = bio->bi_size;
2642 rq->bio = rq->biotail = bio;
2644 if (bio->bi_bdev)
2645 rq->rq_disk = bio->bi_bdev->bd_disk;
2648 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2650 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2651 * @rq: the request to be flushed
2653 * Description:
2654 * Flush all pages in @rq.
2656 void rq_flush_dcache_pages(struct request *rq)
2658 struct req_iterator iter;
2659 struct bio_vec *bvec;
2661 rq_for_each_segment(bvec, rq, iter)
2662 flush_dcache_page(bvec->bv_page);
2664 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2665 #endif
2668 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2669 * @q : the queue of the device being checked
2671 * Description:
2672 * Check if underlying low-level drivers of a device are busy.
2673 * If the drivers want to export their busy state, they must set own
2674 * exporting function using blk_queue_lld_busy() first.
2676 * Basically, this function is used only by request stacking drivers
2677 * to stop dispatching requests to underlying devices when underlying
2678 * devices are busy. This behavior helps more I/O merging on the queue
2679 * of the request stacking driver and prevents I/O throughput regression
2680 * on burst I/O load.
2682 * Return:
2683 * 0 - Not busy (The request stacking driver should dispatch request)
2684 * 1 - Busy (The request stacking driver should stop dispatching request)
2686 int blk_lld_busy(struct request_queue *q)
2688 if (q->lld_busy_fn)
2689 return q->lld_busy_fn(q);
2691 return 0;
2693 EXPORT_SYMBOL_GPL(blk_lld_busy);
2696 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2697 * @rq: the clone request to be cleaned up
2699 * Description:
2700 * Free all bios in @rq for a cloned request.
2702 void blk_rq_unprep_clone(struct request *rq)
2704 struct bio *bio;
2706 while ((bio = rq->bio) != NULL) {
2707 rq->bio = bio->bi_next;
2709 bio_put(bio);
2712 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2715 * Copy attributes of the original request to the clone request.
2716 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2718 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2720 dst->cpu = src->cpu;
2721 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2722 dst->cmd_type = src->cmd_type;
2723 dst->__sector = blk_rq_pos(src);
2724 dst->__data_len = blk_rq_bytes(src);
2725 dst->nr_phys_segments = src->nr_phys_segments;
2726 dst->ioprio = src->ioprio;
2727 dst->extra_len = src->extra_len;
2731 * blk_rq_prep_clone - Helper function to setup clone request
2732 * @rq: the request to be setup
2733 * @rq_src: original request to be cloned
2734 * @bs: bio_set that bios for clone are allocated from
2735 * @gfp_mask: memory allocation mask for bio
2736 * @bio_ctr: setup function to be called for each clone bio.
2737 * Returns %0 for success, non %0 for failure.
2738 * @data: private data to be passed to @bio_ctr
2740 * Description:
2741 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2742 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2743 * are not copied, and copying such parts is the caller's responsibility.
2744 * Also, pages which the original bios are pointing to are not copied
2745 * and the cloned bios just point same pages.
2746 * So cloned bios must be completed before original bios, which means
2747 * the caller must complete @rq before @rq_src.
2749 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2750 struct bio_set *bs, gfp_t gfp_mask,
2751 int (*bio_ctr)(struct bio *, struct bio *, void *),
2752 void *data)
2754 struct bio *bio, *bio_src;
2756 if (!bs)
2757 bs = fs_bio_set;
2759 blk_rq_init(NULL, rq);
2761 __rq_for_each_bio(bio_src, rq_src) {
2762 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2763 if (!bio)
2764 goto free_and_out;
2766 __bio_clone(bio, bio_src);
2768 if (bio_integrity(bio_src) &&
2769 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2770 goto free_and_out;
2772 if (bio_ctr && bio_ctr(bio, bio_src, data))
2773 goto free_and_out;
2775 if (rq->bio) {
2776 rq->biotail->bi_next = bio;
2777 rq->biotail = bio;
2778 } else
2779 rq->bio = rq->biotail = bio;
2782 __blk_rq_prep_clone(rq, rq_src);
2784 return 0;
2786 free_and_out:
2787 if (bio)
2788 bio_free(bio, bs);
2789 blk_rq_unprep_clone(rq);
2791 return -ENOMEM;
2793 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2795 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2797 return queue_work(kblockd_workqueue, work);
2799 EXPORT_SYMBOL(kblockd_schedule_work);
2801 int kblockd_schedule_delayed_work(struct request_queue *q,
2802 struct delayed_work *dwork, unsigned long delay)
2804 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2806 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2808 #define PLUG_MAGIC 0x91827364
2811 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2812 * @plug: The &struct blk_plug that needs to be initialized
2814 * Description:
2815 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2816 * pending I/O should the task end up blocking between blk_start_plug() and
2817 * blk_finish_plug(). This is important from a performance perspective, but
2818 * also ensures that we don't deadlock. For instance, if the task is blocking
2819 * for a memory allocation, memory reclaim could end up wanting to free a
2820 * page belonging to that request that is currently residing in our private
2821 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2822 * this kind of deadlock.
