2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <generated/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33 #include <linux/vmalloc.h>
34 #include <linux/swap.h>
35 #include <linux/kmsg_dump.h>
38 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/sections.h>
43 /* Per cpu memory for storing cpu states in case of system crash. */
44 note_buf_t __percpu
*crash_notes
;
46 /* vmcoreinfo stuff */
47 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
48 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
49 size_t vmcoreinfo_size
;
50 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
52 /* Location of the reserved area for the crash kernel */
53 struct resource crashk_res
= {
54 .name
= "Crash kernel",
57 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
60 int kexec_should_crash(struct task_struct
*p
)
62 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
68 * When kexec transitions to the new kernel there is a one-to-one
69 * mapping between physical and virtual addresses. On processors
70 * where you can disable the MMU this is trivial, and easy. For
71 * others it is still a simple predictable page table to setup.
73 * In that environment kexec copies the new kernel to its final
74 * resting place. This means I can only support memory whose
75 * physical address can fit in an unsigned long. In particular
76 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
77 * If the assembly stub has more restrictive requirements
78 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
79 * defined more restrictively in <asm/kexec.h>.
81 * The code for the transition from the current kernel to the
82 * the new kernel is placed in the control_code_buffer, whose size
83 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
84 * page of memory is necessary, but some architectures require more.
85 * Because this memory must be identity mapped in the transition from
86 * virtual to physical addresses it must live in the range
87 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
90 * The assembly stub in the control code buffer is passed a linked list
91 * of descriptor pages detailing the source pages of the new kernel,
92 * and the destination addresses of those source pages. As this data
93 * structure is not used in the context of the current OS, it must
96 * The code has been made to work with highmem pages and will use a
97 * destination page in its final resting place (if it happens
98 * to allocate it). The end product of this is that most of the
99 * physical address space, and most of RAM can be used.
101 * Future directions include:
102 * - allocating a page table with the control code buffer identity
103 * mapped, to simplify machine_kexec and make kexec_on_panic more
108 * KIMAGE_NO_DEST is an impossible destination address..., for
109 * allocating pages whose destination address we do not care about.
111 #define KIMAGE_NO_DEST (-1UL)
113 static int kimage_is_destination_range(struct kimage
*image
,
114 unsigned long start
, unsigned long end
);
115 static struct page
*kimage_alloc_page(struct kimage
*image
,
119 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
120 unsigned long nr_segments
,
121 struct kexec_segment __user
*segments
)
123 size_t segment_bytes
;
124 struct kimage
*image
;
128 /* Allocate a controlling structure */
130 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
135 image
->entry
= &image
->head
;
136 image
->last_entry
= &image
->head
;
137 image
->control_page
= ~0; /* By default this does not apply */
138 image
->start
= entry
;
139 image
->type
= KEXEC_TYPE_DEFAULT
;
141 /* Initialize the list of control pages */
142 INIT_LIST_HEAD(&image
->control_pages
);
144 /* Initialize the list of destination pages */
145 INIT_LIST_HEAD(&image
->dest_pages
);
147 /* Initialize the list of unuseable pages */
148 INIT_LIST_HEAD(&image
->unuseable_pages
);
150 /* Read in the segments */
151 image
->nr_segments
= nr_segments
;
152 segment_bytes
= nr_segments
* sizeof(*segments
);
153 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
158 * Verify we have good destination addresses. The caller is
159 * responsible for making certain we don't attempt to load
160 * the new image into invalid or reserved areas of RAM. This
161 * just verifies it is an address we can use.
163 * Since the kernel does everything in page size chunks ensure
164 * the destination addreses are page aligned. Too many
165 * special cases crop of when we don't do this. The most
166 * insidious is getting overlapping destination addresses
167 * simply because addresses are changed to page size
170 result
= -EADDRNOTAVAIL
;
171 for (i
= 0; i
< nr_segments
; i
++) {
172 unsigned long mstart
, mend
;
174 mstart
= image
->segment
[i
].mem
;
175 mend
= mstart
+ image
->segment
[i
].memsz
;
176 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
178 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
182 /* Verify our destination addresses do not overlap.
183 * If we alloed overlapping destination addresses
184 * through very weird things can happen with no
185 * easy explanation as one segment stops on another.
