ACPI: remove duplicated lines of merging problems with acpi_processor_add
[linux-2.6/libata-dev.git] / drivers / mtd / ubi / wl.c
blob0696e36b053939e878d0215aefe4f4598ba61ac3
1 /*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
23 * UBI wear-leveling sub-system.
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45 * an "optimal" physical eraseblock. For example, when it is known that the
46 * physical eraseblock will be "put" soon because it contains short-term data,
47 * the WL sub-system may pick a free physical eraseblock with low erase
48 * counter, and so forth.
50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
51 * bad.
53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54 * in a physical eraseblock, it has to be moved. Technically this is the same
55 * as moving it for wear-leveling reasons.
57 * As it was said, for the UBI sub-system all physical eraseblocks are either
58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
62 * When the WL sub-system returns a physical eraseblock, the physical
63 * eraseblock is protected from being moved for some "time". For this reason,
64 * the physical eraseblock is not directly moved from the @wl->free tree to the
65 * @wl->used tree. There is a protection queue in between where this
66 * physical eraseblock is temporarily stored (@wl->pq).
68 * All this protection stuff is needed because:
69 * o we don't want to move physical eraseblocks just after we have given them
70 * to the user; instead, we first want to let users fill them up with data;
72 * o there is a chance that the user will put the physical eraseblock very
73 * soon, so it makes sense not to move it for some time, but wait; this is
74 * especially important in case of "short term" physical eraseblocks.
76 * Physical eraseblocks stay protected only for limited time. But the "time" is
77 * measured in erase cycles in this case. This is implemented with help of the
78 * protection queue. Eraseblocks are put to the tail of this queue when they
79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80 * head of the queue on each erase operation (for any eraseblock). So the
81 * length of the queue defines how may (global) erase cycles PEBs are protected.
83 * To put it differently, each physical eraseblock has 2 main states: free and
84 * used. The former state corresponds to the @wl->free tree. The latter state
85 * is split up on several sub-states:
86 * o the WL movement is allowed (@wl->used tree);
87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88 * erroneous - e.g., there was a read error;
89 * o the WL movement is temporarily prohibited (@wl->pq queue);
90 * o scrubbing is needed (@wl->scrub tree).
92 * Depending on the sub-state, wear-leveling entries of the used physical
93 * eraseblocks may be kept in one of those structures.
95 * Note, in this implementation, we keep a small in-RAM object for each physical
96 * eraseblock. This is surely not a scalable solution. But it appears to be good
97 * enough for moderately large flashes and it is simple. In future, one may
98 * re-work this sub-system and make it more scalable.
100 * At the moment this sub-system does not utilize the sequence number, which
101 * was introduced relatively recently. But it would be wise to do this because
102 * the sequence number of a logical eraseblock characterizes how old is it. For
103 * example, when we move a PEB with low erase counter, and we need to pick the
104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105 * pick target PEB with an average EC if our PEB is not very "old". This is a
106 * room for future re-works of the WL sub-system.
109 #include <linux/slab.h>
110 #include <linux/crc32.h>
111 #include <linux/freezer.h>
112 #include <linux/kthread.h>
113 #include "ubi.h"
115 /* Number of physical eraseblocks reserved for wear-leveling purposes */
116 #define WL_RESERVED_PEBS 1
119 * Maximum difference between two erase counters. If this threshold is
120 * exceeded, the WL sub-system starts moving data from used physical
121 * eraseblocks with low erase counter to free physical eraseblocks with high
122 * erase counter.
124 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
128 * physical eraseblock to move to. The simplest way would be just to pick the
129 * one with the highest erase counter. But in certain workloads this could lead
130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131 * situation when the picked physical eraseblock is constantly erased after the
132 * data is written to it. So, we have a constant which limits the highest erase
133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134 * does not pick eraseblocks with erase counter greater than the lowest erase
135 * counter plus %WL_FREE_MAX_DIFF.
137 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
140 * Maximum number of consecutive background thread failures which is enough to
141 * switch to read-only mode.
143 #define WL_MAX_FAILURES 32
146 * struct ubi_work - UBI work description data structure.
147 * @list: a link in the list of pending works
148 * @func: worker function
149 * @e: physical eraseblock to erase
150 * @torture: if the physical eraseblock has to be tortured
152 * The @func pointer points to the worker function. If the @cancel argument is
153 * not zero, the worker has to free the resources and exit immediately. The
154 * worker has to return zero in case of success and a negative error code in
155 * case of failure.
157 struct ubi_work {
158 struct list_head list;
159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
160 /* The below fields are only relevant to erasure works */
161 struct ubi_wl_entry *e;
162 int torture;
165 #ifdef CONFIG_MTD_UBI_DEBUG
166 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
167 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
168 struct ubi_wl_entry *e,
169 struct rb_root *root);
170 static int paranoid_check_in_pq(const struct ubi_device *ubi,
171 struct ubi_wl_entry *e);
172 #else
173 #define paranoid_check_ec(ubi, pnum, ec) 0
174 #define paranoid_check_in_wl_tree(ubi, e, root)
175 #define paranoid_check_in_pq(ubi, e) 0
176 #endif
179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180 * @e: the wear-leveling entry to add
181 * @root: the root of the tree
183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184 * the @ubi->used and @ubi->free RB-trees.
186 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 struct rb_node **p, *parent = NULL;
190 p = &root->rb_node;
191 while (*p) {
192 struct ubi_wl_entry *e1;
194 parent = *p;
195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197 if (e->ec < e1->ec)
198 p = &(*p)->rb_left;
199 else if (e->ec > e1->ec)
200 p = &(*p)->rb_right;
201 else {
202 ubi_assert(e->pnum != e1->pnum);
203 if (e->pnum < e1->pnum)
204 p = &(*p)->rb_left;
205 else
206 p = &(*p)->rb_right;
210 rb_link_node(&e->u.rb, parent, p);
211 rb_insert_color(&e->u.rb, root);
215 * do_work - do one pending work.