2824 void blk_start_plug(struct blk_plug *plug)
2826 struct task_struct *tsk = current;
2828 plug->magic = PLUG_MAGIC;
2829 INIT_LIST_HEAD(&plug->list);
2830 INIT_LIST_HEAD(&plug->cb_list);
2831 plug->should_sort = 0;
2834 * If this is a nested plug, don't actually assign it. It will be
2835 * flushed on its own.
2837 if (!tsk->plug) {
2839 * Store ordering should not be needed here, since a potential
2840 * preempt will imply a full memory barrier
2842 tsk->plug = plug;
2845 EXPORT_SYMBOL(blk_start_plug);
2847 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2849 struct request *rqa = container_of(a, struct request, queuelist);
2850 struct request *rqb = container_of(b, struct request, queuelist);
2852 return !(rqa->q <= rqb->q);
2856 * If 'from_schedule' is true, then postpone the dispatch of requests
2857 * until a safe kblockd context. We due this to avoid accidental big
2858 * additional stack usage in driver dispatch, in places where the originally
2859 * plugger did not intend it.
2861 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2862 bool from_schedule)
2863 __releases(q->queue_lock)
2865 trace_block_unplug(q, depth, !from_schedule);
2868 * Don't mess with dead queue.
2870 if (unlikely(blk_queue_dead(q))) {
2871 spin_unlock(q->queue_lock);
2872 return;
2876 * If we are punting this to kblockd, then we can safely drop
2877 * the queue_lock before waking kblockd (which needs to take
2878 * this lock).
2880 if (from_schedule) {
2881 spin_unlock(q->queue_lock);
2882 blk_run_queue_async(q);
2883 } else {
2884 __blk_run_queue(q);
2885 spin_unlock(q->queue_lock);
2890 static void flush_plug_callbacks(struct blk_plug *plug)
2892 LIST_HEAD(callbacks);
2894 if (list_empty(&plug->cb_list))
2895 return;
2897 list_splice_init(&plug->cb_list, &callbacks);
2899 while (!list_empty(&callbacks)) {
2900 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2901 struct blk_plug_cb,
2902 list);
2903 list_del(&cb->list);
2904 cb->callback(cb);
2908 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2910 struct request_queue *q;
2911 unsigned long flags;
2912 struct request *rq;
2913 LIST_HEAD(list);
2914 unsigned int depth;
2916 BUG_ON(plug->magic != PLUG_MAGIC);
2918 flush_plug_callbacks(plug);
2919 if (list_empty(&plug->list))
2920 return;
2922 list_splice_init(&plug->list, &list);
2924 if (plug->should_sort) {
2925 list_sort(NULL, &list, plug_rq_cmp);
2926 plug->should_sort = 0;
2929 q = NULL;
2930 depth = 0;
2933 * Save and disable interrupts here, to avoid doing it for every
2934 * queue lock we have to take.
2936 local_irq_save(flags);
2937 while (!list_empty(&list)) {
2938 rq = list_entry_rq(list.next);
2939 list_del_init(&rq->queuelist);
2940 BUG_ON(!rq->q);
2941 if (rq->q != q) {
2943 * This drops the queue lock
2945 if (q)
2946 queue_unplugged(q, depth, from_schedule);
2947 q = rq->q;
2948 depth = 0;
2949 spin_lock(q->queue_lock);
2953 * Short-circuit if @q is dead
2955 if (unlikely(blk_queue_dead(q))) {
2956 __blk_end_request_all(rq, -ENODEV);
2957 continue;
2961 * rq is already accounted, so use raw insert
2963 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2964 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2965 else
2966 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2968 depth++;
2972 * This drops the queue lock
2974 if (q)
2975 queue_unplugged(q, depth, from_schedule);
2977 local_irq_restore(flags);
2980 void blk_finish_plug(struct blk_plug *plug)
2982 blk_flush_plug_list(plug, false);
2984 if (plug == current->plug)
2985 current->plug = NULL;
2987 EXPORT_SYMBOL(blk_finish_plug);
2989 int __init blk_dev_init(void)
2991 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2992 sizeof(((struct request *)0)->cmd_flags));
2994 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2995 kblockd_workqueue = alloc_workqueue("kblockd",
2996 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2997 if (!kblockd_workqueue)
2998 panic("Failed to create kblockd\n");
3000 request_cachep = kmem_cache_create("blkdev_requests",
3001 sizeof(struct request), 0, SLAB_PANIC, NULL);
3003 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3004 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3006 return 0;