188 for (i
= 0; i
< nr_segments
; i
++) {
189 unsigned long mstart
, mend
;
192 mstart
= image
->segment
[i
].mem
;
193 mend
= mstart
+ image
->segment
[i
].memsz
;
194 for (j
= 0; j
< i
; j
++) {
195 unsigned long pstart
, pend
;
196 pstart
= image
->segment
[j
].mem
;
197 pend
= pstart
+ image
->segment
[j
].memsz
;
198 /* Do the segments overlap ? */
199 if ((mend
> pstart
) && (mstart
< pend
))
204 /* Ensure our buffer sizes are strictly less than
205 * our memory sizes. This should always be the case,
206 * and it is easier to check up front than to be surprised
210 for (i
= 0; i
< nr_segments
; i
++) {
211 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
226 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
227 unsigned long nr_segments
,
228 struct kexec_segment __user
*segments
)
231 struct kimage
*image
;
233 /* Allocate and initialize a controlling structure */
235 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
242 * Find a location for the control code buffer, and add it
243 * the vector of segments so that it's pages will also be
244 * counted as destination pages.
247 image
->control_code_page
= kimage_alloc_control_pages(image
,
248 get_order(KEXEC_CONTROL_PAGE_SIZE
));
249 if (!image
->control_code_page
) {
250 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
254 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
255 if (!image
->swap_page
) {
256 printk(KERN_ERR
"Could not allocate swap buffer\n");
270 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
271 unsigned long nr_segments
,
272 struct kexec_segment __user
*segments
)
275 struct kimage
*image
;
279 /* Verify we have a valid entry point */
280 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
281 result
= -EADDRNOTAVAIL
;
285 /* Allocate and initialize a controlling structure */
286 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
290 /* Enable the special crash kernel control page
293 image
->control_page
= crashk_res
.start
;
294 image
->type
= KEXEC_TYPE_CRASH
;
297 * Verify we have good destination addresses. Normally
298 * the caller is responsible for making certain we don't
299 * attempt to load the new image into invalid or reserved
300 * areas of RAM. But crash kernels are preloaded into a
301 * reserved area of ram. We must ensure the addresses
302 * are in the reserved area otherwise preloading the
303 * kernel could corrupt things.
305 result
= -EADDRNOTAVAIL
;
306 for (i
= 0; i
< nr_segments
; i
++) {
307 unsigned long mstart
, mend
;
309 mstart
= image
->segment
[i
].mem
;
310 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
311 /* Ensure we are within the crash kernel limits */
312 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
317 * Find a location for the control code buffer, and add
318 * the vector of segments so that it's pages will also be
319 * counted as destination pages.
322 image
->control_code_page
= kimage_alloc_control_pages(image
,
323 get_order(KEXEC_CONTROL_PAGE_SIZE
));
324 if (!image
->control_code_page
) {
325 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
339 static int kimage_is_destination_range(struct kimage
*image
,
345 for (i
= 0; i
< image
->nr_segments
; i
++) {
346 unsigned long mstart
, mend
;
348 mstart
= image
->segment
[i
].mem
;
349 mend
= mstart
+ image
->segment
[i
].memsz
;
350 if ((end
> mstart
) && (start
< mend
))
357 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
361 pages
= alloc_pages(gfp_mask
, order
);
363 unsigned int count
, i
;
364 pages
->mapping
= NULL
;
365 set_page_private(pages
, order
);
367 for (i
= 0; i
< count
; i
++)
368 SetPageReserved(pages
+ i
);
374 static void kimage_free_pages(struct page
*page
)
376 unsigned int order
, count
, i
;
378 order
= page_private(page
);
380 for (i
= 0; i
< count
; i
++)
381 ClearPageReserved(page
+ i
);
382 __free_pages(page
, order
);
385 static void kimage_free_page_list(struct list_head
*list
)
387 struct list_head
*pos
, *next
;
389 list_for_each_safe(pos
, next
, list
) {
392 page
= list_entry(pos
, struct page
, lru
);
393 list_del(&page
->lru
);
394 kimage_free_pages(page
);
398 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
401 /* Control pages are special, they are the intermediaries
402 * that are needed while we copy the rest of the pages
403 * to their final resting place. As such they must
404 * not conflict with either the destination addresses
405 * or memory the kernel is already using.
407 * The only case where we really need more than one of
408 * these are for architectures where we cannot disable
409 * the MMU and must instead generate an identity mapped
410 * page table for all of the memory.