216 * @ubi: UBI device description object
218 * This function returns zero in case of success and a negative error code in
219 * case of failure.
221 static int do_work(struct ubi_device *ubi)
223 int err;
224 struct ubi_work *wrk;
226 cond_resched();
229 * @ubi->work_sem is used to synchronize with the workers. Workers take
230 * it in read mode, so many of them may be doing works at a time. But
231 * the queue flush code has to be sure the whole queue of works is
232 * done, and it takes the mutex in write mode.
234 down_read(&ubi->work_sem);
235 spin_lock(&ubi->wl_lock);
236 if (list_empty(&ubi->works)) {
237 spin_unlock(&ubi->wl_lock);
238 up_read(&ubi->work_sem);
239 return 0;
242 wrk = list_entry(ubi->works.next, struct ubi_work, list);
243 list_del(&wrk->list);
244 ubi->works_count -= 1;
245 ubi_assert(ubi->works_count >= 0);
246 spin_unlock(&ubi->wl_lock);
249 * Call the worker function. Do not touch the work structure
250 * after this call as it will have been freed or reused by that
251 * time by the worker function.
253 err = wrk->func(ubi, wrk, 0);
254 if (err)
255 ubi_err("work failed with error code %d", err);
256 up_read(&ubi->work_sem);
258 return err;
262 * produce_free_peb - produce a free physical eraseblock.
263 * @ubi: UBI device description object
265 * This function tries to make a free PEB by means of synchronous execution of
266 * pending works. This may be needed if, for example the background thread is
267 * disabled. Returns zero in case of success and a negative error code in case
268 * of failure.
270 static int produce_free_peb(struct ubi_device *ubi)
272 int err;
274 spin_lock(&ubi->wl_lock);
275 while (!ubi->free.rb_node) {
276 spin_unlock(&ubi->wl_lock);
278 dbg_wl("do one work synchronously");
279 err = do_work(ubi);
280 if (err)
281 return err;
283 spin_lock(&ubi->wl_lock);
285 spin_unlock(&ubi->wl_lock);
287 return 0;
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
300 struct rb_node *p;
302 p = root->rb_node;
303 while (p) {
304 struct ubi_wl_entry *e1;
306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
308 if (e->pnum == e1->pnum) {
309 ubi_assert(e == e1);
310 return 1;
313 if (e->ec < e1->ec)
314 p = p->rb_left;
315 else if (e->ec > e1->ec)
316 p = p->rb_right;
317 else {
318 ubi_assert(e->pnum != e1->pnum);
319 if (e->pnum < e1->pnum)
320 p = p->rb_left;
321 else
322 p = p->rb_right;
326 return 0;
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
341 int pq_tail = ubi->pq_head - 1;
343 if (pq_tail < 0)
344 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @root: the RB-tree where to look for
353 * @max: highest possible erase counter
355 * This function looks for a wear leveling entry with erase counter closest to
356 * @max and less than @max.
358 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
360 struct rb_node *p;
361 struct ubi_wl_entry *e;
363 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
364 max += e->ec;
366 p = root->rb_node;
367 while (p) {
368 struct ubi_wl_entry *e1;
370 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
371 if (e1->ec >= max)
372 p = p->rb_left;
373 else {
374 p = p->rb_right;
375 e = e1;
379 return e;
383 * ubi_wl_get_peb - get a physical eraseblock.
384 * @ubi: UBI device description object
385 * @dtype: type of data which will be stored in this physical eraseblock
387 * This function returns a physical eraseblock in case of success and a
388 * negative error code in case of failure. Might sleep.
390 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
392 int err, medium_ec;
393 struct ubi_wl_entry *e, *first, *last;
395 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
396 dtype == UBI_UNKNOWN);
398 retry:
399 spin_lock(&ubi->wl_lock);
400 if (!ubi->free.rb_node) {
401 if (ubi->works_count == 0) {
402 ubi_assert(list_empty(&ubi->works));
403 ubi_err("no free eraseblocks");
404 spin_unlock(&ubi->wl_lock);
405 return -ENOSPC;
407 spin_unlock(&ubi->wl_lock);
409 err = produce_free_peb(ubi);
410 if (err < 0)
411 return err;
412 goto retry;
415 switch (dtype) {
416 case UBI_LONGTERM:
418 * For long term data we pick a physical eraseblock with high
419 * erase counter. But the highest erase counter we can pick is
420 * bounded by the the lowest erase counter plus
421 * %WL_FREE_MAX_DIFF.
423 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
424 break;
425 case UBI_UNKNOWN:
427 * For unknown data we pick a physical eraseblock with medium
428 * erase counter. But we by no means can pick a physical
429 * eraseblock with erase counter greater or equivalent than the
430 * lowest erase counter plus %WL_FREE_MAX_DIFF.
432 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
433 u.rb);
434 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
436 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
437 e = rb_entry(ubi->free.rb_node,
438 struct ubi_wl_entry, u.rb);
439 else {
440 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
441 e = find_wl_entry(&ubi->free, medium_ec);
443 break;
444 case UBI_SHORTTERM:
446 * For short term data we pick a physical eraseblock with the
447 * lowest erase counter as we expect it will be erased soon.
449 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
450 break;
451 default:
452 BUG();
455 paranoid_check_in_wl_tree(ubi, e, &ubi->free);
458 * Move the physical eraseblock to the protection queue where it will
459 * be protected from being moved for some time.