412 * At worst this runs in O(N) of the image size.
414 struct list_head extra_pages
;
419 INIT_LIST_HEAD(&extra_pages
);
421 /* Loop while I can allocate a page and the page allocated
422 * is a destination page.
425 unsigned long pfn
, epfn
, addr
, eaddr
;
427 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
430 pfn
= page_to_pfn(pages
);
432 addr
= pfn
<< PAGE_SHIFT
;
433 eaddr
= epfn
<< PAGE_SHIFT
;
434 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
435 kimage_is_destination_range(image
, addr
, eaddr
)) {
436 list_add(&pages
->lru
, &extra_pages
);
442 /* Remember the allocated page... */
443 list_add(&pages
->lru
, &image
->control_pages
);
445 /* Because the page is already in it's destination
446 * location we will never allocate another page at
447 * that address. Therefore kimage_alloc_pages
448 * will not return it (again) and we don't need
449 * to give it an entry in image->segment[].
452 /* Deal with the destination pages I have inadvertently allocated.
454 * Ideally I would convert multi-page allocations into single
455 * page allocations, and add everyting to image->dest_pages.
457 * For now it is simpler to just free the pages.
459 kimage_free_page_list(&extra_pages
);
464 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
467 /* Control pages are special, they are the intermediaries
468 * that are needed while we copy the rest of the pages
469 * to their final resting place. As such they must
470 * not conflict with either the destination addresses
471 * or memory the kernel is already using.
473 * Control pages are also the only pags we must allocate
474 * when loading a crash kernel. All of the other pages
475 * are specified by the segments and we just memcpy
476 * into them directly.
478 * The only case where we really need more than one of
479 * these are for architectures where we cannot disable
480 * the MMU and must instead generate an identity mapped
481 * page table for all of the memory.
483 * Given the low demand this implements a very simple
484 * allocator that finds the first hole of the appropriate
485 * size in the reserved memory region, and allocates all
486 * of the memory up to and including the hole.
488 unsigned long hole_start
, hole_end
, size
;
492 size
= (1 << order
) << PAGE_SHIFT
;
493 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
494 hole_end
= hole_start
+ size
- 1;
495 while (hole_end
<= crashk_res
.end
) {
498 if (hole_end
> KEXEC_CONTROL_MEMORY_LIMIT
)
500 if (hole_end
> crashk_res
.end
)
502 /* See if I overlap any of the segments */
503 for (i
= 0; i
< image
->nr_segments
; i
++) {
504 unsigned long mstart
, mend
;
506 mstart
= image
->segment
[i
].mem
;
507 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
508 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
509 /* Advance the hole to the end of the segment */
510 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
511 hole_end
= hole_start
+ size
- 1;
515 /* If I don't overlap any segments I have found my hole! */
516 if (i
== image
->nr_segments
) {
517 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
522 image
->control_page
= hole_end
;
528 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
531 struct page
*pages
= NULL
;
533 switch (image
->type
) {
534 case KEXEC_TYPE_DEFAULT
:
535 pages
= kimage_alloc_normal_control_pages(image
, order
);
537 case KEXEC_TYPE_CRASH
:
538 pages
= kimage_alloc_crash_control_pages(image
, order
);
545 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
547 if (*image
->entry
!= 0)
550 if (image
->entry
== image
->last_entry
) {
551 kimage_entry_t
*ind_page
;
554 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
558 ind_page
= page_address(page
);
559 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
560 image
->entry
= ind_page
;
561 image
->last_entry
= ind_page
+
562 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
564 *image
->entry
= entry
;
571 static int kimage_set_destination(struct kimage
*image
,
572 unsigned long destination
)
576 destination
&= PAGE_MASK
;
577 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
579 image
->destination
= destination
;
585 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
590 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
592 image
->destination
+= PAGE_SIZE
;
598 static void kimage_free_extra_pages(struct kimage
*image
)
600 /* Walk through and free any extra destination pages I may have */
601 kimage_free_page_list(&image
->dest_pages
);
603 /* Walk through and free any unuseable pages I have cached */
604 kimage_free_page_list(&image
->unuseable_pages
);
607 static void kimage_terminate(struct kimage
*image
)
609 if (*image
->entry
!= 0)
612 *image