461 rb_erase(&e->u.rb, &ubi->free);
462 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
463 prot_queue_add(ubi, e);
464 spin_unlock(&ubi->wl_lock);
466 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
467 ubi->peb_size - ubi->vid_hdr_aloffset);
468 if (err) {
469 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
470 return err;
473 return e->pnum;
477 * prot_queue_del - remove a physical eraseblock from the protection queue.
478 * @ubi: UBI device description object
479 * @pnum: the physical eraseblock to remove
481 * This function deletes PEB @pnum from the protection queue and returns zero
482 * in case of success and %-ENODEV if the PEB was not found.
484 static int prot_queue_del(struct ubi_device *ubi, int pnum)
486 struct ubi_wl_entry *e;
488 e = ubi->lookuptbl[pnum];
489 if (!e)
490 return -ENODEV;
492 if (paranoid_check_in_pq(ubi, e))
493 return -ENODEV;
495 list_del(&e->u.list);
496 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
497 return 0;
501 * sync_erase - synchronously erase a physical eraseblock.
502 * @ubi: UBI device description object
503 * @e: the the physical eraseblock to erase
504 * @torture: if the physical eraseblock has to be tortured
506 * This function returns zero in case of success and a negative error code in
507 * case of failure.
509 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
510 int torture)
512 int err;
513 struct ubi_ec_hdr *ec_hdr;
514 unsigned long long ec = e->ec;
516 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
518 err = paranoid_check_ec(ubi, e->pnum, e->ec);
519 if (err)
520 return -EINVAL;
522 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
523 if (!ec_hdr)
524 return -ENOMEM;
526 err = ubi_io_sync_erase(ubi, e->pnum, torture);
527 if (err < 0)
528 goto out_free;
530 ec += err;
531 if (ec > UBI_MAX_ERASECOUNTER) {
533 * Erase counter overflow. Upgrade UBI and use 64-bit
534 * erase counters internally.
536 ubi_err("erase counter overflow at PEB %d, EC %llu",
537 e->pnum, ec);
538 err = -EINVAL;
539 goto out_free;
542 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
544 ec_hdr->ec = cpu_to_be64(ec);
546 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
547 if (err)
548 goto out_free;
550 e->ec = ec;
551 spin_lock(&ubi->wl_lock);
552 if (e->ec > ubi->max_ec)
553 ubi->max_ec = e->ec;
554 spin_unlock(&ubi->wl_lock);
556 out_free:
557 kfree(ec_hdr);
558 return err;
562 * serve_prot_queue - check if it is time to stop protecting PEBs.
563 * @ubi: UBI device description object
565 * This function is called after each erase operation and removes PEBs from the
566 * tail of the protection queue. These PEBs have been protected for long enough
567 * and should be moved to the used tree.
569 static void serve_prot_queue(struct ubi_device *ubi)
571 struct ubi_wl_entry *e, *tmp;
572 int count;
575 * There may be several protected physical eraseblock to remove,
576 * process them all.
578 repeat:
579 count = 0;
580 spin_lock(&ubi->wl_lock);
581 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
582 dbg_wl("PEB %d EC %d protection over, move to used tree",
583 e->pnum, e->ec);
585 list_del(&e->u.list);
586 wl_tree_add(e, &ubi->used);
587 if (count++ > 32) {
589 * Let's be nice and avoid holding the spinlock for
590 * too long.
592 spin_unlock(&ubi->wl_lock);
593 cond_resched();
594 goto repeat;
598 ubi->pq_head += 1;
599 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
600 ubi->pq_head = 0;
601 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
602 spin_unlock(&ubi->wl_lock);
606 * schedule_ubi_work - schedule a work.
607 * @ubi: UBI device description object
608 * @wrk: the work to schedule
610 * This function adds a work defined by @wrk to the tail of the pending works
611 * list.
613 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
615 spin_lock(&ubi->wl_lock);
616 list_add_tail(&wrk->list, &ubi->works);
617 ubi_assert(ubi->works_count >= 0);
618 ubi->works_count += 1;
619 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
620 wake_up_process(ubi->bgt_thread);
621 spin_unlock(&ubi->wl_lock);
624 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
625 int cancel);
628 * schedule_erase - schedule an erase work.
629 * @ubi: UBI device description object
630 * @e: the WL entry of the physical eraseblock to erase
631 * @torture: if the physical eraseblock has to be tortured
633 * This function returns zero in case of success and a %-ENOMEM in case of
634 * failure.
636 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
637 int torture)
639 struct ubi_work *wl_wrk;
641 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
642 e->pnum, e->ec, torture);
644 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
645 if (!wl_wrk)
646 return -ENOMEM;
648 wl_wrk->func = &erase_worker;
649 wl_wrk->e = e;
650 wl_wrk->torture = torture;
652 schedule_ubi_work(ubi, wl_wrk);
653 return 0;
657 * wear_leveling_worker - wear-leveling worker function.
658 * @ubi: UBI device description object
659 * @wrk: the work object
660 * @cancel: non-zero if the worker has to free memory and exit
662 * This function copies a more worn out physical eraseblock to a less worn out
663 * one. Returns zero in case of success and a negative error code in case of
664 * failure.
666 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
667 int cancel)
669 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
670 int vol_id = -1, uninitialized_var(lnum);
671 struct ubi_wl_entry *e1, *e2;
672 struct ubi_vid_hdr *vid_hdr;
674 kfree(wrk);
675 if (cancel)
676 return 0;
678 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
679 if (!vid_hdr)
680 return -ENOMEM;
682 mutex_lock(&ubi->move_mutex);
683 spin_lock(&ubi->wl_lock);
684 ubi_assert(!ubi->move_from && !ubi->move_to);
685 ubi_assert(!ubi->move_to_put);
687 if (!ubi->free.rb_node ||
688 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
690 * No free physical eraseblocks? Well, they must be waiting in
691 * the queue to be erased. Cancel movement - it will be
692 * triggered again when a free physical eraseblock appears.