->entry
= IND_DONE
;
615 #define for_each_kimage_entry(image, ptr, entry) \
616 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
617 ptr = (entry & IND_INDIRECTION)? \
618 phys_to_virt((entry & PAGE_MASK)): ptr +1)
620 static void kimage_free_entry(kimage_entry_t entry
)
624 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
625 kimage_free_pages(page
);
628 static void kimage_free(struct kimage
*image
)
630 kimage_entry_t
*ptr
, entry
;
631 kimage_entry_t ind
= 0;
636 kimage_free_extra_pages(image
);
637 for_each_kimage_entry(image
, ptr
, entry
) {
638 if (entry
& IND_INDIRECTION
) {
639 /* Free the previous indirection page */
640 if (ind
& IND_INDIRECTION
)
641 kimage_free_entry(ind
);
642 /* Save this indirection page until we are
647 else if (entry
& IND_SOURCE
)
648 kimage_free_entry(entry
);
650 /* Free the final indirection page */
651 if (ind
& IND_INDIRECTION
)
652 kimage_free_entry(ind
);
654 /* Handle any machine specific cleanup */
655 machine_kexec_cleanup(image
);
657 /* Free the kexec control pages... */
658 kimage_free_page_list(&image
->control_pages
);
662 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
665 kimage_entry_t
*ptr
, entry
;
666 unsigned long destination
= 0;
668 for_each_kimage_entry(image
, ptr
, entry
) {
669 if (entry
& IND_DESTINATION
)
670 destination
= entry
& PAGE_MASK
;
671 else if (entry
& IND_SOURCE
) {
672 if (page
== destination
)
674 destination
+= PAGE_SIZE
;
681 static struct page
*kimage_alloc_page(struct kimage
*image
,
683 unsigned long destination
)
686 * Here we implement safeguards to ensure that a source page
687 * is not copied to its destination page before the data on
688 * the destination page is no longer useful.
690 * To do this we maintain the invariant that a source page is
691 * either its own destination page, or it is not a
692 * destination page at all.
694 * That is slightly stronger than required, but the proof
695 * that no problems will not occur is trivial, and the
696 * implementation is simply to verify.
698 * When allocating all pages normally this algorithm will run
699 * in O(N) time, but in the worst case it will run in O(N^2)
700 * time. If the runtime is a problem the data structures can
707 * Walk through the list of destination pages, and see if I
710 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
711 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
712 if (addr
== destination
) {
713 list_del(&page
->lru
);
721 /* Allocate a page, if we run out of memory give up */
722 page
= kimage_alloc_pages(gfp_mask
, 0);
725 /* If the page cannot be used file it away */
726 if (page_to_pfn(page
) >
727 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
728 list_add(&page
->lru
, &image
->unuseable_pages
);
731 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
733 /* If it is the destination page we want use it */
734 if (addr
== destination
)
737 /* If the page is not a destination page use it */
738 if (!kimage_is_destination_range(image
, addr
,
743 * I know that the page is someones destination page.
744 * See if there is already a source page for this
745 * destination page. And if so swap the source pages.
747 old
= kimage_dst_used(image
, addr
);
750 unsigned long old_addr
;
751 struct page
*old_page
;
753 old_addr
= *old
& PAGE_MASK
;
754 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
755 copy_highpage(page
, old_page
);
756 *old
= addr
| (*old
& ~PAGE_MASK
);
758 /* The old page I have found cannot be a
759 * destination page, so return it if it's
760 * gfp_flags honor the ones passed in.
762 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
763 PageHighMem(old_page
)) {
764 kimage_free_pages(old_page
);
772 /* Place the page on the destination list I
775 list_add(&page
->lru
, &image
->dest_pages
);
782 static int kimage_load_normal_segment(struct kimage
*image
,
783 struct kexec_segment
*segment
)
786 unsigned long ubytes
, mbytes
;
788 unsigned char __user
*buf
;
792 ubytes
= segment
->bufsz
;
793 mbytes
= segment
->memsz
;
794 maddr
= segment
->mem
;
796 result
= kimage_set_destination(image
, maddr
);
803 size_t uchunk
, mchunk
;
805 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
810 result
= kimage_add_page(image
, page_to_pfn(page
)
816 /* Start with a clear page */
817 memset(ptr
, 0, PAGE_SIZE
);
818 ptr
+= maddr
& ~PAGE_MASK
;
819 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
827 result
= copy_from_user(ptr
, buf
, uchunk
);
830 result
= (result
< 0) ? result
: -EIO
;
842 static int kimage_load_crash_segment(struct kimage
*image
,
843 struct kexec_segment
*segment
)
845 /* For crash dumps kernels we simply copy the data from
846 * user space to it's destination.
847 * We do things a page at a time for the sake of kmap.
850 unsigned long ubytes
, mbytes
;
852 unsigned char __user
*buf
;
856 ubytes
= segment
->bufsz
;
857 mbytes
= segment
->memsz
;
858 maddr
= segment
->mem
;
862 size_t uchunk
, mchunk
;
864 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
870 ptr
+= maddr
& ~PAGE_MASK
;
871 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
876 if (uchunk
> ubytes
) {
878 /* Zero the trailing part of the page */
879 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
881 result
= copy_from_user(ptr
, buf
, uchunk
);
882 kexec_flush_icache_page(page
);
885 result
= (result
< 0) ? result
: -EIO
;
897 static int kimage_load_segment(struct kimage
*image
,
898 struct kexec_segment
*segment
)
900 int result
= -ENOMEM
;
902 switch (image
->type
) {
903 case KEXEC_TYPE_DEFAULT
:
904 result
= kimage_load_normal_segment(image
, segment
);
906 case KEXEC_TYPE_CRASH
:
907 result
= kimage_load_crash_segment(image
, segment
);
915 * Exec Kernel system call: for obvious reasons only root may call it.
917 * This call breaks up into three pieces.
918 * - A generic part which loads the new kernel from the current
919 * address space, and very carefully places the data in the
922 * - A generic part that interacts with the kernel and tells all of
923 * the devices to shut down. Preventing on-going dmas, and placing
924 * the devices in a consistent state so a later kernel can
927 * - A machine specific part that includes the syscall number
928 * and the copies the image to it's final destination. And
929 * jumps into the image at entry.
931 * kexec does not sync, or unmount filesystems so if you need
932 * that to happen you need to do that yourself.
934 struct kimage
*kexec_image
;
935 struct kimage
*kexec_crash_image
;
937 static DEFINE_MUTEX(kexec_mutex
);
939 SYSCALL_DEFINE4(kexec_load
, unsigned long, entry
, unsigned long, nr_segments
,
940 struct kexec_segment __user
*, segments
, unsigned long, flags
)
942 struct kimage
**dest_image
, *image
;
945 /* We only trust the superuser with rebooting the system. */
946 if (!capable(CAP_SYS_BOOT
))
950 * Verify we have a legal set of flags
951 * This leaves us room for future extensions.
953 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
956 /* Verify we are on the appropriate architecture */
957 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
958 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
961 /* Put an artificial cap on the number
962 * of segments passed to kexec_load.
964 if (nr_segments
> KEXEC_SEGMENT_MAX
)
970 /* Because we write directly to the reserved memory
971 * region when loading crash kernels we need a mutex here to
972 * prevent multiple crash kernels from attempting to load
973 * simultaneously, and to prevent a crash kernel from loading
974 * over the top of a in use crash kernel.
976 * KISS: always take the mutex.
978 if (!mutex_trylock(&kexec_mutex
))
981 dest_image
= &kexec_image
;
982 if (flags
& KEXEC_ON_CRASH
)
983 dest_image
= &kexec_crash_image
;
984 if (nr_segments
> 0) {
987 /* Loading another kernel to reboot into */
988 if ((flags
& KEXEC_ON_CRASH
) == 0)
989 result
= kimage_normal_alloc(&image
, entry
,
990 nr_segments
, segments
);
991 /* Loading another kernel to switch to if this one crashes */
992 else if (flags
& KEXEC_ON_CRASH
) {
993 /* Free any current crash dump kernel before
996 kimage_free(xchg(&kexec_crash_image
, NULL
));
997 result
= kimage_crash_alloc(&image
, entry
,
998 nr_segments
, segments
);
1003 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1004 image
->preserve_context
= 1;
1005 result
= machine_kexec_prepare(image
);
1009 for (i
= 0; i
< nr_segments
; i
++) {
1010 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1014 kimage_terminate(image
);
1016 /* Install the new kernel, and Uninstall the old */
1017 image
= xchg(dest_image
, image
);
1020 mutex_unlock(&kexec_mutex
);
1026 #ifdef CONFIG_COMPAT
1027 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1028 unsigned long nr_segments
,
1029 struct compat_kexec_segment __user
*segments
,
1030 unsigned long flags
)
1032 struct compat_kexec_segment in
;
1033 struct kexec_segment out
, __user
*ksegments
;
1034 unsigned long i
, result
;
1036 /* Don't allow clients that don't understand the native
1037 * architecture to do anything.