694 * No used physical eraseblocks? They must be temporarily
695 * protected from being moved. They will be moved to the
696 * @ubi->used tree later and the wear-leveling will be
697 * triggered again.
699 dbg_wl("cancel WL, a list is empty: free %d, used %d",
700 !ubi->free.rb_node, !ubi->used.rb_node);
701 goto out_cancel;
704 if (!ubi->scrub.rb_node) {
706 * Now pick the least worn-out used physical eraseblock and a
707 * highly worn-out free physical eraseblock. If the erase
708 * counters differ much enough, start wear-leveling.
710 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
711 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
713 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
714 dbg_wl("no WL needed: min used EC %d, max free EC %d",
715 e1->ec, e2->ec);
716 goto out_cancel;
718 paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
719 rb_erase(&e1->u.rb, &ubi->used);
720 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
721 e1->pnum, e1->ec, e2->pnum, e2->ec);
722 } else {
723 /* Perform scrubbing */
724 scrubbing = 1;
725 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
726 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
727 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
728 rb_erase(&e1->u.rb, &ubi->scrub);
729 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
732 paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
733 rb_erase(&e2->u.rb, &ubi->free);
734 ubi->move_from = e1;
735 ubi->move_to = e2;
736 spin_unlock(&ubi->wl_lock);
739 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
740 * We so far do not know which logical eraseblock our physical
741 * eraseblock (@e1) belongs to. We have to read the volume identifier
742 * header first.
744 * Note, we are protected from this PEB being unmapped and erased. The
745 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
746 * which is being moved was unmapped.
749 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
750 if (err && err != UBI_IO_BITFLIPS) {
751 if (err == UBI_IO_FF) {
753 * We are trying to move PEB without a VID header. UBI
754 * always write VID headers shortly after the PEB was
755 * given, so we have a situation when it has not yet
756 * had a chance to write it, because it was preempted.
757 * So add this PEB to the protection queue so far,
758 * because presumably more data will be written there
759 * (including the missing VID header), and then we'll
760 * move it.
762 dbg_wl("PEB %d has no VID header", e1->pnum);
763 protect = 1;
764 goto out_not_moved;
765 } else if (err == UBI_IO_FF_BITFLIPS) {
767 * The same situation as %UBI_IO_FF, but bit-flips were
768 * detected. It is better to schedule this PEB for
769 * scrubbing.
771 dbg_wl("PEB %d has no VID header but has bit-flips",
772 e1->pnum);
773 scrubbing = 1;
774 goto out_not_moved;
777 ubi_err("error %d while reading VID header from PEB %d",
778 err, e1->pnum);
779 goto out_error;
782 vol_id = be32_to_cpu(vid_hdr->vol_id);
783 lnum = be32_to_cpu(vid_hdr->lnum);
785 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
786 if (err) {
787 if (err == MOVE_CANCEL_RACE) {
789 * The LEB has not been moved because the volume is
790 * being deleted or the PEB has been put meanwhile. We
791 * should prevent this PEB from being selected for
792 * wear-leveling movement again, so put it to the
793 * protection queue.
795 protect = 1;
796 goto out_not_moved;
798 if (err == MOVE_RETRY) {
799 scrubbing = 1;
800 goto out_not_moved;
802 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
803 err == MOVE_TARGET_RD_ERR) {
805 * Target PEB had bit-flips or write error - torture it.
807 torture = 1;
808 goto out_not_moved;
811 if (err == MOVE_SOURCE_RD_ERR) {
813 * An error happened while reading the source PEB. Do
814 * not switch to R/O mode in this case, and give the
815 * upper layers a possibility to recover from this,
816 * e.g. by unmapping corresponding LEB. Instead, just
817 * put this PEB to the @ubi->erroneous list to prevent
818 * UBI from trying to move it over and over again.
820 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
821 ubi_err("too many erroneous eraseblocks (%d)",
822 ubi->erroneous_peb_count);
823 goto out_error;
825 erroneous = 1;
826 goto out_not_moved;
829 if (err < 0)
830 goto out_error;
832 ubi_assert(0);
835 /* The PEB has been successfully moved */
836 if (scrubbing)
837 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
838 e1->pnum, vol_id, lnum, e2->pnum);
839 ubi_free_vid_hdr(ubi, vid_hdr);
841 spin_lock(&ubi->wl_lock);
842 if (!ubi->move_to_put) {
843 wl_tree_add(e2, &ubi->used);
844 e2 = NULL;
846 ubi->move_from = ubi->move_to = NULL;
847 ubi->move_to_put = ubi->wl_scheduled = 0;
848 spin_unlock(&ubi->wl_lock);
850 err = schedule_erase(ubi, e1, 0);
851 if (err) {
852 kmem_cache_free(ubi_wl_entry_slab, e1);
853 if (e2)
854 kmem_cache_free(ubi_wl_entry_slab, e2);
855 goto out_ro;
858 if (e2) {
860 * Well, the target PEB was put meanwhile, schedule it for
861 * erasure.
863 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
864 e2->pnum, vol_id, lnum);
865 err = schedule_erase(ubi, e2, 0);
866 if (err) {
867 kmem_cache_free(ubi_wl_entry_slab, e2);
868 goto out_ro;
872 dbg_wl("done");
873 mutex_unlock(&ubi->move_mutex);
874 return 0;
877 * For some reasons the LEB was not moved, might be an error, might be
878 * something else. @e1 was not changed, so return it back. @e2 might
879 * have been changed, schedule it for erasure.
881 out_not_moved:
882 if (vol_id != -1)
883 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
884 e1->pnum, vol_id, lnum, e2->pnum, err);
885 else
886 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
887 e1->pnum, e2->pnum, err);
888 spin_lock(&ubi->wl_lock);
889 if (protect)
890 prot_queue_add(ubi, e1);
891 else if (erroneous) {
892 wl_tree_add(e1, &ubi->erroneous);
893 ubi->erroneous_peb_count += 1;
894 } else if (scrubbing)
895 wl_tree_add(e1, &ubi->scrub);
896 else
897 wl_tree_add(e1, &ubi->used);
898 ubi_assert(!ubi->move_to_put);
899 ubi->move_from = ubi->move_to = NULL;
900 ubi->wl_scheduled = 0;
901 spin_unlock(&ubi->wl_lock);
903 ubi_free_vid_hdr(ubi, vid_hdr);
904 err = schedule_erase(ubi, e2, torture);
905 if (err) {
906 kmem_cache_free(ubi_wl_entry_slab, e2);
907 goto out_ro;
909 mutex_unlock(&ubi->move_mutex);
910 return 0;
912 out_error:
913 if (vol_id != -1)
914 ubi_err("error %d while moving PEB %d to PEB %d",
915 err, e1->pnum, e2->pnum);
916 else
917 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
918 err, e1->pnum, vol_id, lnum, e2->pnum);
919 spin_lock(&ubi->wl_lock);
920 ubi->move_from = ubi->move_to = NULL;
921 ubi->move_to_put = ubi->wl_scheduled = 0;
922 spin_unlock(&ubi->wl_lock);
924 ubi_free_vid_hdr(ubi, vid_hdr);
925 kmem_cache_free(ubi_wl_entry_slab, e1);
926 kmem_cache_free(ubi_wl_entry_slab, e2);
928 out_ro:
929 ubi_ro_mode(ubi);
930 mutex_unlock(&ubi->move_mutex);
931 ubi_assert(err != 0);
932 return err < 0 ? err : -EIO;
934 out_cancel:
935 ubi->wl_scheduled = 0;
936 spin_unlock(&ubi->wl_lock);
937 mutex_unlock(&ubi->move_mutex);
938 ubi_free_vid_hdr(ubi, vid_hdr);
939 return 0;
943 * ensure_wear_leveling - schedule wear-leveling if it is needed.
944 * @ubi: UBI device description object
946 * This function checks if it is time to start wear-leveling and schedules it
947 * if yes. This function returns zero in case of success and a negative error
948 * code in case of failure.
950 static int ensure_wear_leveling(struct ubi_device *ubi)
952 int err = 0;
953 struct ubi_wl_entry *e1;
954 struct ubi_wl_entry *e2;
955 struct ubi_work *wrk;
957 spin_lock(&ubi->wl_lock);
958 if (ubi->wl_scheduled)
959 /* Wear-leveling is already in the work queue */
960 goto out_unlock;
963 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
964 * the WL worker has to be scheduled anyway.
966 if (!ubi->scrub.rb_node) {
967 if (!ubi->used.rb_node || !ubi->free.rb_node)
968 /* No physical eraseblocks - no deal */
969 goto out_unlock;
972 * We schedule wear-leveling only if the difference between the
973 * lowest erase counter of used physical eraseblocks and a high
974 * erase counter of free physical eraseblocks is greater than
975 * %UBI_WL_THRESHOLD.
977 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
978 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
980 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
981 goto out_unlock;
982 dbg_wl("schedule wear-leveling");
983 } else
984 dbg_wl("schedule scrubbing");
986 ubi->wl_scheduled = 1;
987 spin_unlock(&ubi->wl_lock);
989 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
990 if (!wrk) {
991 err = -ENOMEM;
992 goto out_cancel;
995 wrk->func = &wear_leveling_worker;
996 schedule_ubi_work(ubi, wrk);
997 return err;
999 out_cancel:
1000 spin_lock(&ubi->wl_lock);
1001 ubi->wl_scheduled = 0;
1002 out_unlock:
1003 spin_unlock(&ubi->wl_lock);
1004 return err;
1008 * erase_worker - physical eraseblock erase worker function.
1009 * @ubi: UBI device description object
1010 * @wl_wrk: the work object
1011 * @cancel: non-zero if the worker has to free memory and exit
1013 * This function erases a physical eraseblock and perform torture testing if
1014 * needed. It also takes care about marking the physical eraseblock bad if
1015 * needed. Returns zero in case of success and a negative error code in case of
1016 * failure.
1018 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1019 int cancel)
1021 struct ubi_wl_entry *e = wl_wrk->e;
1022 int pnum = e->pnum, err, need;
1024 if (cancel) {
1025 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1026 kfree(wl_wrk);
1027 kmem_cache_free(ubi_wl_entry_slab, e);
1028 return 0;
1031 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1033 err = sync_erase(ubi, e, wl_wrk->torture);
1034 if (!err) {
1035 /* Fine, we've erased it successfully */
1036 kfree(wl_wrk);
1038 spin_lock(&ubi->wl_lock);
1039 wl_tree_add(e, &ubi->free);
1040 spin_unlock(&ubi->wl_lock);
1043 * One more erase operation has happened, take care about
1044 * protected physical eraseblocks.