1039 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1042 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1045 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1046 for (i
=0; i
< nr_segments
; i
++) {
1047 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1051 out
.buf
= compat_ptr(in
.buf
);
1052 out
.bufsz
= in
.bufsz
;
1054 out
.memsz
= in
.memsz
;
1056 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1061 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1065 void crash_kexec(struct pt_regs
*regs
)
1067 /* Take the kexec_mutex here to prevent sys_kexec_load
1068 * running on one cpu from replacing the crash kernel
1069 * we are using after a panic on a different cpu.
1071 * If the crash kernel was not located in a fixed area
1072 * of memory the xchg(&kexec_crash_image) would be
1073 * sufficient. But since I reuse the memory...
1075 if (mutex_trylock(&kexec_mutex
)) {
1076 if (kexec_crash_image
) {
1077 struct pt_regs fixed_regs
;
1079 kmsg_dump(KMSG_DUMP_KEXEC
);
1081 crash_setup_regs(&fixed_regs
, regs
);
1082 crash_save_vmcoreinfo();
1083 machine_crash_shutdown(&fixed_regs
);
1084 machine_kexec(kexec_crash_image
);
1086 mutex_unlock(&kexec_mutex
);
1090 size_t crash_get_memory_size(void)
1093 mutex_lock(&kexec_mutex
);
1094 size
= crashk_res
.end
- crashk_res
.start
+ 1;
1095 mutex_unlock(&kexec_mutex
);
1099 static void free_reserved_phys_range(unsigned long begin
, unsigned long end
)
1103 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
) {
1104 ClearPageReserved(pfn_to_page(addr
>> PAGE_SHIFT
));
1105 init_page_count(pfn_to_page(addr
>> PAGE_SHIFT
));
1106 free_page((unsigned long)__va(addr
));
1111 int crash_shrink_memory(unsigned long new_size
)
1114 unsigned long start
, end
;
1116 mutex_lock(&kexec_mutex
);
1118 if (kexec_crash_image
) {
1122 start
= crashk_res
.start
;
1123 end
= crashk_res
.end
;
1125 if (new_size
>= end
- start
+ 1) {
1127 if (new_size
== end
- start
+ 1)
1132 start
= roundup(start
, PAGE_SIZE
);
1133 end
= roundup(start
+ new_size
, PAGE_SIZE
);
1135 free_reserved_phys_range(end
, crashk_res
.end
);
1138 release_resource(&crashk_res
);
1139 crashk_res
.end
= end
- 1;
1142 mutex_unlock(&kexec_mutex
);
1146 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1149 struct elf_note note
;
1151 note
.n_namesz
= strlen(name
) + 1;
1152 note
.n_descsz
= data_len
;
1154 memcpy(buf
, ¬e
, sizeof(note
));
1155 buf
+= (sizeof(note
) + 3)/4;
1156 memcpy(buf
, name
, note
.n_namesz
);
1157 buf
+= (note
.n_namesz
+ 3)/4;
1158 memcpy(buf
, data
, note
.n_descsz
);
1159 buf
+= (note
.n_descsz
+ 3)/4;
1164 static void final_note(u32
*buf
)
1166 struct elf_note note
;
1171 memcpy(buf
, ¬e
, sizeof(note
));
1174 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1176 struct elf_prstatus prstatus
;
1179 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1182 /* Using ELF notes here is opportunistic.
1183 * I need a well defined structure format
1184 * for the data I pass, and I need tags
1185 * on the data to indicate what information I have
1186 * squirrelled away. ELF notes happen to provide
1187 * all of that, so there is no need to invent something new.