1046 serve_prot_queue(ubi);
1048 /* And take care about wear-leveling */
1049 err = ensure_wear_leveling(ubi);
1050 return err;
1053 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1054 kfree(wl_wrk);
1056 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1057 err == -EBUSY) {
1058 int err1;
1060 /* Re-schedule the LEB for erasure */
1061 err1 = schedule_erase(ubi, e, 0);
1062 if (err1) {
1063 err = err1;
1064 goto out_ro;
1066 return err;
1069 kmem_cache_free(ubi_wl_entry_slab, e);
1070 if (err != -EIO)
1072 * If this is not %-EIO, we have no idea what to do. Scheduling
1073 * this physical eraseblock for erasure again would cause
1074 * errors again and again. Well, lets switch to R/O mode.
1076 goto out_ro;
1078 /* It is %-EIO, the PEB went bad */
1080 if (!ubi->bad_allowed) {
1081 ubi_err("bad physical eraseblock %d detected", pnum);
1082 goto out_ro;
1085 spin_lock(&ubi->volumes_lock);
1086 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1087 if (need > 0) {
1088 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1089 ubi->avail_pebs -= need;
1090 ubi->rsvd_pebs += need;
1091 ubi->beb_rsvd_pebs += need;
1092 if (need > 0)
1093 ubi_msg("reserve more %d PEBs", need);
1096 if (ubi->beb_rsvd_pebs == 0) {
1097 spin_unlock(&ubi->volumes_lock);
1098 ubi_err("no reserved physical eraseblocks");
1099 goto out_ro;
1101 spin_unlock(&ubi->volumes_lock);
1103 ubi_msg("mark PEB %d as bad", pnum);
1104 err = ubi_io_mark_bad(ubi, pnum);
1105 if (err)
1106 goto out_ro;
1108 spin_lock(&ubi->volumes_lock);
1109 ubi->beb_rsvd_pebs -= 1;
1110 ubi->bad_peb_count += 1;
1111 ubi->good_peb_count -= 1;
1112 ubi_calculate_reserved(ubi);
1113 if (ubi->beb_rsvd_pebs)
1114 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1115 else
1116 ubi_warn("last PEB from the reserved pool was used");
1117 spin_unlock(&ubi->volumes_lock);
1119 return err;
1121 out_ro:
1122 ubi_ro_mode(ubi);
1123 return err;
1127 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1128 * @ubi: UBI device description object
1129 * @pnum: physical eraseblock to return
1130 * @torture: if this physical eraseblock has to be tortured
1132 * This function is called to return physical eraseblock @pnum to the pool of
1133 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1134 * occurred to this @pnum and it has to be tested. This function returns zero
1135 * in case of success, and a negative error code in case of failure.
1137 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1139 int err;
1140 struct ubi_wl_entry *e;
1142 dbg_wl("PEB %d", pnum);
1143 ubi_assert(pnum >= 0);
1144 ubi_assert(pnum < ubi->peb_count);
1146 retry:
1147 spin_lock(&ubi->wl_lock);
1148 e = ubi->lookuptbl[pnum];
1149 if (e == ubi->move_from) {
1151 * User is putting the physical eraseblock which was selected to
1152 * be moved. It will be scheduled for erasure in the
1153 * wear-leveling worker.
1155 dbg_wl("PEB %d is being moved, wait", pnum);
1156 spin_unlock(&ubi->wl_lock);
1158 /* Wait for the WL worker by taking the @ubi->move_mutex */
1159 mutex_lock(&ubi->move_mutex);
1160 mutex_unlock(&ubi->move_mutex);
1161 goto retry;
1162 } else if (e == ubi->move_to) {
1164 * User is putting the physical eraseblock which was selected
1165 * as the target the data is moved to. It may happen if the EBA
1166 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1167 * but the WL sub-system has not put the PEB to the "used" tree
1168 * yet, but it is about to do this. So we just set a flag which
1169 * will tell the WL worker that the PEB is not needed anymore
1170 * and should be scheduled for erasure.
1172 dbg_wl("PEB %d is the target of data moving", pnum);
1173 ubi_assert(!ubi->move_to_put);
1174 ubi->move_to_put = 1;
1175 spin_unlock(&ubi->wl_lock);
1176 return 0;
1177 } else {
1178 if (in_wl_tree(e, &ubi->used)) {
1179 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1180 rb_erase(&e->u.rb, &ubi->used);
1181 } else if (in_wl_tree(e, &ubi->scrub)) {
1182 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1183 rb_erase(&e->u.rb, &ubi->scrub);
1184 } else if (in_wl_tree(e, &ubi->erroneous)) {
1185 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1186 rb_erase(&e->u.rb, &ubi->erroneous);
1187 ubi->erroneous_peb_count -= 1;
1188 ubi_assert(ubi->erroneous_peb_count >= 0);
1189 /* Erroneous PEBs should be tortured */
1190 torture = 1;
1191 } else {
1192 err = prot_queue_del(ubi, e->pnum);
1193 if (err) {
1194 ubi_err("PEB %d not found", pnum);
1195 ubi_ro_mode(ubi);
1196 spin_unlock(&ubi->wl_lock);
1197 return err;
1201 spin_unlock(&ubi->wl_lock);
1203 err = schedule_erase(ubi, e, torture);
1204 if (err) {
1205 spin_lock(&ubi->wl_lock);
1206 wl_tree_add(e, &ubi->used);
1207 spin_unlock(&ubi->wl_lock);
1210 return err;
1214 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1215 * @ubi: UBI device description object
1216 * @pnum: the physical eraseblock to schedule
1218 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1219 * needs scrubbing. This function schedules a physical eraseblock for
1220 * scrubbing which is done in background. This function returns zero in case of
1221 * success and a negative error code in case of failure.
1223 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1225 struct ubi_wl_entry *e;
1227 dbg_msg("schedule PEB %d for scrubbing", pnum);
1229 retry:
1230 spin_lock(&ubi->wl_lock);
1231 e = ubi->lookuptbl[pnum];
1232 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1233 in_wl_tree(e, &ubi->erroneous)) {
1234 spin_unlock(&ubi->wl_lock);
1235 return 0;
1238 if (e == ubi->move_to) {
1240 * This physical eraseblock was used to move data to. The data
1241 * was moved but the PEB was not yet inserted to the proper
1242 * tree. We should just wait a little and let the WL worker
1243 * proceed.
1245 spin_unlock(&ubi->wl_lock);
1246 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1247 yield();
1248 goto retry;
1251 if (in_wl_tree(e, &ubi->used)) {
1252 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1253 rb_erase(&e->u.rb, &ubi->used);
1254 } else {
1255 int err;
1257 err = prot_queue_del(ubi, e->pnum);
1258 if (err) {
1259 ubi_err("PEB %d not found", pnum);
1260 ubi_ro_mode(ubi);
1261 spin_unlock(&ubi->wl_lock);
1262 return err;
1266 wl_tree_add(e, &ubi->scrub);
1267 spin_unlock(&ubi->wl_lock);
1270 * Technically scrubbing is the same as wear-leveling, so it is done
1271 * by the WL worker.
1273 return ensure_wear_leveling(ubi);
1277 * ubi_wl_flush - flush all pending works.
1278 * @ubi: UBI device description object
1280 * This function returns zero in case of success and a negative error code in
1281 * case of failure.
1283 int ubi_wl_flush(struct ubi_device *ubi)
1285 int err;
1288 * Erase while the pending works queue is not empty, but not more than
1289 * the number of currently pending works.
1291 dbg_wl("flush (%d pending works)", ubi->works_count);
1292 while (ubi->works_count) {
1293 err = do_work(ubi);
1294 if (err)
1295 return err;
1299 * Make sure all the works which have been done in parallel are
1300 * finished.
1302 down_write(&ubi->work_sem);
1303 up_write(&ubi->work_sem);
1306 * And in case last was the WL worker and it canceled the LEB
1307 * movement, flush again.
1309 while (ubi->works_count) {
1310 dbg_wl("flush more (%d pending works)", ubi->works_count);
1311 err = do_work(ubi);
1312 if (err)
1313 return err;
1316 return 0;
1320 * tree_destroy - destroy an RB-tree.
1321 * @root: the root of the tree to destroy
1323 static void tree_destroy(struct rb_root *root)
1325 struct rb_node *rb;
1326 struct ubi_wl_entry *e;
1328 rb = root->rb_node;
1329 while (rb) {
1330 if (rb->rb_left)
1331 rb = rb->rb_left;
1332 else if (rb->rb_right)
1333 rb = rb->rb_right;
1334 else {
1335 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1337 rb = rb_parent(rb);
1338 if (rb) {
1339 if (rb->rb_left == &e->u.rb)
1340 rb->rb_left = NULL;
1341 else
1342 rb->rb_right = NULL;
1345 kmem_cache_free(ubi_wl_entry_slab, e);
1351 * ubi_thread - UBI background thread.
1352 * @u: the UBI device description object pointer
1354 int ubi_thread(void *u)
1356 int failures = 0;
1357 struct ubi_device *ubi = u;
1359 ubi_msg("background thread \"%s\" started, PID %d",
1360 ubi->bgt_name, task_pid_nr(current));
1362 set_freezable();
1363 for (;;) {
1364 int err;
1366 if (kthread_should_stop())
1367 break;
1369 if (try_to_freeze())
1370 continue;
1372 spin_lock(&ubi->wl_lock);
1373 if (list_empty(&ubi->works) || ubi->ro_mode ||
1374 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1375 set_current_state(TASK_INTERRUPTIBLE);
1376 spin_unlock(&ubi->wl_lock);
1377 schedule();
1378 continue;
1380 spin_unlock(&ubi->wl_lock);
1382 err = do_work(ubi);
1383 if (err) {
1384 ubi_err("%s: work failed with error code %d",
1385 ubi->bgt_name, err);
1386 if (failures++ > WL_MAX_FAILURES) {
1388 * Too many failures, disable the thread and
1389 * switch to read-only mode.
1391 ubi_msg("%s: %d consecutive failures",
1392 ubi->bgt_name, WL_MAX_FAILURES);
1393 ubi_ro_mode(ubi);
1394 ubi->thread_enabled = 0;
1395 continue;
1397 } else
1398 failures = 0;
1400 cond_resched();
1403 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1404 return 0;
1408 * cancel_pending - cancel all pending works.
1409 * @ubi: UBI device description object
1411 static void cancel_pending(struct ubi_device *ubi)
1413 while (!list_empty(&ubi->works)) {
1414 struct ubi_work *wrk;
1416 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1417 list_del(&wrk->list);
1418 wrk->func(ubi, wrk, 1);
1419 ubi->works_count -= 1;
1420 ubi_assert(ubi->works_count >= 0);
1425 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1426 * @ubi: UBI device description object
1427 * @si: scanning information
1429 * This function returns zero in case of success, and a negative error code in
1430 * case of failure.