1189 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1192 memset(&prstatus
, 0, sizeof(prstatus
));
1193 prstatus
.pr_pid
= current
->pid
;
1194 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1195 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1196 &prstatus
, sizeof(prstatus
));
1200 static int __init
crash_notes_memory_init(void)
1202 /* Allocate memory for saving cpu registers. */
1203 crash_notes
= alloc_percpu(note_buf_t
);
1205 printk("Kexec: Memory allocation for saving cpu register"
1206 " states failed\n");
1211 module_init(crash_notes_memory_init
)
1215 * parsing the "crashkernel" commandline
1217 * this code is intended to be called from architecture specific code
1222 * This function parses command lines in the format
1224 * crashkernel=ramsize-range:size[,...][@offset]
1226 * The function returns 0 on success and -EINVAL on failure.
1228 static int __init
parse_crashkernel_mem(char *cmdline
,
1229 unsigned long long system_ram
,
1230 unsigned long long *crash_size
,
1231 unsigned long long *crash_base
)
1233 char *cur
= cmdline
, *tmp
;
1235 /* for each entry of the comma-separated list */
1237 unsigned long long start
, end
= ULLONG_MAX
, size
;
1239 /* get the start of the range */
1240 start
= memparse(cur
, &tmp
);
1242 pr_warning("crashkernel: Memory value expected\n");
1247 pr_warning("crashkernel: '-' expected\n");
1252 /* if no ':' is here, than we read the end */
1254 end
= memparse(cur
, &tmp
);
1256 pr_warning("crashkernel: Memory "
1257 "value expected\n");
1262 pr_warning("crashkernel: end <= start\n");
1268 pr_warning("crashkernel: ':' expected\n");
1273 size
= memparse(cur
, &tmp
);
1275 pr_warning("Memory value expected\n");
1279 if (size
>= system_ram
) {
1280 pr_warning("crashkernel: invalid size\n");
1285 if (system_ram
>= start
&& system_ram
< end
) {
1289 } while (*cur
++ == ',');
1291 if (*crash_size
> 0) {
1292 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1296 *crash_base
= memparse(cur
, &tmp
);
1298 pr_warning("Memory value expected "
1309 * That function parses "simple" (old) crashkernel command lines like
1311 * crashkernel=size[@offset]
1313 * It returns 0 on success and -EINVAL on failure.
1315 static int __init
parse_crashkernel_simple(char *cmdline
,
1316 unsigned long long *crash_size
,
1317 unsigned long long *crash_base
)
1319 char *cur
= cmdline
;
1321 *crash_size
= memparse(cmdline
, &cur
);
1322 if (cmdline
== cur
) {
1323 pr_warning("crashkernel: memory value expected\n");
1328 *crash_base
= memparse(cur
+1, &cur
);
1334 * That function is the entry point for command line parsing and should be
1335 * called from the arch-specific code.
1337 int __init
parse_crashkernel(char *cmdline
,
1338 unsigned long long system_ram
,
1339 unsigned long long *crash_size
,
1340 unsigned long long *crash_base
)
1342 char *p
= cmdline
, *ck_cmdline
= NULL
;
1343 char *first_colon
, *first_space
;
1345 BUG_ON(!crash_size
|| !crash_base
);
1349 /* find crashkernel and use the last one if there are more */
1350 p
= strstr(p
, "crashkernel=");
1353 p
= strstr(p
+1, "crashkernel=");
1359 ck_cmdline
+= 12; /* strlen("crashkernel=") */
1362 * if the commandline contains a ':', then that's the extended
1363 * syntax -- if not, it must be the classic syntax
1365 first_colon
= strchr(ck_cmdline
, ':');
1366 first_space
= strchr(ck_cmdline
, ' ');
1367 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1368 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1369 crash_size
, crash_base
);
1371 return parse_crashkernel_simple(ck_cmdline
, crash_size
,
1379 void crash_save_vmcoreinfo(void)
1383 if (!vmcoreinfo_size
)
1386 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1388 buf
= (u32
*)vmcoreinfo_note
;
1390 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1396 void vmcoreinfo_append_str(const char *fmt
, ...)