1432 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1434 int err, i;
1435 struct rb_node *rb1, *rb2;
1436 struct ubi_scan_volume *sv;
1437 struct ubi_scan_leb *seb, *tmp;
1438 struct ubi_wl_entry *e;
1440 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1441 spin_lock_init(&ubi->wl_lock);
1442 mutex_init(&ubi->move_mutex);
1443 init_rwsem(&ubi->work_sem);
1444 ubi->max_ec = si->max_ec;
1445 INIT_LIST_HEAD(&ubi->works);
1447 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1449 err = -ENOMEM;
1450 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1451 if (!ubi->lookuptbl)
1452 return err;
1454 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1455 INIT_LIST_HEAD(&ubi->pq[i]);
1456 ubi->pq_head = 0;
1458 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1459 cond_resched();
1461 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1462 if (!e)
1463 goto out_free;
1465 e->pnum = seb->pnum;
1466 e->ec = seb->ec;
1467 ubi->lookuptbl[e->pnum] = e;
1468 if (schedule_erase(ubi, e, 0)) {
1469 kmem_cache_free(ubi_wl_entry_slab, e);
1470 goto out_free;
1474 list_for_each_entry(seb, &si->free, u.list) {
1475 cond_resched();
1477 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1478 if (!e)
1479 goto out_free;
1481 e->pnum = seb->pnum;
1482 e->ec = seb->ec;
1483 ubi_assert(e->ec >= 0);
1484 wl_tree_add(e, &ubi->free);
1485 ubi->lookuptbl[e->pnum] = e;
1488 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1489 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1490 cond_resched();
1492 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1493 if (!e)
1494 goto out_free;
1496 e->pnum = seb->pnum;
1497 e->ec = seb->ec;
1498 ubi->lookuptbl[e->pnum] = e;
1499 if (!seb->scrub) {
1500 dbg_wl("add PEB %d EC %d to the used tree",
1501 e->pnum, e->ec);
1502 wl_tree_add(e, &ubi->used);
1503 } else {
1504 dbg_wl("add PEB %d EC %d to the scrub tree",
1505 e->pnum, e->ec);
1506 wl_tree_add(e, &ubi->scrub);
1511 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1512 ubi_err("no enough physical eraseblocks (%d, need %d)",
1513 ubi->avail_pebs, WL_RESERVED_PEBS);
1514 if (ubi->corr_peb_count)
1515 ubi_err("%d PEBs are corrupted and not used",
1516 ubi->corr_peb_count);
1517 goto out_free;
1519 ubi->avail_pebs -= WL_RESERVED_PEBS;
1520 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1522 /* Schedule wear-leveling if needed */
1523 err = ensure_wear_leveling(ubi);
1524 if (err)
1525 goto out_free;
1527 return 0;
1529 out_free:
1530 cancel_pending(ubi);
1531 tree_destroy(&ubi->used);
1532 tree_destroy(&ubi->free);
1533 tree_destroy(&ubi->scrub);
1534 kfree(ubi->lookuptbl);
1535 return err;
1539 * protection_queue_destroy - destroy the protection queue.
1540 * @ubi: UBI device description object
1542 static void protection_queue_destroy(struct ubi_device *ubi)
1544 int i;
1545 struct ubi_wl_entry *e, *tmp;
1547 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1548 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1549 list_del(&e->u.list);
1550 kmem_cache_free(ubi_wl_entry_slab, e);
1556 * ubi_wl_close - close the wear-leveling sub-system.
1557 * @ubi: UBI device description object
1559 void ubi_wl_close(struct ubi_device *ubi)
1561 dbg_wl("close the WL sub-system");
1562 cancel_pending(ubi);
1563 protection_queue_destroy(ubi);
1564 tree_destroy(&ubi->used);
1565 tree_destroy(&ubi->erroneous);
1566 tree_destroy(&ubi->free);
1567 tree_destroy(&ubi->scrub);
1568 kfree(ubi->lookuptbl);
1571 #ifdef CONFIG_MTD_UBI_DEBUG
1574 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1575 * @ubi: UBI device description object
1576 * @pnum: the physical eraseblock number to check
1577 * @ec: the erase counter to check
1579 * This function returns zero if the erase counter of physical eraseblock @pnum
1580 * is equivalent to @ec, and a negative error code if not or if an error
1581 * occurred.
1583 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1585 int err;
1586 long long read_ec;
1587 struct ubi_ec_hdr *ec_hdr;
1589 if (!ubi->dbg->chk_gen)
1590 return 0;
1592 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1593 if (!ec_hdr)
1594 return -ENOMEM;
1596 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1597 if (err && err != UBI_IO_BITFLIPS) {
1598 /* The header does not have to exist */
1599 err = 0;
1600 goto out_free;
1603 read_ec = be64_to_cpu(ec_hdr->ec);
1604 if (ec != read_ec) {
1605 ubi_err("paranoid check failed for PEB %d", pnum);
1606 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1607 ubi_dbg_dump_stack();
1608 err = 1;
1609 } else
1610 err = 0;
1612 out_free:
1613 kfree(ec_hdr);
1614 return err;
1618 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1619 * @ubi: UBI device description object
1620 * @e: the wear-leveling entry to check
1621 * @root: the root of the tree
1623 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1624 * is not.
1626 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1627 struct ubi_wl_entry *e,
1628 struct rb_root *root)
1630 if (!ubi->dbg->chk_gen)
1631 return 0;
1633 if (in_wl_tree(e, root))
1634 return 0;
1636 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1637 e->pnum, e->ec, root);
1638 ubi_dbg_dump_stack();
1639 return -EINVAL;
1643 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1644 * queue.
1645 * @ubi: UBI device description object
1646 * @e: the wear-leveling entry to check
1648 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1650 static int paranoid_check_in_pq(const struct ubi_device *ubi,
1651 struct ubi_wl_entry *e)
1653 struct ubi_wl_entry *p;
1654 int i;
1656 if (!ubi->dbg->chk_gen)
1657 return 0;
1659 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1660 list_for_each_entry(p, &ubi->pq[i], u.list)
1661 if (p == e)
1662 return 0;
1664 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1665 e->pnum, e->ec);
1666 ubi_dbg_dump_stack();
1667 return -EINVAL;
1670 #endif /* CONFIG_MTD_UBI_DEBUG */