1402 va_start(args
, fmt
);
1403 r
= vsnprintf(buf
, sizeof(buf
), fmt
, args
);
1406 if (r
+ vmcoreinfo_size
> vmcoreinfo_max_size
)
1407 r
= vmcoreinfo_max_size
- vmcoreinfo_size
;
1409 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1411 vmcoreinfo_size
+= r
;
1415 * provide an empty default implementation here -- architecture
1416 * code may override this
1418 void __attribute__ ((weak
)) arch_crash_save_vmcoreinfo(void)
1421 unsigned long __attribute__ ((weak
)) paddr_vmcoreinfo_note(void)
1423 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1426 static int __init
crash_save_vmcoreinfo_init(void)
1428 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1429 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1431 VMCOREINFO_SYMBOL(init_uts_ns
);
1432 VMCOREINFO_SYMBOL(node_online_map
);
1433 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1434 VMCOREINFO_SYMBOL(_stext
);
1435 VMCOREINFO_SYMBOL(vmlist
);
1437 #ifndef CONFIG_NEED_MULTIPLE_NODES
1438 VMCOREINFO_SYMBOL(mem_map
);
1439 VMCOREINFO_SYMBOL(contig_page_data
);
1441 #ifdef CONFIG_SPARSEMEM
1442 VMCOREINFO_SYMBOL(mem_section
);
1443 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1444 VMCOREINFO_STRUCT_SIZE(mem_section
);
1445 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1447 VMCOREINFO_STRUCT_SIZE(page
);
1448 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1449 VMCOREINFO_STRUCT_SIZE(zone
);
1450 VMCOREINFO_STRUCT_SIZE(free_area
);
1451 VMCOREINFO_STRUCT_SIZE(list_head
);
1452 VMCOREINFO_SIZE(nodemask_t
);
1453 VMCOREINFO_OFFSET(page
, flags
);
1454 VMCOREINFO_OFFSET(page
, _count
);
1455 VMCOREINFO_OFFSET(page
, mapping
);
1456 VMCOREINFO_OFFSET(page
, lru
);
1457 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1458 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1459 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1460 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1462 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1463 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1464 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1465 VMCOREINFO_OFFSET(zone
, free_area
);
1466 VMCOREINFO_OFFSET(zone
, vm_stat
);
1467 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1468 VMCOREINFO_OFFSET(free_area
, free_list
);
1469 VMCOREINFO_OFFSET(list_head
, next
);
1470 VMCOREINFO_OFFSET(list_head
, prev
);
1471 VMCOREINFO_OFFSET(vm_struct
, addr
);
1472 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1473 log_buf_kexec_setup();
1474 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1475 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1476 VMCOREINFO_NUMBER(PG_lru
);
1477 VMCOREINFO_NUMBER(PG_private
);
1478 VMCOREINFO_NUMBER(PG_swapcache
);
1480 arch_crash_save_vmcoreinfo();
1485 module_init(crash_save_vmcoreinfo_init
)
1488 * Move into place and start executing a preloaded standalone
1489 * executable. If nothing was preloaded return an error.
1491 int kernel_kexec(void)
1495 if (!mutex_trylock(&kexec_mutex
))
1502 #ifdef CONFIG_KEXEC_JUMP
1503 if (kexec_image
->preserve_context
) {
1504 mutex_lock(&pm_mutex
);
1505 pm_prepare_console();
1506 error
= freeze_processes();
1509 goto Restore_console
;
1512 error
= dpm_suspend_start(PMSG_FREEZE
);
1514 goto Resume_console
;
1515 /* At this point, dpm_suspend_start() has been called,
1516 * but *not* dpm_suspend_noirq(). We *must* call
1517 * dpm_suspend_noirq() now. Otherwise, drivers for
1518 * some devices (e.g. interrupt controllers) become
1519 * desynchronized with the actual state of the
1520 * hardware at resume time, and evil weirdness ensues.
1522 error
= dpm_suspend_noirq(PMSG_FREEZE
);
1524 goto Resume_devices
;
1525 error
= disable_nonboot_cpus();
1528 local_irq_disable();
1529 /* Suspend system devices */
1530 error
= sysdev_suspend(PMSG_FREEZE
);
1536 kernel_restart_prepare(NULL
);
1537 printk(KERN_EMERG
"Starting new kernel\n");
1541 machine_kexec(kexec_image
);
1543 #ifdef CONFIG_KEXEC_JUMP
1544 if (kexec_image
->preserve_context
) {
1549 enable_nonboot_cpus();
1550 dpm_resume_noirq(PMSG_RESTORE
);
1552 dpm_resume_end(PMSG_RESTORE
);
1557 pm_restore_console();
1558 mutex_unlock(&pm_mutex
);
1563 mutex_unlock(&kexec_mutex
);